

000 001 002 003 004 005 STATISTICAL GUARANTEES IN THE SEARCH FOR LESS 006 DISCRIMINATORY ALGORITHMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031 Recent scholarship has argued that firms building data-driven decision systems
032 in high-stakes domains like employment, credit, and housing should search for
033 “less discriminatory algorithms” (LDAs) (Black et al., 2024). That is, for a
034 given decision problem, firms considering deploying a model should make a
035 good-faith effort to find equally performant models with lower disparate impact
036 across social groups. Evidence from the literature on model multiplicity shows
037 that randomness in training pipelines can lead to multiple models with the same
038 performance, but meaningful variations in disparate impact. This suggests that
039 developers can find LDAs simply by randomly retraining models. Firms cannot
040 continue retraining forever, though, which raises the question: What constitutes a
041 good-faith effort? In this paper, we formalize LDA search via model multiplicity
042 as an optimal stopping problem, where a model developer with limited informa-
043 tion wants to produce strong evidence that they have sufficiently explored the
044 space of models. Our primary contribution is an adaptive stopping algorithm that
045 yields a high-probability upper bound on the gains achievable from a continued
046 search, allowing the developer to certify (e.g., to a court) that their search was
047 sufficient. We provide a framework under which developers can impose stronger
048 assumptions about the distribution of models, yielding correspondingly stronger
049 bounds. We validate the method on real-world housing and lending datasets.
050
051

1 INTRODUCTION

052 Data-driven models increasingly underpin decision making in critical domains like employment,
053 credit, and housing. While these models have been embraced for their potential to improve the
054 quality and efficiency of such decision making, the literature on algorithmic fairness has shown that
055 predictive models can also perpetuate or exacerbate societal biases, leading to potentially unfair
056 outcomes (Barocas et al., 2023).

057 Recent work argues that in such high-stakes settings, firms building data-driven decision-making
058 systems should proactively search for “less discriminatory algorithms” (LDAs) (Black et al., 2024;
059 Gillis et al., 2024; Caro et al., 2024), or predictive models with equal overall performance but less
060 “disparate impact” across legally protected groups. In the United States, disparate impact in these
061 sectors is typically operationalized as the difference in selection rates across groups (e.g., differences
062 in the hiring, lending, or renting rates across racial, gender, or age groups).

063 In support of their argument is the empirical finding that models optimized for accuracy can vary
064 substantially with respect to other performance measures (like disparate impact), *even if the training*
065 *procedure used is exactly the same* (Marx et al., 2020; D’Amour et al., 2022; Rudin et al., 2024;
066 Black et al., 2022). This is because training processes are almost always non-deterministic; the
067 subset of data used to train a model, the batch ordering in stochastic gradient descent, the set of
068 features included as inputs, and any number of other aspects of a training algorithm are random. A
069 firm might thus hope to sample a large set of models with comparable predictive performance and
070 select the one with minimal disparate impact.

071 Scholars, advocates, and regulators have argued that firms are well-positioned to search for LDAs
072 because they oversee model training (Black et al., 2024; FinRegLab, 2023; Blower, 2023). They
073 have further argued that firms ought to take certain minimal steps to perform such searches, given
074
075

054 that reductions in discrimination are sometimes achievable “for free” (i.e., without sacrificing accuracy) (Islam et al., 2021; Rodolfa et al., 2021). Others, however, have been more skeptical of
 055 the promise of LDAs, questioning whether they can really yield meaningful reductions in disparate
 056 impact and raising concerns about the lengths to which a firm must go to demonstrate a good-faith
 057 effort (Pace, 2023; Scherer et al., 2019). As one financial services blog put it: “no constraints or
 058 limits on this search have been proposed — and it is unclear how much resources, time, and effort
 059 are expected in searching for these potential LDAs” (Pace, 2022).

060 At the heart of this debate is the sense that a search for LDAs could potentially go on forever, given
 061 that additional searching might uncover an even less discriminatory alternative than what has been
 062 discovered already. Given this uncertainty, how can firms ever establish that they have performed a
 063 sufficient search for an LDA? In this paper, we develop a procedure for answering this question.

064 **Our contributions.** Our work develops statistical tools to quantify the value of an LDA search.
 065 We formalize LDA search as an optimal stopping problem, wherein a firm wants to continue training
 066 models as long as the marginal gain from doing so (in disparate impact reduction) is sufficiently
 067 large. Our primary contribution is an optimal stopping algorithm (Algorithm 1) and theorem (Theo-
 068 rem 3.5) to quantify and bound the value of continuing a search for LDAs. Our theorem provides a
 069 high-probability upper bound on the marginal value of training additional models, allowing a firm to
 070 stop an LDA search when its value is sufficiently low. Thus, our methods also provide a *certificate*
 071 of the limited benefits to a continued search, allowing the firm to demonstrate to a third party (e.g., a
 072 court or internal compliance team) that it has conducted a reasonable search. Our framework allows
 073 for the firm to impose knowledge about data and model distributions in order to further refine our
 074 algorithm’s guarantees. Under stronger assumptions, we establish correspondingly stronger upper
 075 bounds on the marginal value of training additional models.

076 Beyond the LDA context, our algorithm establishes general high-probability guarantees for marginal
 077 returns of additional samples when sampling from an unknown distribution. At a technical level, we
 078 draw on recent results on *anytime-valid inference*, which allow us to adaptively stop training models
 079 while maintaining statistical validity. In particular, we develop a novel and asymptotically near-
 080 optimal sequence upper-bounding the probability of improving upon a running best sample drawn
 081 iid from any distribution, which may be of independent interest.

082 We also evaluate our algorithm empirically on a number of publicly available datasets related to
 083 credit and housing. We randomly retrain models across standard model classes and measure the
 084 stopping time of our algorithm against the optimal full-information stopping time. We find signifi-
 085 cant heterogeneity in the true, full-information marginal returns to retraining, and in the performance
 086 of the algorithm relative to this idealized benchmark.

087 **Related work.** Our technical approach is most closely related to a long literature in economics
 088 and computer science on optimal stopping (DeGroot, 2004; Beyhaghi & Cai, 2024; Lippman &
 089 McCall, 1976; Bikhchandani & Sharma, 1996). Our model is closely related to the Pandora’s Box
 090 problem (Weitzman, 1978; Kleinberg et al., 2016; Beyhaghi & Cai, 2024), in which the decision-
 091 maker pays a cost to sample from a *known* distribution. However, our work is different in that we
 092 assume minimal knowledge of the distributions. Also, rather than trying to maximize total utility of
 093 a search, we seek a high-probability guarantee on the marginal returns of drawing another sample.

094 Second, our work is motivated by a literature on less discriminatory algorithms, model multiplicity
 095 and fairness/accuracy tradeoffs (Black et al., 2024; 2022; Rodolfa et al., 2021; Laufer et al., 2025;
 096 Gillis et al., 2024; Cen et al., 2025; Fallah et al., 2025; Rudin et al., 2024). This literature surfaces the
 097 idea that there may be many highly accurate models, and that retraining models may yield predictors
 098 with different properties, especially with respect to fairness. Our work addresses an important and
 099 unanswered question in this area: *How do we certify the sufficiency of a search for a particular
 100 model retraining process?*

101 **Organization of the paper.** In Section 2, we formalize our setting, including the model retraining
 102 process and our goals. In Section 3, we describe our theoretical results, including an algorithm for
 103 adaptively training models and a theorem with corresponding guarantees on the correctness of the
 104 stopping time. In Section 4, we validate our method on real-world datasets for credit and housing.
 105 Finally, in Section 5, we discuss other applications of our technical approach and conclude.

108

2 SETTING AND MODEL

110 At a high level, we study the problem of learning a predictive machine learning model from a finite
 111 dataset. The firm’s utility for a predictor is determined by its average performance on a loss function
 112 over the population distribution. In the search for LDAs, the loss function might be the difference in
 113 selection rates of a protected group versus that of a reference group.

114 The firm seeks to take advantage of model multiplicity to reduce this loss by sampling multiple high
 115 performing models and selecting the least discriminatory among them (i.e., the one that minimizes
 116 disparate impact). Our target is to design a procedure which determines when a sufficient search has
 117 been conducted during the re-training process.

118 We assume the model trainer pre-specifies (1) a cost for sampling an additional model by repeating
 119 a randomized training procedure and (2) a utility for a unit improvement to disparate impact. The
 120 ratio of these quantities specifies a target threshold for determining whether the marginal benefit
 121 of retraining models is worth the cost: if the expected benefit from training a new model is above
 122 the threshold, the model trainer should do so, and if it is below the threshold, the trainer should
 123 terminate the retraining procedure and deploy the best model seen so far. In the remainder of this
 124 section, we formalize this setting and define notation.

125 **Data and utility.** We will assume the existence of an unknown population distribution \mathcal{D} from
 126 which the firm has sampled an iid dataset D of size n , consisting of labeled data pairs $(x, y) \in \mathcal{X} \times \mathcal{Y}$.
 127 The firm will deploy a predictor $h : \mathcal{X} \rightarrow \mathcal{Y}$. In cases where the predictor determines outcomes
 128 (like offers of employment, credit, or housing), \mathcal{Y} will be binary, where 1 is the positive outcome.
 129 The firm’s utility will be defined as

$$131 \quad Q(h) \triangleq \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell(h(x), y, x)]$$

132 for ℓ given and $\text{im}(Q) \subseteq [0, 1]$.¹ If the goal is to reduce disparity in selection rates with re-
 133 spect to a group indicator $g(x) \in \{0, 1\}$ as in the search for LDAs, ℓ would be written as
 $\ell^{\text{DI}}(a, y, x) = ((1 - g(x))/P(g(x) = 0) - g(x)/P(g(x) = 1)) a$, which is $a/P(g(x) = 0)$ if
 $134 \quad g(x) = 0$ and $-a/P(g(x) = 1)$ if $g(x) = 1$. Then, the expected selection rate disparity of the
 $135 \quad$ model would be given by $Q^{\text{DI}}(h) = \mathbb{E}[h(X) | g(X) = 0] - \mathbb{E}[h(X) | g(X) = 1]$, i.e., the differ-
 $136 \quad$ ence between the selection rate for the reference group and the selection rate for the protected group.
 $137 \quad$ The loss is bounded in $[0, 1]$ if the selection rate for the protected group (X for which $g(X) = 1$) is
 $138 \quad$ never greater than that for the reference group (X for which $g(X) = 0$). This is reasonable because
 $139 \quad$ discrimination against the protected group is not a concern if their selection rate is higher than the
 $140 \quad$ reference group.² However, our results are not solely relevant to ℓ as the selection rate disparity: our
 $141 \quad$ results hold for any outcome space \mathcal{Y} and loss function ℓ as long as the range of Q is bounded in
 $142 \quad$ $[0, 1]$.

143 The model trainer cannot observe their true utility. Instead, we will assume they have access to a
 144 finite sample of data on which they will evaluate their model. The empirical performance will be
 145 defined for a fixed dataset S , as

$$146 \quad \hat{Q}(h; S) \triangleq \frac{1}{|S|} \sum_{i \in S} \ell(h(x_i), y_i, x_i).$$

147 **Model distribution.** The model trainer will have a randomized training procedure \mathcal{A} that takes in
 148 a dataset D and returns a model h . There are no assumptions on the procedure $\mathcal{A}(D)$, except that it
 149 is fixed in advance and returns a model iid conditional on the data D .

150 While we assume the model trainer has a fixed dataset D , we do not necessarily assume that all mod-
 151 els are trained on the same training sample. Instead, the data may be partitioned into subsets D^{train}
 152 and D^{test} , where $h = \mathcal{A}(D)$ depends only on the training subset D^{train} and not on the remaining
 $153 \quad$ data $D^{\text{test}} = D \setminus D^{\text{train}}$. Additionally, \mathcal{A} is not restricted to produce models from any particular

154 ¹This is without loss of generality: any bounded loss function can be rescaled so the loss is on $[0, 1]$.
 155 Our proposed methods therefore work for loss functions beyond disparate impact; for example, a firm could
 156 minimize a weighted combination of disparate impact and error rate instead of disparate impact alone.

157 ²If selection rate disparity is a concern for both groups (i.e., both groups are protected), this loss could
 158 alternately represent the absolute value of the difference between selection rates between groups.

162 model class or setting of hyperparameters—it does not need to be a standard model training process
 163 for a fixed model class. For example, \mathcal{A} might first randomly decide between multiple algorithms
 164 (which themselves might be randomized), like random forests or neural networks. Alternately, \mathcal{A}
 165 might sample from a given distribution over hyperparameters.

