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ABSTRACT

Recent scholarship has argued that firms building data-driven decision systems
in high-stakes domains like employment, credit, and housing should search for
“less discriminatory algorithms” (LDAs) (Black et al.| 2024). That is, for a
given decision problem, firms considering deploying a model should make a
good-faith effort to find equally performant models with lower disparate impact
across social groups. Evidence from the literature on model multiplicity shows
that randomness in training pipelines can lead to multiple models with the same
performance, but meaningful variations in disparate impact. This suggests that
developers can find LDAs simply by randomly retraining models. Firms cannot
continue retraining forever, though, which raises the question: What constitutes a
good-faith effort? In this paper, we formalize LDA search via model multiplicity
as an optimal stopping problem, where a model developer with limited informa-
tion wants to produce strong evidence that they have sufficiently explored the
space of models. Our primary contribution is an adaptive stopping algorithm that
yields a high-probability upper bound on the gains achievable from a continued
search, allowing the developer to certify (e.g., to a court) that their search was
sufficient. We provide a framework under which developers can impose stronger
assumptions about the distribution of models, yielding correspondingly stronger
bounds. We validate the method on real-world housing and lending datasets.

1 INTRODUCTION

Data-driven models increasingly underpin decision making in critical domains like employment,
credit, and housing. While these models have been embraced for their potential to improve the
quality and efficiency of such decision making, the literature on algorithmic fairness has shown that
predictive models can also perpetuate or exacerbate societal biases, leading to potentially unfair
outcomes (Barocas et al., [2023)).

Recent work argues that in such high-stakes settings, firms building data-driven decision-making
systems should proactively search for “less discriminatory algorithms” (LDAs) (Black et al., [2024;
Gillis et al., 2024; [Caro et al., [2024)), or predictive models with equal overall performance but less
“disparate impact” across legally protected groups. In the United States, disparate impact in these
sectors is typically operationalized as the difference in selection rates across groups (e.g., differences
in the hiring, lending, or renting rates across racial, gender, or age groups).

In support of their argument is the empirical finding that models optimized for accuracy can vary
substantially with respect to other performance measures (like disparate impact), even if the training
procedure used is exactly the same (Marx et al.l [2020; D’ Amour et al.| 2022} [Rudin et al., [2024;
Black et al, [2022). This is because training processes are almost always non-deterministic; the
subset of data used to train a model, the batch ordering in stochastic gradient descent, the set of
features included as inputs, and any number of other aspects of a training algorithm are random. A
firm might thus hope to sample a large set of models with comparable predictive performance and
select the one with minimal disparate impact.

Scholars, advocates, and regulators have argued that firms are well-positioned to search for LDAs
because they oversee model training (Black et al., |2024; |[FinRegLab| [2023; |Blower, [2023). They
have further argued that firms ought to take certain minimal steps to perform such searches, given
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that reductions in discrimination are sometimes achievable “for free” (i.e., without sacrificing ac-
curacy) (Islam et al., [2021}; |Rodolfa et al., [2021)). Others, however, have been more skeptical of
the promise of LDAs, questioning whether they can really yield meaningful reductions in disparate
impact and raising concerns about the lengths to which a firm must go to demonstrate a good-faith
effort (Pace} 2023; |Scherer et al.l 2019). As one financial services blog put it: “no constraints or
limits on this search have been proposed — and it is unclear how much resources, time, and effort
are expected in searching for these potential LDAs” (Pace}, [2022).

At the heart of this debate is the sense that a search for LDAs could potentially go on forever, given
that additional searching might uncover an even less discriminatory alternative than what has been
discovered already. Given this uncertainty, how can firms ever establish that they have performed a
sufficient search for an LDA? In this paper, we develop a procedure for answering this question.

Our contributions. Our work develops statistical tools to quantify the value of an LDA search.
We formalize LDA search as an optimal stopping problem, wherein a firm wants to continue train-
ing models as long as the marginal gain from doing so (in disparate impact reduction) is sufficiently
large. Our primary contribution is an optimal stopping algorithm (AlgorithmI)) and theorem (Theo-
rem [3.5)) to quantify and bound the value of continuing a search for LDAs. Our theorem provides a
high-probability upper bound on the marginal value of training additional models, allowing a firm to
stop an LDA search when its value is sufficiently low. Thus, our methods also provide a certificate
of the limited benefits to a continued search, allowing the firm to demonstrate to a third party (e.g., a
court or internal compliance team) that it has conducted a reasonable search. Our framework allows
for the firm to impose knowledge about data and model distributions in order to further refine our
algorithm’s guarantees. Under stronger assumptions, we establish correspondingly stronger upper
bounds on the marginal value of training additional models.

Beyond the LDA context, our algorithm establishes general high-probability guarantees for marginal
returns of additional samples when sampling from an unknown distribution. At a technical level, we
draw on recent results on anytime-valid inference, which allow us to adaptively stop training models
while maintaining statistical validity. In particular, we develop a novel and asymptotically near-
optimal sequence upper-bounding the probability of improving upon a running best sample drawn
iid from any distribution, which may be of independent interest.

We also evaluate our algorithm empirically on a number of publicly available datasets related to
credit and housing. We randomly retrain models across standard model classes and measure the
stopping time of our algorithm against the optimal full-information stopping time. We find signifi-
cant heterogeneity in the true, full-information marginal returns to retraining, and in the performance
of the algorithm relative to this idealized benchmark.

Related work. Our technical approach is most closely related to a long literature in economics
and computer science on optimal stopping (DeGroot, 2004} Beyhaghi & Cail 2024} Lippman &
McCall, |1976} Bikhchandani & Sharma, [1996). Our model is closely related to the Pandora’s Box
problem (Weitzman, [1978;; |[Kleinberg et al., 2016; Beyhaghi & Cail [2024), in which the decision-
maker pays a cost to sample from a known distribution. However, our work is different in that we
assume minimal knowledge of the distributions. Also, rather than trying to maximize total utility of
a search, we seek a high-probability guarantee on the marginal returns of drawing another sample.

Second, our work is motivated by a literature on less discriminatory algorithms, model multiplicity
and fairness/accuracy tradeoffs (Black et al.| 2024; [2022} |Rodolfa et al.| 2021} [Laufer et al., 2025}
Gillis et al. 2024} |Cen et al.| [2025; [Fallah et al.| 2025; Rudin et al.,|2024). This literature surfaces the
idea that there may be many highly accurate models, and that retraining models may yield predictors
with different properties, especially with respect to fairness. Our work addresses an important and
unanswered question in this area: How do we certify the sufficiency of a search for a particular
model retraining process?

Organization of the paper. In Section[2] we formalize our setting, including the model retraining
process and our goals. In Section [3] we describe our theoretical results, including an algorithm for
adaptively training models and a theorem with corresponding guarantees on the correctness of the
stopping time. In Section i} we validate our method on real-world datasets for credit and housing.
Finally, in Section [5] we discuss other applications of our technical approach and conclude.
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2 SETTING AND MODEL

At a high level, we study the problem of learning a predictive machine learning model from a finite
dataset. The firm’s utility for a predictor is determined by its average performance on a loss function
over the population distribution. In the search for LDAs, the loss function might be the difference in
selection rates of a protected group versus that of a reference group.

