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Abstract

Foundation models for natural language processing, powered by the transformer architec-
ture, exhibit remarkable in-context learning (ICL) capabilities, allowing pre-trained models
to adapt to downstream tasks using few-shot prompts without updating their weights. Re-
cently, transformer-based foundation models have also emerged as versatile tools for solving
scientific problems, particularly in the realm of partial differential equations (PDEs). How-
ever, the theoretical foundations of the ICL capabilities in these scientific models remain
largely unexplored. This work develops a rigorous error analysis for transformer-based
ICL applied to solution operators associated with a family of linear elliptic PDEs. We first
demonstrate that a linear transformer, defined by a linear self-attention layer, can provably
learn in-context to invert linear systems arising from the spatial discretization of PDEs.
This is achieved by deriving theoretical scaling laws for the prediction risk of the proposed
linear transformers in terms of spatial discretization size, the number of training tasks,
and the lengths of prompts used during training and inference. These scaling laws also
enable us to establish quantitative error bounds for learning PDE solutions. Furthermore,
we quantify the adaptability of the pre-trained transformer on downstream PDE tasks that
experience distribution shifts in both tasks (represented by PDE coefficients) and input
covariates (represented by the source term). To analyze task distribution shifts, we intro-
duce a novel concept of task diversity and characterize the transformer’s prediction error
in terms of the magnitude of task shift, assuming sufficient diversity in the pre-training
tasks. We also establish sufficient conditions to ensure task diversity. Finally, we validate
the ICL-capabilities of transformers through extensive numerical experiments.

Keywords: In-context learning, transformer, operator learning, task diversity, linear
systems, partial differential equations.

1 Introduction

Foundation models (FMs) for natural language processing (NLP), exemplified by Chat-
GPT Achiam et al. (2023), have demonstrated unprecedented power in text generation
tasks. From an architectural perspective, the main novelty of these models is the use
of transformer-based neural networks Vaswani et al. (2017), which are distinguished from
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feedforward neural networks by their self-attention layers. Those transformer-based FMs
pre-trained on a broad range of tasks with large amounts of data, exhibit remarkable adapt-
ability to diverse downstream tasks with limited data Brown et al. (2020). The success of
foundation models (FMs) for NLP has recently sparked a large amount of work on building
FMs in domain-specific scientific fields Batatia et al. (2023); Celaj et al. (2023); Méndez-
Lucio et al. (2022). Specifically, there is growing interest within the community of Scientific
Machine Learning (SciML) in building scientific foundation models (SciFMs) to solve com-
plex partial differential equations (PDEs) Subramanian et al. (2024); McCabe et al. (2023);
Ye et al. (2024); Yang et al. (2023); Sun et al. (2024).

Traditional deep learning approaches for PDEs such as Physics-Informed Neural Net-
works Raissi et al. (2019) for learning solutions and neural operators Lu et al. (2019); Li
et al. (2020) for learning solution operators need to be retrained from scratch for a dif-
ferent set of coefficients or different PDE systems. Instead, these SciFMs for PDEs, once
pre-trained on large datasets of coefficients-solution pairs from multiple PDE systems, can
be adapted to solving new PDE systems without training the model from scratch. Even
more surprisingly, transformer-based FMs have demonstrated their in-context learning
(ICL) capability in Achiam et al. (2023); Bubeck et al. (2023); Kirsch et al. (2022) and
in SciML Yang et al. (2023); Chen et al. (2024b); Yang and Osher (2024): when given a
prompt consisting of examples from a new learning task and a query, they are able to make
correct predictions without updating their parameters. While the emergence of ICL has
been deemed a paradigm shift in transformer-based FMs, its theoretical understandings
remain underdeveloped.

