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ABSTRACT

Language models are known to encode a great amount of factual knowledge
through pretraining. However, such knowledge might be insufficient to cater to
user requests, requiring the model to integrate external knowledge sources and
adhere to user-provided specifications. When answering questions about ongoing
events, the model should use recent news articles to update its response; when
asked to provide recommendations, the model should prioritize user specifica-
tions over retrieved product reviews; when some facts are edited in the model,
the updated facts should override all prior knowledge learned by the model even
if they are conflicting. In all of the cases above, the model faces a decision be-
tween its own parametric knowledge, (retrieved) contextual knowledge, and user
instruction knowledge. In this paper, we (1) unify such settings into the problem
of knowledge preference and define a three-level preference hierarchy over these
knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE,
and MRQA covering a combination of settings (with/without user specifications,
with/without context documents) to systematically evaluate how well models obey
the intended knowledge preference; and (3) propose a dataset synthesis method
that composes diverse question-answer pairs with user assumptions and related
context to directly fine-tune LMs for instilling the hierarchy of knowledge. We
demonstrate that a 7B model, fine-tuned on only a few thousand examples auto-
matically generated by our proposed method, effectively achieves superior perfor-
mance (more than 18% improvement across all evaluation benchmarks) in adher-
ing to the desired knowledge preference hierarchy.

1 INTRODUCTION

Language models memorize factual knowledge during pretraining, which allows them to perform
open-domain question answering with remarkable accuracy. However, the knowledge encoded
within the model (parametric knowledge) might be erroneous or incomplete, falling short of users’
expectations. Some applications require the language model to leverage the most recent knowledge,
such as the latest election results, or stock prices. This is typically set up as closed-domain QA or
retrieval-augmented generation (RAG) where the newer knowledge is presented as extra context to
the language model. While much effort has been spent on improving retrieval and ranking results, it
would be futile if the model simply disregards the input and sticks to its own “prior beliefs” (Long-
pre et al., 2021; Yu & Ji, 2023). Even if the model only occasionally appears obstinate, this will
largely undermine user trust as now users would need to fact-check every claim against the provided
context. In these applications, it is critical to ensure that contextual knowledge is preferred over
the models’ parametric knowledge. Another type of application including personalized search and
recommendation requires the integration of user preferences. User preferences should always be
respected over model parametric knowledge and contextual knowledge. Model editing (Meng et al.,
2022a;b; De Cao et al., 2021; Mitchell et al., 2022; Zhong et al., 2023) can be seen as a special case
of such preferences, where the new facts override learned facts even if they are counterfactual in na-
ture. In all of these settings (RAG, closed-domain QA, integrating user beliefs and model editing),
we observe that the key is to enforce a certain priority among knowledge from different sources.

The strife between parametric knowledge and contextual knowledge has been measured across many
models and forms of contexts (Longpre et al., 2021; Neeman et al., 2023; Li et al., 2023; Xie et al.,
2024; Kortukov et al., 2024). While earlier models (T5 (Raffel et al., 2020), Roberta (Liu et al.,
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2019)) seem to be baffled by conflicting knowledge and often stick to their priors (Longpre et al.,
2021), recent larger models (OPT (Zhang et al., 2022), GPT-3 (Brown et al., 2020)) show potential
in successfully updating their answers through in-context edits (Zheng et al., 2023; Zhong et al.,
2023; Si et al., 2023; Kortukov et al., 2024). Existing studies also reveal some influence factors for
in-context update failures, such as incoherence context (Xie et al., 2024) and parametric answers
(the answer according to parametric knowledge) appearing in context (Kortukov et al., 2024). Un-
der the RAG setting, attempts have been made to rectify model behavior in the presence of noisy
retrieval (Zhang et al., 2024a; Yoran et al., 2024), requiring the model to cite retrieved contextual
knowledge only when it is relevant to the question. While these lines of work are seemingly sep-
arate, we believe that they are just shapes and forms of the same underlying question: how should
language models behave when faced with multiple sources of (noisy) knowledge?

Suppose Franco-German War just ended 
last year. In which country is Immanuel 
Kant's birthplace now located?

Instruction 
Knowledge

Parametric 
Knowledge

Context 
Knowledge

…
Königsberg became part of the 
German Empire in 1871 during the 
Prussian-led unification of Germany 
until 1918.

Immanuel Kant was 
born in Königsberg, 
East Prussia (now 
Kaliningrad, Russia) on 
April 22, 1724.

Franco-Germ
an War (Jul 
19, 1870 – 
May 10, 
1871)…

Immanuel Kant was born in 
Berlin, Kingdom of Prussia…

From User

From Retrieval 
Corpus

From Pretraining

Figure 1: Examples of instruction knowl-
edge, context knowledge and parametric
knowledge. Conflicted parts are highlighted.
The conflict between instruction knowledge
and context knowledge lies in the conflicted
timestamps. The conflict between context
knowledge and parametric knowledge lies in
the conflicted factual knowledge.

To answer this question, we first build our frame-
work of hierarchical knowledge preference over
three distinct levels: parametric knowledge, contex-
tual knowledge and instruction knowledge. While
the divide between parametric and contextual knowl-
edge is not new, we make the further distinction be-
tween (retrieved) contextual knowledge and (user or
system-provided) instruction knowledge to account
for the case of noisy context. This three-level hi-
erarchy unifies multiple settings: (1) prioritizing in-
struction knowledge over parametric knowledge is
the problem of in-context knowledge editing (Zheng
et al., 2023); (2) prioritizing contextual knowledge
over parametric knowledge is the problem of RAG
and closed-domain QA (Zhang et al., 2024a; Yoran
et al., 2024); (3) the full hierarchy supports person-
alized or counterfactual QA with RAG (Yu et al.,
2023).

To systematically evaluate a model’s ability to ad-
here to the desired knowledge preference hierarchy,
we create a benchmark adapted from several existing
datasets (IfQA (Yu et al., 2023), MQuAKE (Zhong
et al., 2023) and MRQA (Fisch et al., 2019)) to cover all of the aforementioned settings. Moreover,
we stress-test the model’s behavior in more difficult cases where the contextual knowledge is noisy
and the question requires (multi-hop) reasoning. We observe that while large, proprietary models
such as GPT-4o can perform relatively well (86.46% F1 on the counterfactual knowledge editing
task), open-source models, especially those fine-tuned with open instruction data (Mistral with Al-
paca tuning only achieves 28.48% F1 on same task), fail to model this knowledge hierarchy even
when they are explicitly instructed to do so in the prompt.

To close this gap, we design a dataset synthesis procedure to create instruction-tuning data that fol-
lows our desired order of knowledge preference. We start from Wikipedia and Wikidata, which are
known as high-quality sources of factual data, and use GPT-4o to synthesize questions and counter-
factual evidence. For multi-hop questions, we sample fact chains from Wikidata, alter some of the
intermediate facts, and then synthesize passages to support each hop. Our dataset creation process
does not rely on any human annotation and through experiments, we show that a few thousand ex-
amples are sufficient to unlock the knowledge preference ability of open-source LLMs (28.48% F1

→ 89.36% F1 on the counterfactual knowledge editing task without specific prompting). Our model
is also more robust when encountering noisy knowledge and shows even more gains on complex,
multi-hop questions.

To conclude, our main contributions include:

• We formulate the knowledge preference problem of LLMs, which unifies settings where LMs need
to decide among parametric knowledge, contextual knowledge, and user instruction knowledge.

• We compile a benchmark to evaluate the knowledge preference property of LMs by adapting ex-
isting datasets to cover all combinations of different settings and difficulties. We encourage model
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developers to take knowledge preference as an additional axis of evaluation as many important
applications (RAG, knowledge editing, and user preference modeling) entail this ability.

• We design a data synthesis procedure to automatically create instruction-tuning data for instilling
the knowledge preference. We show that fine-tuning an open-source LM with a few thousand
dedicated data samples can make the model much more receptive to user instruction knowledge
and contextual knowledge, achieving superior performance on all settings in our benchmark.

2 FORMULATION OF KNOWLEDGE PREFERENCE

When the parametric knowledge (intrinsic knowledge) (Petroni et al., 2019; Mallen et al., 2022)
of an LLM is insufficient to give the correct answer to user queries, we can introduce external
knowledge either in the instruction or as additional context.

Instruction Knowledge is the knowledge injected through user instructions. Instruction knowledge
can refer to rules or principles that govern how the model should utilize other types of knowledge, i.e.
problem-solving constraints from user instructions and assumptions from hypothetical questions.

Context Knowledge is the potentially noisy context provided to the LLM during inference time.
One typical case is the retrieved passages in retrieval-augmented generation. The retrieved passages
can provide newly-updated knowledge or domain-specific knowledge which is generally expected
to override or complement LLMs’ own knowledge in RAG.

We take the RAG case in Fig. 1 as an example where the user queries the LLM with a question
(ignore the question assumption first). Resolving the question requires solving a model preference
problem where we want the LLM to prioritize relevant knowledge in the retrieved context over
knowledge embedded in the LLM’s parameters. Sometimes, users will give their own constraints or
requirements for answering the query (e.g., the question assumption in Fig. 1). Correspondingly, to
fulfill the user requirements, the LLM should override the original way it utilizes the knowledge, by
following a new reasoning flow and utilizing different pieces of context knowledge and parametric
knowledge. Then, the RAG case in Fig. 1 is fundamentally a knowledge preference problem where
we further give the instruction knowledge the highest priority in the inference process. More gener-
ally, in this work, we define Hierarchical Knowledge Preference built on these types of knowledge.

Hierarchical Knowledge Preference. In applications of LLMs, conflicts between instruction
knowledge, context knowledge, and parametric knowledge are frequently inevitable. For instance,
a user may provide counterfactual hypothesis or unprecedented constraints which may conflict with
the retrieved documents or the LLMs’ own knowledge (Yu et al., 2023). Meanwhile, the retrieved
documents serving as the context knowledge may bring facts which disagree with LLMs’ outdated
or wrong memory (Vu et al., 2023). Ignorance or inappropriate handling of these knowledge con-
flicts can result in nondeterministic inference behaviors of LLMs, thus undermining downstream
LLM-based applications. We define our hierarchy of ideal knowledge preference as follows:

(i) Instruction Knowledge ≻ Context Knowledge. The knowledge from the instruction should be ac-
corded the highest priority so that LLMs can orient all of the reasoning power or acquired knowledge
toward fulfilling the system-level or user-level requirements.

(ii) Context Knowledge ≻ Parametric Knowledge. As the parametric knowledge is mainly acquired
in the pre-training stage which restricts the parametric knowledge itself to be timely corrected, up-
dated, or expanded, we assume the retrieved or given context knowledge should be generally pre-
ferred at the time of inference.1 Note that our knowledge preference is defined for the scenarios
where direct knowledge conflicts arise. This means that the information irrelevant to solving the
target problem or answering the target query should be regarded as noise and it does not contribute
to any knowledge conflicts.

