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Abstract

The ever-growing biomedical publications mag-001
nify the challenge of extracting structured data002
from unstructured texts. This task involves two003
components: biomedical entity identification004
(Named Entity Recognition, NER) and their005
interrelation determination (Relation Extrac-006
tion, RE). However, existing methods often007
neglect unique features of the biomedical litera-008
ture, such as ambiguous entities, nested proper009
nouns, and overlapping relation triplets, and010
underutilize prior knowledge, leading to an in-011
tolerable performance decline in the biomed-012
ical domain, especially with limited anno-013
tated training data. In this paper, we propose014
the Biomedical Relation-First eXtraction (Bio-015
RFX) model by leveraging sentence-level re-016
lation classification before entity extraction to017
tackle entity ambiguity. Moreover, we exploit018
structural constraints between entities and re-019
lations to guide the model’s hypothesis space,020
enhancing extraction performance across differ-021
ent training scenarios. Comprehensive experi-022
mental results on biomedical datasets show that023
Bio-RFX achieves significant improvements on024
both NER and RE tasks. Even under the low-025
resource training scenarios, it outperforms all026
baselines in NER and has highly competitive027
performance compared to the state-of-the-art028
fine-tuned baselines in RE 1.029

1 Introduction030

Biomedical literature is a vital resource for re-031

search, but the surge in publications makes man-032

ual tracking of advances difficult. Consequently,033

there’s growing interest in methods for automatic034

extraction of structured information from these035

texts. This involves identifying biomedical entities036

and their relations from plain texts, namely Named037

Entity Recognition (NER) and Relation Extraction038

(RE), as illustrated in Figure 1. These structured039

1The source code of this paper can be obtained
from https://anonymous.4open.science/r/
bio-rfx-E5A9/

data can be applied to several downstream tasks and 040

real-world circumstances in academia and industry. 041

The keystone of entity and relation extraction 042

hinges on proficiently modeling textual data, which 043

includes deriving meaningful biomedical text repre- 044

sentations and developing methods to utilize them. 045

The adaptation of BERT (Devlin et al., 2019) ar- 046

chitectures to the biomedical field, including pre- 047

training and additional training, has seen significant 048

success in recent years. However, two substantial 049

challenges remain in this domain. 050

Firstly, learning effective representations is chal- 051

lenging in low-resource scenarios. Neural network- 052

based strategies depend on substantial quantities of 053

labeled training data, a prerequisite often elusive in 054

the biomedical domain. This is mainly due to the 055

labor-intensive, time-consuming, and error-prone 056

nature of manually annotating biomedical text data. 057

Detailed reading and interpretation are required for 058

annotation, and reliable annotations often necessi- 059

tate domain experts or multiple annotation rounds. 060

Some studies focus on incorporating biomedical 061

knowledge graphs (KGs) like UMLS (Bodenreider, 062

2004) into training data to improve cross-domain 063

adaptability (Zhang et al., 2021). Nonetheless, this 064

approach is subject to several limitations. Entity- 065

level KGs suffer from rapid knowledge updates, 066

large storage space, and heavy computational costs. 067

Concept-level KGs, with nodes and edges as ab- 068

stract biomedical concepts, are impacted by anno- 069

tation standard discrepancies between text datasets 070

and KGs. While most biomedical information ex- 071

traction datasets focus on extracting fine-grained 072

relations between coarse-grained entities, concept- 073

level KGs often struggle to differentiate between 074

relation types. For instance, all relation types in 075

DrugProt (Miranda et al., 2021) and DrugVar (Peng 076

et al., 2017) datasets are classified as the same type 077

(interact-with) in UMLS, significantly diminishing 078

the instructive value of prior knowledge in KGs. 079

Secondly, biomedical literature’s unique features 080
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Example A

Notably, M364-beta is sequence

adjacent to R365-beta, the most buried

residue upon binding of beta to delta

(155 Ang 2).

Example B

The antibacterial activity of synthetic

aliphatic was studied against two human

pathogens: Staphylococcus aureus and

Escherichia coli.

Example A

Golden Triplet:

(beta: PROTEIN, binding, delta: PROTEIN)

Common Errors:

(beta: DRUG, binding, delta: PROTEIN)

(beta: CELL, binding, delta: PROTEIN)

Example B

Golden Triplet:

(human pathogens: PHENOTYPE, exhibit,

Escherichia coli: MICROORGANISM)

(human pathogens: PHENOTYPE, exhibit,

Staphylococcus aureus: MICROORGANISM)

Common Errors:

(human: PHENOTYPE, exhibit, Escherichia

coli: MICROORGANISM)

Figure 1: Automatic entity and relation extraction from biomedical publications. Example A illustrates ambiguous
entities and Example B shows perplexing nested biomedical proper nouns.