The goal of this paper is to investigate the ICL capability of transformers for solving a
class of linear elliptic PDEs. Our study is strongly motivated by the need of characterizing
the scaling and transferability/adaptability of SciFMs Subramanian et al. (2024);
McCabe et al. (2023). In fact, the computing and energy costs for training SciFMs are
substantial and increase dramatically with the sizes of the model and data. In addition, the
performance of FMs depends on several key parameters, including the size of training data,
the model size, the amount of training time, etc. It is thus extremely critical to estimate
those key parameters needed to achieve certain prediction accuracy given the allocated
compute budget prior to training. This requests a neural scaling law that can quantify
the prediction risk of an FM as a function of those parameters. While empirical scaling laws
have been identified for Large Language Models (LLMs) Kaplan et al. (2020); Hoffmann
et al. (2022) and more recently attempted in a SciFM for PDEs Subramanian et al. (2024);
McCabe et al. (2023), a rigorous characterization of scaling laws remains open. Additionally,
the generalization performance of SciFMs encounters significant hurdles due to prevalent
distribution shifts between tasks and data used in pre-training and those in adaptation
Subramanian et al. (2024); McCabe et al. (2023); Ye et al. (2024); Yang et al. (2023). For
instance, the behavior and fine structures (e.g. multiple spatial-temporal scales) of a PDE
solution can change dramatically in response to the changes in the physical parameters
and conditions. Therefore a rigorous quantification of the generalization performance of
SciFMs on downstream tasks due to the various domain shifts is an important step for
understanding their capabilities and limitations.
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1.1 Main contributions

We highlight our main contributions as follows:

• We formalize a framework for learning the solution operators of linear elliptic PDEs
in-context. This is based on (1) reducing the infinite dimensional PDE problem into a
problem of solving a finite dimensional linear system arising from spatial discretization
of the PDE and (2) learning to invert the finite dimensional linear system in-context.

• We adopt transformers defined by single linear self-attention layers for ICL of the linear
systems and establish a quantitative generalization error bound of ICL in terms of the
discretization size, the number of pre-training tasks, and the lengths of prompts used
in pre-training and downstream tasks; see Theorem 1. This bound further enables us
to prove an H1-error bound for learning the solution of PDEs; see Theorem 2.

• We establish general prediction error bounds for the pre-trained transformer under
distribution shifts with respect to tasks (represented by the coefficients of the PDE)
and the data covariates (represented by the source term), in Theorem 3 and in Theo-
rem 7 respectively. In the setting of task shifts, we introduce a novel concept of task
diversity and show that pre-trained transformers can provably generalize even when
the downstream task undergoes distribution shifts provided that the pre-training task
distribution is sufficiently diverse; see Theorem 4.

• Additionally, we provide several sufficient conditions under which task diversity con-
dition holds (see Theorem 5), and construct simple examples where the task diversity
fails to hold (see Theorem 6).

• We demonstrate the ICL ability of linear transformers for learning both the PDE
solutions and the associated linear systems through extensive numerical experiments.

1.2 Related work

ICL and FMs for PDE. Several transformer-based FMs for solving PDEs have been
developed in Subramanian et al. (2024); McCabe et al. (2023); Ye et al. (2024); Sun et al.
(2024) where the pre-trained transformers are adapted to downstream tasks with fine-tuning
on additional datasets. The work Yang et al. (2023); Yang and Osher (2024) study the in-
context operator learning of differential equations where the adaption of the pre-trained
model is achieved by only conditioning on new prompts. While these empirical work show
great transferabilities of SciFMs for solving PDEs, their theoretical guarantees are largely
open. To the best of our knowledge, this work is the first to derive the theoretical error
bounds of transformers for learning linear elliptic PDEs in context.

Theory of ICL for linear regression and other statistical models. The work Garg
et al. (2022) provides theoretical understanding of the ability of transformers in learning
simple functions in-context. In the follow-up works Akyürek et al. (2022); Von Oswald et al.
(2023), it is shown by explicit construction of attention matrices that linear transformers
can implement a single step of gradient descent when given a new in-context linear regres-
sion task, and numerical experiments supported that trained transformer indeed implement
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gradient descent on unseen tasks. Several recent works Mahankali et al. (2024); Zhang
et al. (2023a); Ahn et al. (2024) extend the results of Von Oswald et al. (2023) by proving
that one step of gradient descent is indeed optimal for learning linear models in-context.
These works are further complemented by ICL guarantees for learning nonlinear functions
Bai et al. (2024); Cheng et al. (2023); Kim et al. (2024) and for reinforcement learning
problems Lin et al. (2023). Besides the explicit constructions of transformers to implement
desired algorithms in various learning tasks, recent works Zhang et al. (2023a); Chen et al.
(2024a) study the optimization landscape of single-layer linear transformers in learning of
linear functions and characterize the convergence guarantees of gradient descent for training
linear transformers.