166 We will analyze the setting in which a model trainer trains a sequence of models h_1, h_2, \dots by
 167 sampling iid, conditional on D , from $\mathcal{A}(D)$. Let $D_1^{\text{train}}, D_2^{\text{train}}, \dots$ be the sequence of training
 168 splits and $D_1^{\text{test}}, D_2^{\text{test}}, \dots$ be the sequence of test splits. (Recall $D_t^{\text{train}} \cup D_t^{\text{test}} = D$ for all t , so
 169 train and test splits for different steps t will have shared data.) For brevity, we will write the true and
 170 empirical loss of the t -th model as

$$171 \quad Q_t \triangleq Q(h_t), \quad \text{and} \quad \hat{Q}_t \triangleq \hat{Q}(h_t; D_t^{\text{test}}).$$

173 We will denote by P the distribution of the infinite sequence Q_1, Q_2, \dots . (When just considering
 174 the first t entries of this sequence, we will imagine throwing the rest away so as to not introduce new
 175 notation.) We will denote by \hat{P} the distribution of the infinite sequence $\hat{Q}_1, \hat{Q}_2, \dots$ similar to P , and
 176 assume that P and \hat{P} are defined on the same space. All distributions and probabilities throughout
 177 this work are taken conditional on D , since we imagine there is one fixed dataset used for training
 178 and evaluation. Note that P and \hat{P} are supported on (a subset of) $[0, 1]^\infty$, since $Q_t, \hat{Q}_t \in [0, 1]$ by
 179 assumption. Also, note that $\{Q_t\}_{t=1}^\infty$ are iid, conditional on D . Let P_0 be the marginal distribution
 180 of any Q_t . Similarly, $\{\hat{Q}_t\}_{t=1}^\infty$ are iid conditional on D and we will denote the marginal distribution
 181 of any \hat{Q}_t by \hat{P}_0 . Finally, let \mathbb{P} be the joint probability distribution over the pairs $(Q_1, \hat{Q}_1), \dots$ and
 182 let \mathbb{P}_0 be the marginal distribution over any (Q_t, \hat{Q}_t) .

183 We will analyze the model with the best performance on the test split, after the trainer concludes
 184 training. Formally, for given t , let i_t be the model with the lowest empirical disparate impact up to
 185 the t -th model: $i_t = \arg \min_{i \in [t]} \hat{Q}_i$. We will analyze the case where, after the model trainer trains
 186 τ models, they select and deploy h_{i_τ} . The true and empirical disparate impact of the *selected* model
 187 after training t models will be denoted

$$188 \quad U_t \triangleq Q_{i_t}, \quad \text{and} \quad \hat{U}_t \triangleq \hat{Q}_{i_t}.$$

190 In the context of an LDA search, we assume the models sampled from $\mathcal{A}(D)$ are all *deployable*, in
 191 the sense that a sample from $\mathcal{A}(D)$ meets the business needs of the firm. If this is not true for some
 192 model training process, rejection sampling can be used to continue retraining until a deployable one
 193 is found. In practice, this may be accomplished by, for example, setting an accuracy threshold and
 194 letting $\mathcal{A}(D)$ be samples from the model training distribution, conditional on sufficient accuracy.³

196 **Certifying a sufficient search.** For given cost of training a single model c and utility for a unit
 197 improvement to disparate impact b , the model trainer is justified in terminating a search after training
 198 τ models if $b \cdot \mathbb{E}_{\mathbb{P}_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq c$, i.e., the expected marginal benefit of training an additional
 199 model, given the observed best model so far, does not outweigh the cost. Equivalently, we will write

$$200 \quad \mathbb{E}_{\mathbb{P}_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq \gamma \tag{1}$$

202 where we define $\gamma \triangleq c/b$. Our definition requires the model trainer to continue sampling models as
 203 long as the expected benefits outweigh the cost. But our information is limited in two ways: First,
 204 we do not know P . Second, we can only observe noisy estimates of Q_t due to our finite data sample.
 205 Thus, we can only hope to upper bound the left-hand expression of eq. (1), with high probability
 206 over τ , given this uncertainty.

208 3 ADAPTIVE STOPPING FOR REPEATED MODEL RETRAINING

210 Our main theoretical contribution is an adaptive algorithm (Algorithm 1) and accompanying theo-
 211 retical result (Theorem 3.5). The algorithm gives a procedure for training models until a stopping

212 ³In other settings, ℓ might represent accuracy itself, in which case the search would be for more accurate
 213 models. However, our motivation for this work is clarifying the debate around LDAs. The model multiplicity
 214 literature argues that models optimized for accuracy will have similar accuracy but perhaps differences in other
 215 properties (Black et al., 2022; Rodolfa et al., 2021). More generally, ℓ could encode some fairness-accuracy
 trade-off via a weighted combination of different objectives.

216 condition is met. The theorem establishes that, when the algorithm halts, the marginal benefits of
 217 retraining can be concluded to be no longer worth the costs. We also establish that the algorithm
 218 always halts at some finite time that depends on γ and gives a data-independent upper bound on the
 219 number of models that need to be trained.

220 Our plan for the section is as follows. To build intuition, in Sections 3.1 and 3.2, we start with anal-
 221 yses of simpler settings. In Section 3.1, the distribution of model performance is known, and obser-
 222 vations of performance are observed exactly as if they were evaluated on infinite data (i.e., $\hat{Q}_t = Q_t$
 223 for all t). In this regime, the stopping problem is trivial and can be described by a threshold on
 224 draws from the model performance distribution. Next, in Section 3.2, we relax the first condition
 225 and do not assume full knowledge of the model performance distribution. We outline how different
 226 conditions on the model performance distribution yield different bounds, and our method allows
 227 decision-makers to input assumptions suitable to their context. Then, in Section 3.3, we handle the
 228 additional uncertainty from evaluations on finite data. To do so, we introduce a natural assump-
 229 tion on the relationship between observed and true model performance. Finally, in Section 3.4,
 230 we consider the case in which estimation of a property of the model loss distribution can be lever-
 231 aged to produce tighter bounds on marginal benefits of model retraining. All proofs are deferred to
 232 Appendix D.

233 3.1 THE FULL-INFORMATION REGIME

235 We first consider the simplest case, when both the distribution P is known and the population values
 236 of Q_t are exactly observed. For any t , note that $U_t - U_{t+1} = (U_t - Q_{t+1}) \cdot \mathbb{I}[U_t > Q_{t+1}]$. Thus, if
 237 the performance of the best model so far is u , the expected marginal gain of a new sample is

$$238 \quad g(u) \triangleq \mathbb{E}_{Q \sim P_0} [(u - Q) \cdot \mathbb{I}[u > Q]]. \quad (2)$$

240 Observe that g is weakly monotonically increasing, and $g(0) = 0$. Therefore, there is some threshold
 241 u_P^* at which the marginal gain drops below γ . Define this threshold as follows:

$$242 \quad u_P^* \triangleq \sup_{u \in [0,1]} \{u : g(u) \leq \gamma\}.$$

244 Thus, our stopping time τ satisfies the desired guarantee eq. (1) if and only if

$$246 \quad \mathbb{E}_{P_0} [U_\tau - U_{\tau+1} \mid U_\tau] \leq \gamma \iff g(U_\tau) \leq \gamma \iff U_\tau \leq u_P^*. \quad (3)$$

247 This immediately yields a stopping condition: compute u_P^* and sample until a value less than u_P^*
 248 is observed. The stopping time τ in this case is geometrically distributed, since each sample is less
 249 than u_P^* with probability $P_0(u_P^* \geq U_{\tau+1})$, and so the expected stopping time is $1/P_0(u_P^* \geq U_{\tau+1})$.

250 3.2 THE INFINITE-DATA REGIME

252 Next, we analyze the case where we can perfectly observe Q_t for all t . In this case, our only source
 253 of uncertainty is our lack of information about P . Because of our uncertainty about P , we cannot al-
 254 ways guarantee eq. (1) for finite τ : there is always a chance that the sequence $\{Q_s\}_{s=1}^t$ observed so
 255 far have been abnormally large (i.e., an especially unlucky sequence), so that the expected marginal
 256 gain of a new sample is greater than γ . The best we can do is ensure that it holds *with high probability*,
 257 over the randomness of $\{Q_t\}_{t=1}^\infty$. That is, for a pre-specified $\delta \in (0, 1)$, we want

$$258 \quad P(\mathbb{E}_{P_0} [U_\tau - U_{\tau+1} \mid U_\tau] \leq \gamma) = P(g(U_\tau) \leq \gamma) \geq 1 - \delta. \quad (4)$$

259 where the expectation is over $U_{\tau+1}$ marginally and the probability is over all t jointly. Our goal is
 260 thus to provide an anytime-valid upper bound on $\{g(U_t)\}_{t=1}^\infty$. That is, suppose we had a sequence
 261 $\{\bar{g}_t(U_t)\}_{t=1}^\infty$ such that

$$263 \quad P(\exists t \in \mathbb{N} : g(U_t) > \bar{g}_t(U_t)) \leq \delta.$$

264 Then, it suffices to stop sampling at τ such that $\bar{g}_\tau(U_\tau) \leq \gamma$.

265 We have thus reduced our stopping problem to maintaining an anytime-valid upper bound for $g(U_t)$.
 266 Our next step is to actually construct such a bound. To do so, we decompose $g(\cdot)$ into two terms:
 267 One which captures the probability of observing a strictly better sample, and another which captures
 268 the expected improvement *conditional* on observing a strictly better sample. Observe

$$269 \quad g(u) = \mathbb{E}_{Q \sim P_0} [u - Q \mid u > Q] P_0(u > Q) = \mu(u)p(u),$$

Assumption	Interpretation	$\bar{\mu}$
No assumption	Applies to any distribution	$\bar{\mu}^{\text{universal}}(u) \triangleq u$
(A1) $\exists a > 0$ s.t. $f_{P_0}(x)$ is increasing for $x \leq a$	P_0 has a sub-uniform left tail	$\bar{\mu}^{\text{mono}}(u) \triangleq \begin{cases} u & u > a \\ \frac{u}{2} & u \leq a \end{cases}$
(A2) $\exists a > 0$ s.t. $\mu(u)$ is increasing for $u \leq a$	P_0 has an exponential or sharper left tail	$\bar{\mu}^{\text{exp}}(u) \triangleq \begin{cases} u & u > a \\ \min(\mu(a), u) & u \leq a \end{cases}$
(A3) $\exists a > 0$ s.t. $P_0(Q < a) = 0$	No model has disparate impact lower than a	$\bar{\mu}^{\text{bounded}}(u) \triangleq u - a$

Table 1: Assumptions on P_0 and corresponding bounds $\bar{\mu}$.

where we define, for a draw of Q iid from P_0 , $\mu(u) \triangleq \mathbb{E}_{P_0}[u - Q \mid u > Q]$ and $p(u) \triangleq P_0(u > Q)$. We will call μ the *conditional expected improvement* (CEI)⁴ and p the *improvement probability*. It suffices to upper bound each of these separately and then combine them.

Bounding μ . We first formalize a definition for bounds on μ which will allow us to plug in different bounds for different conditions on the input distribution. The definition is written for a generic distribution since we will reuse this definition later in the finite-data case.

Definition 3.1 ($\bar{\mu}$ -Bounded CEI for \mathcal{P}). $\bar{\mu} : [0, 1] \rightarrow [0, 1]$ is a CEI bound for distribution \mathcal{P} if

$$\mathbb{E}_{Q \sim \mathcal{P}}[u - Q \mid u > Q] \leq \bar{\mu}(u)$$

for all $u \in [0, 1]$, almost surely.

Next, we provide a series of assumptions on P_0 under which we can derive bounds $\bar{\mu}$ satisfying Definition 3.1. These are summarized in Table 1. First, note that $\mu(U_t) \leq U_t$ almost surely since $U_{t+1} \geq 0$. This bound is quite conservative, since it bounds *expected improvement* by *maximum possible improvement*. Decision-makers can make stronger assumptions on P_0 to get tighter bounds. For example, consider the case when P_0 is continuous, and there exists $a \in (0, 1)$ such that $f_{P_0}(x)$ is non-decreasing in x for all $x \leq a$ (i.e., P_0 , at worst, has a uniform-like left tail). Note that, by this assumption, $\mu(u) \leq \int_0^u x/u \, dx = u/2$. Thus, we can define $\bar{\mu}^{\text{mono}}(u)$ as $u/2$ if $u \leq a$ and u otherwise. Similarly, if there exists some $a \in (0, 1)$ such that the $\mu(u)$ is increasing for all $u \leq a$, then we can apply $\bar{\mu}^{\text{exp}}(u) = \min(\mu(a), u)$ if $u \leq a$ and u otherwise. Finally, suppose $P_0(Q < a) = 0$ for some $a \in (0, 1]$. Then we can define $\bar{\mu}^{\text{bounded}}(u) \triangleq u - a$.

