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Abstract

Large Vision-Language Models (LVLMs) have demonstrated impressive perfor-
mance on multimodal tasks. However, they struggle with object hallucinations
due to over-reliance on learned textual patterns, ignoring the provided image. To
address this issue, we first investigate language priors in LVLMs. We observe two
key findings: (1) Even when predicting image-related part-of-speech (POS) tokens,
models increasingly rely on linguistic priors as the token sequences grow, thereby
amplifying hallucinations. (2) Methods that directly control LVLM’s output dis-
tribution to mitigate language priors can lead to a degradation in text quality or
exacerbate hallucinations. Based on these insights, we propose Summary-Guided
Decoding (SGD). This method naturally encourages the model to focus more on
the image information, with control over only the image-related POS tokens for
preserving text quality. Through experiments, we demonstrate that SGD achieves
state-of-the-art performance on object hallucination benchmarks. Furthermore,
while existing methods show a trade-off between precision and recall, SGD proves
to be Pareto optimal in this respect. Lastly, we show that while existing methods
suffer from text quality degradation due to such trade-offs, SGD preserves text
quality to the maximum extent possible. This paper not only focuses on preventing
object hallucination but also presents analysis and solutions aimed at maintaining
the original properties of LVLMs.

1 Introduction

Large Vision-Language Models (LVLMs) have shown remarkable advancements by integrating the
reasoning capabilities of Large Language Models (LLMs) to interpret visual knowledge [24, 3, 18].
Despite their significant utility, they suffer from a critical drawback known as object hallucination.
This occurs when models produce responses that contradict the visual input, relying too heavily
on language priors (i.e., language patterns learned during training) instead of the actual visual
information [23, 16, 8]. This over-reliance on language priors intensifies when the LLM’s fine-
grained explanations are needed, e.g., models generate longer sequences, as shown in Figure 1,
or encounter unseen visual inputs [7]. In this paper, we aim to 1) investigate the fundamental
analysis of language priors in LVLMs, 2) address limitations of existing methods and insights into
potential solutions, and 3) propose a novel method that effectively removes object hallucination while
preserving the original intent of the LVLM’s response as much as possible.

First, we analyze language priors based on the distributional distance between the next token proba-
bilities of LVLMs and LLMs, both conditioned on the same text sequence. When analyzing this by
POS (part-of-speech) type, we observed a reasonably large divergence for image-related POS tokens
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Figure 1: An example of LVLMs’ hallucination. LVLMs hallucinate due to its over-reliance on
previously generated text. The red fonts represent the hallucinatory content.

such as NOUN (e.g. boy, tree) and ADJ (e.g. green). Conversely, language-related POS tokens
showed nearly identical distributions. This suggests that LVLMs reflect visual information within a
linguistic template very similar to that of LLMs. Problematically, we discovered that even for these
image-related POS tokens, the distributional distance rapidly decreases as the number of generated
tokens increases. Consequently, the attention weight given to image tokens dramatically reduces,
ultimately leading to frequent occurrences of object hallucination. We identify this phenomenon as
an over-reliance on language priors.

A recently popular method to reduce this dependence on language priors is contrastive decoding. This
approach emphasizes image-related tokens by subtracting the distribution of language prior-oriented
models from the LVLM’s output distribution. However, based on our analysis, two main issues
are anticipated with this method: 1) The distribution of language-related POS tokens, necessary
for maintaining linguistic quality, should be preserved. However, this information is also damaged,
leading to text quality degradation (see Analysis 5.1). 2) As token length increases, the distributions
of LVLM and LLM become increasingly similar for all tokens, gradually diminishing the effect
of contrasting. In essence, using a language prior-biased distribution to guide a LVLM’s original
distribution towards a visual-oriented distribution results in numerous side effects. Therefore, we gain
the insight that we should allow the LVLM to naturally reference visual information while limiting
our influence to image-related POS tokens.

Building on this observation, we propose a simple yet effective method called Summary-Guided
Decoding (SGD). First, to preserve the text quality of LVLM, we intervene minimally in the decoding
process. Specifically, we only refer to the reference when the next token is an image-related POS token.
Here, the reference is a summarization of previously generated sentences, designed to reflect visual
information while reducing the context length as much as possible. According to our analysis, with
these summarized inputs, LVLM selects the next token while grounding in more visual information.
Through this methodology, we can maintain the LVLM’s language template almost intact while
maximally reflecting image information for image-related POS tokens through summarized inputs.