Optimization analysis of transformers have also been studied in various settings, includ-
ing for learning nonlinear functions Cheng et al. (2023); Kim et al. (2024), using nonlinear
attentions Huang et al. (2023); Nichani et al. (2024) (e.g. softmax and ReLU), and multiple
heads Chen et al. (2024a). Regarding the generalization error with respect to the number of
tasks, the paper Wu et al. (2023) studies the behavior of in-context linear regression when
the transformer parameters are trained by stochastic gradient descent. The work Mroueh
(2023) proposes a general statistical learning framework for analyzing the generalization
error of transformers for ICL.

Going beyond the i.i.d setting, several works also investigate the ICL capability of trans-
formers when the data are defined by Markov chains Edelman et al. (2024) and dynamical
systems Goel and Bartlett (2023); Li et al. (2023); Du et al. (2023). We also would like
to mention several works that explain how transformers perform ICL from the Bayesian
perspective Xie et al. (2021); Zhang et al. (2023b); An et al. (2020).

Among the aforementioned works, the settings of Zhang et al. (2023a); Ahn et al. (2024);
Chen et al. (2024a) are closest to us. Our theoretical bound on the population risk extends
the results of Zhang et al. (2023a); Ahn et al. (2024) for the linear regression tasks to the
tasks of inverting linear systems that are associated to elliptic PDEs. Different from those
works where the data and task distributions are assumed to be Gaussian, the task distri-
butions considered here are non-Gaussian and are fully determined by the PDE structure.
Our out-of-domain generalization error bounds substantially improve the earlier generaliza-
tion bound Mroueh (2023) established for general ICL problems. In particular, we show
that the error due to the distribution shift can be reduced by a factor of 1/m, where m
is the prompt-length of a downstream task. This rigorously justifies that the a key robust
feature of pre-trained transformer model with respect to task distribution shifts, which has
previously been empirically observed in ICL of PDEs (see e.g. Yang et al. (2023); Yang and
Osher (2024)), but has only been rigorously studied by Zhang et al. (2023a) in the linear
regression setting.

2 Problem set-up

2.1 In-context operator learning of linear elliptic PDEs

Consider the second-order strongly-elliptic PDE on a bounded Lipschitz domain Ω ⊆ Rd0 :{
La,V u(x) := −∇ ·

(
a(x)∇u(x)

)
+ V (x)u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.
(1)
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where a ∈ L∞(Ω) is strictly positive, V ∈ L∞(Ω) is non-negative and f ∈ Xf ⊂ L2(Ω).
By the standard well-posedness of the elliptic PDE, the solution u ∈ Xu ⊂ H1

0 (Ω). We are
interested in learning the linear solution operator Ψ : f → u ∈ Xu in context Yang et al.
(2023). More specifically, at the training stage we are given a training dataset comprising

N length-n prompts of source-solution pairs {(f j
i , u

j
i )

n
i=1}Nj=1, where {f j

i }
i.i.d.∼ Pf for some

distribution Pf on the space of functions f , and uji are the solutions corresponding to f j
i

and parameters (aj , Vj)
i.i.d.∼ Pa×PV , where Pa and PV are distributions on the coefficient a

and V respectively. An ICL model, after pre-trained on the data above, is asked to predict
the solution u for a new source term f conditioned on a new prompt (fi, ui)

m
i=1 which may

or may not have the same distribution as the training prompts. Further, the prompt-length
m in the downstream task may be different from the prompt-length n in the training.

While the ideal ICL problem above is stated for learning operators defined on infinite
dimensional function spaces, a practical ICL model (e.g. a transformer) can only operate
on finite dimensional data, which are typically observed in the form of finite dimensional
projections or discrete evaluations. To be more concrete, let {ϕk(x)}∞k=1 be a basis on both
Xu and Xf , and define a truncated base set Φ(x) := [ϕ1, · · · , ϕd(x)] for some d < ∞. An
approximate solution ũ to problem (1) can be constructed in the framework of Galerkin
method: we seek ũ(x) = ⟨u,Φ(x)⟩ where u ∈ Rd solves the linear system Au = f , where
the matrix A = (Aij) ∈ Rd×d and the right hand side f = (fi) ∈ Rd are defined by

Aij = ⟨ϕj ,La,V ϕi⟩ and fi = ⟨f, ϕi⟩, i, j = 1, · · · , d. (2)

Note that the Galerkin method can be viewed as a special instance of the operator-
network defined by principle component analysis or PCA-Net Bhattacharya et al. (2021).
In fact, if we define the encoder Ef : Xf → Rd on the space Xf by Eff := f , the decoder Du :
Rd → Xu by (Duu)(x) := ⟨u,Φ(x)⟩ and G := Rd → Rd by Gf = A−1f , then Ψ̃ := Du ◦G ◦Ef
defines an approximation to the solution operator Ψ. As quantitative discretization error
bounds of PDEs are well established, e.g. for finite element methods Brenner and Scott
(2007) and spectral methods Shen et al. (2011), this paper focuses on the error analysis of
in-context learning of the finite dimensional linear systems defined by the matrix inversion
A−1, which will ultimately translate to estimation bounds for the solutions of PDEs.