Bounding p . The following lemma yields a general anytime-valid high probability upper bound for the probability of observing a new minimum in a sequence of iid random variables. It may be of independent interest. An asymptotically near-optimal (but more complex) sequence can be found in Theorem E.1.

Lemma 3.2. Let $\{X_t\}_{t=1}^\infty$ be a sequence of iid random variables distributed according to a law \mathcal{P}_0 . Let $\mathcal{P} \triangleq \mathcal{P}_0^\infty$ be their joint distribution. Let $Y_t \triangleq \min_{s \in [t]} X_s$. For any $\alpha \in (0, 1)$, define

$$\bar{p}_t(\alpha) = \begin{cases} 1 - e^{-1/\alpha} & \text{if } t = 1 \\ 1 - \left(\frac{(t-1)}{\alpha} + 1\right)^{-1/(t-1)} & \text{otherwise.} \end{cases}$$

Then,

$$\mathcal{P}(\exists t \in \mathbb{N} : \mathcal{P}_0(X_{t+1} < Y_t \mid Y_t) > \bar{p}_t(\alpha)) \leq \alpha.$$

Lemma 3.2 yields an immediate anytime-valid upper bound on $\{p(U_t)\}$:

$$P(\exists t \in \mathbb{N} : p(U_t) > \bar{p}_t(\delta)) \leq \delta. \quad (5)$$

⁴This concept is closely related to that of the *mean residual life* of a random variable, for which there is a rich literature. See, e.g., Hall & Wellner (2020).

324 **Combining bounds.** Our algorithm simply combines our bounds on μ and p to maintain an
 325 anytime-valid upper bound on the marginal gain, given by $\bar{\mu}(U_t) \cdot \bar{p}_t(\delta)$. Formally, our algorithm
 326 simply terminates at the first τ such that $\bar{\mu}_\tau(U_\tau) \cdot \bar{p}_\tau(\delta) \leq \gamma$. Moreover, τ is guaranteed to be finite
 327 because $\bar{\mu}_t(\cdot) \leq 1$ for all t , and $\lim_{t \rightarrow \infty} \bar{p}_t(\delta) = 0$. A data-independent upper bound on the number
 328 of models trained can thus be directly computed from δ and γ by finding the t such that $p_t(\delta) < \gamma$.
 329 We state the algorithm for a generic distribution \mathcal{P} given as input, rather than P_0 , since we will reuse
 330 this algorithm in the finite-data regime.

Algorithm 1 LDA Search with Adaptive Stopping

input:

334 An unknown model performance distribution \mathcal{P} from which to draw iid samples.
 335 Stopping threshold γ and failure probability δ .
 336 Optional: An almost-sure expected conditional improvement bound $\bar{\mu}$ satisfying Definition 3.1.
 337 If not provided, use $\bar{\mu}^{\text{universal}}(u) = u$.
 338 1: **for** $t = 1, 2, \dots$ **do**
 339 2: Draw a new sample $X_t \stackrel{\text{iid}}{\sim} \mathcal{P}$.
 340 3: Define \bar{p}_t as in Lemma 3.2.
 341 4: Define $Y_t = \min_{s \leq t} X_t$
 342 5: **if** $\bar{\mu}(Y_t) \cdot \bar{p}_t(\delta) < \gamma$ **then**
 343 6: **return** Y_t
 344 7: **end if**
 345 8: **end for**
 346

347 We now state the formal statistical guarantee for our infinite data setting. It is a special case of a
 348 more general theorem we prove, Theorem D.1.

349 **Proposition 3.3.** *For all $\gamma, \delta > 0$, Algorithm 1 run with $\mathcal{P} = P_0$, γ, δ and any $\bar{\mu}$ that satisfies
 350 Definition 3.1 for P_0 as input terminates at a stopping time $\tau \in \mathbb{N}$ such that*

$$352 P(\mathbb{E}_{P_0}[U_\tau - U_{\tau+1} \mid U_\tau] < \gamma) \geq 1 - \delta.$$

353 Next, we generalize to the case where we have finite data.

356 3.3 THE FINITE-DATA REGIME

358 If we observe only finite data, we cannot perfectly observe each Q_t ; instead, we observe \hat{Q}_t . As
 359 before, we will seek to maintain an anytime-valid upper bound on the marginal gain. We must
 360 take care to define the marginal gain appropriately—in particular, our goal is to bound the expected
 361 marginal gain with respect to the *true* disparate impact (Q_t), given our observations of empirical
 362 disparate impact (\hat{Q}_t). Formally, our goal is to show that, at stopping time τ ,

$$363 \mathbb{E}_{P_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq \gamma.$$

365 where the expectation is also conditional on D . To do this, we need to establish a relation between
 366 the measurement error $U_t - \hat{U}_t$ at different points on the left tail of \hat{P}_0 . We provide a natural
 367 assumption on the relationship between these quantities: the selection effect or regression-to-the-
 368 mean effect is, in expectation, non-decreasing in t . The assumption that regression-to-the-mean is
 369 at least constant is frequently supposed in the large literature on adjusting analysis for or estimating
 370 these effects (Stein et al., 1956; James et al., 1961; Sorensen & Kennedy, 1984; Andrews et al., 2024;
 371 Zrnic & Fithian, 2024; Fithian et al., 2014). Intuitively, this assumption holds for sub-Gaussian left
 372 tails where the selection effect should be linear in the gap between \hat{U}_t and \hat{U}_{t+1} and even for sub-
 373 exponential left tails where there should be constant regression to the mean in the gap between \hat{U}_t
 374 and \hat{U}_{t+1} . This assumption would not hold if some measurable set of values of \hat{U}_t indicate that the
 375 model is extremely fair, while models with $\hat{U}_{t+1} < \hat{U}_t$ are not particularly fair.

376 **Assumption 3.4** (Non-decreasing selection effect). It holds for all t that

$$377 \mathbb{E}_{P_0}[U_t - \hat{U}_t \mid \hat{U}_t] \geq \mathbb{E}_{P_0}[U_{t+1} - \hat{U}_{t+1} \mid \hat{U}_t].$$

378 Under Assumption 3.4, we can apply the same algorithm on the sequence $\{\hat{U}_t\}_{t=1}^\infty$ that we applied to
 379 $\{U_t\}_{t=1}^\infty$ in the infinite data case. This additional assumption is sufficient for the following theorem
 380 to hold, using only a minor modification to the argument applied in the infinite data case.

381 **Theorem 3.5.** *Under Assumption 3.4, for all $\gamma > 0$ and $\delta > 0$, Algorithm 1 run with $\mathcal{P} = \hat{P}_0$, γ, δ
 382 and any $\bar{\mu}$ that satisfies Definition 3.1 for \hat{P}_0 terminates at a time $\tau \in \mathbb{N}$ such that*

$$384 \mathbb{P}(\mathbb{E}_{\mathbb{P}_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) \geq 1 - \delta. \quad (6)$$

385 **3.4 DATA-DRIVEN ANYTIME-VALID UPPER BOUNDS ON THE CONDITIONAL EXPECTED
 386 IMPROVEMENT**

388 We conclude this section with a discussion of the case in which $\bar{\mu}$ can be estimated from data. We
 389 provide intuition here and defer formal analysis to Appendix C.

390 A model developer may reasonably believe that Assumption (A2) holds, meaning the conditional
 391 expected improvement is *decreasing* as we sweep towards the left tail of \hat{P}_0 . However, they may
 392 have no *a priori* knowledge of the precise value of that bound, given by $\mu(a)$. The developer can
 393 instead infer a high-probability anytime-valid upper bound on $\mu(a)$ under Assumption (A2), yielding
 394 a data-driven CEI bound $\bar{\mu}^{\text{exp}}$. In Appendix C, we provide an algorithm (Algorithm 2) to formalize
 395 this idea, taking care to combine multiple anytime-valid bounds.

397 **4 EMPIRICAL ANALYSIS**

400 In this section, we evaluate our method on several datasets and model classes. The datasets we use
 401 are Adult (Becker & Kohavi, 1996), Folktables (Ding et al., 2021), and HMDA (CFPB, 2017). The
 402 first two of these are lending prediction tasks and the third is a mortgage prediction task. The model
 403 classes we use are logistic regression, random forests and neural networks.

404 To evaluate our algorithm, we would ideally compare the performance of our algorithm against the
 405 full-information regime discussed in Section 3.1, where we perfectly observe the marginal benefit
 406 of sampling a new model. This is in general not possible, since we know neither the true data
 407 distribution nor the true distribution of model disparate impacts. Instead, we treat the finite dataset
 408 as a “population” and subsample to produce semi-synthetic datasets. We use a similar technique
 409 to subsample from a large pool of trained models. Further details on our data preparation, model
 410 training and comparison to the full-information regime are available in Appendix B.

411 The results of running the algorithm on many subsamples are visualized in Figure 1. Iterations of
 412 the algorithm are on the horizontal axis and the conditional expected improvement is on the vertical
 413 axis. The pink line is our upper bound $\bar{\mu}(\hat{U}_t)\bar{p}_t(\delta)$ for $\delta = 0.05$, setting $\bar{\mu}(\hat{U}_t) = \hat{U}_t$, meaning we
 414 place no assumptions on the distribution \hat{P}_0 . The brown line is the ground truth $g(\hat{U}_t)$. The shaded
 415 colored regions for each line show standard deviations over multiple runs of the dataset resampling,
 416 model training and algorithm.

417 For any γ , Algorithm 1 would stop when the pink line drops below the horizontal line at γ . Given
 418 full distributional information, a model trainer should stop the retraining process once the brown
 419 line drops below the horizontal line at γ . Thus, for any fixed γ , the average number of iterations
 420 that the algorithm trained models past the stopping time given full information is the horizontal
 421 distance between the brown and pink lines. Empirically, Algorithm 1 performs well in the sense that
 422 it “overshoots” the correct stopping time by tens of models in general, though it appears to perform
 423 worse for logistic regression. Further assumptions (i.e., A1, A2, A3) will likely yield tighter bounds.
 424 We provide miscoverage rates for our upper bound in Figure 4, which are well below the target
 425 coverage 0.05 on average across datasets and model classes.

426 **5 DISCUSSION**

427 Although recent work has proposed that firms should take steps to proactively search for less dis-
 428 criminatory algorithms, there are a number of open questions regarding both the gains to be expected
 429 from an LDA search and the resources required to conduct one. In this paper we take one step to-
 430 wards developing the tooling firms would need to conduct a search. We put forward a method that

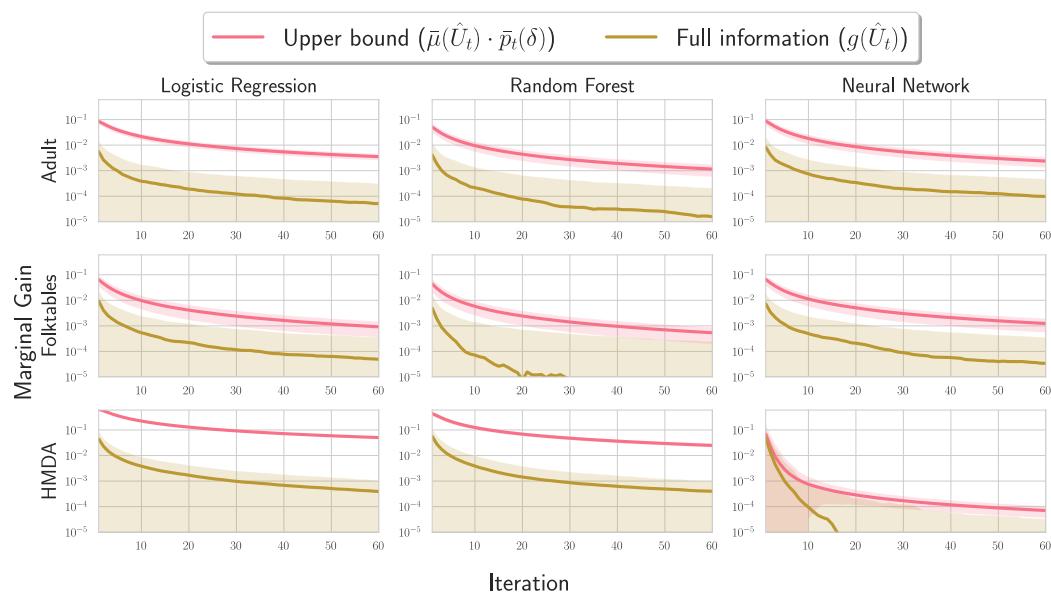


Figure 1: Algorithm 1 run on several datasets and models. Panel rows are datasets and panel columns are model classes. In each panel, the horizontal axis is the iteration of the algorithm and the vertical axis is marginal gain. The pink line is our estimated upper bound $\bar{\mu}(\hat{U}_t)\bar{p}_t(0.05)$ and the brown line is the full-information marginal gain. For any γ , Algorithm 1 would stop when the pink line crosses the horizontal line at γ . Note that the vertical axis is on a log scale.

allows firms to adaptively sample models that come from a particular loss distribution. Our algorithm adaptively bounds the marginal gains of a continued search, allowing a firm to terminate the search when the gains are small and provide evidence that their search was sufficient.