The firm seeks to take advantage of model multiplicity to reduce this loss by sampling multiple high
performing models and selecting the least discriminatory among them (i.e., the one that minimizes
disparate impact). Our target is to design a procedure which determines when a sufficient search has
been conducted during the re-training process.

We assume the model trainer pre-specifies (1) a cost for sampling an additional model by repeating
a randomized training procedure and (2) a utility for a unit improvement to disparate impact. The
ratio of these quantities specifies a target threshold for determining whether the marginal benefit
of retraining models is worth the cost: if the expected benefit from training a new model is above
the threshold, the model trainer should do so, and if it is below the threshold, the trainer should
terminate the retraining procedure and deploy the best model seen so far. In the remainder of this
section, we formalize this setting and define notation.

Data and utility. We will assume the existence of an unknown population distribution D from
which the firm has sampled an iid dataset D of size n, consisting of labeled data pairs (x,y) € X' x ).
The firm will deploy a predictor h : X — ). In cases where the predictor determines outcomes
(like offers of employment, credit, or housing), ) will be binary, where 1 is the positive outcome.
The firm’s utility will be defined as

(h) £ E (z,y)~D [é(h(x),y,x)]

for £ given and im(Q) C [0, ] If the goal is to reduce disparity in selection rates with re-
spect to a group 1ndlcator g(xz) € {0,1} as in the search for LDAs, ¢ would be written as
Pl(a,y,2) = (1 g(x))/P(g(x) = 0) - g(x)/P(g(x) = 1)) a, which is a/P(g(x) = 0) if
g(x) = 0 and —a/P(g(x) = 1) if g(z) = 1. Then, the expected selection rate disparity of the
model would be given by QP'(h) = E[h(X) | g(X) = 0] — E[h(X) | g(X) = 1], i.e., the differ-
ence between the selection rate for the reference group and the selection rate for the protected group.
The loss is bounded in [0, 1] if the selection rate for the protected group (X for which g(X) = 1) is
never greater than that for the reference group (X for which g(X') = 0). This is reasonable because
discrimination against the protected group is not a concern if their selection rate is higher than the
reference group| However, our results are not solely relevant to ¢ as the selection rate disparity: our
results hold for any outcome space ) and loss function £ as long as the range of () is bounded in
[0, 1].

The model trainer cannot observe their true utility. Instead, we will assume they have access to a
finite sample of data on which they will evaluate their model. The empirical performance will be
defined for a fixed dataset .S, as

| S‘ Z é yza Iz)

€S

Model distribution. The model trainer will have a randomized training procedure 4 that takes in
a dataset D and returns a model h. There are no assumptions on the procedure A(D), except that it
is fixed in advance and returns a model iid conditional on the data D.

While we assume the model trainer has a fixed dataset D, we do not necessarily assume that all mod-
els are trained on the same training sample. Instead, the data may be partitioned into subsets Dain
and D', where h = A(D) depends only on the training subset D**#* and not on the remaining
data D't = D\ D%ain  Additionally, A is not restricted to produce models from any particular

"This is without loss of generality: any bounded loss function can be rescaled so the loss is on [0, 1].
Our proposed methods therefore work for loss functions beyond disparate impact; for example, a firm could
minimize a weighted combination of disparate impact and error rate instead of disparate impact alone.

2If selection rate disparity is a concern for both groups (i.e., both groups are protected), this loss could
alternately represent the absolute value of the difference between selection rates between groups.
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model class or setting of hyperparameters—it does not need to be a standard model training process
for a fixed model class. For example, A might first randomly decide between multiple algorithms
(which themselves might be randomized), like random forests or neural networks. Alternately, A
might sample from a given distribution over hyperparameters.

We will analyze the setting in which a model trainer trains a sequence of models hq, hs,... by
sampling iid, conditional on D, from A(D). Let D{™n Drain be the sequence of training
splits and D}est, Diest . be the sequence of test splits. (Recall D#i* U Diest = D for all ¢, so
train and test splits for different steps ¢ will have shared data.) For brevity, we will write the true and
empirical loss of the ¢-th model as

Q2 Q(h),  and Q¢ £ Q(hy; D).

We will denote by P the distribution of the infinite sequence @1, Q2,.... (When just considering
the first ¢ entries of this sequence, we will imagine throwing the rest away so as to not introduce new
notation.) We will denote by P the distribution of the infinite sequence Ql, Qg, ... similar to P, and
assume that P and P are defined on the same space. All distributions and probabilities throughout
this work are taken conditional on D, since we imagine there is one fixed dataset used for training
and evaluation. Note that P and P are supported on (a subset of) [0, 1]°°, since Q;, Q; € [0,1] by
assumption. Also, note that {Q;}?2, are iid, conditional on D. Let P, be the marginal distribution
of any Q,. Similarly, {Q;}5°, are iid conditional on D and we will denote the marginal distribution
of any Q: by B, Finally, let P be the joint probability distribution over the pairs (Q1, Ql), ... and
let Py be the marginal distribution over any (@, Qt)

We will analyze the model with the best performance on the test split, after the trainer concludes
training. Formally, for given t, let i; be the model with the lowest empirical disparate impact up to
the ¢-th model: 4; = argmin;cy Ql We will analyze the case where, after the model trainer trains
7 models, they select and deploy %;_. The true and empirical disparate impact of the selected model
after training ¢ models will be denoted

Ui £ Qi,, and U 2 Qi,.

In the context of an LDA search, we assume the models sampled from .A(D) are all deployable, in
the sense that a sample from .A(D) meets the business needs of the firm. If this is not true for some
model training process, rejection sampling can be used to continue retraining until a deployable one
is found. In practice, this may be accomplished by, for example, setting an accuracy threshold and
letting A(D) be samples from the model training distribution, conditional on sufficient accuracyE]

Certifying a sufficient search. For given cost of training a single model ¢ and utility for a unit
improvement to disparate impact b, the model trainer is justified in terminating a search after training
7models if b-Ep, [Ur — Ury1 | [77] < ¢, i.e., the expected marginal benefit of training an additional
model, given the observed best model so far, does not outweigh the cost. Equivalently, we will write

Epo[Ur = Uryr | Ur] < v (1)

where we define v £ ¢/b. Our definition requires the model trainer to continue sampling models as
long as the expected benefits outweigh the cost. But our information is limited in two ways: First,
we do not know P. Second, we can only observe noisy estimates of J; due to our finite data sample.
Thus, we can only hope to upper bound the left-hand expression of eq. (), with high probability
over 7, given this uncertainty.

3 ADAPTIVE STOPPING FOR REPEATED MODEL RETRAINING

Our main theoretical contribution is an adaptive algorithm (Algorithm |I) and accompanying theo-
retical result (Theorem [3.3)). The algorithm gives a procedure for training models until a stopping

3In other settings, £ might represent accuracy itself, in which case the search would be for more accurate
models. However, our motivation for this work is clarifying the debate around LDAs. The model multiplicity
literature argues that models optimized for accuracy will have similar accuracy but perhaps differences in other
properties (Black et al 2022} [Rodolfa et al.| 2021). More generally, ¢ could encode some fairness-accuracy
trade-off via a weighted combination of different objectives.
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condition is met. The theorem establishes that, when the algorithm halts, the marginal benefits of
retraining can be concluded to be no longer worth the costs. We also establish that the algorithm
always halts at some finite time that depends on ~y and gives a data-independent upper bound on the
number of models that need to be trained.