necessitate domain-specific model design, an area081

less explored than text representations. The per-082

formance of general-domain models drops dramat-083

ically when adapting to biomedical contexts due084

to the stylized writing and domain-specific termi-085

nology. Moreover, biomedical entities can be am-086

biguous, with the same phrases recognized as dif-087

ferent entities depending on context and relation-088

ships with other entities. For instance, in Figure 1089

Example A, beta and delta could refer to various090

entities, but their binding relation suggests they’re091

proteins. Furthermore, overlapping proper nouns092

can perplex models, making entity detection chal-093

lenging. In Figure 1 Example B, both human and094

human pathogens are valid entities, but only the095

latter should be extracted under the exhibit rela-096

tion type. These factors make it hard for general-097

domain models to effectively handle biomedical098

literature’s distinctive features.099

To address these issues, we proposed Biomedical100

Relation-First eXtraction (Bio-RFX) model,101

wherein hypothesis space is constrained by prior102

knowledge. This architecture, inspired by the103

strong structural knowledge implications among104

relational triplets, first predicts the relation types105

that appeared in the sentence. It then extracts rel-106

evant entities satisfying such structure through a107

question-answering approach. A question is gen-108

erated based on the relation type, with the original109

sentence as context, and related entities form a110

multi-span answer. We then predict the sentence’s111

valid entity count and remove false entities using112

the text-NMS algorithm (Hu et al., 2019). Finally,113

relations between entities are generated according114

to structural constraints.115

This approach is capable of tackling specific is-116

sues in biomedical texts. For ambiguous entities, 117

the predicted relation information guides entity 118

type identification. For perplexing entities, over- 119

lapping terms are eliminated by the text-NMS al- 120

gorithm, enhancing specificity. 121

We evaluate our method on two biomedical 122

datasets: DrugProt (Miranda et al., 2021) and 123

DrugVar (Peng et al., 2017). Experimental results 124

show that our model achieves the best average rank 125

among all the models. Our model also surpasses 126

the previous state-of-the-art, improving NER and 127

RE F1 scores by up to 2.91% and 1.86% respec- 128

tively. 129

The main contributions of this paper include: 130

• We unveil an efficient biomedical relation-first 131

extraction framework, meticulously crafted 132

for extracting entities and relations from 133

biomedical literature in low-resource settings. 134

• We construct a relation-first model to adapt to 135

the features of biomedical texts and innova- 136

tively utilize prior knowledge to constrain the 137

hypothesis space of the model. 138

• Comprehensive experimental results show 139

that our model significantly outperforms base- 140

line models on biomedical datasets under dif- 141

ferent settings. 142

• To the best of our knowledge, our work marks 143

the inaugural endeavor in extracting both en- 144

tities and relations from biomedical literature 145

under the scenarios characterized by limited 146

training data. 147
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2 Related Work148

Researchers have proposed numerous methods for149

extracting entities and relations, most of which150

belong to pipeline or joint methods.151

2.1 Pipeline Method152

Based on the extracting sequence, the pipeline ap-153

proach is divided into three paradigms.154

The first paradigm starts with NER to identify155

entities in a sentence and then classifies each ex-156

tracted entity pair into different relation types. To157

attain representations for entity and relation at vari-158

ous levels, FCM (Gormley et al., 2015) uses compo-159

sitional embedding with hand-crafted and learned160

features. PURE (Zhong and Chen, 2021) inserts161

predicted entity label marks into the input sentence162

before RE to integrate semantic information pro-163

vided by entity types. PL-Marker (Ye et al., 2022)164

uses a neighborhood-oriented packing strategy and165

a subject-oriented packing strategy, and Fabregat166

et al. (2023) first trains a NER model and then167

transfers the weights to the triplet model. These168

methods, while easy to implement, often ignore169

either the overlapping relation triplets or the impor-170

tant inner structure behind the text.171

To tackle these challenges, the second paradigm172

is proposed. The model first detects all poten-173

tial subject entities in a sentence and then recog-174

nizes object entities concerning each relation. Cas-175

Rel (Wei et al., 2020) regards relations as functions176

that map subjects to objects and identifies subjects177

and objects in a sequence-tagging manner. Multi-178

turn QA (Li et al., 2019) formulates entity and179

relation extraction as a question-answering task, se-180

quentially generating questions on subject entities,181

relations, and object entities. ETL-Span (Yu et al.,182

2020) designs a subject extractor and an object-183

relation extractor and decodes the entity spans by184

token classification and heuristic matching algo-185

rithm. Nevertheless, in real-life circumstances, sen-186

tences may contain numerous entities, but relations187

are often sparse. This leads to relation redundancy188

in the above methods. In the first paradigm, most189

entity pairs lack relations, and in the second, enu-190

merating all relation types is superfluous.191

The third paradigm addresses this problem by192

running relation detection at a sentence level be-193

fore entity extraction. RERE (Xie et al., 2021)194

predicts potential relations and performs a relation-195

specific sequence-tagging task to extract entities.196

PRGC (Zheng et al., 2021) adds a global correspon-197

dence for triplet decoding. Our method, Bio-RFX, 198

differs in the following aspects. We use indepen- 199

dent encoders for entity and relation extraction, 200

aiding in learning task-specific contextual represen- 201

tations. Besides, instead of directly applying rela- 202

tion representations, we generate a question query 203

related to the relation type and targeted entity types. 204

This approach naturally models the connection be- 205

tween entity and relation, allowing us to leverage 206

fully-fledged machine reading comprehension mod- 207

els. Furthermore, focusing on domain-specific is- 208

sues, like nested or overlapping proper nouns and 209

biomedical terms, we implemented a text-NMS 210

algorithm to improve extraction specificity. 211

2.2 Joint Method 212

Another task formulation is building joint models 213

that simultaneously extract entities and relations. 214

Recent research focused on neural network-based 215

models and has yielded promising results. For in- 216

stance, a joint extraction task can be converted to 217

a sequence tagging problem by designing token 218

labels that encapsulate information on entities and 219

the relation they hold (Zheng et al., 2017). How- 220

ever, these methods failed to extract overlapping 221

entities and relation triplets, which are ubiquitous 222

in the biomedical domain. 223

To tackle the aforementioned challenge, sub- 224

sequent works introduced various enhancement 225

mechanisms via modeling input texts in a spa- 226

tial rather than traditional sequential manner. 227

TPLinker (Wang et al., 2020) regards extraction 228

as matrix tagging instead of sequence tagging, and 229

links token pairs with a handshake tagging scheme. 230

OneRel (Shang et al., 2022) enumerates all the to- 231

ken pairs and relations and predicts whether they 232

belong to any factual triplets. SPN (Sui et al., 2023) 233

formulates joint extraction as a direct set predic- 234

tion problem. REBEL (Huguet Cabot and Navigli, 235

2021) takes a seq2seq approach, translating the 236

triplets as a sequence of tokens to be decoded by 237

the model. DeepStruct (Wang et al., 2022) pre- 238

trains language models to generate triplets from 239

texts and performs joint extraction in a zero-shot 240

manner. Graph structures are also widely applied. 241

KECI (Lai et al., 2021) first constructs an initial 242

span graph from the text, then uses an entity linker 243

to form a biomedical knowledge graph. It uses an 244

attention mechanism to refine the initial span graph 245

and the knowledge graph into a refined graph for 246

final predictions. SpanBioER (Fei et al., 2020) is 247
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also a span-graph neural model that formulates the248