1In the knowledge conflict scenarios where the context or the retrieved contents are flawed (e.g., mislead-
ing or not completely accurate), models’ own parametric knowledge could be more reliable. In this work,
we assume the retrieved contents are generally helpful and should be prioritized over parametric knowledge.
Otherwise there is no such need for RAG in such scenarios. We leave this for future work.
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3 BENCHMARK CONSTRUCTION

As prior works mainly focus on the conflicts between external context knowledge and the parametric
knowledge (Xie et al., 2024) or conflicts within a single type of knowledge (Wallace et al., 2024),
there is a lack of a comprehensive and high quality evaluation benchmark for evaluating hierarchical
knowledge preference.

3.1 EVALUATING PREFERENCE FOR INSTRUCTION KNOWLEDGE

To evaluate LLMs’ preference for instruction knowledge, we focus on the case where counterfactual
assumptions are introduced by the instruction, which is a typical scenario calling for the preference
for instruction knowledge and it’s more likely to introduce explicit and direct knowledge conflicts
between the instruction knowledge and other types of knowledge.

Among existing works, IfQA (Yu et al., 2023) is a human annotated counterfactual QA benchmark
where the question introduces hypothetical conditions. We adopt the test set of its full split which
has 700 instances in total for evaluating the priority of instruction knowledge in retrieval-augmented
setting. We utilize two setups for retrieval augmented setting: (i) w/ Gold Passages where the
oracle context following the question is given, and (ii) w/ Mixed Passages where the top-3
retrieved passages from Wikipedia dump along with the oracle contexts and the question is given to
be more realistic. The F1 and Exact Matching (EM) scores are reported.

However, the knowledge conflicts introduced by IfQA may not be explicit and significant enough.
For example, in the question If sea levels had risen significantly over the past decade, which country
would have been the first to be submerged?, the instruction knowledge sea levels had risen signifi-
cantly over the past decade does not directly conflict with the oracle context passage which is about
the world’s lowest-lying country.

Therefore, we further extend a knowledge editing benchmark MQuAKE-CF-3k (Zhong et al., 2023)
to be InstructMH-3k to evaluate the preference between instruction knowledge and context knowl-
edge. MQuAKE-CF-3k contains multi-hop QA instances based on human-filtered relations, entities,
and crafted templates for verbalizing relation triples, but without context passages. Each relation
triple is guaranteed to be recallable by GPT-J (Wang & Komatsuzaki, 2021). Each multi-hop QA
instance is associated with a fact chain (sequentially linked relation triples), and knowledge edits.
So we integrate the knowledge edits with the original question to obtain a counterfactual multi-hop
question (see the question in Fig. 7 for an example). For each factual relation triple needed to get
to both the original answer before fact chain editing and the new answer after fact chain editing,
we adopt GPT-3.5 to synthesize one supporting context passage which will be given along with the
question to the testee LLMs. We evaluate the F1 and EM scores according to both the original answer
and the new answer. If testee LLMs well prioritize the instruction knowledge and generally prefer
context knowledge than parametric knowledge, they should follow the counterfactual instruction as-
sumptions, focus on the suitable passages in the context, and reach the new answer instead of the
original answer, leading to higher evaluation scores with new answers than with original answers.

3.2 EVALUATING PREFERENCE FOR CONTEXT KNOWLEDGE

To evaluate LLMs’ preference for context knowledge, we adopt the test set of MRQA (Fisch et al.,
2019), covering BioASQ (Tsatsaronis et al., 2015), DROP (Dua et al., 2019), DuoRC (Saha et al.,
2018), RACE (Lai et al., 2017), RelationExtraction (Levy et al., 2017), and TextbookQA (Kembhavi
et al., 2017) across various domains. We divide the evaluation into two parts. The first part is the
evaluation on the open-book QA on the whole test set, denoted as MRQA. This quantifies the general
capability of testee LLM to comprehend and prioritize the context knowledge regardless of whether
the context knowledge conflicts with their parametric knowledge or not. F1 and EM are reported.

The second part of the evaluation (denoted as CounterMemoryMRQA) is conducted on the subset
of the test set where LLMs’ parametric knowledge is conflicted with the context knowledge. So we
first probe the parametric knowledge of each testee LLM with 3-shot exemplars (taken from MRQA
dev set) to obtain the target test subset. Then, we measure the proportion of test instances for which
the model correctly updates its answer (denoted as P(Uc)) and the proportion of test instances for
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which model incorrectly updates its answer (denoted as P(Ui)).2 If a testee LLM well prioritizes
the context knowledge, P(Uc) should be significantly higher than P(Ui).

4 METHODOLOGY Source Data Mining

Wikipedia

Wikidata

Heuristic Rules Candidate Passages

Johan Heldenbergh … 
gained international 
fame by starring in films 
A Day in a Life (2007) , 
Moscow , Belgium (2008) 
…

Pat Metheny Group

record label

parent 
org.

Warner Bros. 
Records founded 

by
Warner Music 
Group

owned 
by

Warner Bros.

Collecting 
Passages

Warner Media 
Group

①Fact Chain Mining 

②Fact Chain 
Editing

Pat Metheny Group

PolyGram Filmed 
Entertainment

Warner Bros. Records

Warner Music Group

Warner Bros.

Warner Media Group

record label

owned by

parent org.

founded by

owned by

founded by

Pat Metheny Group

Warner Bros. Records

Warner Music Group

Philips

record label

parent org.

Original Fact Chain Edited Fact Chain 

…

… …

…

Edited

Factually 
Updated

Figure 2: Source Data Collec-
tion step of HIERPREF synthesis
framework.

In this work, compared to designing prompt strategies to con-
strain LLMs with the hierarchical knowledge preference, we
choose to inherently embed the hierarchical knowledge pref-
erence inside LLMs which is versatile and potentially benefits
broader tasks. Hence, we resort to instruction tuning which
is shown effective in aligning LLMs’ behaviors with human
expectations (Wei et al., 2021). We model the hierarchical
knowledge preference behavior of LLMs through the synthesis
of corresponding instruction tuning data.

First, we acquire diverse and high-quality passages and fact
chains from Wikipedia and Wikidata as source data for subse-
quent synthesis (Sec. 4.1). The target types of our synthesized
data are designed to include both single-hop and multi-hop
QA. Second, we teach LLMs to prioritize instruction knowl-
edge through synthesizing counterfactual retrieval-augmented
QA data (Sec. 4.2). Third, we teach LLMs to prioritize context
knowledge over parametric knowledge by synthesizing factual
retrieval-augmented QA data with context-supported answer
conflicting with LLMs’ parametric answer (Sec. 4.3). Final
statistics of synthesized data can be seen in Appendix B.2.

4.1 SOURCE DATA COLLECTION

In terms of the instance contents, in contrast to synthesis-based approaches which rely on LLMs to
synthesize the entire input and output of each instance, our goal is to provide maximal control on
the synthesized contents while ensuring the expected quality. In terms of the data format, we mainly
focus on the single-hop and the multi-hop question answering data given reference passages which
is related to broad downstream applications of LLMs, especially in the retrieval-augmented setting.

First, we gather a corpus of Wikipedia passage chunks as oracle contexts for subsequent single-
hop QA data synthesis. To enhance the efficiency of the corpus to serve for fact-related QA data
synthesis, we trace back to the Wikipedia passages that contain evidence for verifiable instances
from the FEVER dataset (Thorne et al., 2018). We filter passages whose number of distinct named
entities are fewer than 5. This results in a corpus of high-quality Wikipedia passages denoted as C.

Second, we traverse the Wikidata to extract a set of fact chains ranging from 2 to 4 hops3 for multi-
hop QA data synthesis. The underlying traversal algorithm is based on breadth-first search (BFS)
on the knowledge graph. Our fact chain mining algorithms targets at mining both a fact chain li and
its counterfactually edited derivative l′i. Suppose each fact chain li with mi hops acquired from BFS
is [ei0, r

i
0, e

i
1, r

i
1, . . . , r

i
mi−1, e

i
mi

] which consists of triples (ei0, r
i
0, e

i
1), . . . , (e

i
mi−1, r

i
mi−1, e

i
mi

) in
order. We will randomly choose the number of edits applied on li as Ki and recursively conduct
the edit one by one. Each edit is conducted over the previously edited fact chain. At each edit, we
will first randomly choose one relation triple from the fact chain (while allowing enough subsequent
relation triples for remaining edits) and replace the tail entity with an counterfactual entity of the
same type, similar to the misinformation training data generation approach proposed by Fung et al.
(2021). Then all the relation triples after this edited relation triple will update their entities factually
following this newly changed tail entity without changing any relation. This completes one edit on
the fact chain, resulting in a different fact chain. Completing all the Ki edits eventually leads to l′i
as the counterfactually edited derivative of li.

2We decide whether an answer is the same as the gold-standard answers or not, we use F1 to tolerate minor
deviates and set F1 higher than 0.8 as the same and F1 lower than 0.2 as different.

3We assume the questions with the number of hops exceeding 4 are relatively rare in reality.
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Data Synthesis for Prioritizing Instruction Knowledge
Single-hop Multi-hop

Johan Heldenbergh … gained 
international fame by starring in 
films A Day in a Life (2007) , 
Moscow , Belgium (2008) …

C.F. QA Instance Gen.

④Explanation Gen. w/ 
Edited Fact Chain & 
New Ans.

②Question Gen. w/ 
Edited Fact Chain

Q: What would have been Johan Heldenbergh's first 
internationally recognized film if "A Day in a Life" was never 
produced?
A: Moscow, Belgium
Passage: Johan Heldenbergh … gained international fame by 
starring in films A Day in a Life (2007) , Moscow , Belgium 
(2008) …
Complementary Passage: … 
Step-by-step Answer Derivation: 1. **Identify the 
Films:**… 2. …

Q (initial): What company owns the entity 
that founded the parent organization of the 
record label of Pat Metheny Group?

③Assumption Injection 
w/ Templates

Q (final): Assume the following relation triples hold true: (Warner 
Music Group, founded by, PolyGram Filmed Entertainment), and 
assume the following relation triples do not hold true any more: 
(Warner Music Group, founded by, Warner Bros.). What company 
owns the entity that founded the parent organization of the record 
label of Pat Metheny Group?

Step-by-step Answer Derivation: 
1. Firstly, … 2. Second, …

①Answers

A (new answer): Philips

A (original answer): Warner Media Group

⑤Passage Gen. for Each 
Factual Triple From Both Fact 
Chains

Passage 1: The Pat Metheny 
Group has produced a number 
of their albums under the 
Warner Bros. Records label, 
which has helped…
…
Passage 5: PolyGram Filmed 
Entertainment, a notable 
player in the film industry, was 
owned by Philips. This 
ownership allowed…

Figure 3: Modeling Preference for Instruction Knowledge step of HIERPREF synthesis framework.
C.F. denotes Counter Factual.