Our plan for the section is as follows. To build intuition, in Sections and we start with anal-
yses of simpler settings. In Section[3.1] the distribution of model performance is known, and obser-
vations of performance are observed exactly as if they were evaluated on infinite data (i.e., Qt = Q:
for all ¢). In this regime, the stopping problem is trivial and can be described by a threshold on
draws from the model peformance distribution. Next, in Section @], we relax the first condition
and do not assume full knowledge of the model performance distribution. We outline how different
conditions on the model performance distribution yield different bounds, and our method allows
decision-makers to input assumptions suitable to their context. Then, in Section [3.3] we handle the
additional uncertainty from evaluations on finite data. To do so, we introduce a natural assump-
tion on the relationship between observed and true model performance. Finally, in Section [3.4]
we consider the case in which estimation of a property of the model loss distribution can be lever-
aged to produce tighter bounds on marginal benefits of model retraining. All proofs are deferred to

Appendix D]
3.1 THE FULL-INFORMATION REGIME

We first consider the simplest case, when both the distribution P is known and the population values
of Q; are exactly observed. For any ¢, note that Uy — U1 = (Uz — Q¢41) - L[Ut > Q¢41]- Thus, if
the performance of the best model so far is u, the expected marginal gain of a new sample is

g9(u) = Equp, [(u—Q) - I[u>QJ]. 2)
Observe that g is weakly monotonically increasing, and g(0) = 0. Therefore, there is some threshold
up» at which the marginal gain drops below «y. Define this threshold as follows:

up 2 sup fusglu) <)
u€[0,1]

Thus, our stopping time 7 satisfies the desired guarantee eq. (IJ) if and only if
]EPO [U‘F—UTJrl ‘ U‘I‘] §’7<:>9(Ur) §7<:>UT S’LL}S (3)
This immediately yields a stopping condition: compute up and sample until a value less than u}

is observed. The stopping time 7 in this case is geometrically distributed, since each sample is less
than w% with probability Py(u} > Ur41), and so the expected stopping time is 1/Py(u} > Uri1).

3.2 THE INFINITE-DATA REGIME

Next, we analyze the case where we can perfectly observe Q; for all £. In this case, our only source
of uncertainty is our lack of information about P. Because of our uncertainty about P, we cannot al-
ways guarantee eq. (1) for finite 7: there is always a chance that the sequence {Q}%_, observed so
far have been abnormally large (i.e., an especially unlucky sequence), so that the expected marginal
gain of a new sample is greater than ~y. The best we can do is ensure that it holds with high proba-
bility, over the randomness of {Q;}$2,. That is, for a pre-specified § € (0, 1), we want

P(]EPO [UT*UT—Fl ‘UT]SFY):P(g(UT)SV)Zl*(S (4)
where the expectation is over U, marginally and the probability is over all ¢ jointly. Our goal is

thus to provide an anytime-valid upper bound on {g(U;)}{2,. That is, suppose we had a sequence
{g:(U;)}$2, such that

PEteN : g(U) > g:(Ut)) < 6.
Then, it suffices to stop sampling at 7 such that g (U,) < 7.

We have thus reduced our stopping problem to maintaining an anytime-valid upper bound for g(U;).
Our next step is to actually construct such a bound. To do so, we decompose g(-) into two terms:
One which captures the probability of observing a strictly better sample, and another which captures
the expected improvement conditional on observing a strictly better sample. Observe

9(u) =Eqnp, [u = Q [u> Q] Po(u > Q) = p(u)p(w),
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Assumption Interpretation 7

No assumption Applies to any distribution ~ z""versal (y) £ ¢

(A1) Ja > Ost fp(x)is Py has a sub-uniform left ™o (u) £ {Z “ z “
increasing for x < a tail 2 u=da

(A2) Ja > 0s.t. p(u)isin- Py has an exponential or [P £ {u b z @
creasing for u < a sharper left tail min(u(a),u) u<a
(A3) 3a > 0 st. Py(Q < No model has disparate im-  zPounded £ 4, ¢

a) =0 pact lower than a

Table 1: Assumptions on Py and corresponding bounds /.

where we define, for a draw of @ iid from Py, pu(u) = Ep, [u — Q | u > Q] and p(u) = Py(u > Q).
We will call o the conditional expected improvement (CEIﬂ and p the improvement probability. Tt
suffices to upper bound each of these separately and then combine them.

Bounding ;.. 'We first formalize a definition for bounds on p which will allow us to plug in different
bounds for different conditions on the input distribution. The definition is written for a generic
distribution since we will reuse this definition later in the finite-data case.

Definition 3.1 (5-Bounded CEI for P). [ : [0,1] — [0, 1] is a CEI bound for distribution P if
Equp fu—Q|u> Q] < p(u)

for all u € [0, 1], almost surely.

Next, we provide a series of assumptions on Fy under which we can derive bounds ji satisfying
Definition [3.1] These are summarized in Table([I] First, note that ;(U;) < U, almost surely since
Uiy1 > 0. This bound is quite conservative, since it bounds expected improvement by maximum
possible improvement. Decision-makers can make stronger assumptions on Py to get tighter bounds.
For example, consider the case when Py is continuous, and there exists a € (0, 1) such that fp, ()
is non-decreasing in x for all z < a (i.e., Py, at worst, has a uniform-like left tail). Note that,
by this assumption, p(u) < [;'z/udz = u/2. Thus, we can define i™™(u) as u/2 if u < a
and u otherwise. Similarly, if there exists some a € (0, 1) such that the p(u) is increasing for all
u < a, then we can apply g*P(u) = min(u(a),u) if v < a and u otherwise. Finally, suppose

Py(Q < a) = 0 for some a € (0,1]. Then we can define 15°"%4(y) £ u — a.

Bounding p. The following lemma yields a general anytime-valid high probability upper bound
for the probability of observing a new minimum in a sequence of iid random variables. It may be of
independent interest. An asymptotically near-optimal (but more complex) sequence can be found in
Theorem [E.Jl

Lemma 3.2. Let { X;}$2, be a sequence of iid random variables distributed according to a law Py.
Let P = P§° be their joint distribution. Let Y; = mingepy X Forany a € (0, 1), define

1—e Ve ift=1

o) = —1/(t—1)
p(2) 1-— (% + 1) otherwise.

Then,
’P(Hf eN : Po(Xt+1 <Y | Y;/) > ﬁt(a)) < a.

Lemma 3.2]yields an immediate anytime-valid upper bound on {p(U)}:
P(EteN : p(U) > pi(6)) < 6. (5)

“This concept is closely related to that of the mean residual life of a random variable, for which there is a
rich literature. See, e.g.,|Hall & Wellner| (2020).
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Combining bounds. Our algorithm simply combines our bounds on p and p to maintain an
anytime-valid upper bound on the marginal gain, given by fi(U;) - p;(6). Formally, our algorithm
simply terminates at the first 7 such that fi, (U, ) - p-(§) < . Moreover, 7 is guaranteed to be finite
because fi;(-) < 1 for all ¢, and lim;_,~, p¢(6) = 0. A data-independent upper bound on the number
of models trained can thus be directly computed from ¢ and + by finding the ¢ such that p;(J) < 7.
We state the algorithm for a generic distribution P given as input, rather than Py, since we will reuse
this algorithm in the finite-data regime.