task as relation triplets prediction and builds the249

entity graph by enumerating candidate entity spans.250

However, joint models have several drawbacks.251

These spatial approaches suffer from high com-252

putational complexity. Besides, NER and RE253

are distinct tasks, thus sharing representations be-254

tween entities and relations undermines perfor-255

mance (Zhong and Chen, 2021). In comparison, it256

is much easier to divide joint extraction into several257

submodules and conquer each of them separately.258

3 Method259

In this section, we detail the proposed Bio-RFX,260

as illustrated in Figure 2. The framework contains261

four key components: (1) Relation Classifier pre-262

dicts all the relation types that the input sentence263

expresses by performing a multi-label classification264

task. (2) Entity Span Detector extracts subject and265

object entities for each relation in a sentence using266

a relation-specific question. (3) Entity Number267

Predictor predicts the number of entities with a268

regression task in a question-answering manner. (4)269

Pruning Algorithm filters the candidate entities270

by the predicted entity number.271

3.1 Relation Classification272

For relation extraction, we detect relations at the273

sentence level to alleviate relation redundancy. As274

shown in Figure 2, for each relation type in the275

dataset, like activator and inhibitor, we will de-276

tect if the relation is expressed in the sentence277

respectively, which is a multi-label classification278

task. Our model first constructs a contextualized279

representation for each input token xi ∈ x =280

{x1, x2, ..., xn} using SciBERT (Beltagy et al.,281

2019). To be more specific, we construct an in-282

put sequence [[CLS], x, [SEP]], feed it into the en-283

coder and obtain the output token representation284

matrix H = [h0,h1, . . . ,hn,hn+1] ∈ Rd×(n+2),285

where d indicates the hidden dimension. We then286

use h0 ∈ Rd to represent the semantic information287

of the sentence. Next, the sentence representation288

is fed into |Tr| classifiers independently to deter-289

mine whether the sentence expresses relation τr,290

where τr ∈ Tr. For relation τr, the output of the291

classifier p̂r can be defined by p̂r = σ(Wrh0+br),292

where Wr, br are trainable model parameters and293

denote the weight and bias respectively. σ is the294

sigmoid activation function. For each relation τr,295

we employ the cross-entropy loss to optimize the296

training process. Let pr denote the ground truth 297

from annotated data; pr = 1 is used to represent 298

that relation τr has appeared in the sentence and 299

vice versa. Therefore, the loss function for the 300

relation classifier can be defined as: 301

Lrel = −
∑
x∈D

|Tr|∑
r=1

pr log p̂r. (1) 302

3.2 Entity Extraction 303

3.2.1 Entity Detection 304

We formulate entity detection as span extraction 305

from the sentence. This approach is inspired by 306

machine reading comprehension models that ex- 307

tract answer spans from the context. For the first 308

step, we design a question for entity detection. For 309

NER, we generate a question q using predefined 310

templates with all the entity types in Te. For exam- 311

ple, if Te = {null, chemical, gene, variant}, then 312

q = What are the chemicals, genes, and variants 313

in the sentence? RE is more complicated since the 314

strong structural constraints between entity types 315

and relation types should not be ignored. For RE, 316

the question is specific for each relation type τr 317

that appeared in the sentence. Given a relation 318

type τr, let Tre ⊆ Te × Te denote the set of al- 319

lowed subject and object entity type pairs. We 320

obtain Tre by enumerating all the possible triplets 321

in the dataset as prior knowledge, which is unde- 322

manding since the relation types are fine-grained 323

while the entity types are coarse-grained, resulting 324

in a limited size of Tre. Suppose τr = activator, 325

then Tre = {⟨chemical, gene⟩}. The question is 326

generated with Tre, i.e. qr = What gene does the 327

chemical activate? We also explored other prompt- 328

ing techniques in Appendix A. Given the question, 329

we regard the sentence x as context and build the 330

input sequence [[CLS], qr, [SEP], x, [SEP]]. Then, 331

we compute the representation of each span s ∈ S 332

in sentence x. Let FFNN be a feed-forward neural 333

network, and H = [h1,h2, . . . ,hN ] be the token 334

representation matrix for the input sequence, where 335

N denotes the number of tokens in the sequence. 336

We obtain the representation s for s using an atten- 337

tion mechanism over tokens (Lee et al., 2017): 338

at =
exp

(
FFNNα(s

∗
t )
)

lE∑
k=lS

exp
(
FFNNα(s∗k)

) , (2) 339

340

s = [hlS ,

lE∑
t=lS

atht,hlE ,Φ(w)], (3) 341
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Figure 2: The overall framework of Bio-RFX. (1) The relation classifier predicts that there are two relations in the
sentence, Activator and Inhibitor. (2–4) Relation-specific entity extraction is performed for each of the predicted
relation types. To be more specific, (2) the entity detector extracts all the entities that satisfy the structural constraints
via a question-answering manner, and (3) the number predictor outputs the number of spans similarly. (4) The
relation triplets are generated by excluding the overlapping perplexing entities.