2.2 ICL of linear systems

The consideration above reduces the original infinite dimensional in-context operator learn-
ing problem to the finite dimensional ICL problem of solving linear systems. To keep the
framework more general, we make the following change of notations: f → y and u → x. An
ICL model operates on a prompt of n input-output pairs, denoted by S := {(yi,xi)}ni=1 ⊂
Rd × Rd with xi = A−1yi as well as a new query input yn+1 ∈ Rd. Given multiple
prompts, the model aims to predict xn+1 corresponding to the new independent query
input yn+1. Unlike in supervised learning, each prompt the model takes is drawn from
a different data distribution. To be more precise, for j = 1, · · · , N , we assume that the

j-th prompt S(j) := {(y
(j)
i ,x

(j)
i )}ni=1 is generated from the sources {y(j)

i }ni=1
i.i.d.∼ py; the

solutions x
(j)
i are associated to the j-th inversion task via x

(j)
i = (A(j))−1y

(j)
i where the
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matrices A(j) i.i.d.∼ pA. Informed by task matrices derived from discretizations of PDEs as
illuminated in (2), we make the following assumption on the task distribution pA.

Assumption 1. The task distribution pA is supported on the set of symmetric positive
definite matrices, and there exist constants cA, CA > 0 such that the bounds c−1

A Id ≺ A ≺
CAId hold for all A ∈ supp(pA). The source term y follows a Gaussian distribution N(0,Σ).

Observe that Assumption 1 on A is very mild and holds for instance whenever the
coefficient a is strictly positive and V is non-negative and bounded. We will make repeated
use of the bounds1

∥A−1∥op ≤ cA, ∥A∥op ≤ CA, pA − a.s. (3)

The Gaussian assumption on the covariate y holds when we assume that the source term
f of the PDE is drawn from a Gaussian measure N(0,Σf ), where Σf : L2(Ω) → L2(Ω) is a
bounded, in which case the covariance matrix Σ is defined by Σij = ⟨Σfϕi, ϕj⟩L2(Ω).

2.3 Linear transformer architecture for linear systems

Inspired by the recent line of work on ICL of linear functions, we consider a linear trans-
former defined by a single-layer linear self-attention layer for our ICL model. Following the
standard convention, we encode the data of each prompt into a prompt matrix

Z =

[
y1 . . . yn yn+1

x1 . . . xn 0

]
∈ RD×(n+1), (4)

where D = 2d. For P̃ , Q̃ ∈ RD×D, the linear self-attention module with parameters θ̃ =
(P̃ , Q̃) is given by

Attnθ̃(Z) = Z +
1

n
P̃ZMZT Q̃Z,

where M =

[
In 0
0 0

]
∈ R(n+1)×(n+1) is a masking matrix to account for the asymmetry of

the prompt matrix. Our definition of the self-attention module makes several simplifying
assumptions compared to the standard definition in the literature, namely we merge the
key and query matrices into a single matrix Q and we omit the softmax activation function.
A transformer fθ̃ predicts a new label x for the downstream task by reading out the x-
component from the self-attention output, i.e.

fθ̃(Z) := [Attnθ̃(Z)]d+1:D,n+1 =

d∑
j=1

⟨ed+j ,Attnθ̃(Z)en+1⟩ed+j ,

where ei denotes the ith standard basis vector. Since the output of the transformer only
reads out the last d entries on the bottom right of the output of the self-attention layer, many
blocks in P̃ and Q̃ do not actually play a role in the prediction defined by the transformer.
More precisely, similar to Von Oswald et al. (2023); Zhang et al. (2023a); Ahn et al. (2024),

1. Most of our estimates involve bounds on the norm of A−1, since it approximates the ’solution operator’
of the PDE. However, for technical reasons, we also require a bound on the norm of A.
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if we set P̃ =

[
0 0
0 P

]
and Q̃ =

[
Q 0
0 0

]
with P,Q ∈ Rd×d, then output of the transformer

can be re-written in a compact form: with θ = (P,Q),

TFθ(Z) = PA−1YnQy,

where Yn := 1
n

∑n
k=1 yky

T
k denotes the empirical covariance matrix associated to the in-

context examples. We work with this simplified parameterization for the remainder of our
theoretical analysis.