Algorithm 1 LDA Search with Adaptive Stopping

input:

An unknown model performance distribution P from which to draw iid samples.

Stopping threshold ~ and failure probability §.

Optional: An almost-sure expected conditional improvement bound f satisfying Definition[3.1]
If not provided, use " "Versal(y) = .

fort=1,2,... do

Draw a new sample X, $p.
Define p; as in Lemma[3.2]
Define Y; = ming<; X}
if i(Y;) - p(6) <y then
return Y;
end if
end for

A A o e

We now state the formal statistical guarantee for our infinite data setting. It is a special case of a
more general theorem we prove, Theorem [D.1]

Proposition 3.3. For all v,6 > 0, Algorithm |l| run with P = Py, v,0 and any [ that satisfies
Definition|3.1|for Py as input terminates at a stopping time 7 € N such that

PEp[U; = U1 | U] <) > 1-06.
Next, we generalize to the case where we have finite data.

3.3 THE FINITE-DATA REGIME

If we observe only finite data, we cannot perfectly observe each (J;; instead, we observe Qt. As
before, we will seek to maintain an anytime-valid upper bound on the marginal gain. We must
take care to define the marginal gain appropriately—in particular, our goal is to bound the expected
marginal gain with respect to the true disparate impact (Q);), given our observations of empirical
disparate impact (Qt). Formally, our goal is to show that, at stopping time 7,

Ep, [Ur — Ury1 | Uﬂ'} <y

where the expectation is also conditional on D. To do this, we need to establish a relation between

the measurement error U; — U, at different points on the left tail of Py, We provide a natural
assumption on the relationship between these quantities: the selection effect or regression-to-the-
mean effect is, in expectation, non-decreasing in ¢. The assumption that regression-to-the-mean is
at least constant is frequently supposed in the large literature on adjusting analysis for or estimating
these effects (Stein et al.||1956f James et al., 1961;[Sorensen & Kennedy,|1984;/Andrews et al.,2024;
Zric & Fithian, 2024; Fithian et al., [2014])). Intuitively, this assumption holds for sub-Gaussian left

tails where the selection effect should be linear in the gap between U, and 0t+1 and even for sub-
exponentlal left tails where there should be constant regression to the mean in the gap between U,
and Ut+1 This assumption would not hold if some measurable set of values of Ut indicate that the
model is extremely fair, while models with Ut+1 < Ut are not particularly fair.

Assumption 3.4 (Non-decreasing selection effect). It holds for all ¢ that

Ep, [U; — Uy | Uy] > Epy [Ups1 — Upyr | Uy
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Under Assumption we can apply the same algorithm on the sequence {Ut}fi ; that we applied to
{U:}£2, in the infinite data case. This additional assumption is sufficient for the following theorem
to hold, using only a minor modification to the argument applied in the infinite data case.

Theorem 3.5. Under Assumption forally > 0and§ > 0, Algorithmrun with P = B, v, 6
and any [i that satisfies Definition|3.1|for Py terminates at a time T € N such that

P(EPU [UT - U‘F+1 | UT] < 7) >1-0. (6)

3.4 DATA-DRIVEN ANYTIME-VALID UPPER BOUNDS ON THE CONDITIONAL EXPECTED
IMPROVEMENT

We conclude this section with a discussion of the case in which ji can be estimated from data. We
provide intuition here and defer formal analysis to Appendix [C]

A model developer may reasonably believe that Assumption (AZ)) holds, meaning the conditional
expected improvement is decreasing as we sweep towards the left tail of P,. However, they may
have no a priori knowledge of the precise value of that bound, given by p(a). The developer can
instead infer a high-probability anytime-valid upper bound on (@) under Assumption (A2)), yielding
a data-driven CEI bound . In Appendix [C} we provide an algorithm (Algorithm 2 to formalize
this idea, taking care to combine multiple anytime-valid bounds.

4 EMPIRICAL ANALYSIS

In this section, we evaluate our method on several datasets and model classes. The datasets we use
are Adult (Becker & Kohavi, |1996)), Folktables (Ding et al.,|2021)), and HMDA (CEFPB|[2017)). The
first two of these are lending prediction tasks and the third is a mortgage prediction task. The model
classes we use are logistic regression, random forests and neural networks.

To evaluate our algorithm, we would ideally compare the performance of our algorithm against the
full-information regime discussed in Section [3.1] where we perfectly observe the marginal benefit
of sampling a new model. This is in general not possible, since we know neither the true data
distribution nor the true distribution of model disparate impacts. Instead, we treat the finite dataset
as a “population” and subsample to produce semi-synthetic datasets. We use a similar technique
to subsample from a large pool of trained models. Further details on our data preparation, model
training and comparison to the full-information regime are available in Appendix

The results of running the algorithm on many subsamples are visualized in Figure|l] Iterations of
the algorithm are on the horizontal axis and the conditional expected improvement is on the vertical
axis. The pink line is our upper bound ji(U;)p(8) for & = 0.05, setting ji(U;) = Uy, meaning we
place no assumptions on the distribution P,. The brown line is the ground truth g(f]t). The shaded
colored regions for each line show standard deviations over multiple runs of the dataset resampling,
model training and algorithm.

For any , Algorithm [I| would stop when the pink line drops below the horizontal line at y. Given
full distributional information, a model trainer should stop the retraining process once the brown
line drops below the horizontal line at . Thus, for any fixed ~, the average number of iterations
that the algorithm trained models past the stopping time given full information is the horizontal
distance between the brown and pink lines. Empirically, Algorithm[I|performs well in the sense that
it “overshoots” the correct stopping time by tens of models in general, though it appears to perform
worse for logistic regression. Further assumptions (i.e., will likely yield tighter bounds.
We provide miscoverage rates for our upper bound in Figure 4] which are well below the target
coverage 0.05 on average across datasets and model classes.

5 DISCUSSION

Although recent work has proposed that firms should take steps to proactively search for less dis-
criminatory algorithms, there are a number of open questions regarding both the gains to be expected
from an LDA search and the resources required to conduct one. In this paper we take one step to-
wards developing the tooling firms would need to conduct a search. We put forward a method that
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Figure 1: Algorithm(I]run on several datasets and models. Panel rows are datasets and panel columns
are model classes. In each panel, the horizontal axis is the iteration of the algorithm and the vertical

axis is marginal gain. The pink line is our estimated upper bound f(U;)p;(0.05) and the brown line
is the full-information marginal gain. For any -, Algorithm [[|would stop when the pink line crosses
the horizontal line at . Note that the vertical axis is on a log scale.

allows firms to adaptively sample models that come from a particular loss distribution. Our algo-
rithm adaptively bounds the marginal gains of a continued search, allowing a firm to terminate the
search when the gains are small and provide evidence that their search was sufficient.