where s∗ denotes the concatenation of all the to-342

kens in the span s; weight at denotes the normal-343

ized attention score; lS , lE denote the start and344

end position for span s respectively; and Φ(w) is345

a learnable width embedding for the span width346

w = lE− lS . Then, for NER, we compute the prob-347

ability p̂e that span s is an entity of type τe using348

a FFNN with GELU activation function, namely349

p̂e = FFNNe(s). The loss function is defined in350

the following equation:351

Lent = −
∑
x∈D

∑
s∈Sx

|Te|∑
e=0

wepe log p̂e. (4)352

For RE, the input sequence is relation-specific. We353

compute the probability p̂re that span s is a subject354

or object entity of type τe allowed by the relation355

type τr, thus the loss function is:356

Lent = −
∑
x∈D

∑
s∈Sx

|Te|∑
e=0

|Tr|∑
r=1

τr∈Rx

wepre log p̂re. (5)357

In both cases, we is used to handle the overwhelm-358

ing negative entity labels, i.e. for null entity, we set359

we = 0.1.360

3.2.2 Number Prediction361

To exclude perplexing entities from the output, we362

implement textual non-maximum suppression (text-363

NMS) algorithm (Hu et al., 2019), which requires364

us to predict the number of potential entities in a 365

sentence x. We formulate the regression task in 366

a question-answering manner. In the above exam- 367

ple, for NER, we have q = How many chemicals, 368

genes, and variants are there in the sentence? For 369

RE, for each subject-object pair in Tre, a unique 370

question is generated. For instance, τr = activator, 371

Tre = {⟨chemical, gene⟩}, then qr = How many 372

chemicals and genes are there in the sentence with 373

relation activation? The question and the sentence 374

are concatenated together using [CLS] and [SEP] 375

to form the input sequence. Similar to Section 3.1, 376

we obtain the representation vector h0 for the in- 377

put sequence and then utilize a FFNN with GELU 378

activation function to acquire the predicted number 379

k̂ of potential entities, namely k̂ = FFNNn(h0). 380

We use k to denote the number of ground truth 381

entities in a sentence. The loss function for number 382

prediction in NER is the mean squared loss, which 383

can be defined as: 384

Lnum =
∑
x∈D

(k − k̂)2. (6) 385

For RE, it is slightly different concerning relations. 386

We define kr as the number of subjects and objects 387

with relation τr, and duplicate entities are only 388

counted once. The loss is defined as: 389

Lnum =
∑
x∈D

|Tr|∑
r=1

τr∈Rx

(kr − k̂r)
2. (7) 390
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3.2.3 Pruning Algorithm391