We take as given γ , which specifies the developer’s cost of training models relative to their value of reducing disparate impact. While determining how a firm might choose γ is beyond the scope of this work, it is the subject of ongoing debate (Pace, 2022; Black et al., 2024). Our framework can help contribute to this debate in at least two ways. First, because we provide anytime-valid bounds, we do not require that a firm pre-specify γ . Instead, model developers and compliance teams can iteratively develop models, consider the incremental gains, run separate experiments, and adaptively decide how to value those gains relative to development costs. Second, given a search conducted by a firm, our framework allows us to “back out” a high-probability upper bound on the firm’s value of γ implied by their decision to stop the search. That is, by observing a sequence of models sampled by a developer, we can draw conclusions about their implicit value for reducing disparate impact from their decision to terminate a search, and thereby facilitate a more informed debate about the reasonableness of the search.

Our proposed procedure is just one piece of a larger and more complex set of steps that a firm might take to search for a less discriminatory algorithm. This should not be construed as the only thing that the firm has to do. In real cases, debates about the existence of a less discriminatory algorithm might cover a swath of both quantitative and qualitative considerations about the reasonableness of model assumptions, variables used, and so forth (Black et al., 2024).

A number of future directions related to this setting are open. Our framework could be extended to handle adaptivity, where the performance of previous models informs training decisions for future models. In low-data settings, we would expect *shrinkage* or *selection effects* to be salient: the best-performing model in-sample could fare much worse out-of-sample, potentially admitting stronger guarantees. Finally, our technical framework can be applied to general optimal stopping problems where high-probability guarantees are desirable. For example, a developer or researcher using an LLM may choose the best of many randomly sampled prompts, and with our algorithm, they can certify that further exploration is unlikely to yield significant gains. Applying our framework to other settings is a fruitful direction for future work.

486 REFERENCES
487

- 488 Isaiah Andrews, Toru Kitagawa, and Adam McCloskey. Inference on Winners. *The Quar-
489 terly Journal of Economics*, 139(1):305–358, January 2024. ISSN 0033-5533, 1531-4650.
490 doi: 10.1093/qje/qjad043. URL <https://academic.oup.com/qje/article/139/1/305/7276491>.
491
- 492 Solon Barocas, Moritz Hardt, and Arvind Narayanan. *Fairness and machine learning: Limitations
493 and opportunities*. MIT press, 2023.
494
- 495 Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
496 <https://doi.org/10.24432/C5XW20>.
497
- 498 Hedyeh Beyhaghi and Linda Cai. Recent developments in pandora’s box problem: Variants and
499 applications. *ACM SIGecom Exchanges*, 21(1):20–34, 2024.
500
- 501 Sushil Bikhchandani and Sunil Sharma. Optimal search with learning. *Journal of Economic Dy-
502 namics and Control*, 20(1-3):333–359, 1996.
503
- 504 Emily Black, Manish Raghavan, and Solon Barocas. Model multiplicity: Opportunities, concerns,
505 and solutions. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
506 Transparency*, pp. 850–863, 2022.
507
- 508 Emily Black, John Logan Koepke, Pauline T Kim, Solon Barocas, and Mingwei Hsu. Less discrim-
509 inatory algorithms. *Geo. LJ*, 113:53, 2024.
510
- 511 Brad Blower. CFPB Puts Lenders & FinTechs On Notice: Their Models
512 Must Search For Less Discriminatory Alternatives Or Face Fair Lending Non-
513 Compliance Risk NCRC, April 2023. URL <https://www.ncrc.org/cfpb-puts-lenders-fintechs-on-notice-their-models-must-search-for-less-discriminatory-risk>.
514
- 515 Spencer Caro, Talia B Gillis, and Scott Nelson. Modernizing fair lending. *University of Chicago,
516 Becker Friedman Institute for Economics Working Paper*, (2024-18), 2024.
517
- 518 Sarah H. Cen, Salil Goyal, Zaynah Javed, Ananya Karthik, Percy Liang, and Daniel E. Ho. Audits
519 Under Resource, Data, and Access Constraints: Scaling Laws For Less Discriminatory Alterna-
520 tives, September 2025. URL <http://arxiv.org/abs/2509.05627>. arXiv:2509.05627
521 [cs].
522
- 523 CFPB. Home mortgage disclosure act data. United States Government, 2017. URL <https://www.consumerfinance.gov/data-research/hmda/historic-data/>.
524
- 525 A Feder Cooper, Katherine Lee, Madiha Zahrah Choksi, Solon Barocas, Christopher De Sa, James
526 Grimmelmann, Jon Kleinberg, Siddhartha Sen, and Baobao Zhang. Arbitrariness and social pre-
527 diction: The confounding role of variance in fair classification. In *Proceedings of the AAAI
528 Conference on Artificial Intelligence*, volume 38, pp. 22004–22012, 2024.
529
- 530 Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
531 Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al. Underspecifica-
532 tion presents challenges for credibility in modern machine learning. *Journal of Machine Learning
533 Research*, 23(226):1–61, 2022.
534
- 535 Morris H. DeGroot. *Optimal Stopping*, pp. 324–384. John Wiley & Sons, Ltd, 2004.
536 ISBN 9780471729006. doi: <https://doi.org/10.1002/0471729000.ch13>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/0471729000.ch13>.
537
- 538 Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
539 machine learning. *Advances in Neural Information Processing Systems*, 34, 2021.
540
- 541 Alireza Fallah, Michael I. Jordan, and Annie Ulichney. The Statistical Fairness-Accuracy Frontier,
542 August 2025. URL <http://arxiv.org/abs/2508.17622>. arXiv:2508.17622 [stat].
543

- 540 FinRegLab. Machine learning explainability & fairness: Insights from consumer lending. Empirical
 541 white paper, FinRegLab, July 2023. URL https://finreglab.org/wp-content/uploads/2023/12/FinRegLab_2023-07-13_Empirical-White-Paper-Explainability-and-Fairness_Insights-from-Consumer-Lending.pdf.
 542 Updated July 2023.
- 543
- 544 William Fithian, Dennis Sun, and Jonathan Taylor. Optimal inference after model selection. *arXiv preprint arXiv:1410.2597*, 2014.
- 545
- 546 Talia B Gillis, Vitaly Meursault, and Berk Ustun. Operationalizing the Search for Less Discriminatory
 547 Alternatives in Fair Lending. In *The 2024 ACM Conference on Fairness, Accountability, and Transparency*, pp. 377–387, Rio de Janeiro Brazil, June 2024. ACM. ISBN 979-8-4007-0450-5.
 548 doi: 10.1145/3630106.3658912. URL <https://dl.acm.org/doi/10.1145/3630106.3658912>.
- 549
- 550 W. J. Hall and Jon A. Wellner. Estimation of Mean Residual Life. In Anthony Almudevar,
 551 David Oakes, and Jack Hall (eds.), *Statistical Modeling for Biological Systems*, pp. 169–189.
 552 Springer International Publishing, Cham, 2020. ISBN 978-3-030-34674-4 978-3-030-34675-
 553 1. doi: 10.1007/978-3-030-34675-1_10. URL http://link.springer.com/10.1007/978-3-030-34675-1_10.
- 554
- 555 Rashidul Islam, Shimei Pan, and James R. Foulds. Can We Obtain Fairness For Free? In *Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society*, pp. 586–596, Virtual
 556 Event USA, July 2021. ACM. ISBN 978-1-4503-8473-5. doi: 10.1145/3461702.3462614. URL
 557 <https://dl.acm.org/doi/10.1145/3461702.3462614>.
- 558
- 559 William James, Charles Stein, et al. Estimation with quadratic loss. In *Proceedings of the fourth
 560 Berkeley symposium on mathematical statistics and probability*, volume 1, pp. 361–379. University
 561 of California Press, 1961.
- 562
- 563 Robert Kleinberg, Bo Waggoner, and E. Glen Weyl. Descending price optimally coordinates search.
 564 In *Proceedings of the 2016 ACM Conference on Economics and Computation*, EC '16, pp. 23–24,
 565 New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450339360. doi:
 566 10.1145/2940716.2940760. URL <https://doi.org/10.1145/2940716.2940760>.
- 567
- 568 Benjamin Laufer, Manish Raghavan, and Solon Barocas. What Constitutes a Less Discriminatory
 569 Algorithm? In *Proceedings of the Symposium on Computer Science and Law on ZZZ*, pp. 136–
 570 151, March 2025. doi: 10.1145/3709025.3712214. URL <http://arxiv.org/abs/2412.18138> [cs].
- 571
- 572 Steven A Lippman and John J McCall. The economics of job search: A survey. *Economic inquiry*,
 573 14(2):155–189, 1976.
- 574
- 575 Charles Marx, Flavio Calmon, and Berk Ustun. Predictive Multiplicity in Classification. In *Proceedings of the 37th International Conference on Machine Learning*, pp. 6765–6774. PMLR, November 2020. URL <https://proceedings.mlr.press/v119/marx20a.html>. ISSN: 2640-3498.
- 576
- 577 Richard Pace. Six unanswered fair lending questions hindering ai credit
 578 model adoption. <https://www.paceanalyticsllc.com/post/six-unanswered-fair-lending-questions>, June 2022. Updated February 202x;
 579 blog post; Pace Analytics Consulting LLC.
- 580
- 581 Richard Pace. Fool's gold 2: Is there really a low-cost accuracy-fairness trade-off? *The AI Lend-
 582 Scape Blog*, Oct 2023.
- 583
- 584 H Robbins and D Siegmund. On the law of the iterated logarithm for maxima and minima. *Proc.
 585 Sixth Berkely Syrup. on Math. Statist. and Probab*, 3:51–70, 1972.
- 586
- 587 Herbert Robbins. Statistical methods related to the law of the iterated logarithm. *The Annals of
 588 Mathematical Statistics*, 41(5):1397–1409, 1970.

- 594 Kit T. Rodolfa, Hemank Lamba, and Rayid Ghani. Empirical observation of negligible fairness-
 595 accuracy trade-offs in machine learning for public policy. *Nature Machine Intelligence*,
 596 3(10):896–904, October 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00396-x. URL
 597 <https://www.nature.com/articles/s42256-021-00396-x>. Publisher: Nature
 598 Publishing Group.
- 599 Cynthia Rudin, Chudi Zhong, Lesia Semenova, Margo Seltzer, Ronald Parr, Jiachang Liu, Srikanth
 600 Katta, Jon Donnelly, Harry Chen, and Zachery Boner. Amazing things come from having many
 601 good models. *arXiv preprint arXiv:2407.04846*, 2024.
- 602 Matthew U Scherer, Allan G King, and Marko J Mrkonich. Applying old rules to new tools: Em-
 603 ployment discrimination law in the age of algorithms. *SCL Rev.*, 71:449, 2019.
- 604 Galen R Shorack. *Probability for statisticians*. Springer, 2000.
- 605 DA Sorensen and BW Kennedy. Estimation of response to selection using least-squares and mixed
 606 model methodology. *Journal of Animal Science*, 58(5):1097–1106, 1984.
- 607 Charles Stein et al. Inadmissibility of the usual estimator for the mean of a multivariate normal
 608 distribution. In *Proceedings of the Third Berkeley symposium on mathematical statistics and*
 609 *probability*, volume 1, pp. 197–206, 1956.
- 610 Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting.
 611 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 86(1):1–27, 2024.
- 612 Martin Weitzman. *Optimal search for the best alternative*, volume 78. Department of Energy, 1978.
- 613 Tijana Zrnic and William Fithian. A Flexible Defense Against the Winner’s Curse, November 2024.
 614 URL <http://arxiv.org/abs/2411.18569>. arXiv:2411.18569 [stat].

621 A LLM USAGE.

622 LLMs were used in the making of this paper as a search and retrieval assistant to generate suggestions
 623 for related work or techniques that were useful for proving theorems. They were also used
 624 to generate some of the code used in data analysis. All LLM suggestions and code were carefully
 625 checked for correctness.