Single-hop Multi-hop

Johan Heldenbergh … gained 
international fame by starring in 
films A Day in a Life (2007) , 
Moscow , Belgium (2008) …

Data Synthesis for Prioritizing Context Knowledge

…
Base LLMs

…
Base LLMs

①Factual QA Gen.
Q: Which of the films mentioned in the passage featuring Johan Heldenbergh 
gained international fame the earliest?
A: A Day in a Life

②Parametric 
Ans. Probing

③Abort Instance 

③Adopt Instance  

Step-by-step Answer Derivation: …

②Question Gen. w/ 
Original Fact Chain

Q (final): What company owns the entity 
that founded the parent organization of the 
record label of Pat Metheny Group?

①Answer

A: Warner Media Group

③Parametric Ans. 
Probing

④Abort Instance 

④Adopt & Explanation Gen. 
w/ Original Fact Chain & Ans.   Step-by-step 

Answer 
Derivation: …

⑤Passage Gen. for 
Each Triple from 

Original Fact Chain  

Passage 1: The Pat Metheny Group 
has produced a number of their 
albums under the Warner Bros. 
Records label, which has helped…
…
Passage 4: Warner Bros., a renowned 
…

Figure 4: Modeling Preference for Context Knowledge step of HIERPREF synthesis framework.
Data Synthesis for Prioritizing Instruction Knowledge of Fig. 3 and Data Synthesis for Prioritizing
Context Knowledge here share the same example source data in Fig. 2. In implementation, two
stages’ source data have no overlap.

Please refer to Appendix B.1 for more details including the heuristic rules applied for the diversity
and quality of the mined fact chains. The set of candidate original and edited fact chains extracted
in this step is denoted as F . For data synthesis in Sec. 4.2 and Sec. 4.3, we randomly sample
a set of Wikipedia passages {di}ni=1 ⊂ C and a set of original and edited Wikidata fact chains
{(li, l′i)}mi=1 ⊂ F respectively for each step.

4.2 MODELING PREFERENCE FOR INSTRUCTION KNOWLEDGE

To synthesize instruction tuning data which grants the highest preference priority for instruction
knowledge, we resort to counterfactual question answering. The counterfactual assumptions or hy-
potheses set up the instruction knowledge which will directly conflict with the parts of the factual
“retrieved passages” and likely deviates from the LLMs’ parametric knowledge. Such synthesized
data can guide LLMs to prioritize the instruction knowledge, overriding conflicted parts of the con-
text knowledge and potentially the parametric knowledge, to reach the correct answer.

Specifically, for each randomly sampled passage di, we prompt GPT-4o based on di to synthesize
an single-hop QA instance containing: (1) The counterfactual question which introduces counter-
factual and hypothetical conditions or incidents. (2) The precise, concise, no-trivial, and uniquely-
derivable answer through counterfactual reasoning based on di, the hypothetical question, and com-
mon sense4. (3) Extra information as an additional passage to make sure the answer is uniquely
derivable. (4) The step-by-step answer derivation explanation.

Please refer to Appendix A.4 for prompt templates used to obtain these components. Through
prompting GPT-4o for instance synthesis, we expect that GPT-4o can bring more diversity and non-
trivial difficulty through leveraging its reasoning power and external knowledge beyond the provided
Wikipedia passage di. Human annotators could provide higher quality for this kind of data as they

4As counterfactual reasoning might inherently use some common sense knowledge beyond the context and
the question, and it’s hard to elaborate them one by one, we do not prevent GPT-4o from using them.
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can be better at recalling related external knowledge and capturing their underlying associations
through complex reasoning. However, the disadvantages of relying human annotators include the
expense and the potentially limited counterfactual reasoning patterns that human annotators can
think of. To encourage diversity, we adopt no in-context demonstrations for synthesis.

The synthesis for multi-hop QA instance is similar except that the counterfactual assumption is
predefined by the counterfactual fact chain edits and the target answer is just the tail entity of the
edited fact chain. We mainly prompt GPT-4o for synthesizing based on (li, l

′
i): (1) The multi-hop

question that starts from and includes only the head entity of the edited fact chain l′i, incorporates
all the relations, and has the tail entity of l′i as the final answer. Later we will apply a template to
integrate the counterfactual edits as the assumptions with the generated multi-hop question. (2) A
list of passages for all factual relation triples from li and l′i so that each factual relation triple can be
uniquely derived given all the passages. (3) The step-by-step answer derivation explanation.

Please refer to Appendix A.4 for prompt templates used to obtain these components. Since we can
only mine relation triples from Wikidata, we adopt GPT-4o for synthesis relying on its power to
understand and verbalize the relation triples into fluent and coherent natural language. To ensure
the quality of synthesized multi-hop questions, we took a fixed set of 5 exemplars demonstrating the
synthesis of multi-hop question from a given fact chain.

4.3 MODELING PREFERENCE FOR CONTEXT KNOWLEDGE

The goal of modeling the preference for context knowledge is to teach LLMs to prefer the “retrieved
contexts” over their own parametric knowledge. Sticking to the data format of single-hop and multi-
hop QA with reference passages, we achieve this goal by synthesizing factual QA instances with
answers supported by the passages but opposed by the LLMs’ parametric knowledge.

For single-hop QA instances, we prompt GPT-4o with passage di to synthesize the factual question,
the corresponding answer, the step-by-step answer derivation, and an additional passage to further
make sure the answer is uniquely derivable from the contexts. For multi-hop QA instances, we
leverage the unedited fact chain li and prompt GPT-4o to synthesize the multi-hop question, a list of
passages verbalized from relation triples of li to ensure the tail entity of li is uniquely derivable, and
the step-by-step answer derivation. One special design is that, we will first probe a list of base LLMs
with the synthesized question to filter questions that can be correctly answered by the base LLMs’
parametric knowledge. This step is done before further synthesizing the remaining components of
the new instance for efficiency. Please refer to Appendix A.4 for prompt templates used here.

Table 1: Evaluation results (%) on IfQA full split test set. Zero shot performance of HIERPREF is
presented and best performance of baselines among {0, 3, 5} shots are presented. See Table 18 for
full results. Assumption-in-Question version of the explicit prompting is applied.

Model # Shots
Normal Prompt Explicit Prompt

w/ Gold Passages w/ Mixed Passages w/ Gold Passages w/ Mixed Passages

F1 EM F1 EM F1 EM F1 EM

Reference Models

GPT-3.5 Turbo 5 77.70 71.86 73.27 67.57 79.70 74.14 72.24 66.57
GPT-4o 0 88.09 80.43 85.39 77.86 88.19 80.71 85.38 77.29

3 89.56 83.29 87.12 80.71 90.18 84.43 87.87 81.29
5 90.43 84.57 87.50 81.14 89.71 83.86 87.88 81.57

Main Models

Mistral-v0.3-7B 3 59.52 52.14 42.34 36.43 59.56 53.43 40.27 35.00
Mistral-v0.3-7B-Instruct 5 71.26 63.14 59.13 51.71 70.76 62.29 57.03 49.71
Mistral-v0.3-7B w/ Alpaca 5 67.98 61.71 50.71 44.00 67.22 60.29 49.49 43.14
Mistral-v0.3-7B w/ HIERPREF 0 80.53 74.14 77.85 70.86 80.53 73.86 77.33 70.29

5 EXPERIMENTS

To validate whether our synthesized data can inherently build LLMs’ hierarchical knowledge pref-
erence, we fine-tune base LLMs with Alpaca’s 52K instruction tuning data plus our ~7.4K HIER-
PREF data and evaluate the resulting LLMs on benchmarks elaborated in Sec. 3. Please refer to
Appendix B for implementation details.
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Table 2: 3-shot evaluation results on InstructMH-3k. F1 and EM scores are reported in %. For ex-
plicit prompting results, we here present the Assumption-in-Question explicit prompt version which
gives generally better performance for target baselines. Table 19 contains full results.

Model Normal Prompt Explicit Prompt

F1 F1 Ratio EM EM Ratio F1 F1 Ratio EM EM Ratio

Reference Models

GPT-3.5 Turbo 34.08 0.61 32.16 0.62 35.55 0.65 33.58 0.66
GPT-4o 86.46 7.63 85.61 8.99 93.37 19.23 92.54 30.62

Main Models

Mistral-v0.3-7B 48.16 1.20 46.64 1.24 48.95 1.23 47.36 1.27
Mistral-v0.3-7B-Instruct 33.34 0.76 31.12 0.81 33.42 0.77 31.12 0.81
Mistral-v0.3-7B w/ Alpaca 28.40 0.50 26.28 0.49 28.48 0.50 26.34 0.49
Mistral-v0.3-7B w/ HIERPREF 89.36 10.85 88.24 14.26 89.49 11.15 88.36 14.73

5.1 PROMPTING FOR HIERARCHICAL KNOWLEDGE PREFERENCE

Without tuning LLMs, we also experimented with different prompts to see whether they can enhance
or establish the hierarchical knowledge preference. In this work, we mainly apply three prompting
templates (see Appendix A.3): (i) Alpaca (Taori et al., 2023)’s prompt template as baseline, (ii)
Assumption-in-Instruction based on (i) which puts instruction knowledge in the instruc-
tion and the instruction explicitly asks LLMs to follow the hierarchical knowledge preference, (iii)
Assumption-in-Question based on (i) which puts instruction knowledge along with the ques-
tion in the input and the instruction explicitly requires LLMs to follow the hierarchical knowledge
preference. We denote (i) as Normal Prompt and denote (ii) and (iii) as Explicit Prompt.

5.2 EVALUATION BASELINES

Our comparison mainly focuses on the base LLM trained with Alpaca’s 52K instruction tuning
data (denoted as w/ Alpaca) and the same base LLM trained with the same 52K data plus our
HIERPREF data (denoted as w/ HIERPREF). We select Mistral-v0.3-7B released in 05/22/2024
as the base LLM. In addition to this, we also include LLMs including Llama-2 (Touvron et al.,
2023), Llama-3 (AI@Meta, 2024), Qwen-2 (Bai et al., 2023), GPT-3.5 (OpenAI, 2023), and GPT-
4o (OpenAI, 2024) with both the base model and instruction-tuned model for reference.

Table 3: Evaluation results (%) on MRQA given oracle contexts. Here SP refers to whether the
explicit prompting strategy of Assumption-in-Question is applied or not.