2.4 Generalization of ICL

Our goal is to find the attention matrices P and Q that minimize the population risk
functional

Rn(P,Q;n) = E
[∥∥∥TFθ(Z) −A−1y

∥∥∥2] = E
[∥∥∥PA−1YnQy −A−1y

∥∥∥2], (5)

where the expectation is taken over A ∼ pA, {y,y1, . . . ,yn} ∼ N(0,Σ)⊗n+1. Since we do
not have access to the distribution on tasks, P and Q are instead trained by minimizing
the corresponding empirical risk functional defined on N tasks:

Rn,N (P,Q) =
1

N

N∑
i=1

∥∥∥PA−1
i Y (i)

n Qyi −A−1
i yi

∥∥∥2, (6)

where {Ai}
i.i.d.∼ pA, {yi}

i.i.d.∼ N(0,Σ), and Y
(i)
n is the empirical covariance matrix associated

to the in-context examples {y(i)
1 , . . . ,y

(i)
n } which are (jointly) independent from yi. Our

empirical risk is closely related to the few-shot risk for in-context learning introduced in
Mroueh (2023).

A pre-trained transformer is expected to make predictions on a downstream task that
consists of a new length-m prompt {(yi,xi)}mi=1 = {(yi, (A

′)−1yi)}mi=1 and a new test sample
y, where the input samples {yi}ni=1 ∪ {y} ∼ P ′

y and the matrix A′ ∼ P ′
A = N(0,Σ′). Our

primary interest is to bound the generalization performance (measured by the prediction
risk) of the pre-trained transformer for the downstream task in two different scenarios.

• In-domain generalization: The distributions of tasks and of prompt data in the
pre-training are the same as these in the downstream task (Py = P ′

y and PA = P ′
A).

Thus in-domain generalization measures the testing performance on unseen samples in the
downstream task that do not appear in the training samples. The in-domain generalization
error is defined by

Rm(P,Q;m) = EA∼pA,(y1,...,ym,y)∼N(0,Σ)⊗(m+1)

[∥∥∥PA−1YmQy −A−1y
∥∥∥2]. (7)

• Out-of-domain (OOD) generalization: The distributions of tasks or within-task
data in the pre-training are different from those in the downstream task, i.e. Py ̸= P ′

y or
PA ̸= P ′

A. Specifically, the OOD-generalization error with respect to the task distribution
shift is defined by

Rp′A
m (P,Q;m) = EA′∼p′A,(y1,...,ym,y)∼N(0,Σ)⊗(m+1)

[∥∥∥P (A′)−1YmQy − (A′)−1y
∥∥∥2]. (8)
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We also define the OOD-generalization error with respect to the covariate distribution shift
by

RΣ′
m (P,Q;m) = EA∼pA,(y1,...,ym,y)∼N(0,Σ′)⊗(m+1)

[∥∥∥PA−1YmQy −A−1y
∥∥∥2]. (9)

Notice that the prompt length m in the prediction risk need not equal the prompt length
n in the model pre-training. We are particularly interested in quantifying the scaling laws
of the generalization errors for the pre-trained transformer as the amount of data increases
to infinity, i.e. N,n,m ↑ ∞.

3 Theoretical results

3.1 Error bounds for in-domain generalization of learning linear systems

Our first result studies the generalization ability of the transformer obtained by empirical
risk minimization over a set of norm-constrained transformers, where the error is measured
by the prediction risk Rm. To state the result, it will be convenient to define the weighted
trace of a matrix K with respect to the covariance Σ = WΛW T :

TrΣ(K) :=
d∑

i=1

σ2
i ⟨Kφi, φi⟩,

where {(σ2
i , φi)}di=1 = {(σ2

i ,Wei)}di=1 are the eigenpairs of the covariance matrix Σ. Note
that the Σ-weighted trace is independent of the choice of eigenbasis of Σ.

Theorem 1. Let θ̂ = (PN , QN ) ∈ argmin∥θ∥≤MRn,N (θ), where ∥θ∥ := max
(
∥P∥op, ∥Q∥op

)
.