Our experimental results demonstrate that SGD significantly surpasses all other decoding approaches
in object hallucination benchmarks (e.g., up to +16.5% in CHAIRS and +19% in CHAIRI ). Further-
more, We add a recall axis to the precision-based evaluation method to assess the ability to produce
accurate and fine-grained descriptions. The results reveal that contrastive decoding methods exhibit
good accuracy but show lower recall than even greedy decoding, indicating ‘repetition’ and leading
to significant degradation in text quality. In contrast, SGD demonstrated Pareto optimal performance
in both precision and recall compared to existing methodologies, with this difference becoming
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increasingly pronounced as token length increases. Additionally, we proved SGD’s contribution by
showing that POS control preserves LVLM’s text quality almost entirely.

Our contributions are summarized as follows:

• We analyze the distributional distance by POS type to understand the decoding process of
LVLMs. LVLM reflects visual information for image-related POS tokens on top of LLM’s
linguistic template. However, we also observed that as token length increases, the model
tends to rely solely on language priors, even for image-related POS.

• Based on these findings, we propose a methodology called Summary-Guided Decoding
(SGD). SGD refers to summarized token distributions only for image-related POS, aiming
to reflect image information while preserving LVLM’s text quality as much as possible.

• SGD demonstrates state-of-the-art performance in object hallucination benchmarks and
Pareto optimal across all methods regarding the precision-recall trade-off. Additionally,
unlike contrastive decoding, SGD is shown to preserve text quality almost entirely.

2 Language Priors in LVLMs

2.1 How to measure language priors in LVLMs

In LVLMs, language priors denote the model’s over-dependence on learned textual patterns, where
responses are generated based on these patterns without considering the provided image. From this
perspective, we measure language priors based on the distributional distance between the next-token
probabilities of LVLMs and LLMs, where LLM refers to the LVLM without a provided image. A
larger distance indicates that the LVLM requires visual information to make predictions, suggesting a
lower reliance on language priors. Conversely, a smaller distance suggests that the model is generating
responses primarily based on textual patterns. To measure this distance between the probability
distributions, we use Jensen-Shannon Divergence (JSD) [14]. A smaller JSD value implies a stronger
influence of language priors, while a larger JSD indicates that the provided image is contributing
more to the model’s predictions.

2.2 Analysis of language priors by Part of Speech (POS) type

We generate 5,000 MSCOCO images [15] captions using LLAVA 1.5 7B model [18]. Specifically,
we measure the JSD at each decoding step and average the JSD values for each Part-of-Speech
(POS) types2 up to 32 tokens. A key finding is the significant variation in divergence across different
POS categories. As shown in Figure 2 (a), POS categories such as NOUN and ADJ, which rely
more heavily on visual information, exhibit higher divergence. On the other hand, language-related
POS types, like PART (e.g. particles such as “not, ’s”), show much lower JSD. This indicates that
LVLMs integrate visual information within a linguistic pattern highly aligned with LLMs. Another
important observation, as shown in Figure 2 (b), is that even for image-related POS tokens, the
distributional distance decreases significantly as token length increases, making the distribution of
LVLMs and LLMs very similar. This suggests that even when image information is needed during
decoding, models primarily rely on textual patterns. In other words, token length (or input length)
has a significant impact on the language prior.

2.3 Longer token sequences amplify language priors in LVLMs

We observed that as token sequences grow longer, the model becomes increasingly dependent on
language priors. To further investigate this effect, we analyze how token length influences LVLMs.
We use MSCOCO 5,000 image captions for analysis of attention weight and object hallucinations
(see Appendix A for details).