628 B ADDITIONAL DETAILS ON EMPIRICAL ANALYSIS.

630 **Dataset preparation.** We use pre-selected prediction targets and protected/reference groups
 631 given in the datasets. For Folktables, we used data from Alabama from 2018. For
 632 HMDA, we use the cleaned dataset given in Cooper et al. (2024) for New York in
 633 2017. Full details of our data cleaning and feature selection are available in our code at:
 634 <https://anonymous.4open.science/r/1da-6EBA/README.md>

635 The size specifications of our datasets, sub-sampling routines and runs were chosen to produce
 636 confident results and demonstrate a plausible approach to implementing the procedure described in
 637 this paper.

638 **Datasets versus distributions.** An initial challenge of evaluating our method in practice is the
 639 absence of ground truth: It is impossible to evaluate predictive models on the distribution from
 640 which a dataset was sampled, if we only can access the dataset itself. In light of this difficulty, we
 641 treat the dataset itself as representative of a discrete population distribution, and sample iid from
 642 this population distribution to arrive at a dataset for training models. First, we define the population
 643 distribution to be the empirical measure over the original dataset (Adult, Folktables or HMDA). That
 644 is, we define the population distribution \mathcal{D} to be the discrete distribution with equal measure on each
 645 of the points in the dataset. Second, we can then generate an iid sample from this distribution by
 646 sampling rows from the dataset uniformly at random (i.e., with replacement). Having sampled \mathcal{D} this
 647 way, we produce a train/test split $\mathcal{D}^{\text{train}}, \mathcal{D}^{\text{test}}$ of \mathcal{D} , where $\mathcal{D}^{\text{train}}$ is used to define the predictive
 648 model and $\mathcal{D}^{\text{test}}$ is used to evaluate it. Then, for a particular predictive model h trained on $\mathcal{D}^{\text{train}}$,

Dataset	Logistic Regression	Random Forest	Neural Network
Adult	0.084 (0.013)	0.054 (0.010)	0.095 (0.020)
Folktables	0.056 (0.026)	0.031 (0.017)	0.048 (0.022)
HMDA	0.655 (0.087)	0.416 (0.104)	0.063 (0.088)

Figure 2: Selection rate disparities for each dataset and model class. Reported number is the mean over all runs. Standard deviations are in parentheses.

Dataset	Logistic Regression	Random Forest	Neural Network
Adult	0.824 (0.001)	0.819 (0.003)	0.816 (0.003)
Folktables	0.777 (0.002)	0.808 (0.005)	0.794 (0.004)
HMDA	0.594 (0.003)	0.585 (0.006)	0.505 (0.062)

Figure 3: Accuracy for each dataset and model class. Reported number is the mean over all runs. Standard deviations are in parentheses.

we can compare the estimated disparate impact $\hat{Q}(h, D^{\text{test}})$ (by summing ℓ over D^{test}) against the true population quantity (by summing ℓ over \mathcal{D}). In effect, this procedure produces a population distribution so that we can observe $Q(h)$ exactly with respect to \mathcal{D} and characterize the distribution over models. Our algorithm could be run on the full dataset; it would just not allow for comparison with a ground truth sample. When we resampled datasets, we sampled 3000 observations iid.

Just as we cannot observe the population data distribution, we accordingly cannot observe the population model training distribution. That is, we cannot exactly compute probabilities or expectations with respect to $\mathcal{A}(D)$, since our model training process is constituted by a series of possibly complex and opaque operations, and therefore do not lend themselves to closed form computations. Here, we can apply the same strategy as above to generate a population distribution of models: for a given D , we simulate B train/splits and then call the model training procedure on the training data. We then evaluate $\hat{Q}(h_i, D_i^{\text{test}})$ and $Q(h_i)$ as before and save them. This set of values $\{Q(h_i), \hat{Q}(h_i, D_i^{\text{test}})\}_{i=1}^B$ can then be used to form a population distribution of model performance and estimated model performance \mathbb{P} . When implementing Algorithm 1, we then draw iid samples from \mathbb{P} , with replacement.

Model training procedures. We use default parameter settings for each of our model classes, except for the following modifications: For random forests, we fit ten estimators of depth no more than five. For multilayer perceptrons, we fit a model with a single hidden layer of size 25 and run training for a maximum of 600 iterations. The mean and standard deviation of the selection rate disparities and accuracy for each dataset and model class are in Figure 2 and Figure 3, respectively. We train 1000 models for each of 5 different resampled datasets and average the results in all figures. After we generate the population and observed disparate impact for each model, we then resample 1000 times iid from the dataset of model performances. When model miscoverage rates are above the target rate, we suspect it is the result of the relatively small number of models and datasets used to generate the figures.

Dataset	Logistic Regression	Random Forest	Neural Network
Adult	0.000	0.000	0.018
Folktables	0.036	0.099	0.007
HMDA	0.000	0.000	0.135

Figure 4: Miscoverage rates for Algorithm 1 at level 0.05. We compute the number of times our upper bound $\bar{\mu}(\hat{U}_t) \cdot \bar{p}_t(\delta)$ is lower than $g(\hat{U}_t)$ for any t across all runs of the algorithm.

702 **C FORMAL ANALYSIS: DATA-DRIVEN ANYTIME VALID UPPER BOUNDS ON**
 703 **THE CONDITIONAL EXPECTED IMPROVEMENT.**
 704

705 We conclude this section with an analysis of the case in which $\bar{\mu}$ can be estimated from data. In
 706 particular, we analyze the case in which the following assumption is satisfied:
 707

708 **Assumption C.1** (Non-decreasing CEI). For all constants $a, a' \in \text{supp}(\hat{P}_0)$ such that $a > a'$ and
 709 $a, a' < \text{median}(\hat{P}_0)$, it holds with probability 1 that
 710

$$711 \mathbb{E}_{\hat{P}_0}[a - \hat{Q}_t \mid \hat{Q}_t < a] \geq \mathbb{E}_{\hat{P}_0}[a' - \hat{Q}_t \mid \hat{Q}_t < a']. \quad (7)$$

712 simultaneously for all $t = 1, 2, \dots$

713 In other words, the expected improvement relative to a on the event that $\hat{Q}_t < a$ is greater than the
 714 corresponding quantity with a' for the two thresholds $a > a'$ below the median of P_0 .

715 Note that this assumption cannot automatically be plugged into the $\bar{\mu}$ approach above, since all we
 716 know is that the conditional expected improvement is monotonically non-decreasing in a , but we
 717 cannot otherwise upper bound it. However, we can infer a high-probability upper bound from the
 718 data. We formalize this in Algorithm 2.

719 At a high level, we leverage the non-decreasing CEI assumption to estimate an upper bound on the
 720 CEI that holds with high probability. To do this, we first pick a quantile (one third in our case) of
 721 the distribution to estimate, and then we estimate the CEI at a high probability lower bound on that
 722 quantile. We then use this as a high-probability choice of $\bar{\mu}$. Note that, unlike above, $\bar{\mu}$ is not an upper
 723 bound with probability 1. Thus, we must take a union bound to ensure that overall our guarantee
 724 holds with probability at least $1 - \delta$.

725 The choice of which quantile to threshold on is arbitrary, but it must balance two factors. First, the
 726 quantile must not be too close to zero or else we will not have much data to estimate based on, and
 727 will thus have wide confidence intervals. Second, the lower the quantile, the smaller the CEI (based
 728 on Assumption 3.4), so we will be estimating a smaller quantity for a smaller quantile. Thus, the
 729 first factor is about the difference between a high probability lower bound and the true quantity, and
 730 the second is about the magnitude of the true quantity. We'd like the combination of these two to be
 731 as small as possible. We leave exploration of the optimal choice of the quantile for future work.

735 **Algorithm 2** LDA Search with Adaptive Stopping and CEI Estimation

736 **input:** Stopping threshold γ and failure probability δ .

737 1: Let $T_1 = \lceil 18 \log(3/\delta) \rceil$ and draw T_1 samples $\{\hat{Q}_s\}_{s=1}^{T_1}$.
 738 2: Compute the empirical quantile at level 1/3:

$$739 \quad C \triangleq \hat{Q}_{(\lfloor T_1/3 \rfloor)}.$$

740

741 3: **for** $t = 1, 2, \dots$ **do**

742 4: Draw a new sample \hat{Q}_t and compute $\hat{U}_t = \min_{s \leq t} \hat{Q}_s$.
 743 5: Let \bar{p}_t be defined as in Lemma 3.2. Also, define

$$744 \quad \Delta_t \triangleq C - \hat{Q}_t$$

$$745 \quad S_t \triangleq \{i \leq t : \mathbb{I}\{\Delta_i > 0\}\}$$

$$746 \quad \bar{\mu}_t \triangleq \begin{cases} \bar{\mu}_t^{\text{eb}}(\{\Delta_s\}_{s=1}^t, \delta/3, S_t) & \text{if } S_t \neq \emptyset \\ \hat{U}_t & \text{otherwise} \end{cases}$$

747 where $\bar{\mu}_t^{\text{eb}}$ is defined as in Corollary D.6.

748 6: **if** $\bar{\mu}_t \cdot \bar{p}_t(\delta/3) < \gamma$ **then**
 749 7: **return** \hat{U}_t
 750 8: **end if**
 751 9: **end for**

756 We are now ready to state our theorem.
 757

758 **Theorem C.2.** *Under Assumptions 3.4 and C.1, for all $\gamma > 0$ and $\delta > 0$, Algorithm 2 run with
 759 $\mathcal{P} = \hat{\mathcal{P}}_0$, γ and δ terminates at a time $\tau \in \mathbb{N}$ such that*

$$760 \mathbb{P}(\mathbb{E}_{\mathbb{P}_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) \geq 1 - \delta. \quad (8)$$

761
 762 **D DEFERRED PROOFS.**
 763

764 Results are restated before proofs for convenience.
 765

766 D.1 DEFERRED PROOFS FOR SECTION 3.2
 767

768 **Lemma 3.2.** *Let $\{X_t\}_{t=1}^\infty$ be a sequence of iid random variables distributed according to a law \mathcal{P}_0 .
 769 Let $\mathcal{P} \triangleq \mathcal{P}_0^\infty$ be their joint distribution. Let $Y_t \triangleq \min_{s \in [t]} X_s$. For any $\alpha \in (0, 1)$, define
 770*

$$771 \bar{p}_t(\alpha) = \begin{cases} 1 - e^{-1/\alpha} & \text{if } t = 1 \\ 1 - \left(\frac{(t-1)}{\alpha} + 1\right)^{-1/(t-1)} & \text{otherwise.} \end{cases}$$

772 Then,
 773

$$774 \mathcal{P}(\exists t \in \mathbb{N} : \mathcal{P}_0(X_{t+1} < Y_t \mid Y_t) > \bar{p}_t(\alpha)) \leq \alpha.$$

775 *Proof of Lemma 3.2.* At a high level, we proceed as follows:
 776

- 777 1. First, show that it suffices to consider the case where the X_t are uniform on $[0, 1]$ via the
 778 probability integral transform.
- 779 2. Then, we show that it suffices to provide an anytime-valid upper bound on the running
 780 minimum of the sequence.
- 781 3. Finally, we show that \bar{p}_t as defined above yields such a bound.