We take as given ~y, which specifies the developer’s cost of training models relative to their value of
reducing disparate impact. While determining how a firm might choose v is beyond the scope of
this work, it is the subject of ongoing debate (Pace, 2022} |Black et al., [2024). Our framework can
help contribute to this debate in at least two ways. First, because we provide anytime-valid bounds,
we do not require that a firm pre-specify ~. Instead, model developers and compliance teams can
iteratively develop models, consider the incremental gains, run separate experiments, and adaptively
decide how to value those gains relative to development costs. Second, given a search conducted by
a firm, our framework allows us to “back out” a high-probability upper bound on the firm’s value of
~ implied by their decision to stop the search. That is, by observing a sequence of models sampled
by a developer, we can draw conclusions about their implicit value for reducing disparate impact
from their decision to terminate a search, and thereby facilitate a more informed debate about the
reasonableness of the search.

Our proposed procedure is just one piece of a larger and more complex set of steps that a firm might
take to search for a less discriminatory algorithm. This should not be construed as the only thing
that the firm has to do. In real cases, debates about the existence of a less discriminatory algorithm
might cover a swath of both quantitative and qualitative considerations about the reasonableness of
model assumptions, variables used, and so forth (Black et al., 2024)).

A number of future directions related to this setting are open. Our framework could be extended to
handle adaptivity, where the performance of previous models informs training decisions for future
models. In low-data settings, we would expect shrinkage or selection effects to be salient: the best-
performing model in-sample could fare much worse out-of-sample, potentially admitting stronger
guarantees. Finally, our technical framework can be applied to general optimal stopping problems
where high-probability guarantees are desirable. For example, a developer or researcher using an
LLM may choose the best of many randomly sampled prompts, and with our algorithm, they can
certify that further exploration is unlikely to yield significant gains. Applying our framework to
other settings is a fruitful direction for future work.
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A LLM USAGE.

LLMs were used in the making of this paper as a search and retrieval assistant to generate sugges-
tions for related work or techniques that were useful for proving theorems. They were also used
to generate some of the code used in data analys. All LLM suggestions and code were carefully
checked for correctness.

B ADDITIONAL DETAILS ON EMPIRICAL ANALYSIS.

Dataset preparation. We use pre-selected prediction targets and protected/reference groups
given in the datasets. For Folktables, we used data from Alabama from 2018.  For
HMDA, we use the cleaned dataset given in |Cooper et al| (2024) for New York in
2017. Full details of our data cleaning and feature selection are available in our code at:
https://anonymous.4open.science/r/lda-6EBA/README .md

The size specifications of our datasets, sub-sampling routines and runs were chosen to produce
confident results and demonstrate a plausible approach to implementing the procedure described in
this paper.

Datasets versus distributions. An initial challenge of evaluating our method in practice is the
absence of ground truth: It is impossible to evaluate predictive models on the distribution from
which a dataset was sampled, if we only can access the dataset itself. In light of this difficulty, we
treat the dataset itself as representative of a discrete population distribution, and sample iid from
this population distribution to arrive at a dataset for training models. First, we define the population
distribution to be the empirical measure over the original dataset (Adult, Folktables or HMDA). That
is, we define the population distribution D to be the discrete distribution with equal measure on each
of the points in the dataset. Second, we can then generate an iid sample from this distribution by
sampling rows from the dataset uniformly at random (i.e., with replacement). Having sampled D this
way, we produce a train/test split D% Dtst of D where D' is used to define the predictive
model and D't is used to evaluate it.Then, for a particular predictive model A trained on Dtrain

12


https://www.nature.com/articles/s42256-021-00396-x
http://arxiv.org/abs/2411.18569
https://anonymous.4open.science/r/lda-6EBA/README.md

Under review as a conference paper at ICLR 2026

Dataset Logistic Regression Random Forest Neural Network
Adult 0.084 (0.013) 0.054 (0.010) 0.095 (0.020)
Folktables 0.056 (0.026) 0.031 (0.017) 0.048 (0.022)
HMDA 0.655 (0.087) 0.416 (0.104) 0.063 (0.088)

Figure 2: Selection rate disparities for each dataset and model class. Reported number is the mean
over all runs. Standard deviations are in parentheses.

Dataset Logistic Regression Random Forest Neural Network
Adult 0.824 (0.001) 0.819 (0.003) 0.816 (0.003)
Folktables 0.777 (0.002) 0.808 (0.005) 0.794 (0.004)
HMDA 0.594 (0.003) 0.585 (0.006) 0.505 (0.062)

Figure 3: Accuracy for each dataset and model class. Reported number is the mean over all runs.
Standard deviations are in parentheses.

we can compare the estimated disparate impact Q(h, D'*5t) (by summing ¢ over D'") against the
true population quantity (by summing ¢ over D). In effect, this procedure produces a population
distribution so that we can observe Q(h) exactly with respect to D and characterize the distribution
over models. Our algorithm could be run on the full dataset; it would just not allow for comparison
with a ground truth sample. When we resampled datasets, we sampled 3000 observations iid.

Just as we cannot observe the population data distribution , we accordingly cannot observe the pop-
ulation model training distribution. That is, we cannot exactly compute probabilities or expectations
with respect to A(D), since our model training process is constituted by a series of possibly com-
plex and opaque operations, and therefore do not lend themselves to closed form computations.
Here, we can apply the same strategy as above to generate a population distribution of models:
for a given D, we simulate B train/splits and then call the model training procedure on the train-
ing data. We then evaluate Q(h;, D!***) and Q(h;) as before and save them. This set of values

{Q(hs), Q(hs, Di*s*)}B | can then be used to form a population distribution of model performance
and estimated model performance P. When implementing Algorithm [I] we then draw iid samples
from PP, with replacement.

Model training procedures. We use default parameter settings for each of our model classes,
except for the following modifications: For random forests, we fit ten estimators of depth no more
than five. For multilayer perceptrons, we fit a model with a single hidden layer of size 25 and run
training for a maximum of 600 iterations. The mean and standard deviation of the selection rate
disparities and accuracy for each dataset and model class are in Figure 2| and Figure 3| respectively.
We train 1000 models for each of 5 different resampled datasets and average the results in all figures.
After we generate the population and observed disparate impact for each model, we then resample
1000 times iid from the dataset of model performances. When model miscoverage rates are above
the target rate, we suspect it is the result of the relatively small number of models and datasets used
to generate the figures.

Dataset Logistic Regression Random Forest Neural Network
Adult 0.000 0.000 0.018
Folktables 0.036 0.099 0.007
HMDA 0.000 0.000 0.135

Figure 4: Miscoverage rates for Algorithm (1] at level 0.05. We compute the number of times our
upper bound i (Uy) - pr(9) is lower than g(Uy) for any ¢ across all runs of the algorithm.
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C FORMAL ANALYSIS: DATA-DRIVEN ANYTIME VALID UPPER BOUNDS ON
THE CONDITIONAL EXPECTED IMPROVEMENT.

We conclude this section with an analysis of the case in which i can be estimated from data. In
particular, we analyze the case in which the following assumption is satisfied:

Assumption C.1 (Non-decreasing CEI). For all constants a,a’ € supp (]50> such that ¢ > a’ and
a,a’ < median(Py), it holds with probability 1 that

Epla— Q| Qr<al>Epla' — Q| Q< dl. (7)

simultaneously forallt = 1,2, ....

In other words, the expected improvement relative to a on the event that Qt < a is greater than the
corresponding quantity with a’ for the two thresholds a > a’ below the median of Py.