First, we measure the attention weights assigned to image tokens and text tokens at each decoding
step. Figure 3 (a) shows that as the sequence length extends, the model progressively allocates less
attention to image tokens, which encode essential visual information. The reduction in attention to
image tokens causes the model to depend more generated text rather than visual inputs to predict the

2We utilized the Spacy model (en_core_web_sm) for POS tagging
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Figure 2: (Top) The average JSD between the LVLM and the LLM for each POS category up to 32
tokens. (Bottom) The average JSD between the LVLM and the LLM for each POS category across
intervals, with each interval consisting of 32 tokens.
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Figure 3: (Left) Attention weights of image tokens and text tokens at each decoding step (or token
length). (Right) Object hallucination ratio at each generated token position.

next token. This finding aligns with our observation in Section 2.2, where longer sequences reinforce
reliance on language priors.

To assess the role of input length in hallucination, we evaluate the occurrence object hallucination as
a function of token length. Figure 3 (b) shows a clear positive correlation between input length and
the likelihood of object hallucinations, indicating that longer text generation increases the chances
of hallucination. We conclude that this phenomenon is driven by over-reliance on language priors,
which amplifies hallucinations in LVLMs.

Recent research has utilized contrastive decoding to reduce the model’s dependence on language
priors for mitigating hallucinations [25, 21, 4, 21]. However, our detailed analysis of the trade-offs
between contrastive decoding and token length (see Analysis 5.1) suggests that allowing the LVLM
to naturally draw on more visual contents by token length control, while constraining intervention to
image-related POS tokens, strikes an effective balance between factuality and text quality.

3 Summary-Guided Decoding

In Section 2, we identified that an increase in input length results in greater reliance on language
priors, thereby exacerbating hallucinations in LVLMs. To address this, we present Summary-Guided
Decoding (SGD), an efficient method for controlling the length of conditioning input during decoding.
In this approach, after generating each sentence, the previous text is summarized to capture the
critical information from earlier outputs. This approach effectively reduces the input length, allowing
the model to stay more focused on the provided image when generating subsequent tokens while
maintaining the crucial context.

Using summarized inputs can reduce contextual information, which may cause discrepancies with
the language patterns previously learned by the model. This can result in distributional shifts that
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Figure 4: Illustration of our Summary-Guided Decoding.

weaken the model’s language modeling capabilities, ultimately degrading the quality of the generated
text. To address this, we preserve the original distribution for tokens related to language modeling
while using summary-guided decoding to control only image-related POS tokens3, ensuring factual
accuracy and high text quality. Our method is illustrated in Figure 4, and a detailed explanation of
our method is in Appendix C.

We introduce two variations of Summary-Guided Decoding for summary model usage. The first
approach takes advantage of the instruction-following abilities inherent in LVLMs, which are based
on LLMs. By providing summary instructions directly to the LVLM, this method allows the model to
perform summary-guided decoding without incurring additional memory costs. However, a limitation
of this approach is the increased inference time, as the LVLM generates its summaries during the
process. This also limits the ability to support parallel decoding, resulting in slower performance.
To address these challenges, we distill the summarization capability into a smaller, more efficient
model, Flan-T5-base [2] (please refer to Appendix B). This model significantly reduces computational
overhead while preserving the advantages of input length control. We report results for both the
SGD with the Self-Summarization (SGD-S) and the SGD with the Distilled-T5 model (SGD-D),
demonstrating the trade-offs between efficiency and performance.

4 Experiment

4.1 Experiment settings

Datasets and Evaluation Metrics. We employ the Caption Hallucination Assessment with Image
Relevance (CHAIR) [20] for evaluating object hallucination. We generate descriptions for 200
images from the MSCOCO 2014 validation dataset [15] prompted with “Please describe this
image in detail.”. CHAIR consists of two variants: CHAIRI , which calculates the percentage
of hallucinated objects out of all objects mentioned in the caption, and CHAIRS , which measures the
percentage of captions that contain at least one hallucinated object. Additionally, to complement the
precision-based CHAIR metric, we include a Recall metric for the evaluation.

CHAIRI = |{hallucinated objects}|
|{all mentioned objects}| , CHAIRS = |{captions with hallucinated objects}|

|{all captions}| , Recall = |{correct mentioned objects}|
|{ground truth objects}| .

Additionally, we employ the Sentence-level Hallucination Ratio (SHR), a GPT-4-based evaluation
metric, for a more holistic assessment of hallucinations. This metric captures object existence
hallucinations and those related to object relations, attributes, and movements [22]. We generate
descriptions for 200 images from the VG dataset [9], using the same prompts as in the CHAIR metric.
Specifically, SHR leverages GPT-44 to compare the model’s responses with the manually annotated
descriptions from the VG dataset, evaluating each response on a sentence-by-sentence to identify
potential hallucinations accurately.