782 We begin by using the probability integral transform to “convert” our X_t ’s into uniform random
 783 variables. Let F_X be the CDF of X_t . Define
 784

$$785 F_X^{-1}(u) = \inf\{x : F_X(x) \geq u\}.$$

786 Let $\{U_t\}_{t=1}^\infty$ be iid uniform random variables on $[0, 1]$, defined on \mathcal{P} . Let $V_t = \min_{s \in [t]} U_s$. Then,
 787 it holds, by e.g. Ch. 6, Theorem 3.1 of Shorack (2000), that
 788

$$789 \{F_X^{-1}(U_t), F_X^{-1}(V_t)\}_{t=1}^\infty \stackrel{d}{=} \{X_t, Y_t\}_{t=1}^\infty.$$

790 Because F_X is monotone, F_X^{-1} is monotone as well. Therefore,
 791

$$\begin{aligned} 792 \mathcal{P}_0[X_{t+1} < Y_t \mid \{X_s\}_{s=1}^t] > \bar{p}_t(\alpha) &= \mathcal{P}_0[X_{t+1} < Y_t \mid Y_t] > \bar{p}_t(\alpha) \\ 793 &= \mathcal{P}_0[F_X^{-1}(U_{t+1}) < F_X^{-1}(V_t) \mid F_X^{-1}(V_t)] > \bar{p}_t(\alpha) \\ 794 &\quad (\{F_X^{-1}(U_t), F_X^{-1}(V_t)\}_{t=1}^\infty \stackrel{d}{=} \{X_t, Y_t\}_{t=1}^\infty) \\ 795 &= \mathcal{P}_0[F_X^{-1}(U_{t+1}) < F_X^{-1}(V_t) \mid V_t] > \bar{p}_t(\alpha) \\ 796 &\quad (U_{t+1} \perp \{V_t\}; F_X^{-1}(V_t) \text{ is measurable with respect to } \sigma(F_X^{-1}(V_t)) \subseteq \sigma(V_t)) \\ 797 &\leq \mathcal{P}_0[U_{t+1} < V_t \mid V_t] > \bar{p}_t(\alpha) \quad (F_X^{-1} \text{ is weakly increasing}) \\ 798 &= V_t > \bar{p}_t(\alpha). \end{aligned}$$

800 The last inequality follows from the fact that U_{t+1} is uniformly distributed on $[0, 1]$, so the probability
 801 it falls below V_t is precisely V_t . Thus,
 802

$$803 \mathcal{P}(\exists t \in \mathbb{N} : \mathcal{P}_0(X_{t+1} < Y_t \mid \{X_s\}_{s=1}^t) > \bar{p}_t(\alpha)) \leq \mathcal{P}(\exists t \in \mathbb{N} : V_t > \bar{p}_t(\alpha))$$

804 Thus, our goal is now to provide an anytime-valid upper-bound on V_t .
 805

810 Define the martingale
 811

$$\begin{aligned} 812 \quad M_t(\theta) &\triangleq \frac{1}{(1-\theta)^t} \mathbb{I}\{V_t \geq \theta\} \\ 813 \\ 814 \quad &= M_{t-1}(\theta) \cdot \left(\frac{1}{1-\theta} \mathbb{I}\{U_t \geq \theta\} \right). \end{aligned} \quad (9)$$

817 This is a martingale because

$$\begin{aligned} 818 \quad \mathbb{E}[M_t \mid M_{t-1}] &= \mathbb{E} \left[M_{t-1}(\theta) \left(\frac{1}{1-\theta} \mathbb{I}\{U_t \geq \theta\} \right) \mid M_{t-1}(\theta) \right] \\ 819 \\ 820 \\ 821 \quad &= \frac{M_{t-1}(\theta)}{1-\theta} \mathbb{E} \left[(\mathbb{I}\{U_t \geq \theta\}) \mid M_{t-1}(\theta) \right] \\ 822 \\ 823 \quad &= \frac{M_{t-1}(\theta)}{1-\theta} \Pr[U_t \geq \theta] \\ 824 \\ 825 \quad &= M_{t-1}(\theta). \end{aligned}$$

827 Moreover, it is a test martingale because it is nonnegative. Next, we use the “method of mixtures”
 828 (see, e.g., Robbins, 1970; Waudby-Smith & Ramdas, 2024) to mix M_t with a uniform distribution
 829 on θ over $[0, 1]$. Intuitively, placing more mass on smaller values of θ gives us sharper bounds for
 830 larger values of t . We choose the uniform distribution here for simplicity. In Theorem E.1, we show
 831 how to get an asymptotically tight rate.

$$\begin{aligned} 832 \quad M_t^U(\theta) &\triangleq \int_0^1 M_t(\theta) d\theta \\ 833 \\ 834 \\ 835 \quad &= \int_0^1 \frac{1}{(1-\theta)^t} \mathbb{I}\{V_t \geq \theta\} d\theta \\ 836 \\ 837 \quad &= \int_0^{V_t} \frac{1}{(1-\theta)^t} d\theta. \end{aligned} \quad (10)$$

840 By Fubini’s theorem, this is also a test martingale. Applying Ville’s inequality (Theorem D.2), for
 841 any $\alpha \in (0, 1)$,

$$\begin{aligned} 842 \quad \mathcal{P} \left(\exists t \in \mathbb{N} : M_t^U(\theta) > \frac{1}{\alpha} \right) &\leq \alpha \\ 843 \\ 844 \quad \mathcal{P} \left(\exists t \in \mathbb{N} : \int_0^{V_t} \frac{1}{(1-\theta)^t} d\theta > \frac{1}{\alpha} \right) &\leq \alpha. \end{aligned} \quad (11)$$

848 Observe that the integrand is nonnegative, so for any sequence \bar{p}_t ,

$$\int_0^{V_t} \frac{1}{(1-\theta)^t} d\theta > \int_0^{\bar{p}_t} \frac{1}{(1-\theta)^t} d\theta \iff V_t > \bar{p}_t. \quad (12)$$

850 Therefore, we can choose $\bar{p}_t(\alpha)$ such that

$$\int_0^{\bar{p}_t(\alpha)} \frac{1}{(1-\theta)^t} d\theta = \frac{1}{\alpha}. \quad (13)$$

851 For $t = 1$,

$$\begin{aligned} 852 \quad \int_0^{\bar{p}_1(\alpha)} \frac{1}{1-\theta} d\theta &= \frac{1}{\alpha} \\ 853 \\ 854 \quad -\log(1 - \bar{p}_1(\alpha)) &= \frac{1}{\alpha} \\ 855 \\ 856 \quad \bar{p}_1(\alpha) &= 1 - e^{-1/\alpha}. \end{aligned}$$

864 For $t \geq 2$,

$$\begin{aligned} 866 \quad & \int_0^{\bar{p}_t(\alpha)} \frac{1}{(1-\theta)^t} d\theta = \frac{1}{\alpha} \\ 867 \quad & \frac{(1-\bar{p}_t(\alpha))^{t-1} - 1}{t-1} = \frac{1}{\alpha} \\ 868 \quad & \bar{p}_t(\alpha) = 1 - \left(\frac{t-1}{\alpha} + 1 \right)^{-1/(t-1)} \\ 869 \end{aligned}$$

870 Thus,

$$\begin{aligned} 871 \quad & \mathcal{P}(\exists t \in \mathbb{N} : V_t > \bar{p}_t(\alpha)) = \mathcal{P} \left(\exists t \in \mathbb{N} : \int_0^{V_t} \frac{1}{(1-\theta)^t} d\theta > \int_0^{\bar{p}_t} \frac{1}{(1-\theta)^t} d\theta \right) \\ 872 \quad & \quad \quad \quad \text{(by eq. (12))} \\ 873 \quad & = \mathcal{P} \left(\exists t \in \mathbb{N} : \int_0^{V_t} \frac{1}{(1-\theta)^t} d\theta > \frac{1}{\alpha} \right) \\ 874 \quad & \quad \quad \quad \text{(by eq. (13))} \\ 875 \quad & \leq \alpha, \\ 876 \quad & \quad \quad \quad \text{(by eq. (11))} \\ 877 \end{aligned}$$

878 completing the proof. \square

879 We first prove a theorem for general iid random variables bounded in $[0, 1]$.

880 **Theorem D.1.** *For all $\gamma, \delta > 0$ and \mathcal{P} , Algorithm 1 run with $\mathcal{P}, \gamma, \delta$ and any $\bar{\mu}$ satisfying ?? as input terminates at a stopping time $\tau \in \mathbb{N}$ such that*

$$881 \quad \mathcal{P}(\mathbb{E}_{\mathcal{P}}[X_{\tau} - X_{\tau+1} \mid X_{\tau}] < \gamma) \geq 1 - \delta.$$

882 *Proof of Theorem D.1.* Observe:

$$\begin{aligned} 883 \quad & \mathcal{P}(\mathbb{E}[X_{\tau} - X_{\tau+1} \mid U_{\tau}] > \gamma) = \mathcal{P}(g(X_{\tau}) > \gamma) \\ 884 \quad & = \mathcal{P}(\mu(X_{\tau})p(X_{\tau}) > \gamma) \\ 885 \quad & \leq \mathcal{P}(\mu(X_{\tau})p(X_{\tau}) > \bar{\mu}(X_{\tau})\bar{p}_{\tau}(\delta)) \\ 886 \quad & \quad \quad \quad (\bar{\mu}(X_{\tau})\bar{p}_{\tau}(\delta) \leq \gamma \text{ by the stopping condition}) \\ 887 \quad & \leq \mathcal{P}(\bar{\mu}(X_{\tau})p(X_{\tau}) > \bar{\mu}(X_{\tau})\bar{p}_{\tau}(\delta)) \\ 888 \quad & \quad \quad \quad (\mu(X_{\tau}) \leq \bar{\mu}(X_{\tau}) \text{ almost surely}) \\ 889 \quad & = \mathcal{P}(p(X_{\tau}) > \bar{p}_{\tau}(\delta)) \\ 890 \quad & \quad \quad \quad (\bar{\mu}(u) \geq 0 \text{ for all } u) \\ 891 \quad & \leq \mathcal{P}(\exists t \in \mathbb{N} : p(X_t) > \bar{p}_t(\delta)) \\ 892 \quad & \leq \delta \quad \quad \quad \text{(Lemma 3.2)} \\ 893 \end{aligned}$$

894 \square

895 **Theorem D.2** (Ville's inequality). *Let M_1, M_2, \dots be a non-negative supermartingale scaled so that $\mathbb{E}M_1 \leq 1$. Then, for any real number α ,*

$$896 \quad P \left(\sup_{t \geq 1} M_t \geq \frac{1}{\alpha} \right) \leq \alpha.$$

900 D.2 DEFERRED PROOFS OF SECTION 3.3

901 **Theorem 3.5.** *Under Assumption 3.4, for all $\gamma > 0$ and $\delta > 0$, Algorithm 1 run with $\mathcal{P} = \hat{P}_0, \gamma, \delta$ and any $\bar{\mu}$ that satisfies Definition 3.1 for \hat{P}_0 terminates at a time $\tau \in \mathbb{N}$ such that*

$$902 \quad \mathbb{P}(\mathbb{E}_{\mathbb{P}_0}[U_{\tau} - U_{\tau+1} \mid \hat{U}_{\tau}] \leq \gamma) \geq 1 - \delta. \quad (6)$$

903 *Proof of Theorem 3.5.* First, observe:

$$904 \quad \mathbb{E}_{\mathbb{P}_0}[U_{\tau} - U_{\tau+1} \mid \hat{U}_{\tau}] = \mathbb{E}_{\mathbb{P}_0}[\hat{U}_{\tau} - \hat{U}_{\tau+1} \mid \hat{U}_{\tau}] + \mathbb{E}_{\mathbb{P}_0}[(U_{\tau} - \hat{U}_{\tau}) - (U_{\tau+1} - \hat{U}_{\tau+1}) \mid \hat{U}_{\tau}].$$

918 Under Assumption 3.4,

919

$$\mathbb{E}_{\mathbb{P}_0}[(U_\tau - \hat{U}_\tau) - (U_{\tau+1} - \hat{U}_{\tau+1}) \mid \hat{U}_\tau] \geq 0, \quad (14)$$

920 for all t with probability 1. Next, observe

921

$$\mathbb{E}_{\mathbb{P}_0}[\hat{U}_\tau - \hat{U}_{\tau+1} \mid \hat{U}_\tau] = \mathbb{E}_{\hat{P}_0}[\hat{U}_\tau - \hat{U}_{\tau+1} \mid \hat{U}_\tau]. \quad (15)$$

922 Finally, from Theorem D.1, we have

923

$$\hat{P}(\mathbb{E}_{\hat{P}_0}[\hat{U}_\tau - \hat{U}_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) \geq 1 - \delta. \quad (16)$$

924 Putting it all together, we have

925

$$\begin{aligned} \mathbb{P}(\mathbb{E}_{\mathbb{P}_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) &\geq \mathbb{P}(\mathbb{E}_{\mathbb{P}_0}[\hat{U}_\tau - \hat{U}_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) && \text{(Equation (14))} \\ &= \hat{P}(\mathbb{E}_{\hat{P}_0}[\hat{U}_\tau - \hat{U}_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) && \text{(Equation (15))} \\ &\geq 1 - \delta. && \text{(Equation (16))} \end{aligned}$$

926 \square

927

D.3 DEFERRED PROOFS FOR SECTION 3.4

928 **Theorem C.2.** *Under Assumptions 3.4 and C.1, for all $\gamma > 0$ and $\delta > 0$, Algorithm 2 run with*

929 $\mathcal{P} = \hat{P}_0$, γ and δ terminates at a time $\tau \in \mathbb{N}$ such that

930

$$\mathbb{P}(\mathbb{E}_{\mathbb{P}_0}[U_\tau - U_{\tau+1} \mid \hat{U}_\tau] \leq \gamma) \geq 1 - \delta. \quad (8)$$

931 *Proof of Theorem C.2.* Define the following events.