Model SP Overall BioASQ DROP DuoRC RACE RE TextbookQA

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Mistral-v0.3-7B w/ Alpaca ✓ 54.94 41.27 53.24 30.92 42.32 30.01 38.80 24.65 31.35 16.47 83.45 72.90 40.02 28.61
✗ 56.81 42.99 55.84 32.45 44.45 32.53 40.59 26.18 33.64 18.25 84.56 74.08 42.29 30.87

Mistral-v0.3-7B w/ Alpaca 3-shot ✓ 60.51 48.29 65.19 45.21 50.70 39.25 45.00 33.64 35.90 22.26 82.78 72.39 48.47 39.45
✗ 60.66 48.39 65.35 45.74 51.50 39.92 44.66 32.64 39.17 25.37 82.58 72.42 47.75 38.39

Mistral-v0.3-7B w/ HIERPREF
✓ 73.52 63.01 79.31 64.10 61.66 52.69 63.28 51.03 56.96 43.47 88.75 80.63 67.39 58.42
✗ 73.67 62.91 79.53 63.50 61.39 52.10 63.41 51.23 57.16 43.18 88.58 80.43 68.51 59.28

6 RESULTS AND ANALYSIS

6.1 MAIN RESULTS

Performance on IfQA. Based on Table 1 and Table 18, instruction-tuned LLMs generally achieve
better performance than base LLMs. GPT-4o gives the best performance and the best robustness.
HIERPREF is better than all the open-weight LLMs and is comparable to GPT-3.5 5-shot in the
gold passage setting while surpassing it in the mixed passage setting. Additionally, all the baselines
except GPT-4o are vulnerable to noise in the context passages while HIERPREF is much more robust.

Meanwhile, the benefit of an explicit prompting method for knowledge preference in gold passage
setting is not significant. Explicit prompting tends to be more useful when there is little noise. In
the mixed passage setting, using explicit prompting leads to a slightly degraded performance which
could be related to the noise from the retrieved passages. This reveals that, in addition to the ability
of prioritizing the target knowledge, the ability of identifying relevant knowledge is also vital.

Performance on InstructMH-3k. According to Table 2 and Table 19, in 3-shot setting with explicit
prompting, GPT-4o achieves the best performance in terms of both the absolute value and the ratios
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Table 4: Evaluation results (%) on CounterMemoryMRQA. P(Ui) denotes the proportion of in-
stances for which the model incorrectly update its answer. P(Uc) denotes the proportion of instances
for which the model correctly update its answer. Here Explicit Prompt refers to the explicit prompt-
ing strategy of Assumption-in-Question. Mistral refers to Mistral-v0.3-7B. The baseline model is
provided with 3-shot exemplars for ICL while HIERPREF is in zero-shot inference.

Dataset
Normal Prompt Explicit Prompt

Mistral w/ Alpaca Mistral w/ HIERPREF Mistral w/ Alpaca Mistral w/ HIERPREF

P(Ui) P(Uc) P(Ui) P(Uc) P(Ui) P(Uc) P(Ui) P(Uc)

BioASQ 31.47 41.45 16.89 61.15 31.47 41.30 17.54 61.64
DROP 46.50 35.09 40.33 45.83 47.17 34.23 39.74 46.91
DuoRC.ParaphraseRC 48.74 31.48 31.56 50.00 49.04 32.44 31.63 49.63
RACE 54.62 23.56 36.38 42.53 56.37 20.42 36.20 42.36
RelationExtraction 13.11 70.19 8.73 78.29 12.26 70.35 8.56 78.40
TextbookQA 61.88 23.92 37.81 46.15 63.89 22.99 39.44 44.84

Table 6: Ablation results (%) on IfQA full split test set and MRQA test set. Zero-shot performance
with the normal prompt is presented.

Model
IfQA MRQA

w/ Gold Passages w/ Mixed Passages w/ Gold Passages

F1 EM F1 EM F1 EM

HIERPREF 80.53 74.14 77.85 70.86 73.67 62.91
- Random Noise Contexts 77.76 71.57 68.99 62.00 70.67 61.16
+ Answer Derivation (before answer) 78.40 70.43 72.52 64.00 68.06 57.42
+ Answer Derivation (after answer) 77.76 71.57 68.99 62.00 71.93 62.40
- Shuffling Gold Contexts & Assumptions 80.55 75.00 77.22 70.43 72.66 62.74

of the QA performance. Then is Llama-3-8B-Instruct and HIERPREF which achieve similar per-
formance. Meanwhile, without explicit prompting, HIERPREF dominates, which means inherently
HIERPREF is better at following the hierarchical knowledge preference.

Table 5: Statistics of data subsets of CounterMemoryM-
RQA. Full Size denotes the number of instances before
parametric answer probing. Counter-Memory denotes the
cases where the model gives a wrong parametric answer.
Mistral refers to Mistral-v0.3-7B. Results in Table 4 are
based on Counter-Memory subset.

Dataset Full Size
Counter-Memory Subset

Mistral w/ Alpaca Mistral w/ HIERPREF

Size Ratio (%) Size Ratio (%)

BioASQ 1,504 661 43.95 610 40.56
DROP 1,503 1,043 69.39 1,019 67.80
DuoRC 1,501 1,350 89.94 1,350 89.94
RACE 674 573 85.01 569 84.42
RE 2,948 1,892 64.18 1,787 60.62
TextbookQA 1,503 648 43.11 611 40.65

Besides, we find that LLMs with bet-
ter instruction following ability are more
likely to be better in InstructMH-3k (see
our additional evaluation results on IFE-
val (Zhou et al., 2023) in Appendix C.4).
Llama-3-8B-Instruct and GPT-4o serve
representative cases for this. However,
the performance is not always aligned.
For example, Mistral-v0.3-7B-Instruct
is much better at instruction following
but worse at InstructMH-3k than Llama-
2-7B-Instruct. Another observation is
that the gap between the top perform-
ing LLMs and other testee LLMs in
InstructMH-3k is large which further
justifies that typical instruction tuning can not always improve the knowledge preference follow-
ing ability. The gap within the top performing LLMs, however, is not so huge. This indicates the
InstructMH-3k is not hard in terms of its requirements on the multi-hop reasoning and reading com-
prehension, but InstructMH-3k essentially requires following the knowledge preference hierarchy.

Note that GPT-4o shows generally solid knowledge preference compared to all of the other baselines
including GPT-3.5. This justifies our motivation to introduce a type of instruction tuning data for
modeling the hierarchical knowledge preference and also justifies our approach on synthesizing part
of the instances through GPT-4o.

Performance on CounterMemoryMRQA and MRQA. Table 3 shows that HIERPREF largely
enhances the LLM’s capability in seeking and leveraging the context knowledge across different
domains. Table 5 includes the knowledge probing results which reveal that HIERPREF has nearly no
difference with the baseline when no context is given. When the context knowledge conflicts with
the parametric knowledge, HIERPREF outperforms the baseline in terms of correcting the wrong
parametric answer based on the context knowledge (see Table 4). This indicates that HIERPREF
well prioritizes the context knowledge regardless of whether the explicit prompting is adopted.
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6.2 ANALYSIS OF COUNTERFACTUAL SINGLE-HOP QA DATA

Fig. 5 shows the test results of LLM trained with IfQA train set, our synthesized single-hop coun-
terfactual QA data, and with a combination of them. The test performance of the LLM tuned on
the train set of the IfQA saturates, which shows that the human annotations lead to limited patterns.
Furthermore, our synthesized data together with the train set of IfQA further improve the test set per-
formance. We can also see that simply tuning the LLM with our synthesized data which is generated
through zero-shot prompting cannot match the in-domain human annotated IfQA train set.

6.3 ABLATION STUDY

We provide the zero-shot results of HIERPREF with different training strategies on IfQA and MRQA
(both human annotated), to justify our choice: (i) add randomly sampled noise context passages, (ii)
do not add step-by-step answer derivations in training, and (iii) randomly shuffle the oracle passages
and assumptions (if possible). Table 6 justifies our design choice. Table 21 and Table 22 show that
shuffling the assumptions and oracle contexts can avoid LLMs to take shortcuts for multi-hop QA.

7 RELATED WORK

Knowledge Conflicts. Previous related studies have focused on the preference of language models
between external context knowledge and the internal parametric knowledge (Longpre et al., 2021;
Xie et al., 2024; Kortukov et al., 2024; Zhang et al., 2024b). Xie et al. finds that LLMs generally
prefer evidence consistent with their parametric knowledge over the conflicting evidence (2024).
Another finding is that LLMs demonstrate strong confirmation bias when external evidence con-
tains consistent information with parametric knowledge which is also supported by a more recent
study (Kortukov et al., 2024). On the other hand, external evidences that are coherent, convincing,
though conflicting with parametric knowledge can still make LLMs highly receptive to them (Xie
et al., 2024; Kortukov et al., 2024). Different from them, we further refine knowledge conflicts into
instruction knowledge, context knowledge, and parametric knowledge for study and we resort to
regularizing LLMs’ behaviors under different knowledge conflicts.

Improving LLMs Under Conflicts. Existing works have investigated how to regularize the behav-
iors of LLMs in conflicts. One typical scenario is to edit new knowledge into LLM artifacts to inject
external knowledge to override the parametric knowledge. Corresponding methods include revis-
ing the LLM weights, applying adaptor networks, and integrating explicit memories (Meng et al.,
2022a;b; De Cao et al., 2021; Mitchell et al., 2022; Zhong et al., 2023). Our work introduces the
instruction knowledge to integrate the goal of this research direction with a more complex scenario
where external contexts cause extra knowledge conflicts. Furthermore our work resort to instruction
tuning to enable such knowledge injections against knowledge conflicts inherently in inference time.

Recent works have explored improving the safety of LLMs against jailbreak attacks inside instruc-
tions. OpenAI has introduced instruction hierarchy (Wallace et al., 2024) to teach LLMs to ignore
jailbreak instructions. In contrast, our work focuses more on knowledge conflicts and building pref-
erence hierarchy between the instruction as a whole, the context passages, and LLMs’ parameters.

8 CONCLUSION

In this work, we unify different settings where LLMs should integrate external knowledge (e.g., user
specifications, retrieved passages, and updated knowledge) with their internal knowledge by intro-
ducing instruction knowledge, context knowledge, and parametric knowledge. We further defined a
knowledge preference hierarchy over three types of knowledge as a blueprint to achieve this unified
target. For systematic evaluation on the LLMs’ knowledge preference, we compiled a collection of
existing benchmarks covering different preference settings. To teach LLMs to inherently follow this
knowledge preference hierarchy, we synthesized various instruction tuning data (HIERPREF) with
source data from Wikipedia and Wikidata. Comprehensive evaluation and analysis show the supe-
rior performance of HIERPREF over vanilla instruction tuning in terms of following the knowledge
preference hierarchy. As future work, the question of how many samples will be enough for LLMs
to achieve perfect knowledge preference can be further investigated.
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ETHICS STATEMENT

The synthesis process is based on GPT models. The source data of our synthesis process may
contain outdated information or facts and the synthesis process is based on GPT models. Hence,
follow-up works adopting our synthesized data should be aware of this and further verification might
be needed. Meanwhile, we have introduced different kinds of counterfactual QA instances. Down-
stream applications based on our synthesized data or corresponding instruction tuned LLMs should
also be aware of this.
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Figure 5: Evaluation scores on IfQA test set of the full split. Note that G denotes that the training
data is from IfQA’s train set while S denotes that the training data is from HIERPREF synthesized
single-hop QA set. The number before G or S represents the corresponding size of data used.

A PROMPT TEMPLATES

A.1 ALPACA PROMPT TEMPLATES

We put the prompt template used by Alpaca (Taori et al., 2023) in Table 7 and Table 8 for reference
purpose.