Note that this assumption cannot automatically be plugged into the i approach above, since all we
know is that the conditional expected improvement is monotonically non-decreasing in a, but we
cannot otherwise upper bound it. However, we can infer a high-probability upper bound from the
data. We formalize this in Algorithm 2]

At a high level, we leverage the non-decreasing CEI assumption to estimate an upper bound on the
CEI that holds with high probability. To do this, we first pick a quantile (one third in our case) of
the distribution to estimate, and then we estimate the CEI at a high probability lower bound on that
quantile. We then use this as a high-probability choice of ji. Not that, unlike above, jz is not an upper
bound with probability 1. Thus, we must take a union bound to ensure that overall our guarantee
holds with probability at least 1 — 6.

The choice of which quantile to threshold on is arbitrary, but it must balance two factors. First, the
quantile must not be too close to zero or else we will not have much data to estimate based on, and
will thus have wide confidence intervals. Second, the lower the quantile, the smaller the CEI (based
on Assumption [3.4), so we will be estimating a smaller quantity for a smaller quantile. Thus, the
first factor is about the difference between a high probability lower bound and the true quantity, and
the second is about the magnitude of the true quantity. We’d like the combination of these two to be
as small as possible. We leave exploration of the optimal choice of the quantile for future work.

Algorithm 2 LDA Search with Adaptive Stopping and CEI Estimation

input: Stopping threshold - and failure probability 4.
1: Let Ty = [181log(3/6))] and draw T samples {Q,}12 .
2: Compute the empirical quantile at level 1/3:

C 2 Q1 /3))-

3: fort=1,2,... do
4:  Draw a new sample @); and compute U; = mins<; Q)s.
5:  Let p; be defined as in Lemma[3.2] Also, define

A2 C—Q
S = {i<t : I{A; > 0}}
= A l_fgb({AS}g:h 5/33 St) if St 7é %}
Uy otherwise
where i" is defined as in Corollary [D.6}
7: return U,
8
9

end if
: end for
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We are now ready to state our theorem.

Theorem C.2. Under Assumptions [3.4) and forall v > 0and § > 0, Algorithm [2] run with
P = Py, v and § terminates at a time T € N such that

P(Ep,[Ur — Urs1 | Us] <) > 106 ®)

D DEFERRED PROOFS.

Results are restated before proofs for convenience.

D.1 DEFERRED PROOFS FOR SECTION[3.2]

Lemma 3.2. Let { X}, be a sequence of iid random variables distributed according to a law Py.
Let P £ Pg° be their joint distribution. Let Y; = mingepy Xs. Forany a € (0, 1), define
1—e Ve ift=1
pe() = —1/(t=1)
pila) 1-— (% + 1) otherwise.

Then,
PEteN : Po(Xip1 <Y | Yy) > pe(a)) <o

Proof of Lemma At a high level, we proceed as follows:

1. First, show that it suffices to consider the case where the X; are uniform on [0, 1] via the
probability integral transform.

2. Then, we show that it suffices to provide an anytime-valid upper bound on the running
minimum of the sequence.

3. Finally, we show that p; as defined above yields such a bound.
We begin by using the probability integral transform to “convert” our X;’s into uniform random
variables. Let F'x be the CDF of X;. Define
Fi'(u) = inf{z : Fx(z) > u}.
Let {U;}2, be iid uniform random variables on [0, 1], defined on P. Let V; = minc[g U,. Then,

it holds, by e.g. Ch. 6, Theorem 3.1 of |Shorack| (2000), that

(FXMU), FX (V) £ (X, Vil

Because F'x is monotone, F)zl is monotone as well. Therefore,
PolXip1 < Ye [ {Xo}io1] > pe(@) = Po[Xi1 < Vi | Y] > ()
= PolFy (Urin) < F' (Vi) | Fx* (V)] > pula)
AP (), Fx (Vo)}ez, = {X0, Yidi)

= PolFx' (Urs1) < Fx' (Vi) | Vi] > (@)

(U1 L{V2}; F*(V4) is measurable with respect to o(EFy. ' (V;)) € o(V4))
< PolUss1 < Vi | Vi] > pr(a) (Fy' is weakly increasing)
= ‘/t > ]jt(()().

The last inequality follows from the fact that U, is uniformly distributed on [0, 1], so the proba-
bility it falls below V4 is precisely V;. Thus,

P(E't eN: Po(Xt+1 <Y: ‘ {XS}izl) >]7t(04)) < P(E't eN: W >17t(oz))

Thus, our goal is now to provide an anytime-valid upper-bound on V4.
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Define the martingale

Mi(0) & g Vi > 0)

1
=M;_1(0) - (HH{Ut > 9}) . )
This is a martingale because

E[M, | M,_1] =E [Mt_l(a) (;GH{U,& > 9}> ‘ Mt_l(a)}

= ]Wlf%l(;)E [(H{Ut > 0}) ‘ Mt—l(a)}
M (0)
- 1-4

== Mt—l(e)'

PI‘[Ut Z (9]

Moreover, it is a test martingale because it is nonnegative. Next, we use the “method of mixtures”
(see, e.g., Robbins| [1970; [Waudby-Smith & Ramdas|, [2024) to mix M; with a uniform distribution
on 6 over [0, 1]. Intuitively, placing more mass on smaller values of # gives us sharper bounds for
larger values of ¢. We choose the uniform distribution here for simplicity. In Theorem [E.T} we show
how to get an asymptotically tight rate.

U A '
MY(9) 2 /O M, (6) do

:/0 7(1j0)tﬂ{‘4 > 0} df

oo

By Fubini’s theorem, this is also a test martingale. Applying Ville’s inequality (Theorem [D.2), for
any o € (0,1),

P(EIteN: MtU(9)>1><a

e
i 1
P(HtEN:/O (10)t>a>§a' (11)
Observe that the integrand is nonnegative, so for any sequence p;,
Vi q P
/0 (1_9)t¢w>/0 md&«z»%>ﬁt. (12)

Therefore, we can choose p;(«) such that

D () 1 1

Fort =1,
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Fort > 2,
Pt () 1
/ ——df = l
0 (1-0)t «
(I=p() =1 _1
t—1 T
i1 —1/(t—1)
D =1—-(—+1
pi() ( o )
Thus,

P(EteN : Vt>13t(a)):'P<E|t€N; /Ow(l_le)td9>/0pt(1_19)td9>

(by eq. (12))
=P|3teN: /thde>1 (by eq. (13))
N e (-0 e Y ed:
completing the proof. O

We first prove a theorem for general iid random variables bounded in [0, 1].

Theorem D.1. For all v,6 > 0 and P, Algorithm [I| run with P, v, 6§ and any [i satisfying ?? as
input terminates at a stopping time T € N such that

PES[X, — Xpp1 | Xo] <) >1— 6.