After extracting spans, we adopt the text-NMS al-392

gorithm to heuristically prune redundant and per-393

plexing entities. Firstly, for each span s, we obtain394

the confidence score λ(s) = 1− p̂e=0, namely the395

probability of not being a null entity. Then spans396

in S are sorted by descending confidence scores. A397

new set Ŝ is initialized as the final span prediction.398

We select the span si with the highest confidence399

score, add si to Ŝ, remove any remaining span400

sj ∈ S that overlaps with si from S, and remove401

si from S as well. The text-level F1 score indicates402

the degree of overlapping. This process repeats403

until either |Ŝ| reaches k, i.e. the number of en-404

tities, or S is empty. The algorithm is detailed in405

Algorithm 1 in Appendix B.406

We then generate relation triplets with the spans407

in Ŝ. Instead of adopting a nearest-matching408

method (Xie et al., 2021), we match all the possi-409

ble subjects and objects to address the overlapping410

triplets in biomedical texts. To be more specific,411

for relation τr, each ⟨τes, τeo⟩ ∈ Tre is converted412

to a relation triplet ⟨τes, τr, τeo⟩ as the final result.413

4 Experiments and Analysis414

In this section, we validate our model’s effective-415

ness through extensive sentence-level NER and416

RE experiments. We begin with the experimen-417

tal setup, followed by performance evaluation and418

analysis. We then explore our method’s efficacy in419

a low-resource setting and conclude with an abla-420

tion study to highlight the impact of each submod-421

ule in our framework.422

4.1 Experimental Settings423

4.1.1 Datasets424

We empirically evaluate related methods on two425

datasets: DrugProt (Miranda et al., 2021) and Drug-426

Var (Peng et al., 2017). More details and prepro-427

cessing methods are presented in Appendix C.428

4.1.2 Baselines429

We evaluate our model by comparing with sev-430

eral models that are capable of both entity and431

relation extraction on the same datasets, which432

are strong models designed for general domain433

(PURE (Zhong and Chen, 2021), TPLinker-434

plus (Wang et al., 2020) and PL-Marker (Ye et al.,435

2022)) and biomedical domain (KECI (Lai et al.,436

2021) and SpanBioER (Fei et al., 2020)). Some437

of the competitive relation-first approaches, such438

as PRGC (Zheng et al., 2021), use ground truth 439

entities as input, while the other methods use the 440

raw text as input, therefore making them unsuitable 441

for baseline models. 442

Recent studies demonstrate generative methods’ 443

effectiveness in extractive tasks. Thus, we include 444

REBEL (Huguet Cabot and Navigli, 2021) and 445

GPT-4 (OpenAI, 2023) in our set of baselines. Note 446

that REBEL does not support NER applications, 447

so we only report the metrics for RE. Please refer 448

to Appendix D for implementation details. We 449

also detail the experimental settings of GPT-4 in 450

Appendix E. 451

4.1.3 Evaluation Metrics 452

We use micro F1 score and average rank for both 453

NER and RE evaluation. When computing the 454

micro F1 score, an entity is considered matched if 455

the whole span and entity type match the ground 456

truth, and a relation triplet is regarded as correct if 457

the relation type, subject entity, and object entity 458

are all correct. Following Demšar (2006) and Wang 459

et al. (2024), we also obtain the average rank of 460

each model for comparison across all datasets. 461

4.2 Main Results 462

Table 1 shows the micro F1 scores of all models on 463

the two datasets. The results demonstrate that our 464

model achieves the best result in NER and RE in av- 465

erage rank. Our model obtains an absolute F1 gain 466

of up to 1.34% compared with previous state-of- 467

the-art in NER, and 1.86% in RE. It significantly 468

outperforms most of the other baselines in both 469

tasks (see Appendix F for significance analysis). 470

On DrugProt, KECI achieves competitive perfor- 471

mance in RE but performs poorly in NER. KECI’s 472

graphical structure enables it to generate more ac- 473

curate relation triplets compared to our simple gen- 474

erating method. However, its training process de- 475

pends heavily on a large amount of annotated data, 476

leading to unsatisfactory results on smaller datasets. 477

Conversely, on a more practical biomedical dataset 478

with insufficient annotated training data, Bio-RFX 479

performs better than other baseline models. 480

We can draw several conclusions from the ob- 481

servations. Firstly, Bio-RFX achieves superior per- 482

formance compared to baselines for biomedical 483

datasets, indicating that individual encoders can ef- 484

fectively learn precise representations for biomedi- 485

cal texts. Besides, in datasets that have annotation 486

discrepancies with knowledge bases and therefore 487

make entity linking challenging, strong structural 488
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Table 1: The average micro F1 scores (%) and ranks of models calculated over 5 runs on biomedical datasets. The
best results are in bold, and the second-best results are in italic with an underline.

Model
DrugProt DrugVar Avg. Rank

NER RE NER RE NER RE

TPLinker-Plus 90.96 70.03 79.87 62.97 3.50 4.50
KECI 87.73 80.39 74.55 62.96 6.00 3.50
PURE 90.63 70.00 80.59 65.26 3.50 4.50

SpanBioER 88.56 65.38 81.82 68.21 3.50 4.00
REBEL - 45.71 - 59.70 - 7.00

PL-Marker 90.62 70.05 80.77 65.63 3.50 3.00
GPT-4 66.62 27.73 66.05 14.87 7.00 8.00

Bio-RFX 91.75 70.16 83.16 70.07 1.00 1.50

constraints in the biomedical domain can indeed489

help outperform traditional methods that fuse KGs490

into the model. Moreover, despite the numerous491

emergent abilities of large language models, de-492

signing task-specific architectures and fine-tuning493

remain essential for biomedical RE.494

4.3 Low-Resource Setting495

We conducted experiments to explore our method’s496

effectiveness in a low-resource scenario. We ran-497

domly selected 10% and 4% samples from Drug-498

Prot, and 50% and 20% samples from DrugVar499

to construct new datasets. The results are shown500

in Table 2. Compared to previous methods, Bio-501

RFX improves the NER and RE F1 by up to 2.91%502

and 1.75% absolute across all datasets. RE in the503

biomedical domain under low-resource settings504

is challenging, and performance varies with the505

datasets. Bio-RFX secures an average rank of 1.00506

in NER and 2.00 in RE, outperforming all models.507

Compared with pipeline and joint methods, our508

model excels in the following aspects: (1) Dividing509

complicated tasks into several submodules signif-510

icantly decreases the difficulty and improves the511

stability of training. Joint methods with intricate512

tagging schemes struggle with scarce training data.513

For instance, TPLinker-plus combines information514

from the whole triplet and the whole span to con-515

struct labels for span pair, resulting in 4 variants per516

relation type. Hence, the 4|Tr|-class classification517

task contributes to great learning difficulty and sig-518

nificant performance drop in low-resource settings.519

Moreover, methods that utilize span extraction and520

special tokens (such as PURE and PL-Marker) ex-521

hibit poor training stability. As the size of the train-522

ing set decreases from 500 to 200, the standard 523

deviation of the RE score for PL-Marker increases 524

to 184%, while that of Bio-RFX rises to an average 525

of 99%. On the contrary, our divide-and-conquer 526

philosophy is more effective because task-specific 527

representation helps to achieve better performance 528

and stabilize the training process. (2) KG-enhanced 529

joint methods are affected by noisy prior knowl- 530

edge from KGs when training data is limited. In 531

biomedical datasets, the definition for null entity 532

varies greatly, as specific entities (e.g., qualitative 533

concepts such as revealed or active) are likely to 534

be considered as null entity if not the primary fo- 535

cus of the dataset. Comprehensive KGs incorrectly 536

recognize these entities when training samples are 537

small. To support this argument, we find that KECI 538

has lower precision and higher recall across the 539

experiments, while our model shows the opposite. 540

Using an extensive knowledge base as prior knowl- 541

edge in low-resource scenarios leads to overfitting 542

to KGs, and constraining the hypothesis space of 543

the model is a much preferable alternative. (3) Gen- 544

erative models linearize triplets into a sequential 545

order, posing challenges for overlapping triplets in 546

biomedical literature. Although in NER, GPT-4 547

can achieve comparable performance with models 548

fine-tuned on specific datasets, the performance 549

gap in RE is intolerable. Relation extraction, aim- 550

ing to identify interactions between entities, might 551

not be suitable to be directly formulated as a se- 552

quence generation task. A classification approach 553

like Bio-RFX is more effective. 554

We observe that Bio-RFX performs better on 555

DrugProt (200) than DrugProt (500), likely due to 556

their statistical differences. The average relation 557
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Table 2: The average micro F1 scores (%) and ranks of models calculated over 5 runs on biomedical datasets under
a low-resource setting. The best results are in bold, and the second-best results are in italic with an underline. The
number in the bracket indicates the approximate size of the training set.

Model
DrugVar (500) DrugVar (200) DrugProt (500) DrugProt (200) Avg. Rank

NER RE NER RE NER RE NER RE NER RE

TPLinker-Plus 76.99 59.38 69.35 13.42 83.88 48.39 81.64 28.17 4.50 6.00
KECI 73.12 59.23 65.37 50.88 75.06 41.87 71.62 39.07 6.00 5.00
PURE 76.69 58.34 72.63 48.77 89.86 59.60 83.96 54.58 3.50 3.25

SpanBioER 78.16 60.42 73.15 48.49 87.43 51.02 82.14 41.59 3.25 4.25
REBEL - 55.78 - 47.11 - 53.30 - 51.91 - 5.25

PL-Marker 76.79 56.66 73.58 51.44 89.46 58.41 86.10 56.67 2.75 2.50
GPT-4 61.86 12.62 61.97 6.94 67.29 26.25 69.80 32.26 7.00 7.75

Bio-RFX 80.64 62.17 73.80 51.23 89.90 54.37 89.01 56.20 1.00 2.00

triplets per sentence for DrugProt, DrugProt (500),558

and DrugProt (200) are 2.7, 1.2, and 2.3, respec-559

tively. The sparsity of relation triplets hampers the560

relation classifier’s performance, creating a bottle-561

neck in overall extraction.562

4.4 Ablation Study563

Table 3: Ablation study on biomedical datasets. Table
values represent absolute micro F1 differences (%).