932

$$\begin{aligned} \mathcal{E}_0 &= \{C \leq \text{median}(\hat{P}_0)\} \\ \mathcal{E}_1 &= \{\mathbb{E}_{\hat{P}_0}[C - \hat{Q}_{\tau+1} \mid C > \hat{Q}_{\tau+1}, C] \leq \bar{\mu}_\tau\} \end{aligned}$$

933 where $\bar{\mu}_\tau$ is as defined in algorithm 2.

934 Notice that, on \mathcal{E}_0 and \mathcal{E}_1

935

$$\begin{aligned} \mathbb{E}_{\hat{P}_0}[\hat{U}_\tau - \hat{U}_{\tau+1} \mid \hat{U}_\tau > \hat{Q}_{\tau+1}] &\leq \mathbb{E}_{\hat{P}_0}[z - \hat{Q}_{\tau+1} \mid z > \hat{Q}_{\tau+1}] && \text{(Assumption C.1)} \\ \implies \mathbb{E}_{\hat{P}_0}[\hat{U}_\tau - \hat{Q}_{\tau+1} \mid \hat{U}_\tau > \hat{Q}_{\tau+1}] &\leq \mathbb{E}_{\hat{P}_0}[C - \hat{Q}_{\tau+1} \mid C > \hat{Q}_{\tau+1}, C] \\ &\quad (C \in [\hat{U}_\tau, \text{median}(\hat{P}_0)] \text{ a.s. on } \mathcal{E}_0) \\ &\leq \bar{\mu}_\tau. && (\mathcal{E}_1) \end{aligned}$$

936 where $\bar{\mu}_\tau$ is defined as in Algorithm 2. Also, define $\mathcal{E}_2 = \{\hat{P}_0(\hat{U}_\tau > \hat{U}_{\tau+1} \mid \hat{U}_\tau) \leq \bar{p}_\tau\}$. Observe

937 that, on \mathcal{E}_2 ,

938

$$\hat{P}_0(\hat{U}_\tau > \hat{Q}_{\tau+1} \mid \hat{U}_\tau) \leq \bar{p}_\tau(\delta/3).$$

939 Combining these, we have, by the fact that the algorithm terminated

940

$$\bar{\mu}_\tau \cdot \bar{p}_\tau(\delta/3) \leq \gamma. \quad (17)$$

941 By Lemmas 3.2, D.3 and D.4, \mathcal{E}_0 , \mathcal{E}_1 and \mathcal{E}_2 each occur with probability at least $1 - \delta/3$, so by a

942 union bound, their intersection occurs with probability at least $1 - \delta$. \square

943 **Lemma D.3.** *For all δ , with probability no less than $1 - \delta/3$,*

944

$$C \leq \text{median}(P_0) \quad (18)$$

945 where C is defined as in Algorithm 2.

946 *Proof of Lemma D.3.* Let $\varepsilon = 1/6$ and let $i^* = \lfloor T_1/2 \rfloor$. Note that the event $C \leq \text{median}(\hat{P}_0)$ is

947 the same as the event that $i^* \leq \sum_{t=1}^{T_1} \mathbb{I}\{\hat{Q}_t \leq \text{median}(\hat{P}_0)\}$, since this implies that there are at

least i^* draws of \hat{Q}_t less than the median. Note that $\mathbb{I}\left\{\hat{Q}_t \leq \text{median}(\hat{P}_0)\right\}$ are independent and distributed as Bernoulli random variables with success probability p . Thus,

$$\begin{aligned}
\hat{P}(C > \text{median}(\hat{P}_0)) &= \hat{P}\left(i^* > \sum_{t=1}^{T_1} \mathbb{I}\left\{\hat{Q}_t \leq \text{median}(\hat{P}_0)\right\}\right) \\
&\leq \exp\left(-\frac{2(i^* - (1/2 - \varepsilon)T_1)^2}{T_1}\right) \quad (\text{Hoeffding's inequality}) \\
&\leq \exp(-2\varepsilon^2 T_1) \quad (\text{Substituting definition of } i^*.) \\
&\leq \frac{\delta}{3} \quad (\text{Substituting definition of } \varepsilon \text{ and simplifying.})
\end{aligned}$$

Lemma D.4. For all δ , with probability at least $1 - \delta/3$, it holds for all $t = 2, 3, \dots$ simultaneously that

$$\mathbb{E}_{\hat{P}}[C - \hat{Q}_{t+1} \mid C > \hat{Q}_{t+1}, C] \leq \bar{\mu}_t$$

where $\bar{\mu}_t$ is defined as in Algorithm 2.

Proof of Lemma D.4. We just need to verify that we can apply Corollary D.6. To do this, we need to verify $\Delta \in S_t$ have the same conditional mean.

Define S and $\{i_t\}_t$ analogously to in Corollary D.6:

$$S = \{t \in \mathbb{N} : \hat{Q}_t < C\}.$$

Define the sequence $S = \{t \in \mathbb{N} : \hat{Q}_t < C\}$. To see that all Δ_{i_t} have the same mean conditional on the past, observe,

$$\begin{aligned}
\mathbb{E}_{\hat{P}}[\Delta_{i_t} \mid \Delta_{i_1}, \dots, \Delta_{i_{t-1}}, C] &= \mathbb{E}_{\hat{P}}[C - \hat{Q}_{i_t} \mid \Delta_{i_1}, \dots, \Delta_{i_{t-1}}, C] \\
&= C - \mathbb{E}_{\hat{P}}[\hat{Q}_{i_t} \mid \Delta_{i_1}, \dots, \Delta_{i_{t-1}}, C] \\
&= C - \mathbb{E}_{\hat{P}}[\hat{Q}_{i_t}] \quad (\text{Independence of } \hat{Q}_{i_t} \text{ conditional on } D)
\end{aligned}$$

Thus, since \hat{Q}_{it} are identically distributed conditional on D , it holds $\mathbb{E}_{\hat{P}_0} \hat{Q}_{it} = \mathbb{E}_{\hat{P}_0} \hat{Q}_{is}$ for all $s, t \in \mathbb{N}$ so $\{\Delta_{it}\}_{t=1}^\infty$ have the same mean conditional on the past and C .

Now, on the event that $\hat{Q}_{t+1} < C$, it holds $t + 1 \in S$. Thus, the guarantee holds for $t + 1$. Finally, we plug in $\delta/3$ for α , which yields the desired result:

$$\mathbb{E}_{\hat{\mathcal{Q}}}[C = \hat{Q}_{t+1} \mid C \geq \hat{Q}_{t+1}, C] \leq \bar{\mu}_t,$$

The following result provides a high probability upper bound for anytime-valid bounded mean estimation.

Theorem D.5 (Theorem 2, Waudby-Smith & Ramdas (2024)). *Suppose there is a constant ν and stochastic process $(X_t)_{t=1}^{\infty} \sim \mathcal{P}$ for some distribution \mathcal{P} with support bounded on $[0, 1]$ such that, for all t ,*

$$\mathbb{E}_{\mathcal{P}}(X_t \mid X_1, \dots, X_{t-1}) = \nu.$$

Let $\mathcal{F}_t = \sigma(\{X_i\}_{i=1}^t)$ be the σ -field induced by X_1, \dots, X_t . Next, consider any sequence $\{\lambda_t\}_{t=1}^\infty$ such that for all t , λ_t is \mathcal{F}_{t-1} -measurable. Then, for all $\alpha > 0$, with probability at least $1 - \alpha$, it holds for all $t = 1, 2, \dots$ simultaneously:

$$\nu \leq \frac{\log(2/\alpha) + \sum_{i=1}^t \lambda_i X_i - (X_i - \hat{\nu}_{i-1})^2 (\log(1 - \lambda_i) + \lambda_i)}{\sum_{i=1}^t \lambda_i}$$

We state the following corollary Theorem D.5 which states the result for subsequences of random processes (which amounts to a re-indexing) and uses a particular choice of λ_t . This result follows the recommendations for λ_t in Waudby-Smith & Ramdas (2024) and is an empirical Bernstein-type bound.

Corollary D.6. *Suppose there is a constant ν and stochastic process $(X_t)_{t=1}^\infty \sim \mathcal{P}$ for some distribution \mathcal{P} with support bounded on $[0, 1]$. Define a sequence of subsets S_t such that $S_{t-1} \subseteq S_t$ and $S_t \setminus S_{t-1} \subseteq \{t\}$. Suppose, for all t such that $t \in S_t$ and $i \in S_t$,*

$$\mathbb{E}_{\mathcal{P}}(X_t \mid S_{t-1}) = \nu.$$

For all $\alpha \in (0, 1]$, define

$$\lambda_t \triangleq \min \left\{ \sqrt{\frac{2 \log(2/\alpha)}{\hat{\sigma}_{t-1}^2 |S_t| \log(1 + |S_t|)}}, \frac{1}{2} \right\} \quad (19)$$

where

$$\begin{aligned} \hat{\nu}_t &\triangleq \frac{\frac{1}{2} + \sum_{i \in S_t} X_i}{1 + |S_t|}, \text{ and} \\ \hat{\sigma}_t^2 &\triangleq \frac{\frac{1}{4} + \sum_{i \in S_t} (X_i - \hat{\nu}_i)^2}{1 + |S_t|}. \end{aligned}$$

Finally, for all t , let

$$\bar{\mu}_t^{eb}(\{X_s\}_{s=1}^t, \alpha, S_t) \triangleq \frac{\log(2/\alpha) + \sum_{i \in S_t} \lambda_i X_i - (X_i - \hat{\nu}_{i-1})^2 (\log(1 - \lambda_i) + \lambda_i)}{\sum_{i \in S_t} \lambda_i}. \quad (20)$$

Then, with probability at least $1 - \alpha$, it holds for all $t = 1, 2, \dots$ simultaneously:

$$\nu \leq \bar{\mu}_t^{eb}(\{X_s\}_{s=1}^t, \alpha, S_t)$$

Proof of Corollary D.6. Define the sequence $S = (t \in \mathbb{N} : X_t \in S_t)$. Denote by i_t the t -th element of S . Clearly, λ_t is \mathcal{F}_{t-1} -measurable. To apply the theorem, we plug in the sequence $\{X_{i_s}\}_{s=1}^{|S_t|}$ as defined in for X_t in Theorem D.5. \square

E A SHARPER UPPER BOUND FOR LEMMA 3.2 WITH AN ALMOST MATCHING LOWER BOUND.

Theorem E.1. *Let $\{U_t\}_{t=1}^\infty$ be a sequence of iid uniform random variables on $[0, 1]$. Let $V_t = \min_{s \in [t]} U_s$. For any constant $a > 1$, define⁵*

$$\tilde{p}_t(\delta) \triangleq \min \left\{ 1, \inf_{q \in [0, e^{-1}]} \left\{ \int_0^q \frac{1}{(1 - \theta)^t} \frac{a - 1}{\theta \cdot (\log(1/\theta))^a} d\theta \geq \frac{1}{\delta} \right\} \right\}.$$

Then,

$$\Pr\{\exists t V_t > \tilde{p}_t(\delta)\} \leq \frac{1}{\delta}. \quad (21)$$

Asymptotically,

$$\lim_{t \rightarrow \infty} \frac{\tilde{p}_t(\delta)}{\frac{\log \log t}{t}} \in [1, a].$$

Moreover, this is nearly tight: for any sequence $\{q_t\}_{t=1}^\infty$,

$$\Pr\{\exists t V_t > q_t\} \leq \frac{1}{\delta} \implies \lim_{t \rightarrow \infty} \frac{q_t}{\frac{\log \log t}{t}} \geq 1.$$

⁵By convention, $\inf \emptyset = \infty$.

1080 *Proof.* The lower bound follows directly from Robbins & Siegmund (1972, Theorem 1), which
 1081 states that

$$1083 \Pr \left\{ V_t \geq \frac{\log \log t + 2 \log \log \log t}{t} \text{ i.o.} \right\} = 1.$$

1085 Therefore, for any $\{q_t\}_{t=1}^\infty$ such that

$$1087 \lim_{t \rightarrow \infty} \frac{q_t}{\log \log t} < 1,$$

1089 there is some t^* such that for all $t \geq t^*$, $q_t < \frac{\log \log t + 2 \log \log \log t}{t}$. But this means that $V_t > q_t$
 1090 infinitely often for $t \geq t^*$, so $\Pr\{\exists t V_t > q_t\} = 1$.