Table 7: Alpaca prompt template with input. Contents which are instance specific and to be filled
in are highlighted in light blue.

ALPACA W/ INPUT
Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Table 8: Alpaca prompt template without input. Contents which are instance specific and to be
filled in are highlighted in light blue.

ALPACA W/O INPUT
Below is an instruction that describes a task. Write a response that appropriately completes the
request.

### Instruction:
{instruction}

### Response:

A.2 CONTEXT-AUGMENTED QA PROMPT TEMPLATE

Table 9 contains the prompt template based on Alpaca’s prompt template for context-augmented
QA.
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Table 9: Context-augmented QA prompt template. Contents which are instance specific and to be
filled in are highlighted in light blue.

CONTEXT-AUGMENTED QA TEMPLATE

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Answer the **question** using the **retrieved documents** as reference information. Your answer
should be short (a few words or an entity). Output your final **answer** enclosed by <answer> and
<answer> tags.

{ICL Exemplars in Alpaca’s ### Input & ### Response Format if any}

### Input:
<question> {question} </question>
<retrieved> {context passages} </retrieved>

### Response:

A.3 EXPLICIT PROMPTS FOR HIERARCHICAL KNOWLEDGE PREFERENCE

Table 10 contains the context-augmented prompt template with the prompting method named as
Assumption-in-Question. It means we explicitly instruct LLMs to follow the target knowledge pref-
erence hierarchy. In some tasks, the instruction knowledge such as the user specifications or question
assumptions can not be easily separated from the problem or the question. So this prompt template
treats the instruction knowledge is within the input and the explicit prompting method is designed
to accommodate this position variation.

Table 11 contains the context-augmented prompt template with the prompting method named
as Assumption-in-Instruction. Similarly, we also explicitly instruct LLMs to follow the target
knowledge preference hierarchy. Its difference from Assumption-in-Question lies in the fact that
Assumption-in-Instruction is designed for instances where the instruction knowledge can be well
separated from the question or problem input. For such instances, the assumptions will be put in the
instruction section of the Alpaca’s prompt, separated from the problem input as well as the context
passages.

Table 10: Context-augmented QA prompt template with explicit prompting method of Assumption-
in-Question. Contents which are instance specific and to be filled in are highlighted in light blue.
The injected prompt for modeling hierarchical knowledge preference is highlighted in light red.

CONTEXT-AUGMENTED QA TEMPLATE W/ ASSUMPTION-IN-QUESTION PROMPTING

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Answer the **question** using the **retrieved documents** as reference information. Your answer
should be short (a few words or an entity). Output your final **answer** enclosed by <answer> and
<answer> tags. For ANY knowledge conflicts and ANY information conflicts, STRICTLY PRIOR-
ITIZE assumptions in the input question over retrieved documents, and STRICTLY PRIORITIZE
the retrieved documents over your parametric knowledge.

{ICL Exemplars in Alpaca’s ### Input & ### Response Format if any}

### Input:
<question> {question w/ assumption (instruction knowledge) if any} </question>
<retrieved> {context passages} </retrieved>

### Response:
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Table 11: Context-augmented QA prompt template with explicit prompting method of Assumption-
in-Instruction. Contents which are instance specific and to be filled in are highlighted in light blue.
The injected prompt for modeling hierarchical knowledge preference is highlighted in light red.

CONTEXT-AUGMENTED QA TEMPLATE W/ ASSUMPTION-IN-INSTRUCTION PROMPTING

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request. For ANY knowledge conflicts and ANY
information conflicts, STRICTLY PRIORITIZE instruction over input and STRICTLY PRIORI-
TIZE input over your parametric knowledge.

### Instruction:
{assumption (instruction knowledge)} Answer the **question** using the **retrieved documents**
as reference information. Your answer should be short (a few words or an entity). Output your final
**answer** enclosed by <answer> and <answer> tags.

{ICL Exemplars in Alpaca’s Assumption & ### Input & ### Response Format if any}

Again, {assumption (instruction knowledge)}

### Input:
<question> {question} </question>
<retrieved> {context passages} </retrieved>

### Response:

A.4 DATA SYNTHESIS PROMPT TEMPLATES

For the synthesis of multi-hop QA instances, the question synthesis prompt template is shown by
Table 12. The passage synthesis prompt template is shown by Table 13. The answer derivation
prompt template is shown by Table 14.

Table 12: Question synthesis prompt template for multi-hop QA instances (both factual or counter-
factual). Contents which are instance specific and to be filled in are highlighted in light blue.

QUESTION SYNTHESIS FOR MULTI-HOP QA
You are a powerful multi-hop question generator. Using the provided fact chain (relation triples in
order), generate a multi-hop question that incorporates only the head entity ({head entity of fact
chain}) and all the relations from the relation triples. The tail entity ({tail entity of fact chain})
should serve as the answer based on the knowledge contained within the fact chain. Ensure that the
generated question excludes all entities from the fact chain, except for the head entity ({head entity
of fact chain}). Each relation triple should be treated as a fact.

Table 13: Passage synthesis prompt template for multi-hop QA instances (both factual or counter-
factual). Contents which are instance specific and to be filled in are highlighted in light blue.

PASSAGE SYNTHESIS FOR MULTI-HOP QA
Generate a realistic passage of about 50 words that supports the fact expressed by the following
relation triple:
<relation triple> {relation triple} </relation triple>
Your generated passage should avoid mentioning any other facts or details that imply different tail
entities for the same head entity ({head entity of the relation triple}) and relation ({tail entity of
the relation triple}) of the above relation triple. Meanwhile, your generated passage should avoid
mentioning and also avoid conflicting with the facts expressed by all the following relation triples:
{other relation triples for synthesizing passages for this instance}
Now, follow the above requirements and provide your generated passage enclosed by <passage> and
</passage> tags.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 14: Answer derivation synthesis prompt template for multi-hop QA instances (both factual
or counterfactual). Contents which are instance specific and to be filled in are highlighted in light
blue.

ANSWER DERIVATION FOR MULTI-HOP QA
Given the multi-hop question, the answer, and the relation triples as the underlying gold knowledge
required to derive the answer, generate a coherent, concise, and step-by-step explanation for how to
derive the answer based on the question and the knowledge contained within the relation triples.
While you should leverage the information encapsulated in the relation triples, avoid explicitly men-
tioning the triples themselves. Instead, focus on presenting each piece of knowledge as if the knowl-
edge was summarized from some reference documents.
<question> {synthesized question} </question>
<answer> {answer} </answer>
<gold knowledge> {relation triples from the fact chain} </gold knowledge>
Now, provide your generated answer explanation enclosed by <explanation> and </explanation>
tags.

For the synthesis of counterfactual single-hop QA instances, the prompt template is shown by Ta-
ble 15. For the synthesis of factual single-hop QA instances, the prompt template is shown by
Table 16.

Table 15: Question, answer, and answer derivation synthesis prompt template for single-hop coun-
terfactual QA instances. Contents which are instance specific and to be filled in are highlighted in
light blue.

UESTION, ANSWER, AND ANSWER DERIVATION SYNTHESIS
FOR SINGLE-HOP COUNTERFACTUAL QA
Based on the provided passage and your knowledge, generate a challenging counterfactual question
answer pair and the corresponding concise and step-by-step answer derivation explanation. The
question must introduce counterfactual and hypothetical conditions or incidents. The answer must:
1. be PRECISE (avoid vagueness, uncertainty, and vague quantifiers such as ’fewer’, ’less’, ’longer’,
’increased’, etc.),
2. be CONCISE (an entity or a few words),
3. be CHALLENGING to get (avoid simple negation of facts or other trivial answers), and
4. be UNIQUELY DERIVABLE with counterfactual reasoning based on the passage, the hypothet-
ical question, and commonsense. If the provided passage lacks sufficient information (e.g., external
knowledge or specific commonsense is needed) to make sure the answer is uniquely derivable, fur-
ther provide the additional information as an additional realistic passage enclosed by <passage> and
</passage> tags.

The generated question should be enclosed by <question> and </question> tags, the generated an-
swer should be enclosed by <answer> and </answer> tags, and the generated answer derivation
explanation should be enclosed by <explanation> and </explanation> tags.
Here is the provided passage:
<passage> {Wikipedia passage} </passage>

B IMPLEMENTATION DETAILS

B.1 FACT CHAIN MINING

The fact chain mining is conducted in a dense subset of Wikidata5 which contains 16960 entities,
794 concepts, 363 relations, and 846 properties. The following heuristic rules or requirements are
applied6: (1) no repeated entities or relations in the fact chain, (2) the fact chain contains up to 3
different entity concepts, (3) triples with a country tail entity can only appear in the last two hops, (4)
all triples with a person or location tail entity are consecutive, (5) the head entity for a relation triple

5WikiData15k
6Some of the heuristic rules are adapted from MQuAKE to make sure the multi-hop question can be fluent

and natural (Zhong et al., 2023).
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Table 16: Question, answer, and answer derivation synthesis prompt template for single-hop factual
QA instances. Contents which are instance specific and to be filled in are highlighted in light blue.

QUESTION, ANSWER, AND ANSWER DERIVATION SYNTHESIS
FOR SINGLE-HOP FACTUAL QA
Based on the provided passage and your knowledge, generate a challenging question answer pair
and the corresponding concise and step-by-step answer derivation explanation.
The answer must:
1. be PRECISE (avoid vagueness, uncertainty, and vague quantifiers such as ’fewer’, ’less’, ’longer’,
’increased’, etc.),
2. be CONCISE (an entity or a few words),
3. be CHALLENGING to get (avoid trivial answers), and
4. be UNIQUELY DERIVABLE with reasoning based on the passage. If the provided passage lacks
sufficient information (e.g., external knowledge is needed) to make sure the answer is uniquely
derivable, further provide the additional information as an additional realistic passage enclosed by
<passage> and </passage> tags.

The generated question should be enclosed by <question> and </question> tags, the generated an-
swer should be enclosed by <answer> and </answer> tags, and the generated answer derivation
explanation should be enclosed by <explanation> and </explanation> tags.
Here is the provided passage:
<passage> {Wikipedia passage} </passage>

with relation headquarters location must be an organization entity and the head entity for a relation
triple with relation capital must be a country entity, (6) for original fact chain mining, given the head
entity and the relation, the tail entity must be unique within the subgraph, (7) for fact chain editing,
the newly factually updated tail entity should be unique within the subgraph given the head entity
and relation (otherwise the fact chain editing will be abandoned), (7) max number of child nodes for
exploration in the BFS search is set to 5, (8) the edited or the factually updated tail entity and the
original tail entity are of the same concept, and (9) avoid including entities which are concepts.

For converting fact chain edits to counterfactual assumptions, we adopt a fixed template. Namely,
given a list of original triples to be edited and a list of corresponding edited triples, we have the
counterfactual assumption as: “Assume the following relation triples hold true: [List of original
relation triples], and assume the following relation triples do not hold true any more: [List of
corresponding edited relation triples].”.