Baseline LVLMs. In LVLMs, two prominent methods for aligning text and vision modalities
are the projection layer-based approach and the learnable query-based approach [12, 24, 1, 17].
In our experiments, we utilized representative models for each method: LLAVA-1.5 7B [18] and
InstructBLIP 7B [3].

Baseline Methods. We include various decoding methods as baseline approaches in our study. We use
greedy decoding, nucleus sampling, and beam search for traditional methods. In addition, we incorpo-

3As shown in figure 2, we select PROPN, ADJ, NOUN and NUM as image-related POS.
4We used GPT-4o model for hallucination judgement.
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Table 1: Results on CHAIR evaluation. The best performances within each setting are bolded. Max
new tokens are 512.

Method LLAVA-1.5 InstructBLIP

CHAIRS ↓ CHAIRI ↓ Recall ↑ CHAIRS ↓ CHAIRI ↓ Recall ↑
Greedy 51.5 13.7 79.1 60.5 25.3 68.1
Nucleus 53.0 14.4 76.9 57.5 24.6 65.0
Beam 47.5 12.5 79.2 54.0 16.3 74.1
OPERA 46.0 13.4 78.3 50.0 14.0 74.1
VCD 58.0 16.4 77.8 54.0 17.8 71.6
ICD 45.5 13.4 77.2 62.5 20.0 71.2
M3ID 44.5 12.0 76.1 66.0 27.2 66.9
SGD-D (Ours) 42.5 11.8 77.8 43.5 14.4 68.3
SGD-S (Ours) 43.0 11.1 79.1 43.0 13.6 69.5
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Figure 5: (Left) A position closer to the top-left indicates an optimal balance between factuality and
recall. (Right) Trade-off between generated token length and hallucination (lower is better).

rate contrastive decoding techniques including Visual Contrastive Decoding (VCD) [11], Instruction
Contrastive Decoding (ICD) [21], and Multi-Modal Mutual Information Decoding (M3ID) [4], which
is designed to address hallucinations. Lastly, we include OPERA [6], a beam search-based method
designed to counteract the model’s tendency to focus heavily on specific anchor tokens.

4.2 Main Results

Results on CHAIR metric As shown in Table 1, SGD significantly improves overall baseline
methods in the CHAIRS and CHAIRI for the LLAVA 1.5 and InstructBLIP. Specifically, compared
to Greedy decoding, SGD-S achieves a 16.5% improvement in CHAIRS and a 19% improvement
in CHAIRI on LLAVA 1.5. On InstructBLIP, the improvements are even more pronounced, with a
28.9% improvement in CHAIRS and a 46.2% improvement in CHAIRI . Notably, the Recall remains
unchanged for LLAVA 1.5. It even improves for InstructBLIP, which indicates that CHAIR metrics
are not enhanced due to mentioning fewer objects but rather more accurate predictions.

CHAIR is a precision-based metric, which means it can be hacked by generating shorter captions or
fewer objects. To enable a fair evaluation of object hallucination across different methods, we fix the
generated token lengths at 64, 128, 256, and 512 from short to long text generation in LLAVA 1.5.
As illustrated in Figure 5 (a), SGD-S attains the most favorable balance between factual accuracy and
recall, irrespective of whether the descriptions are short or long. Furthermore, figure 5 (b) shows that
SGD-S exhibits a lower degree of object hallucination across all fixed token lengths. These findings
suggest that our proposed SGD method offers a robust and generalizable approach for ensuring
factual decoding, applicable to both short and long descriptions.

Results on Sentence-level Hallucination metric Table 2 demonstrates that SGD-S shows the
lowest hallucination sentence ratio in LLAVA 1.5, while in InstructBLIP, SGD-D achieves
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Table 2: Results on Sentence-Hallucination Ratio (SHR), Sentence per Image (SPI),and n-gram
repetition. The best performances within each setting are bolded. Max new tokens are 512.