Dataset
Bio-RFX

(- Structure)
Bio-RFX

(- Number)

DrugVar
NER - 0.56
RE -32.97 1.54

DrugVar
(500)

NER - -0.83
RE -32.92 -2.04

DrugVar
(200)

NER - -0.77
RE -25.67 -2.16

DrugProt
NER - -1.13
RE -43.25 -5.71

DrugProt
(500)

NER - -0.24
RE -34.75 -0.64

DrugProt
(200)

NER - 1.92
RE -29.84 -8.79

This subsection examines the impact of struc-564

tural constraints and the number predictor in our565

framework. Table 3 presents the micro F1 score566

differences between the ablated and full models.567

Bio-RFX (- Structure) removes the structural con-568

straints for relation triplet generation. Instead of569

enumerating each ⟨τes, τeo⟩ ∈ Tre for relation τr570

to produce relation triplets, we regard each entity 571

pair in Tev × Tev as a subject-object pair for rela- 572

tion τr, where Tev is the set of valid and not-null 573

entities. Structural constraints only affect relation 574

triplet generation, leaving NER results unchanged. 575

Bio-RFX (- Number) removes the number pre- 576

dictor and uses the average number of entities in 577

a sentence as the threshold for the text-NMS algo- 578

rithm during inference. 579

The results indicate the model’s performance is 580

promoted with the presence of both structural con- 581

straints and number prediction, of which strong 582

structural constraints between entity types and rela- 583

tion types are most helpful. It proves the ability of 584

our model to tackle perplexing entities and take ad- 585

vantage of structural constraints of relation triplets 586

in biomedical literature. 587

To assess the model’s comprehension of ambigu- 588

ous biomedical entities, we study several typical 589

cases. The results are presented in Appendix G. 590

5 Conclusion 591

This paper introduces Bio-RFX, a novel biomedical 592

entity and relation extraction method, using struc- 593

tural constraints for relation triplets to constrain the 594

hypothesis space. The model tackles ambiguous 595

entities and relation redundancy using a relation- 596

first extraction approach, and uses a heuristic prun- 597

ing algorithm for precise recognition of complex 598

overlapping entity spans. Experimental results on 599

real-world biomedical datasets with abundant and 600

limited training data show that Bio-RFX outper- 601

forms the state-of-the-art methods in NER, and has 602

highly competitive performance in RE. 603
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6 Limitations604

Despite the significant advancements in biomedical605

entity and relation extraction, several challenges606

persist. Our work has certain limitations that pro-607

vide avenues for future exploration:608

1. The current capability of Bio-RFX is limited609

to using structural constraints obtained by sta-610

tistical features. Future work could expand611

this by incorporating other knowledge repre-612

sentation methods.613

2. The method’s effectiveness in generating ques-614

tions or hints for relation-specific tasks could615

be improved. This would allow for better uti-616

lization of the rich semantic information pro-617

vided by pre-trained encoders.618

3. The pipeline training approach used by Bio-619

RFX may lead to error propagation, causing620

a discrepancy between training and testing.621

This issue will be addressed in future work.622
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negatively impacted the model’s performance. In822

contrast, our designed question template turned out823

to be more effective.824

A.1 Term Definitions825

We enrich the question with definitions of types826

of entities and relations to provide the model with827

semantic information in the biomedical domain.828

For instance, the relation-specific question What829

gene does the chemical activate? is followed by830

the definition of activator obtained from the Free831

Medical Dictionary2, i.e., An activator is a sub-832

stance that makes another substance active or re-833

active, induces a chemical reaction, or combines834

with an enzyme to increase its catalytic activity.835

The results are shown in Table 4, i.e. Bio-RFX836

(+Definition). It can be observed that the micro837

F1 scores for NER and RE decreased. We believe838

the contextualized knowledge representation dur-839

ing the pre-training process is sufficient, and the840

rigid definitions merely introduce noise to data dis-841

tribution.842

Table 4: The absolute differences in micro F1 (%) after
adding term definitions in prompts.

Dataset
Bio-RFX

(+ Definition)