B.2 DATA SYNTHESIS

For parametric answer probing, we using the similar prompt template in Table 9 and we heuristically
consider the parametric answer as identical to gold-standard answer if the F1 score exceeds 0.80 if
there is not an exact match.

For calling GPT-4o, we set temperature as 0.6 for multi-hop QA instances and 0.9 for single-hop QA
instances. The max_tokens is set to 4096 while the top_p is set to 1. Fig. 6 shows the distribution of
HIERPREF synthesized data.

B.3 INSTRUCTION TUNING

To augment the synthesized data for instruction tuning, we randomly sample 2 different passages
and 3 different passages for single-hop and multi-hop instances respectively as noise passages. The
noise passages are placed before the randomly shuffled context passages as we expect that, with a
qualified retriever, irrelevant passages should be easily identified and put closer to the middle of the
LLMs’ input (Liu et al., 2024). For counterfactual multi-hop QA instances whose assumptions can
be separated from the question, we also randomly sample the assumptions to avoid LLMs to take
shortcuts in training.

We fine-tune our main LLMs based on LoRA (Hu et al., 2021) (target modules: q_proj, k_proj,
v_proj, o_proj, and rank: 16), with batch size as 128, learning rate as 1e-4 (searched from {5e-
5, 1e-4, 3e-4}), max length as 2048, warmup steps as 100, number of epochs as 10, saving and
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Figure 6: Statistics of HIERPREF synthesized data.

evaluation periods as 200 steps. We randomly sample 2000 instances as the validation set and pick
the checkpoint with lowest validation loss for evaluations.

For analytical experiments in Sec. 6.2 focusing on IfQA, we use the same hyperparameters except
that we set the learning rate as 3e-4 (as it achieves better performance), the number of epochs as
15, warmup steps as 0, saving and evaluation frequency as per epoch. The best performance among
all checkpoints is reported as these analytical experiments aim to comparing the performance upper
bounds.

B.4 EVALUATION

For evaluation on different test sets, we adopt the official evaluation script of MRQA (Fisch et al.,
2019) for normalizing the answers and calculating F1 and EM metrics.

For inference with LLMs in this paper, we generally use the temperature as 0.6 and the top_p as
0.9. For InstructMH-3k, max new tokens for generation is set as 256. For IfQA, max new tokens for
generation is set to 256. For MRQA, max new tokens for generation is set to 128.

C FULL EVALUATION RESULTS

Due to the limited space for main contents, we put the complete experimental results here.

C.1 STATISTICS OF EVALUATION DATA

Table 17 shows the brief statistics about the major evaluation datasets on which we have conducted
our experiments.

Table 17: Brief statistics about datasets evaluated.
Dataset #QA instances

IfQA 700
InstructMH-3k 9,000
MRQA 9,633

C.2 EVALUATION ON IFQA

Table 18 shows the evaluation results on the test set of IfQA (Yu et al., 2023) full split.
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Table 18: All evaluation results on IfQA full split test set. Assumption-in-Question is adopted for
Explicit Prompt.

Model # Shots
Normal Prompt Explicit Prompt

w/ Gold Passages w/ Mixed Passages w/ Gold Passages w/ Mixed Passages

F1 EM F1 EM F1 EM F1 EM

Closed-Source LLMs

GPT-3.5 Turbo
0 74.83 66.42 61.53 51.00 70.71 60.71 57.17 47.29
3 76.59 70.29 71.55 65.86 76.94 71.57 71.06 66.00
5 77.70 71.86 73.27 67.57 79.70 74.14 72.24 66.57

GPT-4o
0 88.09 80.43 85.39 77.86 88.19 80.71 85.38 77.29
3 89.56 83.29 87.12 80.71 90.18 84.43 87.87 81.29
5 90.43 84.57 87.50 81.14 89.71 83.86 87.88 81.57

Open-Weight LLMs

Llama-2-7B
0 26.42 17.86 14.86 7.43 27.19 18.00 13.67 7.29
3 40.06 32.00 24.86 18.71 39.63 31.43 24.63 18.71
5 35.96 29.29 22.27 16.29 35.85 28.57 20.21 14.14

Llama-2-7B-Instruct
0 30.72 21.29 13.94 5.71 29.01 20.29 11.81 4.57
3 52.47 43.43 30.54 22.29 51.26 43.00 28.77 21.14
5 40.12 30.71 9.11 4.43 40.19 30.57 7.40 3.57

Mistral-v0.3-7B
0 49.98 42.14 35.01 27.71 45.64 37.57 31.66 25.14
3 59.52 52.14 42.34 36.43 59.56 53.43 40.27 35.00
5 57.94 51.57 35.38 29.71 56.11 50.14 34.09 28.57

Mistral-v0.3-7B-Instruct
0 46.32 30.57 36.52 24.43 44.95 29.43 33.16 22.29
3 67.38 58.14 58.69 49.71 68.79 59.00 57.63 48.14
5 71.26 63.14 59.13 51.71 70.76 62.29 57.03 49.71

Qwen-2-7B
0 49.41 41.00 22.26 14.57 46.28 37.43 26.72 20.29
3 65.20 58.29 43.60 36.86 63.29 56.71 41.62 35.14
5 65.56 58.57 41.00 35.43 65.03 58.43 39.06 33.14

Qwen-2-7B-Instruct
0 64.76 58.14 44.04 36.71 63.99 56.29 45.08 37.71
3 70.67 63.57 50.79 44.00 70.92 63.29 51.27 44.00
5 70.04 62.43 50.96 43.29 70.64 62.71 48.28 41.43

Llama-3-8B
0 48.25 40.71 31.66 25.57 47.90 41.29 29.91 23.71
3 54.99 49.14 42.81 37.14 55.95 50.29 42.82 36.00
5 58.47 52.29 42.24 36.43 56.91 50.57 44.57 38.14

Llama-3-8B-Instruct
0 70.30 62.00 49.63 43.57 67.27 59.71 48.27 41.43
3 71.60 65.00 58.29 50.43 71.44 64.57 59.03 51.57
5 74.50 68.86 60.09 53.00 75.33 69.14 58.00 51.00

Ours

Mistral-v0.3-7B w/ Alpaca
0 54.16 45.14 31.15 22.29 52.51 44.29 28.54 20.71
3 68.05 61.43 46.47 40.29 68.38 61.43 47.78 40.29
5 67.98 61.71 50.71 44.00 67.22 60.29 49.49 43.14

Mistral-v0.3-7B w/ HIERPREF 0 80.53 74.14 77.85 70.86 80.53 73.86 77.33 70.29

C.3 EVALUATION ON INSTRUCTMH-3K

Table 19 contains the evaluation results on InstructMH-3k with 3-shot in-context learning. Table 20
contains the evaluation results on InstructMH-3k with zero-shot. Since InstructMH-3k contains
multi-hop QA instances, to avoid providing shortcuts through presenting LLMs with context pas-
sages in the same order as the relation triples in the fact chain, we shuffle context passages, leading to
InstructMH-3k With Shuffled Contexts, and conduct the same evaluations. The corresponding zero-
shot and 3-shot evaluation results on InstructMH-3k With Shuffled Contexts are shown in Table 21
and Table 22 respectively.

C.4 EVALUATION ON IFEVAL

To investigate the correlation between LLMs’ instruction following ability and the knowledge pref-
erence following ability, we evaluate four LLMs (Mistral-v0.3-7B w/ Alpaca, Mistral-v0.3-7B w/
HIERPREF, GPT-3.5, and gpt-4o) on IFEval (Zhou et al., 2023). To adapt Alpaca’s prompt template
for base LLMs, we set the contents of the instruction section as “Strictly follow the request in the
input.” and the contents of the input section as the target prompts. Other parts of the setup are the
same as the Open LLM Leaderboard v2 (Fourrier et al., 2024). The results together with baseline
scores from Open LLM Leaderboard v2 (Fourrier et al., 2024) and original paper (Zhou et al., 2023)
are shown in Table 23. We find that the instruction following ability and the knowledge preference
ability correlate but are not perfectly aligned (see analysis in Sec. 6.1).
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Table 19: 3-shot evaluation results on InstructMH-3k.
Model Gold Ans. 2-hop 3-hop 4-hop Overall

F1 EM F1 EM F1 EM F1 EM

Explicit Prompt: Assumption-in-Instruction

GPT-3.5 Turbo Ori. 51.24 48.43 43.81 41.03 46.77 42.70 47.27 44.06
New 42.88 41.03 49.70 47.47 44.34 43.00 45.64 43.83

GPT-4o Ori. 2.86 0.17 3.64 2.00 2.60 1.43 3.03 1.20
New 94.44 93.83 93.40 92.50 97.01 96.13 94.95 94.16

Llama-2-7B Ori. 71.35 68.53 47.21 44.00 54.64 53.17 57.73 55.23
New 23.80 20.90 45.56 44.00 39.05 38.70 36.14 34.53

Llama-2-7B-Instruct Ori. 24.45 21.30 19.82 17.37 23.99 22.20 22.76 20.29
New 60.88 59.17 66.52 65.57 61.91 61.37 63.10 62.03

Llama-3-8B Ori. 44.43 41.20 47.14 45.20 45.96 44.57 45.84 43.66
New 49.54 47.67 44.73 43.20 45.13 44.57 46.47 45.14

Llama-3-8B-Instruct Ori. 5.53 2.73 5.70 3.97 12.79 11.50 8.01 6.07
New 92.86 92.10 90.84 89.90 85.37 84.20 89.69 88.73

Qwen-2-7B Ori. 34.41 32.20 29.26 27.87 33.12 31.87 32.26 30.64
New 60.87 59.53 64.05 63.10 63.58 63.13 62.83 61.92

Qwen-2-7B-Instruct Ori. 12.22 9.53 24.17 22.67 26.17 24.90 20.85 19.03
New 81.78 80.87 63.03 61.63 55.21 54.23 66.67 65.58

Mistral-v0.3-7B Ori. 50.24 47.00 35.24 33.30 40.20 38.97 41.89 39.76
New 44.90 43.10 59.40 57.63 55.24 54.46 53.18 51.73

Mistral-v0.3-7B-Instruct Ori. 40.57 37.10 34.29 31.87 44.64 39.13 39.84 36.03
New 44.02 41.57 50.71 48.50 43.18 42.03 45.97 44.03

Mistral-v0.3-7B w/ Alpaca Ori. 74.00 71.83 65.77 64.17 71.82 69.83 70.53 68.61
New 22.18 19.33 28.66 26.03 22.60 21.70 24.48 22.36

Mistral-v0.3-7B w/ HIERPREF
Ori. 6.32 3.33 10.81 9.20 13.91 12.43 10.35 8.32
New 92.63 92.07 86.01 85.10 84.45 82.90 87.70 86.69

Explicit Prompt: Assumption-in-Question

GPT-3.5 Turbo Ori. 62.19 59.57 48.61 44.73 52.83 47.97 54.54 50.76
New 31.40 29.03 42.10 39.87 33.14 31.83 35.55 33.58