Method LLAVA-1.5 InstructBLIP

SHR ↓ SPI 1-gram ↑ 2-gram ↑ SHR ↓ SPI 1-gram ↑ 2-gram ↑
Greedy 43.3 5.00 62.9 93.2 66.9 3.31 97.2 99.9
OPERA 42.0 4.74 63.8 92.4 51.7 4.96 64.1 91.6
VCD 52.0 5.18 67.0 95.6 60.0 4.56 79.5 97.4
ICD 50.2 4.93 65.5 94.3 61.1 5.41 76.6 96.3
M3ID 46.4 5.02 66.4 94.9 71.7 3.65 96.9 99.9
SGD-D 41.7 5.08 61.4 91.7 58.9 3.97 83.7 98.3
SGD-S 40.8 5.03 61.4 92.0 60.5 4.01 83.9 98.3

the second lowest hallucination ratio, just after OPERA. However, OPERA relies on beam
search, which is computationally more expensive than our approach. Additionally, the n-
gram repetition results indicate that our method avoids repeating specific words in its outputs.
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Figure 6: Jenson Shannon Diver-
gence of several methods.

5 Analysis

5.1 Analysis of SGD and Contrastive Decoding

In this section, we provide an in-depth analysis of SGD and
contrastive decoding in LLAVA 1.5. Two key research ques-
tions guide the analysis. RQ1: Is significantly deviating from
language priors always beneficial? RQ2: When language
priors have heavily influenced or distorted the original dis-
tribution, can contrastive decoding still guide the model to
produce factually accurate outputs?

To investigate the relationship between each method and lan-
guage priors, we compute JSD at each decoding step, fol-
lowing the approach described in Section 2.1. We generate
descriptions for 200 images from the MSCOCO 2014 valida-
tion dataset. Additionally, we use the CHAIR metric to assess
factuality and the GPT-4 model to evaluate text quality. Text quality is rated on a scale of 1 to 5 (more
details in Appendix D)

Table 3: CHAIR metric and Text
Quality in various generated token
lengths. Denote CHAIRS as CS ,
CHAIRI as CI and Text Quality as
TQ.

Method Token length 64 Token length 256
Cs ↓ Ci ↓ TQ ↑ Cs ↓ Ci ↓ TQ ↑

Greedy 27 7.5 4.97 67.5 16.7 4.46
ICD 21.5 7 4.92 71 19.6 4.67
M3ID 20.5 6.5 4.85 62 13.5 2.39
SGD 22.5 6.1 4.93 54 12.3 3.75

As shown in Figure 6, the JSD for 256 tokens reveals that
M3ID significantly reduces the influence of language priors.
However, as presented in Table 3, text quality drops consid-
erably from 4.85 to 2.39 when generating up to 64 tokens
compared to 256 tokens, a decline of about 50.7%. This sug-
gests that aggressively reducing language priors can lead to
a notable decrease in language modeling performance. Inter-
estingly, with greedy decoding, the JSD at 256 tokens is very
low, indicating that the model heavily relies on the generated
text, overlooking visual content. When comparing ICD with
CHAIR, we observe that ICD increases hallucinations more
than greedy decoding. This aligns with previous findings that contrastive decoding encourages more
diverse responses [13]. As a result, this diversity can generate less related text to the image, thus
amplifying hallucinations. In contrast, our method selectively moves away from the language prior
for image-related POS tokens, while allowing the prior to influence other tokens. This approach
results in a more natural output distribution. Additionally, our approach significantly reduces object
hallucination and maintains better text quality than M3ID, which eliminates language priors more
aggressively as token length increases.
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Table 4: Ablation study in terms of summary quality and POS Control

CHAIRS ↓ CHAIRI ↓ Recall ↑ Text Quality ↑ 1-gram ↓ 2-gram ↓
Greedy Decoding 51.5 13.7 79.1 4.9 46.72 10.99
Summary Models
Distilled-Flan-T5-base(248M) 42.5 11.8 77.8 4.8 49.86 14.53
LLAVA 1.5(7B) 43 11.1 79.1 4.81 49.15 13.28
GPT-4o [19] 43 10.3 78 4.77 51.9 16.41
POS Control in SGD
ALL POS 39 10.1 75.8 4.06 64.85 33.41
Image-related POS 43 11.1 79.1 4.81 49.15 13.28

5.2 Ablation study

In this section, We use LLAVA 1.5 to generate descriptions for 200 images from the MSCOCO 2014
validation dataset, same evaluation metric as in section 5.1

Summary Models. We conduct an ablation experiment based on the quality of summaries within
the context of SGD. We generate summaries using three different models, each with increasing
computational cost. Through Table 4, we observed that the effect of summarization quality is similar
between the three models. This suggests that both SGD-D and SGD-S demonstrate satisfactory
summarization quality.