DrugVar
NER -0.26
RE 0.42

DrugVar(500)
NER -1.33
RE -0.68

DrugVar(200)
NER -3.71
RE -5.33

DrugProt
NER -1.08
RE -14.43

DrugProt(500)
NER -1.00
RE -5.08

DrugProt(200)
NER 1.92
RE 4.70

A.2 UMLS Markers843

External biomedical knowledge is also considered844

when designing prompts. We use UMLS Metamap,845

a handy toolkit based on a biomedical knowledge846

graph, to match the biomedical terms in the text847

2https://medical-dictionary.
thefreedictionary.com/

and insert unique markers both before and after the 848

terms. Take the following sentence as an example. 849

Some clinical evidences suggested that 850

pindolol can be effective at producing a 851

shortened time to onset of antidepressant 852

activity. 853

In this sentence, pindolol is recognized by 854

Metamap as a pharmacologic substance. When 855

type-specific markers are used, the result is: 856

Some clinical evidences suggested that 857

<DRUG> pindolol </DRUG> can be ef- 858

fective at producing a shortened time to 859

onset of antidepressant activity. 860

On the DrugProt dataset, we observed a 3.02% and 861

6.45% decrease in micro F1 scores for NER and 862

RE, respectively. Several reasons may contribute 863

to this experience results. To begin with, the en- 864

tity types in Metamap and the entity types in the 865

datasets are quite different, posing a challenge for 866

entity linking. Another reason is that the match- 867

ing method is mainly based on the syntax tree and 868

searching, thus the matching accuracy is not sat- 869

isfactory. In the following example, the term of 870

is erroneously identified as a gene (OF (TAF1 wt 871

Allele)) due to its ambiguous nature, which subse- 872

quently hampers the overall performance. More- 873

over, Metamap extracts all the entities without be- 874

ing conscious of the relation type expressed in the 875

sentence, misleading our entity detector. 876

... <CHEMICAL> isoprenaline 877

</CHEMICAL> - induced maxi- 878

mal relaxation ( E ( max ) ) <GENE> of 879

</GENE> <CHEMICAL> methacholine 880

</CHEMICAL> - contracted prepa- 881

rations in a concentration dependent 882

fashion ... 883

B Textual NMS Algorithm 884

A detailed description of the algorithm is presented 885

in Algorithm 1. 886

C Datasets and Preprocessing 887

We will briefly review all the datasets below and 888

state the preprocessing methods we have applied. 889

All the datasets we use are publicly available and 890

designed to advance research in information ex- 891

traction. The statistics of the datasets are listed in 892

Table 5. 893
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Table 5: Statistics of datasets.

Dataset #Ent Type #Rel Type #Ent #Rel #Train #Valid

DrugVar 3 4 2,760 1,583 929 267
DrugProt 3 6 40,185 20,800 6,273 1,377

Algorithm 1 Textual Non-Maximum Suppression

Require: spans S, span number threshold k;
Ensure: pruned spans Ŝ;

Sort S in descending order of span scores;
Ŝ = {};
while S ̸= {} and |Ŝ| < k do

for si in S do
Ŝ = Ŝ ∪ {si};
S = S − {si};
for sj in S do

if F1(si, sj) > 0 then
S = S − {sj};

end if
end for

end for
end while

1. DrugVar is a subset of N-ARY datasets pro-894

posed in Peng et al. (2017) and mainly fo-895

cuses on extracting fine-grained interactions896

between drugs and variants. The dataset897

was constructed by first obtaining biomed-898

ical literature from PubMed Central3 and899

then identifying entities and relations with900

distant supervision from Gene Drug Knowl-901

edge Database (Dienstmann et al., 2015) and902

Clinical Interpretations of Variants In Can-903

cer4 knowledge bases. It is also designed for904

document-level information extraction, so we905

adopt the aforementioned method for sentence906

segmentation during preprocessing.907

2. DrugProt is a track in BioCreative VII and908

focuses on extracting a variety of important as-909

sociations between drugs and genes/proteins910

to understand gene regulatory and pharma-911

cological mechanisms. The data is collected912

from PubMed abstracts and then manually la-913

beled by domain experts. We also perform914

sentence segmentation during preprocessing.915

We also merge some of the relation types so916

that all the refined relation labels are at the917

3http://www.ncbi.nlm.nih.gov/pmc/
4http://civic.genome.wustl.edu/

same level in the relation concept hierarchy. 918

D Implementation Details 919

For a fair comparison, all the BERT-based mod- 920

els use scibert-scivocab-cased (Beltagy et al., 921

2019) as the pre-trained Transformer encoder. 922

REBEL(Huguet Cabot and Navigli, 2021) uses 923

BioBART-base (Yuan et al., 2022) as the pre-trained 924

encoder. 925

We consider spans with up to L = 8 words, which 926

covers 97.89% of the entities on average in the 927

datasets. We train our models with Adam (Kingma 928

and Ba, 2017) optimizer of a linear scheduler with 929

a warmup ratio of 0.1. We train the relation classi- 930

fier, entity detector, and number predictor for 100 931

epochs, and a learning rate of 1e-5 and a batch size 932

of 8. We use gold relations and entity numbers to 933

train the entity detector and the predicted relations 934

and numbers during inference. To be more specific, 935

for each relation, if the probability obtained by 936

the relation classifier is above the relation-specific 937

threshold, then the sentence will be classified as 938

positive, which means the sentence is expressing 939

this relation. Otherwise, it will be classified as 940

negative. The relation-specific threshold can be op- 941

timized by maximizing the classification F1 score 942

on the validation set. 943

The training process of each component takes 944

12 hours at most on one NVIDIA GeForce RTX 945

3090. The model sizes of the relation classifier, 946

entity detector, and number predictor are 420MB, 947

423MB, and 434MB respectively. 948

E Experimental Settings of GPT-4 949

With the rapid development of Large Language 950

Models (LLMs), it is necessary to discuss the po- 951

tential of LLMs for our task. We choose GPT- 952

4 (OpenAI, 2023) to jointly conduct NER and RE 953

on biomedical texts. 954

To inform GPT-4 about its role and our task, we 955

first send a system message, i.e. You are stepping 956

into the role of an expert assistant specialized in 957

biomedicine. Your primary task is to accurately 958

extract entities and relations from biomedical texts 959
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and respond to users’ queries with clear, concise,960