GPT-4o Ori. 3.75 1.10 5.41 3.77 5.40 4.20 4.86 3.02
New 94.34 93.63 91.39 90.40 94.40 93.60 93.37 92.54

Llama-2-7B Ori. 50.85 47.43 40.52 36.57 35.85 34.40 42.41 39.47
New 33.91 31.47 43.62 41.77 54.07 53.93 43.87 42.39

Llama-2-7B-Instruct Ori. 43.81 40.20 29.74 28.13 15.09 13.10 29.55 27.14
New 26.23 23.37 20.67 19.40 17.62 17.17 21.51 19.98

Llama-3-8B Ori. 51.55 48.50 46.92 44.83 40.49 39.20 46.32 44.18
New 38.38 36.10 42.86 41.27 45.65 45.33 42.30 40.90

Llama-3-8B-Instruct Ori. 57.02 54.07 39.68 36.77 42.23 39.57 46.31 43.47
New 18.78 15.57 34.75 32.87 25.83 25.33 26.45 24.59

Qwen-2-7B Ori. 52.33 50.03 47.65 46.03 43.88 42.63 47.95 46.23
New 38.92 37.03 41.89 40.37 47.25 46.43 42.69 41.28

Qwen-2-7B-Instruct Ori. 54.32 51.80 55.41 53.57 53.05 50.93 54.26 52.10
New 27.01 24.60 25.90 23.71 25.10 24.37 26..00 24.23

Mistral-v0.3-7B Ori. 47.27 43.70 34.88 32.30 36.83 35.63 39.66 37.21
New 39.96 37.77 53.50 51.53 53.40 52.77 48.95 47.36

Mistral-v0.3-7B-Instruct Ori. 47.07 42.63 39.19 35.37 44.76 36.80 43.67 38.27
New 27.45 24.43 37.11 34.50 35.71 34.43 33.42 31.12

Mistral-v0.3-7B w/ Alpaca Ori. 59.74 56.40 50.90 47.73 60.71 58.63 57.12 54.26
New 25.15 21.93 34.11 31.77 26.17 25.33 28.48 26.34

Mistral-v0.3-7B w/ HIERPREF
Ori. 4.97 1.97 6.95 5.17 12.16 10.87 8.03 6.00
New 92.97 92.40 90.14 89.27 85.36 83.40 89.49 88.36

Normal Prompt: Alpaca

GPT-3.5 Turbo Ori. 64.79 61.63 49.29 45.37 53.62 48.73 55.90 51.91
New 28.48 26.17 41.44 39.23 32.33 31.07 34.08 32.16

GPT-4o Ori. 5.56 3.00 12.44 10.87 16.00 14.70 11.33 9.52
New 92.11 91.17 83.61 82.63 83.64 83.03 86.46 85.61

Llama-2-7B Ori. 49.04 45.23 39.70 35.93 36.96 35.67 41.90 38.94
New 35.78 33.67 43.98 42.27 53.59 53.40 44.44 43.11

Llama-2-7B-Instruct Ori. 43.54 39.97 32.90 30.80 19.64 17.10 32.03 29.29
New 29.40 26.40 25.73 24.43 23.00 22.63 26.04 24.49

Llama-3-8B Ori. 51.32 48.50 45.30 43.30 40.28 39.00 45.64 43.60
New 39.51 37.40 44.06 42.27 45.57 45.23 43.05 41.63

Llama-3-8B-Instruct Ori. 58.72 55.93 40.03 37.13 43.21 40.67 47.32 44.58
New 18.95 15.80 34.55 32.60 25.71 25.20 26.41 24.53

Qwen-2-7B Ori. 49.18 46.93 46.12 44.30 44.26 43.00 46.52 44.74
New 41.53 40.20 43.10 41.50 47.59 46.83 44.07 42.84

Qwen-2-7B-Instruct Ori. 56.93 54.67 58.23 56.60 56.70 54.53 57.29 55.27
New 25.81 23..23 26.45 24.37 25.08 24.43 25.78 23.98

Mistral-v0.3-7B Ori. 47.95 44.03 35.76 33.03 36.95 35.87 40.22 37.64
New 39.44 37.50 52.05 50.03 52.99 52.40 48.16 46.64

Mistral-v0.3-7B-Instruct Ori. 47.20 42.63 39.23 35.30 44.86 36.80 43.76 38.24
New 28.07 25.20 36.71 34.20 35.24 33.97 33.34 31.12

Mistral-v0.3-7B w/ Alpaca Ori. 60.16 56.83 49.52 46.30 59.71 57.87 56.46 53.67
New 24.86 21.77 34.76 32.23 25.60 24.83 28.40 26.28

Mistral-v0.3-7B w/ HIERPREF
Ori. 5.08 2.07 6.79 5.13 12.82 11.37 8.23 6.19
New 93.25 92.73 90.02 89.13 84.81 82.87 89.36 88.24
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Table 20: Zero-shot evaluation results on InstructMH-3k.
Model Gold Ans. 2-hop 3-hop 4-hop Overall

F1 EM F1 EM F1 EM F1 EM

Explicit Prompt: Assumption-in-Instruction

Llama-2-7B Ori. 37.53 31.67 29.00 24.47 42.18 39.13 36.24 31.76
New 30.74 27.47 23.44 20.30 21.09 19.20 25.09 22.32

Llama-2-7B-Instruct Ori. 6.75 3.77 13.30 11.07 11.96 9.57 10.67 8.13
New 80.28 78.28 63.52 60.23 65.75 62.77 69.85 67.07

Llama-3-8B Ori. 28.91 26.07 36.98 34.50 50.07 48.33 38.65 36.30
New 59.93 58.53 45.31 43.50 37.28 36.43 47.51 46.16

Llama-3-8B-Instruct Ori. 10.83 7.77 8.06 6.10 11.40 10.17 10.10 8.01
New 86.93 85.87 88.39 86.97 87.10 86.13 87.48 86.32

Qwen-2-7B Ori. 20.58 17.87 21.65 19.83 29.95 28.93 24.06 22.21
New 66.31 65.07 63.89 62.47 62.08 60.07 64.09 62.53

Qwen-2-7B-Instruct Ori. 9.27 6.77 11.03 9.47 20.10 18.90 13.47 11.71
New 82.46 81.33 75.30 73.67 68.82 66.97 72.52 73.99

Mistral-v0.3-7B Ori. 30.28 26.30 32.55 29.90 43.18 40.93 35.34 32.37
New 62.42 60.77 55.43 53.03 43.78 42.53 53.88 52.11

Mistral-v0.3-7B-Instruct Ori. 28.11 22.83 35.62 31.63 50.97 46.30 38.23 33.59
New 51.17 43.50 41.81 34.10 36.95 33.17 43.31 36.92

Mistral-v0.3-7B w/ Alpaca Ori. 66.43 61.47 63.43 59.17 74.43 70.60 68.10 63.74
New 20.20 16.53 21.83 18.30 11.85 10.47 17.96 15.10

Mistral-v0.3-7B w/ HIERPREF
Ori. 2.99 0.07 2.57 0.90 7.15 6.07 4.23 2.34
New 96.23 95.77 95.62 94.70 92.63 91.53 94.83 94.00

Explicit Prompt: Assumption-in-Question

Llama-2-7B Ori. 26.84 15.90 21.38 11.97 35.28 24.20 27.83 17.36
New 18.45 12.67 14.89 8.73 12.25 7.23 15.20 9.54

Llama-2-7B-Instruct Ori. 24.45 12.57 14.42 4.53 12.83 1.23 17.23 6.11
New 14.72 8.20 10.30 2.23 8.70 0.77 11.24 3.73

Llama-3-8B Ori. 43.24 39.27 49.72 46.93 62.51 60.50 51.83 48.90
New 39.15 40.20 43.13 41.00 44.38 43.87 43.47 41.69

Llama-3-8B-Instruct Ori. 45.61 42.70 46.55 43.53 46.28 44.53 46.15 43.59
New 42.90 40.20 43.13 41.00 44.38 43..87 43.47 41.69

Qwen-2-7B Ori. 30.04 26.80 36.43 34.50 46.92 45.63 37.80 35.64
New 45.26 44.00 40.22 38.50 42.05 40.37 42.51 40.96

Qwen-2-7B-Instruct Ori. 37.02 34.50 38.72 36.77 49.79 48.70 41.84 39.99
New 33.65 31.37 26.41 25.07 16.63 15.77 25.56 24.07

Mistral-v0.3-7B Ori. 26.19 20.17 31.53 26.37 40.62 37.27 32.78 27.93
New 53.13 50.00 41.15 36.63 33.88 32.03 42.72 39.56

Mistral-v0.3-7B-Instruct Ori. 17.36 12.73 25.35 21.47 33.69 29.40 25.47 21.20
New 56.90 49.20 48.72 41.23 44.88 39.90 50.17 43.44

Mistral-v0.3-7B w/ Alpaca Ori. 43.41 36.77 47.97 42.20 59.81 56.53 50.30 45.17
New 36.08 31.77 28.26 24.17 21.34 19.80 28.56 25.24

Mistral-v0.3-7B w/ HIERPREF
Ori. 2.91 0.00 2.21 00.53 6.71 5.60 3.94 2.04
New 97.12 96.60 95.92 94.93 93.14 92.23 95.39 94.59

Normal Prompt: Alpaca

Llama-2-7B Ori. 24.88 11.57 20.34 9.23 34.36 22.60 26.53 14.47
New 16.12 7.80 12.79 5.23 11.73 6.53 13.55 6.52

Llama-2-7B-Instruct Ori. 20.31 10.87 19.83 10.87 14.68 3.40 18.27 8.38
New 29.67 23.77 15.32 7.00 11.34 3.30 18.78 11.36

Llama-3-8B Ori. 39.49 35.77 47.08 44.87 55.43 54.00 47.33 44.88
New 42.49 40.90 37.40 35.87 34.44 33.97 38.11 36.91

Llama-3-8B-Instruct Ori. 56.74 53.13 52.30 48.87 53.43 51.40 54.16 51.13
New 28.29 25.40 36.39 34.20 34.88 34.43 33.19 31.34

Qwen-2-7B Ori. 36.72 33.90 41.31 39.50 48.54 46.93 42.19 40.11
New 41.29 39.70 38.65 36.83 40.60 38.80 40.18 38.44

Qwen-2-7B-Instruct Ori. 36.66 34.17 41.81 39.77 48.87 47.70 42.45 40.54
New 36.37 34.17 28.40 26.93 16..09 15.30 26.95 25.47

Mistral-v0.3-7B Ori. 27.88 23.50 33.18 29.90 40.57 38.13 33.88 30.51
New 57.90 55.70 48.10 45.33 37.22 35.97 47.74 45.67

Mistral-v0.3-7B-Instruct Ori. 23.11 17.77 28.56 24.60 36.46 31.67 29.38 24.68
New 46.68 39.53 43.22 36.17 41.57 37.43 43.82 37.71

Mistral-v0.3-7B w/ Alpaca Ori. 53.06 47.57 51.00 46.20 65.71 62.77 56.59 52.18
New 30.99 27.43 30.08 26.17 20.04 18.87 27.04 24.16

Mistral-v0.3-7B w/ HIERPREF
Ori. 2.83 0.00 2.32 0.63 7.35 6.23 4.17 2.29
New 97.22 96.70 95.89 94.90 92.45 91.53 95.19 94.38

D CASE STUDY

To complement quantitative studies, we also conduct case studies as shown in Fig. 7 and Fig. 8. The
corresponding baseline LLM conducts inference with explicit prompts and with 3-shot in-context ex-
emplars while our model is in zero-shot inference setting. To obtain the answer derivation rationale,
we concatenate the input and output of corresponding models and further append <derivation>
to continue the generation.