POS Control. We analyze the impact of SGD on object hallucination and text quality when
applied to all tokens compared to targeting only image-related POS tokens. As detailed in Table 4,
applying SGD in both scenarios demonstrated a reduction in object hallucination compared to original
decoding. However, when SGD was applied to all tokens, we observed a decline in text quality,
with notable increases in repetition and degradation in object recall compared to original decoding.
This observation indicates that applying SGD to all POS tokens weakens the model’s language
modeling capabilities, diminishing the ability to produce detailed descriptions. In contrast, when
SGD is selectively applied to image-related POS tokens, the text quality and the repetition of the text
remained comparable to the original decoding.

6 Related works

Mitigating Language Priors in LVLMs. Large Vision-Language models (LVLMs) extend pre-
trained Large Language Models (LLMs) by incorporating visual tokens, enabling them to process
visual content [17, 3, 24]. In LVLM architectures, the language model is significantly larger than the
vision model, creating an imbalanced structure where the language model exerts more significant
influence. As a result of this imbalance, the model tends to rely on linguistic patterns rather than
adequately considering the visual information provided, a phenomenon known as the language
prior problem [5, 7, 10]. To address this issue, several studies have explored contrastive decoding
techniques to mitigate the model’s over-reliance on language priors. Visual Contrastive Decoding
(VCD) [11] works by utilizing distorted images, which amplify the language prior, while Instruction
Contrastive Decoding (ICD) [21] introduces misleading instructions to achieve a similar effect. Both
methods aim to reduce the language prior’s dominance by leveraging these amplified conditions to
adjust the model’s behavior. Additionally, Multi-Modal Mutual Information Decoding (M3ID) [4]
identified that as the token length increases, the model dilutes visual information, leading to a more
substantial reliance on language priors. To counter this, M3ID applies more assertive contrastive
decoding techniques as the token length grows to calibrate the model’s over-reliance on language
priors.

7 Conclusion

This paper proposes a simple yet effective Summary-Guided Decoding method, based on the funda-
mental analysis of language priors in LVLMs using part-of-speech tags. Our method summarizes
previous tokens to reduce token length, thereby naturally guiding the model to rely more on the
image. Additionally, by controlling only the image-related POS tokens, we prevent degradation in
text quality. Experimental results show that our method significantly reduces object hallucination
and achieves the most optimal balance between factual accuracy and recall in both short and long
description tasks.
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A Experiment settings

For the token-level assessment in object hallucination, we generated descriptions for 5000 images
from the MSCOCO dataset [15] and annotated each token to determine whether it represented
an object hallucination, defined as an object not present in the image, using the CHAIR metric
pipeline [20] for evaluation.

B Distill Flan-T5-base model

First, we employed LLAVA 1.5 to perform Summary-Guided Decoding with Self-Summarization
when generating descriptions for 5,000 images from the MSCOCO dataset. During this process,
LLAVA 1.5 iteratively summarized the previous sentence, and we saved each previous sentence along
with its corresponding summarized sentence as a pair. This paired dataset was then used to fine-tune
the Flan-T5-base model with the prompt “What is a summary of this text?” for training purposes.

C Detail explanation of Summary-Guided Decoding

In LVLMs, next-token predictions often result in sub_tokens (partial tokens), making accurate Part-
of-Speech (POS) tagging more challenging. To mitigate this issue, greedy decoding is used to form
complete tokens (words) by predicting future tokens until a full sentence is generated. This approach
enables accurate POS tagging for the current sub_token. While this method significantly improves
POS tagging accuracy, it comes with an increased decoding cost, as forming a complete sentence
requires additional token predictions. Nevertheless, the accuracy improvements make this trade-off
worthwhile. After POS tagging the current sub_token, if the POS tag belongs to an image-related, the
input is considered a summarized version of the previously generated sentence. However, if the POS
is associated with language modeling, the original input is retained.