1091 For our upper bound, we follow the proof of Lemma 3.2 to define the test martingale

$$1093 M_t(\theta) \triangleq \frac{1}{(1-\theta)^t} \mathbb{I}\{V_t \geq \theta\}.$$

1094 In Lemma 3.2, we mixed this martingale over the uniform distribution over $[0, 1]$ for θ . This lead to
 1095 an asymptotically loose bound:

$$1096 \bar{p}_t(\delta) = 1 - \left(\frac{t-1}{\delta} + 1 \right)^{-1/(t-1)} \\ 1097 = 1 - \exp \left[-\frac{1}{t-1} \log \left(\frac{t-1}{\delta} + 1 \right) \right].$$

1103 By Lemma E.2,

$$1105 \bar{p}_t(\delta) \sim \frac{1}{t-1} \log \left(\frac{t-1}{\delta} + 1 \right) \\ 1106 \sim \frac{\log t}{t}.$$

1109 To get something asymptotically tight, we need to mix with a distribution that places more mass on
 1110 very small values of θ . For some constant $a > 1$, consider the distribution

$$1112 \nu(\theta) \triangleq \frac{a-1}{\theta \cdot (\log(1/\theta))^a}$$

1115 defined on $(0, e^{-1})$. This is a valid probability distribution because

$$1116 \int_0^{e^{-1}} \nu(\theta) d\theta = \int_0^{e^{-1}} \frac{a-1}{\theta \cdot (\log(1/\theta))^a} d\theta \\ 1117 = (a-1) \int_1^\infty u^{-a} du \quad (\text{substitute } u = \log(1/\theta)) \\ 1118 = (a-1) \cdot \frac{-1}{a-1} u^{-(a-1)} \Big|_1^\infty \\ 1119 = u^{-(a-1)} \Big|_1^\infty \\ 1120 = 1.$$

1127 We define our test martingale to be a mixture of M_t over this distribution ν :

$$1130 M_t^N(\theta) \triangleq \int_0^{e^{-1}} M_t(\theta) \nu(\theta) d\theta \\ 1131 = (a-1) \int_0^{\min(e^{-1}, V_t)} \frac{1}{(1-\theta)^t} \frac{1}{\theta (\log(1/\theta))^a} d\theta.$$

Again, this is a nonnegative martingale by Fubini's theorem, using the fact that $M_t(\theta)$ is a nonnegative martingale as shown in the proof of Lemma 3.2. Applying Ville's inequality (Theorem D.2), for any $\delta \in (0, 1)$,

$$\Pr \left\{ \exists t \ M_t^N(\theta) > \frac{1}{\delta} \right\} \leq \delta.$$

Define

$$\tilde{p}_t(\delta) \triangleq \min \left\{ 1, \inf \left\{ q \in [0, e^{-1}) : \int_0^q \frac{1}{(1-\theta)^t} \frac{a-1}{\theta \cdot (\log(1/\theta))^a} d\theta \geq \frac{1}{\delta} \right\} \right\}.$$

For sufficiently large t , the set over which we are taking the infimum will be nonempty, and for such t ,

$$\int_0^{\tilde{p}_t(\delta)} \frac{1}{(1-\theta)^t} \frac{a-1}{\theta \cdot (\log(1/\theta))^a} d\theta = \frac{1}{\delta}$$

By a simple monotonicity argument,

$$\begin{aligned} \{V_t > \tilde{p}_t(\delta)\} &\iff \{V_t > \tilde{p}_t(\delta), \tilde{p}_t(\delta) < e^{-1}\} \\ &\implies (a-1) \int_0^{\min(e^{-1}, V_t)} \frac{1}{(1-\theta)^t} \frac{1}{\theta \cdot (\log(1/\theta))^a} d\theta > \frac{1}{\delta} \\ &\iff \left\{ M_t^N > \frac{1}{\delta} \right\} \end{aligned}$$

Therefore,

$$\Pr \{ \exists t \ V_t > \tilde{p}_t(\delta) \} \leq \delta,$$

which proves eq. (21).

Finally, to prove the asymptotic bounds,

$$\begin{aligned} g(v, t) &\triangleq e^{-v} \frac{1}{(1-v/t)^t} \frac{1}{(1 - \frac{\log v}{\log t})^a} \\ g_1(v, t) &\triangleq e^{-v} \frac{1}{(1-v/t)^t} \\ g_2(v, t) &\triangleq \frac{1}{(1 - \frac{\log v}{\log t})^a}. \end{aligned}$$

By definition, $g = g_1 g_2$. Consider our integral

$$\int_0^{\tilde{p}_t(\theta)} \frac{1}{(1-\theta)^t} \frac{a-1}{\theta \cdot (\log(1/\theta))^a} d\theta$$

Make the substitution $v = t\theta$. Then, this becomes

$$\int_0^{\tilde{p}_t(\theta)} \frac{1}{(1-v/t)^t} \frac{a-1}{v/t \cdot (\log(t/v))^a} \frac{dv}{t} = \frac{a-1}{(\log t)^a} \int_0^{\tilde{p}_t(\theta)} \frac{1}{(1-v/t)^t} \frac{1}{v \cdot (\log(t/v))^a} dv$$

Intuitively, our goal will be to show that this integrand is approximately e^v/v . To do so, observe that for $v > 1$,

$$\begin{aligned} g_1(v, t) &= \frac{e^{-v}}{(1-v/t)^t} \\ &= e^{-v-t \log(1-v/t)} \\ &\geq e^{-v+t(v/t)} && (-\log(1-x) \geq x \text{ for } x > 0) \\ &= 1 \\ g_2(v, t) &= \frac{1}{\left(1 - \frac{\log v}{\log t}\right)^a} \\ &\geq 1 \\ g(v, t) &= g_1(v, t)g_2(v, t) \\ &\geq 1. \end{aligned}$$

1188 We can now break up our original integral into two parts:
 1189

$$\begin{aligned}
 1190 \quad & \frac{a-1}{(\log t)^a} \int_0^{t\tilde{p}_t(\delta)} \frac{1}{(1-v/t)^t} \frac{1}{v(1-\frac{\log v}{\log t})^a} dv = \frac{a-1}{(\log t)^a} \int_0^{t\tilde{p}_t(\delta)} \frac{e^v}{v} g(v, t) dv \\
 1191 \quad & = \frac{a-1}{(\log t)^a} \int_0^1 \frac{e^v}{v} g(v, t) dv \\
 1192 \quad & + \frac{a-1}{(\log t)^a} \int_1^{t\tilde{p}_t(\delta)} \frac{e^v}{v} g(v, t) dv
 \end{aligned} \tag{22}$$

1193 We'll show that the first of these terms approaches 0. This is because for $v \leq 1$,
 1194

$$\begin{aligned}
 1195 \quad g(v, t) &= e^{-v} \frac{1}{(1-v/t)^t} \frac{1}{(1-\frac{\log v}{\log t})^a} \\
 1196 \quad &\leq \frac{1}{(1-1/t)^t} \frac{1}{(1-\frac{\log v}{\log t})^a} \\
 1197 \quad &\leq 4 \quad (t \geq 2; \log v < 0)
 \end{aligned}$$

1206 Moreover, $g(v, t) \geq 0$. Therefore,

$$\frac{a-1}{(\log t)^a} \int_0^1 \frac{e^v}{v} g(v, t) dv \leq \frac{4(a-1)}{(\log t)^a},$$

1207 which goes to 0 as $t \rightarrow \infty$. This means that asymptotically,
 1208

$$\frac{a-1}{(\log t)^a} \int_1^{t\tilde{p}_t(\delta)} \frac{e^v}{v} g(v, t) dv = \frac{1}{\delta} - o(1). \tag{23}$$

1214 Using the fact that $g(v, t) \geq 1$ for $v > 1$,

$$\frac{1}{\delta} \geq \frac{a-1}{(\log t)^a} \int_1^{t\tilde{p}_t(\delta)} \frac{e^v}{v} g(v, t) dv \geq \frac{a-1}{(\log t)^a} \int_1^{t\tilde{p}_t(\delta)} \frac{e^v}{v} dv.$$

1219 Consider the sequence z_t implicitly defined (for sufficiently large t) as

$$\frac{a-1}{(\log t)^a} \int_1^{z_t} \frac{e^v}{v} dv = \frac{1}{\delta}.$$

1223 Clearly, $z_t \geq \tilde{p}_t(\delta)$ because the integrand e^v/v is nonnegative. We will show that $z_t \sim a \log \log t/t$.
 1224

1225 The exponential integral Ei is defined

$$\text{Ei}(x) \triangleq \int_{-\infty}^x \frac{e^v}{v} dv.$$

1228 Therefore,

$$\frac{a-1}{(\log t)^a} \int_1^{z_t} \frac{e^u}{u} du = \frac{a-1}{(\log t)^a} (\text{Ei}(z_t) - \text{Ei}(1)).$$

1232 By definition of z_t , for all t ,

$$\frac{\delta(a-1)}{(\log t)^a} (\text{Ei}(z_t) - \text{Ei}(1)) = 1.$$

1236 Therefore,

$$\begin{aligned}
 1238 \quad & \lim_{t \rightarrow \infty} \frac{\delta(a-1)}{(\log t)^a} (\text{Ei}(z_t) - \text{Ei}(1)) = 1 \\
 1239 \quad & \lim_{t \rightarrow \infty} \frac{\delta(a-1)}{(\log t)^a} \text{Ei}(z_t) = 1
 \end{aligned}$$

1242 We can write this with the asymptotic relation
 1243

$$\delta(a-1) \operatorname{Ei}(z_t) \sim (\log t)^a.$$

1244 By the lower bound shown above, we must have $z_t \geq \tilde{p}_t(\delta) = \Omega(\log \log t/t)$, meaning $z_t \rightarrow \infty$.
 1245 By Lemma E.3, if $z_t \rightarrow \infty$, then $\operatorname{Ei}(z_t) \sim e^{z_t}/z_t$. Therefore,

$$1246 \delta(a-1) \operatorname{Ei}(z_t) \sim (\log t)^a$$

$$1248 \delta(a-1) \frac{e^{z_t}}{z_t} \sim (\log t)^a$$

$$1250 e^{z_t - \log z_t} \sim \frac{(\log t)^a}{\delta(a-1)} \quad (\text{Lemma E.3, since } z_t \rightarrow \infty)$$

$$1253 z_t - \log z_t \sim \log \left(\frac{(\log t)^a}{\delta(a-1)} \right) \quad (\text{both sides go to } \infty)$$

$$1255 z_t \sim a \log \log t$$

1256 Because $\tilde{p}_t(\delta) \leq z_t$,

$$1258 \lim_{t \rightarrow \infty} \frac{\tilde{p}_t(\delta)}{\log \log t} \leq a.$$

1260 The lower bound we began with yields

$$1262 \lim_{t \rightarrow \infty} \frac{\tilde{p}_t(\delta)}{\log \log t} \geq 1,$$

1263 completing the proof. \square

1264 **Lemma E.2.** For a sequence $\{a_t\}_{t=1}^{\infty}$, if $\lim_{t \rightarrow \infty} a_t = 0$, then

$$1266 1 - e^{a_t} \sim -a_t.$$

1267 *Proof.* We must show that

$$1269 \lim_{t \rightarrow \infty} \frac{1 - e^{a_t}}{-a_t} = 1. \quad (24)$$

1270 We proceed as follows.

$$\begin{aligned} 1272 \lim_{t \rightarrow \infty} \frac{1 - e^{a_t}}{-a_t} &= \lim_{t \rightarrow \infty} \frac{e^{a_t} - 1}{a_t} \\ 1273 &= \lim_{u \rightarrow 0} \frac{e^u - 1}{u} \quad (\lim_{t \rightarrow \infty} a_t = 0) \\ 1274 &= \lim_{u \rightarrow 0} \frac{e^{0+u} - e^0}{u} \\ 1275 &= \frac{d}{du} e^u \Big|_{u=0} = 1. \end{aligned}$$

\square

1281 **Lemma E.3.** As $z \rightarrow \infty$,

$$1283 \operatorname{Ei}(z) \sim \frac{e^z}{z}.$$

1285 *Proof.*

$$\begin{aligned} 1287 \lim_{z \rightarrow \infty} \frac{\operatorname{Ei}(z)}{\frac{e^z}{z}} &= \lim_{z \rightarrow \infty} \frac{\frac{d}{dz} \operatorname{Ei}(z)}{\frac{d}{dz} \frac{e^z}{z}} \\ 1288 &= \lim_{z \rightarrow \infty} \frac{\frac{e^z}{z}}{\frac{ze^z - e^z}{z^2}} \\ 1289 &= \lim_{z \rightarrow \infty} \frac{1}{\frac{z-1}{z}} \\ 1290 &= 1. \end{aligned}$$

\square