Proof of Theorem[D.1] Observe:

PEX; — Xo41 | Ur] > 79) =P(9(X5) > )
= P(u(X:)p(Xr) > )

(u(X;) < (X, ) almost surely)
(p(X7) > p-(0)) (ii(u) > 0 for all u)

<
< (Lemma[322))
O
Theorem D.2 (Ville’s inequality). Let My, Mo, ... be a non-negative supermartingale scaled so

that EMy < 1. Then, for any real number «,

1
P <suth > > <a.

t>1 «@

D.2 DEFERRED PROOFS OF SECTION [3.3]

Theorem 3.5. Under Assumption forally > 0and§ > 0, Algorithmrun with P = P, ¥, 0
and any [ that satisfies Definition [3.1|for Py terminates at a time T € N such that

]P)(]EIPO [U‘F —Ur1 | UT] < ’7) >1-0. (6)

Proof of Theorem[3.3] First, observe:

Ep, [UT —Ura ‘ UT] = Ep, [UT - UT+1 | U‘r] + EPD[(UT - UT) - (U‘r+1 - UTJrl) ‘ UT]-

17
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Under Assumption [3.4]
EPo[(U‘r - U}) - (UT-H - UT—H) | U‘r] >0, (14)
for all ¢ with probability 1. Next, observe
Epo[Ur = Ur1 | Ur] = Ep [Ur — Urp | Uy (15)
Finally, from Theorem [D.T] we have
PEg U —Uriy | U] <9) 216 (16)
Putting it all together, we have
P(Ep, [Ur — Ury1 | Uy] <) > P(Ep, [Ur — Uriq | U-] <) (Equation (T4))
= P(Epo (U, = Upir | U] <) (Equation (T3))
>1-—4. (Equation (T6))

O

D.3 DEFERRED PROOFS FOR SECTION [3.4]

Theorem C.2. Under Assumptions [3.4) and Sforall v > 0and § > 0, Algorithm [2] run with
P = Py, v and § terminates at a time T € N such that

P(EPU [UT - U‘F+1 | UT] < 7) >1-0. (8)

Proof of Theorem|C.2] Define the following events.

& = {C < median(P)}

& ={Ep [C - Qri1|C > Qri1,C) < fir}
where 4, is as defined in algorithm[2]
Notice that, on &y and &;

Ep (U = U1 | Uy > Qrpd]

Py [z — Qr+1 | 2z > QTH] (Assumption[C.T)
= EPO [UT - QTJrl | UT > QT+1} 5

Po [C - CA)'rJrl ‘ c> C?TJrlv C]
(C € [Ur,median(Fy)] a.s. on &)
< fir. (&1)

where [i- is defined as in Algorithm Also, define &5 = {]50(07 > 0T+1 | UT) < pr}. Observe
that, on &5,

<E
<E

PO(UT > QT+1 | U'r) < 137'(5/3)'
Combining these, we have, by the fact that the algorithm terminated
fir - r(6/3) <. (17)

By Lemmas and &o, &1 and & each occur with probability at least 1 — 6/3, so by a
union bound, their intersection occurs with probability at least 1 — 4. O

Lemma D.3. For all 6, with probability no less than 1 — §/3,
C < median(P) (18)
where C'is defined as in Algorithm

Proof of Lemma[D.3} Lete = 1/6 and let i* = |T}/2]. Note that the event C' < median(F) is

the same as the event that * < ZtTél I {Qt < medi an(ﬁg)}, since this implies that there are at

18
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least * draws of Qt less than the median. Note that I {Qt < medi an(f?o)} are independent and
distributed as Bernoulli random variables with success probability p. Thus,

T
P(C > median(Py)) = P (Z* > ZH {Qf < median(lf’o)}>

2(i* — (1/2 — e)T1)?
< exp <— (@ ( é )Th) > (Hoeffding’s inequality)
1
< exp (72€2T1) (Substituting definition of 7*.)
1
< 3 (Substituting definition of € and simplifying.)

O

Lemma D.4. For all 6, with probability at least 1 — §/3, it holds for allt = 2,3, . .. simultaneously
that

EplC— Qi1 ] C > Q1. Cl < iy
where [i; is defined as in Algorithm 2]
Proof of Lemma We just need to verify that we can apply Corollary [D.6 To do this, we need

to verify A € S; have the same conditional mean.

Define S and {i; }; analogously to in Corollary D.6}
S={teN: Q; <C}

Define the sequence S = (t € N : @Q; < C). To see that all A;, have the same mean conditional
on the past, observe,

EplAi, | Aiyyo oy Diyy Ol =EBp[C — Qi | Ay, A, C)
:C_EP[QZ’,: | Ail""7Ait717C]
=C-E }S[Qzﬂ (Independence of Q;, conditional on D)

Thus, since Qit are identically distributed conditional on D, it holds E 5 QA“ = Ep, QZ for all
s,t € Nso {A;, }22, have the same mean conditional on the past and C.

Now, on the event that Qt+1 < C,itholds t + 1 € S. Thus, the guarantee holds for ¢ + 1. Finally,
we plug in d/3 for «, which yields the desired result:
Ep[C — Qi1 | C > Qu11,C) < fur.
O

The following result provides a high probability upper bound for anytime-valid bounded mean esti-
mation.

Theorem D.5 (Theorem 2, |Waudby-Smith & Ramdas|(2024)). Suppose there is a constant v and
stochastic process (X1);2, ~ P for some distribution P with support bounded on |0, 1] such that,
forall t,

EP(Xt | X17. .. 7Xt71) = V.

Let Fy = o({X;}t_,) be the o-field induced by X1, ..., X:. Next, consider any sequence {\;}7°,
such that for all t, \; is Fy_1-measurable. Then, for all a > 0, with probability at least 1 — «, it
holds forallt = 1,2, ... simultaneously:
L < log(2/a) + 31y XXy — (Xi — #i-1)(log(1 = \i) + M)
a 22:1 Ai

19
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We state the following corollary Theorem [D.5] which states the result for subsequences of random
processes (which amounts to a re-indexing) and uses a particular choice of A;. This result follows
the recommendations for \; in Waudby-Smith & Ramdas|(2024)) and is an empirical Bernstein-type
bound.

Corollary D.6. Suppose there is a constant v and stochastic process (X;)i2, ~ P for some distri-
bution P with support bounded on [0, 1]. Define a sequence of subsets Sy such that S;_1 C S; and
St \ Si—1 C {t}. Suppose, for all t such thatt € Sy and i € S,

]E'p(Xt | St—l) =V.

A 2log(2/a) 1
A”‘mm{¢m,n&u%u+w&)V} 4

1
A A §+Zi€St Xi
e
L+ ]S
52 & i"’ ZiESt(Xi — i)
¢ 1+ |S]

For all o € (0,1], define

where

, and

Finally, for all t, let

a log(2/a) +37cq MiXi — (X — Di—1)%(log(1 — N\;) + \;)
- Ziest Ai .
Then, with probability at least 1 — «, it holds for allt = 1,2, ... simultaneously:

v < i ({X Yo, , Sh)

ﬂib({XS}‘tS:DOGSt) (20)

Proof of Corollary|D.6] Define the sequence S = (¢t € N : X; € S;). Denote by i, the ¢-th
element of S. Clearly, )\; is F;_j-measurable. To apply the theorem, we plug in the sequence

{X;, }‘Si‘l as defined in for X} in Theorem O

E A SHARPER UPPER BOUND FOR LEMMA [3.2] WITH AN ALMOST MATCHING
LOWER BOUND.

Theorem E.1. Let {U;}7°, be a sequence of iid uniform random variables on [0,1]. Let V; =
min,e;) Us. For any constant a > 1, deﬁntﬂ

pioy 2w ot e 2 5

Then,

Pr{3t V; > 5(0)} < . 1)

SN

Asymptotically,
Dt (0
li Pt(9)

- so0 log iog t

€ [1,al.
Moreover; this is nearly tight: for any sequence {q; }:2 4,

1 : t
Pri3tVi>a} < § = M sy 2 1
t

By convention, inf & = oo.