Fig. 7 shows that both LLMs well capture the instruction knowledge and the context knowledge.
The difference is that the baseline LLM with conventional instruction tuning still prefers the context
knowledge over the instruction knowledge in conflicting scenario. In contrast, HIERPREF coherently
and consistently prioritizes and integrates the instruction knowledge with its reasoning over the
context knowledge, leading to the correct answer.

Fig. 8 shows that both the baseline LLM and HIERPREF have the wrong parametric answer. How-
ever, even given the context passage, the baseline LLM still sticks to its own parametric knowl-
edge while HIERPREF prioritizes the context passages to derive the correct answer. This indicates
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Table 21: Zero-shot evaluation results on InstructMH-3k With Shuffled Contexts.
Model Gold Ans. 2-hop 3-hop 4-hop Overall

F1 EM F1 EM F1 EM F1 EM

Explicit Prompt: Assumption-in-Instruction

Mistral-v0.3-7B w/ Alpaca Ori. 63.07 58.77 53.76 49.93 59.15 56.00 58.66 54.90
New 26.44 22.67 32.30 28.73 29.80 28.30 29.51 26.57

Mistral-v0.3-7B w/ HIERPREF
Ori. 3.31 0.43 2.17 0.53 3.05 2.03 2.85 1.00
New 95.91 95.40 95.97 95.00 96.74 95.67 96.21 95.36

Explicit Prompt: Assumption-in-Question

Mistral-v0.3-7B w/ Alpaca Ori. 45.36 38.90 44.65 39.43 48.72 45.80 46.24 41.38
New 35.52 31.40 33.39 29.10 34.46 33.40 34.46 31.30

Mistral-v0.3-7B w/ HIERPREF
Ori. 2.88 0.00 1.95 0.30 3.38 2.33 2.73 0.88
New 97.25 96.70 96.19 95.20 96.34 95.10 96.59 95.67

Normal Prompt: Alpaca

Mistral-v0.3-7B w/ Alpaca Ori. 54.69 49.30 47.86 42.97 54.61 51.80 52.39 48.02
New 31.02 27.30 34.52 30.90 33.29 32.00 32.94 30.07

Mistral-v0.3-7B w/ HIERPREF
Ori. 2.90 0.00 1.95 0.27 3.11 2.03 2.65 0.77
New 97.28 96.73 96.10 95.10 96.58 95.43 96.65 95.76

Table 22: 3-shot evaluation results on InstructMH-3k With Shuffled Contexts.
Model Gold Ans. 2-hop 3-hop 4-hop Overall

F1 EM F1 EM F1 EM F1 EM

Explicit Prompt: Assumption-in-Instruction

Mistral-v0.3-7B w/ Alpaca Ori. 68.88 66.83 58.42 56.80 56.14 54.57 61.15 59.40
New 27.89 25.03 37.04 34.57 39.44 38.70 34.79 32.77

Mistral-v0.3-7B w/ HIERPREF
Ori. 7.34 4.37 8.21 6.63 7.82 6.50 7.79 5.83
New 91.95 91.30 89.08 88.17 90.55 88.60 90.52 89.36

Explicit Prompt: Assumption-in-Question

Mistral-v0.3-7B w/ Alpaca Ori. 57.32 54.17 44.20 41.17 42.91 40.93 48.14 45.42
New 29.95 26.80 42.66 40.40 43.73 43.10 38.78 36.77

Mistral-v0.3-7B w/ HIERPREF
Ori. 5.01 1.93 4.55 2.90 5.72 4.43 5.09 3.09
New 93.20 92.63 92.44 91.53 92.38 90.47 92.67 91.54

Normal Prompt: Alpaca

Mistral-v0.3-7B w/ Alpaca Ori. 57.99 54.53 45.24 41.97 42.56 40.33 48.60 45.61
New 28.99 25.90 41.33 38.90 43.42 42.93 37.91 35.91

Mistral-v0.3-7B w/ HIERPREF
Ori. 4.79 1.73 4.36 2.63 5.99 4.83 5.04 3.07
New 93.41 92.80 92.86 92.00 92.47 90.63 92.91 91.81

Table 23: Overall instruction following accuracy according to IFEval.

Model Prompt-level Inst-level Prompt-level Inst-level
strict-accuracy (%) strict-accuracy (%) loose-accuracy (%) loose-accuracy (%)

GPT-4 76.89 83.57 79.30 85.37
GPT-3.5 63.59 72.90 65.99 75.42
GPT-4o 80.96 86.45 85.95 90.17
PaLM 2 S 43.07 55.76 46.95 59.11
Qwen-2-7B 25.32 37.65 29.02 41.61
Qwen-2-7B-Instruct 52.31 61.27 55.82 64.75
Llama-2-7B 18.48 31.89 20.89 34.05
Llama-2-7B-Instruct 32.90 46.40 44.73 57.19
Llama-3-8B 9.80 19.30 10.91 20.50
Llama-3-8B-Instruct 69.87 78.30 77.08 83.93
Mistral-v0.3-7B 15.71 29.62 16.45 30.70
Mistral-v0.3-7B-Instruct 49.35 59.95 53.05 63.91
Mistral-v0.3-7B w/ Alpaca 47.13 58.27 50.28 61.87
Mistral-v0.3-7B w/ HIERPREF 47.13 57.79 50.83 61.15

the effectiveness of HIERPREF in terms of prioritizing the context knowledge over the parametric
knowledge.
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Question:  
Assume the following statements hold true:
1. Finnish was created by William Shakespeare
and assume the following statements do not hold true any more:
1. Finnish was created by Mikael Agricola
. Who created the language used officially by the Helsingin Sanomat headquarters?

Retrieved Passages:  
Passage 1: Helsingin Sanomat, the largest subscription newspaper in Finland, has its headquarters situated in the bustling city of Helsinki. The 
newspaper has been a prominent source of news and information for the residents of Helsinki and beyond for many years.

Passage 2: In Helsinki, Finnish is the primary language used in official government documents, schools, and communication. This language is deeply 
rooted in the culture and history of the city, reflecting the traditions and values of its people.

Passage 3: Finnish, the official language of Helsinki, was developed by Mikael Agricola. Agricola, a Finnish bishop, is credited with creating the written 
form of the language in the 16th century. His work laid the foundation for modern Finnish and solidified its place as the language of the capital city.

Mistral-7B w/ Alpaca Mistral-7B w/ Alpaca + 
Our Synthesized Data

Answer: William Shakespeare
Rationale: 
1. Finnish was created by William Shakespeare
2. Helsingin Sanomat headquarters uses the language 
created by William Shakespeare
3. William Shakespeare created the language used 
officially by the Helsingin Sanomat headquarters.

Answer: Mikael Agricola
Rationale: 
Assuming the following statements hold true:
1. Finnish was created by William Shakespeare
2. Finnish was created by Mikael Agricola
3. Helsingin Sanomat headquarters uses Finnish as their official language

To answer the question "Who created the language used officially by the Helsingin Sanomat 
headquarters?", we can use the following steps:

1. Based on the given statements, we can assume that Finnish was created by William Shakespeare.
2. However, we know that Finnish was created by Mikael Agricola.
3. So, we can conclude that Mikael Agricola is the creator of the language used officially by the 
Helsingin Sanomat headquarters.

Figure 7: Case study for LLMs’ preference for the instruction knowledge. In the figure, the instruc-
tion knowledge is highlighted in light blue.

Question:  
The SI unit for weight is the
Context Passage:  
Passage 1: Gravity has traditionally been defined as a force of attraction between two masses. According to this conception of gravity, anything that has 
mass, no matter how small, exerts gravity on other matter. The effect of gravity is that objects exert a pull on other objects. Unlike friction, which acts 
only between objects that are touching, gravity also acts between objects that are not touching. In fact, gravity can act over very long distances.  You are 
already very familiar with Earths gravity. It constantly pulls you toward the center of the planet. It prevents you and everything else on Earth from being 
flung out into space as the planet spins on its axis. It also pulls objects above the surface, from meteors to skydivers, down to the ground. Gravity 
between Earth and the moon and between Earth and artificial satellites keeps all these objects circling around Earth. Gravity also keeps Earth moving 
around the sun.  Weight measures the force of gravity pulling on an object. Because weight measures force, the SI unit for weight is the newton (N). On 
Earth, a mass of 1 kilogram has a weight of about 10 newtons because of the pull of Earths gravity On the moon, which has less gravity, the same mass 
would weigh less. Weight is measured with a scale, like the spring scale in Figure 13.16. The scale measures the force with which gravity pulls an object 
downward.  People have known about gravity for thousands of years. After all, they constantly experienced gravity in their daily lives. [omitted for limited 
space] The surface of the trampoline would curve downward instead of being flat. Einstein theorized that Earth and other very massive bodies affect 
space and time around them

Mistral-7B w/ Alpaca Mistral-7B w/ Alpaca + 
Our Synthesized Data

Answer: newton

Rationale: 
The SI unit for weight is the newton, as stated in the retrieved 
passage.

Answer: kilogram

Rationale: 
The SI unit for weight is the kilogram.

Parametric Answer: kilogram Parametric Answer: kilogram

Figure 8: Case study for LLMs’ preference for context knowledge.

E LIMITATIONS

First of all, prioritizing the instruction knowledge or the knowledge provided by users leads to a
fine-tuned LLMs well following the human instructions or human provided knowledge. Similar to
related instruction tuning works, this may raise safety concerns since user instruction can also con-
tain jailbreak attacks. Since the robustness of LLMs against such jailbreak attacks is not the main
focus of this work, we leave this for research works on LLM safety. Potential solutions include
further refining the instruction knowledge into system level instruction knowledge (more prioritized
constraints or knowledge handled by LLM providers and customers can not modify them in applica-
tions) and user level instruction knowledge so that safety issues can be addressed. Another potential
solution is to add a safety guard. Second, our prompting format of synthesized QA instances for in-
struction tuning can be more diverse as we currently mainly use Alpaca (Taori et al., 2023)’s prompt
template and surrounds different instance components with fixed tags. To achieve our goal of this

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

paper, this may not be an issue. But for real world applications, some augmentation methods might
be needed to accommodate different users’ prompting styles.
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