and precise answers.961

After the system message, we give several exam-962

ples. Each example contains a question section and963

an answer section. A question section consists of 4964

parts:965

1. The biomedical text where we extract entities966

and relations.967

2. The entity and relation types specified by the968

dataset.969

3. The structural constraints between the entity970

and relation types.971

4. A question guiding GPT-4 to provide the an-972

swer.973

An answer section consists of 2 parts:974

1. The entities detected from the text. To fa-975

cilitate entity extraction, we inform GPT-4976

to generate highly structured answers, e.g.977

<BCRP|GENE> represents an entity BCRP978

of type GENE. In practice, we perform Chain979

of Thought (Wei et al., 2022) prompting to980

enhance accuracy.981

2. The relation triplets extracted from the982

text. Similar to entity detection, GPT-4 in-983

tends to generate structured answers, e.g.984

<Menthol|CHEMICAL|TRPM8|GENE|985

activator> represents an activator rela-986

tion, whose subject and object are Menthol987

and TRPM8.988

Finally, we form a question section based on989

the biomedical text and send it to GPT-4. We per-990

form regular expression matching on the response991

message to retrieve the answers. The evaluation992

metrics are consistent with the previous sections,993

i.e. an entity is considered matched if the whole994

span and entity type match the ground truth, and995

a relation triplet is regarded correct if the relation996

type and both subject entity and object entity are997

all correct. The source code is publicly available998

at https://anonymous.4open.science/999

r/bio-re-gpt-F0A9/.1000

F Significance Tests1001

In this section, we detail the significance test be-1002

tween Bio-RFX and baselines. Note that we ex-1003

clude GPT-4 from our baselines here since it is not1004

feasible to fine-tune it on our datasets.1005

The details of the experiments are addressed as 1006

follows. First, we choose 5 seeds randomly, train 1007

Bio-RFX and all the baseline models with each 1008

seed, and record the corresponding performances. 1009

Then, we perform one-tailed paired t-tests between 1010

Bio-RFX and each baseline model with signifi- 1011

cance level α = 0.05 on the results. For each 1012

baseline model: 1013

1. We compute the difference in performance 1014

between Bio-RFX and the baseline model so 1015

that we obtain 5 difference measures di (i = 1016

1, 2, . . . , 5). 1017

2. We compute the t statistic under the null hy-
pothesis that Bio-RFX and the compared base-
line have equal performance:

t =
d̄− 0

s/
√
5
=

√
5d̄√

1
4

∑5
i=1(di − d̄)2

,

where d̄ and s are the sample mean and stan- 1018

dard deviation of the difference measures, re- 1019

spectively. 1020

3. We compute the p-value and compare it to the 1021

significance level α = 0.05. If the p-value is 1022

smaller than 0.05 or the t statistic is bigger 1023

than 2.132, we reject the null hypothesis. 1024

The t statistics and p-values between Bio-RFX 1025

and the baseline models are shown in Table 6 and 7. 1026

We can observe that most of the p-values are below 1027

α = 0.05 (and the corresponding t statistics are 1028

above 2.132), rejecting the null hypothesis under 1029

both general and low-resource settings. 1030

G Case Study 1031

Case A

As a consequence, phenserine reduces beta-amyloid peptide

(Abeta) formation in vitro and in vivo.

Biomedical Perspective:

Abeta: PROTEIN / GENE, CHEMICAL / DRUG

Prediction: Abeta: PROTEIN / GENE

Case B

Torasemide inhibits angiotensin II-induced vasoconstriction

and intracellular calcium increase in the aorta of spontaneously

hypertensive rats.

Biomedical Perspective:

angiotensin II: PROTEIN / GENE, CHEMICAL / DRUG

Prediction: angiotensin II: PROTEIN / GENE

Figure 3: Case study for ambiguous biomedical entities.

Here we present several cases to gain deeper in- 1032

sights into the model’s ability to handle ambiguous 1033

entities. 1034
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Table 6: Significance tests on biomedical datasets. Results with blue backgrounds indicate that Bio-RFX signifi-
cantly outperforms the baseline model.

Model
DrugProt DrugVar

NER RE NER RE

TPLinker-Plus
t 9.31 0.64 5.40 5.52
p 0.0004 0.2789 0.0028 0.0026

KECI
t 5.32 -5.14 33.76 5.99
p 0.0030 0.0034 0.0000 0.0020

PURE
t 17.54 0.51 8.13 8.78
p 0.0000 0.3177 0.0006 0.0005

SpanBioER
t 41.94 17.98 3.76 2.39
p 0.0000 0.0000 0.0099 0.0375

REBEL
t - 65.89 - 13.21
p - 0.0000 - 0.0001

PL-Marker
t 10.34 0.28 6.43 2.38
p 0.0002 0.3981 0.0015 0.0381

Table 7: Significance tests on biomedical datasets under low-resource setting. Results with blue backgrounds
indicate that Bio-RFX significantly outperforms the baseline model.

Model
DrugVar(500) DrugVar(200) DrugProt(500) DrugProt(200)

NER RE NER RE NER RE NER RE

TPLinker-Plus
t 8.34 3.92 3.26 9.97 3.67 4.42 7.37 18.62
p 0.0006 0.0086 0.0155 0.0003 0.0106 0.0057 0.0009 0.0000

KECI
t 10.57 2.85 7.10 0.26 16.16 4.54 16.61 17.61
p 0.0002 0.0232 0.0010 0.4035 0.0000 0.0052 0.0000 0.0000

PURE
t 23.44 2.95 1.96 1.72 0.20 -3.37 13.69 2.11
p 0.0000 0.0210 0.0605 0.0804 0.4243 0.0140 0.0001 0.0512

SpanBioER
t 12.25 3.30 1.37 5.03 18.10 3.71 19.22 26.16
p 0.0001 0.0149 0.1209 0.0037 0.0000 0.0103 0.0000 0.0000

REBEL
t - 5.23 - 2.42 - 0.87 - 3.13
p - 0.0032 - 0.0364 - 0.2155 - 0.0176

PL-Marker
t 10.41 9.88 0.39 -0.15 1.60 -6.75 6.48 -0.54
p 0.0002 0.0003 0.3599 0.4439 0.0921 0.0013 0.0015 0.3099
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Figure 3 illustrates cases of ambiguous entities1035

in the DrugProt dataset. In case A, Abeta is a chem-1036

ical in the form of a peptide, as well as processed1037

from the Amyloid precursor protein. In case B,1038

angiotensin II is both a medication used to increase1039

blood pressure and a type of protein. Since Drug-1040

Prot focuses on extracting drug-gene/protein inter-1041

actions, both of them are considered to be proteins1042

in the context. With the structural constraints, our1043

model can correctly predict the ground truth labels.1044
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