20
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Proof. The lower bound follows directly from Robbins & Siegmund| (1972, Theorem 1), which
states that

loglog + 2loglog]
pr{v; > RERELEZORIORIEL o}y

t

Therefore, for any {q; }$2, such that

@

M fogtoat

t—oo loglogt
t

<1,
there is some t* such that for all ¢t > t*, ¢; <

loglog t+2logloglogt
t
infinitely often for ¢ > t*, so Pr{3t V; > ¢;} = 1.

. But this means that V; > ¢

For our upper bound, we follow the proof of Lemma[3.2]to define the test margtingale

Mi(6) & ﬁﬂ{‘/’t > 6} .

In Lemrna we mixed this martingale over the uniform distribution over [0, 1] for #. This lead to
an asymptotically loose bound:

o

16Xp|:t1110g(t§1+1>:|.

. —-1/(t-1)
5u(8) = 1— <H+1>

By Lemma|E.2]
1 t—1
pe(0) ~ 1 —+1
Pe(9) t_log( 3 +)
logt
—~

To get something asymptotically tight, we need to mix with a distribution that places more mass on
very small values of #. For some constant ¢ > 1, consider the distribution

N a—1

Y0 = G og(1/0))7

defined on (0, e~!). This is a valid probability distribution because

-1 -1

¢ ¢ a—1
fo o= [ G ey

o0
= (a— 1)/ u”du (substitute u = log(1/0))
1
-1 >
=(a—1)- —(a=1)
(a—1) T 1
1
-y~ (a=D)
=1.

We define our test martingale to be a mixture of M; over this distribution v:
MO [ o) s
0

min(e™",V4) 1 1
=(a— 1)/0 (1= 0y 6(log(1/6))*

21
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Again, this is a nonnegative martingale by Fubini’s theorem, using the fact that M, (6) is a nonneg-
ative martingale as shown in the proof of Lemma Applying Ville’s inequality (Theorem [D.2]),
forany ¢ € (0,1),

Pr{at MN(6) > ;} <4

p6) & min{nine{a e 0,07 [ g gt 0> 1

For sufficiently large t, the set over which we are taking the infimum will be nonempty, and for such

t:
Dt () 1 _
/ a—1 40— 1
o (1—=0)"6-(log(1/0)) o
By a simple monotonicity argument,
(Vi > 5u(0)} == (Vi > pu(6), 5u(6) < e}

min(€717vt) 1 1 1
= (a— 1)/ dg > —
0

(1—0)t 0(log(1/6))e )
— {MtN > (15}

Pr{3tV; > p.(6)} <4,

Define

Therefore,

which proves eq. (21).

Finally, to prove the asymptotic bounds,

1 1
g(v,t) = e’ t log v
(1 =v/1)" (1 - E7)e
1
) Ee TV ———
1
92(v,t) &
(]'_ 1loit)

By definition, g = g1 g2. Consider our integral

pe@ - q —1
/ - do
o (1=0)"0-(log(1/0))
Make the substitution v = t6. Then, this becomes

/“’t(‘” 1 a—1 v a—1 /tptw) 1 1

o (L—v/t)v/t-(log(t/v))e t — (logt)* Jo (1 —v/t)" v - (log(t/v))*
Intuitively, our goal will be to show that this integrand is approximately e /v. To do so, observe that
forv > 1,

—v

(&

(1—v/t)t

—v—tlog(l—wv/t)

qi1(v,t) =

=e

e~ vttw/t) (—log(1 — z) > x for z > 0)
1

T

1
g1
1.

v

gQ(th)

v

g(v,t) = g1(v,t)g2(v, t)

Y

22
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We can now break up our original integral into two parts:

a—1 /tﬁt(5) 1 1 p a—1 /tﬁt(5) ev 0.4
—_— V= —g(v, v
(logt)* Jo (T o/t o(1— 250)e ™~ Qogty Jy v

a—1 Lev
=— [ Zgwt)d
(logt)a A v g(”? ) v

t5:(8) v
—&-(fog_t;a/lp()evg(v,t)dv 22)
We’ll show that the first of these terms approaches 0. This is because for v < 1,
v 1 1
(I —v/t)" (1 - E3)a
1 1

logv\q
1—1/t) (1-— looggt)

(
4 (t > 2;logv < 0)

g(v,t)=e

IN

IN

Moreover, g(v,t) > 0. Therefore,

a—1 [tev 4(a —1)
- - . < N7
ogie [, o Dae < o

which goes to 0 as ¢ — oo. This means that asymptotically,

)

a—1 tpe(0) ev 1

m/l ?g(’l%t) dv = g — 0(1) (23)

Using the fact that g(v,t) > 1 forv > 1,
1 1 tp+(0) v —1 tp+(0) v
,ZL/ 3g(v,t)dv2ai/ < .
0~ (logt)* J; v (logt)e J; v

Consider the sequence z; implicitly defined (for sufficiently large t) as

a—1 /thdv_l
(logt)e J; v &

Clearly, z; > p:(9) because the integrand e /v is nonnegative. We will show that z; ~ aloglogt/t.

The exponential integral Ei is defined
Ei(z) 2 / ¢ .

Therefore,

“1/1 = 2L (mi) - EiQ)).

(logt) u (logt)e
By definition of z;, for all ¢,
0(a—1), . .
—(E —FEi(1)) = 1.
(logt)a ( l(zt) 1( ))
Therefore,
. dla—1),_. . _
tl_lf{.lo W(EI(ZO —Ei(1)) =1
lim Ha—1) Ei(z) =1

t—oo (logt)®

23
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We can write this with the asymptotic relation
0(a — 1) Ei(z¢) ~ (logt)“.

By the lower bound shown above, we must have z; > p,(0) = Q(loglogt/t), meaning z; — oc.

By Lemmal[E.3] if z; — oo, then Ei(z;) ~ e /2. Therefore,
0(a — 1) Ei(z¢) ~ (logt)®

2t

5(a—1)S ~ (logt)®

2t
ez,,—log 2t (log t)a
0(a—1)
(log t)”
z; — log zy ~ log (6(a .y

z; ~ aloglogt

Because p; () < z,

lim lpt((S) <a.
t—oo log iogt

The lower bound we began with yields
lim Pt(9) >1

completing the proof.

Lemma E.2. For a sequence {a;}{2, if limy_, oo a; = 0, then
1—e* ~ —a;.

Proof. We must show that

lim =1.
t—o0 —Qg
We proceed as follows.
1—e* e’ —1
lim = lim
t—o0 —Qy t—o0 ag
e —1
= lim
u—0 u
eO—i—u 60
= lim
u—0 u
d
= —¢e" =1.
du |,_o
Lemma E.3. As z — oo,
eZ
Ei(z) ~ —.
z
Proof.
d
| Ei(z) _ i 22 Ei(z)
200 & 200 4 e
z dz z
eZ
= lim
Z—> 00 z2
= lim T
z—00 2
z
=1.

24

(Lemma[EJ] since z; — 00)

(both sides go to co)

(24)

(limy o0 az = 0)
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