D GPT-4o Prompt for text quality evaluation

“‘ Task Description: You will be given one caption written for a given image. Your task is to rate the
caption on one metric. Please make sure you read and understand these instructions carefully. Please
keep this document open while reviewing, and refer to it as needed. The output format should look as
follows: Score: [RESULT] (an integer number between 1 and 5). Please do not generate any other
opening, closing, and explanations.

Evaluation Criteria: Text Quality (1-5) - Evaluate how well-written the caption is. A high-quality
caption is clear, concise, grammatically correct, and well-structured.

Evaluation Steps: 1. Read the caption carefully and evaluate its clarity, grammar, and overall
readability. 2. Check for any awkward phrasing, grammatical errors, or unnecessary complexity. 3.
Assign a score for text quality on a scale of 1 to 5, where 1 is the lowest and 5 is the highest based on
the Evaluation Criteria.

Given Caption: Caption

Score: ”’

E Limitation

In this paper, we evaluated our method solely on the captioning task due to the lack of multimodal
tasks that require continuous image-guided generation. As more generation tasks become available,
we will be able to conduct a more detailed analysis of our approach. Additionally, we reported results
only on LLAVA 1.5 and InstructBLIP. For future work, we plan to extend our evaluation to a broader
range of models.

F CHAIR metric on various token length

In this section, we report CHAIR metric based on various generated token length.
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Table 5: Results on CHAIRs, CHAIRi, and Recall

Generated Token Length Method CHAIRs CHAIRi Recall
64 Greedy 27 7.5 65.3
64 Nucleus 31.5 9.8 58.9
64 Beam 20 5.9 62.5
64 VCD 24.0 7.9 66.1
64 ICD 21.5 7.0 62.2
64 M3ID 20.5 6.5 65.6
64 Opera 22.5 7.1 62.3
64 SGD-S 22.5 6.1 65.0
64 SGD-D 24 6.7 64.8

128 Greedy 53 13.1 78.9
128 Nucleus 56.5 16.5 74.2
128 Beam 50.5 13.3 78.3
128 VCD 63.0 17.5 78.4
128 ICD 56.0 15.1 77.3
128 M3ID 46.5 11.6 76.4
128 Opera 49.5 14.4 79.2
128 SGD-S 43.5 10.5 78.1
128 SGD-D 43.5 11.4 78.0
256 Greedy 67.5 16.7 83.1
256 Nucleus 78 20.9 82.8
256 Beam 70 16.2 81.6
256 VCD 82.5 22.0 84.1
256 ICD 71 19.6 83.0
256 M3ID 62 13.5 80.3
256 Opera 64.5 16.3 83.4
256 SGD-S 54 12.3 83.3
256 SGD-D 56.5 12.4 81.9
512 Greedy 69.5 17.4 84.1
512 Nucleus 80 22.0 83.8
512 Beam 71.5 17.4 82.3
512 VCD 83.0 23.6 85.6
512 ICD 73.0 20.2 83.8
512 M3ID 65.5 14.6 81.2
512 Opera 66.5 17.5 83.4
512 SGD-S 59 13.1 83.8
512 SGD-D 61.5 12.6 82.5

G About Reproduction

We used the code provided by the authors for VCD and OPERA, while M3ID and ICD were
implemented from scratch due to the lack of public code. For VCD, OPERA, and ICD, we used the
hyperparameters as specified in their respective papers. Since only LLAVA 1.5’s hyperparameters
were reported for M3ID, we applied these hyperparameters to both LLAVA 1.5 and InstructBLIP for
our experiments. All the experiments are conducted using 1 NVIDIA RTX A6000 GPU.

H Societal impact

Object hallucination in multimodal systems poses a significant challenge on the path toward AGI,
particularly in safety-critical applications such as autonomous driving. Reducing object hallucination
is expected to be a crucial step in ensuring the development of safer and more reliable AI systems.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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Answer: [No]
Justification: It is ongoing works.
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• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See section 4.1 and appendix C, A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is ongoing project.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See G
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See H, it is ongoing project, so we will more consider this as future works.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the original papers.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
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