Then for n sufficiently large, we have with probability ≥ 1 − 1
poly(N)

Rm(θ̂) ≲
(c2A + d)Tr(Σ)

m
+

c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(EA∼pA [A−2])

)2
Tr(Σ)

n2

+
d2c2A∥Σ∥2op max(1, ∥Σ−1∥op)4

√
N

+ max(1, ∥Σ−1∥op)4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)
∣∣∣ 1
n
− 1

m

∣∣∣,
(10)

where we have omitted factors which are polylog in N .

The first three terms on the right side of (10) are the generalization errors of the ICL
model due to finite amount of training data and training tasks. The last term on the
right side of (10), which we term the “context mismatch error”, is likely due to an artifact
of our proof strategy and can potentially be removed with a refined analysis. This term
is not observed in our numerical experiments; see Figure 1. However, in the practical 2

regime where the length of the testing prompts is less than that of the training prompts

2. The performance of GPTs is known to deteriorate when the test sequence length exceeds the train
sequence length; Zhang et al. (2023a) conjectures this phenomenon to be the result of positional encoding.
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(i.e. m ≤ n), we have
∣∣ 1
n − 1

m

∣∣ ≤ 1
m , and hence the context-mismatch error is absorbed into

the O
(
1
m

)
term, leading to the following overall generalization bound

Rm(θ̂) ≲
1

m
+

1

n2
+

1√
N

. (11)

Notice also that the prompt lengths during training and testing contribute different rates to
the overall sample complexity bound, with the sequence length n during training contribut-
ing an O(n−2) rate while the sequence length m at inference contributing an O(m−1) rate;
a similar phenomenon was observed in (Zhang et al., 2023a, Theorem 4.2) for in-context
linear regression.

3.2 Error bounds for in-domain generalization of learning elliptic PDEs

Building upon Theorem 1, we proceed to bound the ICL-generalization error for learning
the elliptic PDE (1). Our next result provides a rather general upper bound on the ICL-
generalization error for the PDE solution in terms of the spatial discretization error of the
PDE and the ICL-generalization error in learning the finite linear systems associated to
the discretization. The discretization error is typically fully determined by the number d of
basis functions used in the Galerkin projection. The second term is bounded by Theorem
1. In the following result, let u denote the solution to the elliptic PDE specified by (1).
We write ud for a Galerkin approximation to u with d basis functions and we write ûd for
the approximate solution obtained by solving a discrete linear system with a pre-trained
transformer.

Theorem 2. Let Φ′ be the stiffness matrix defined by Φ′
ij = (ϕ′

i, ϕ
′
j)L2(Ω) and let Φ be the

mass matrix defined by Φij = (ϕi, ϕj)L2(Ω). Assume that both matrices are symmetric and
positive definite. Then,

E∥u− ûd∥2H1(Ω) ≲ E∥u− ud∥2H1(Ω) + (1 + λmax(Φ−1/2Φ′Φ−1/2)) · Rm(θ̂),

where θ̂ is a minimizer of the empirical risk defined in Theorem 1 and λmax(·) denotes the
largest eigenvalue of a symmetric positive definite matrix.

Theorem 2 bounds the in-domain generalization error of ICL for the PDE as a sum of
the discretization error of the PDE solver and the statistical error of learning the linear
system associated to the discretization of the PDE. It is worth-noting that there is a trade-
off between the two terms; the first term decreases as the number of basis functions (or
fineness of the mesh) increases, while the prefactor λmax(Φ−1/2Φ′Φ−1/2) in the second term
can grow as the number of basis functions tends to infinity. This suggests that the PDE
recovery error in the H1-metric will be large if the dimension d is either too large or too
small. We demonstrate this numerically in Figure 2 by plotting the H1-error between the
learned solution and ground truth against the dimension d.

The abstract bound established in Theorem 2 is agnostic to the choice of PDE discretiza-
tion. Below, we present how this result can be used to derive an explicit error estimate for
the ICL in the context of a P 1-finite element discretization of the PDE in one dimension.
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Example 1 (PDE recovery error with FEM discretization in 1D). Consider the elliptic
PDE (1) on a unit interval Ω = [0, 1]. Let Ik = [(k − 1)j, kh] for 0 ≤ k ≤ d be the
uniform mesh on Ω, where h = d−1 is the mesh size. Let P h

1 (Ω) be the linear finite element
space spanned by the P1-finite element base functions {ϕk}dk=0. Let uh ∈ P h

1 (Ω) denote the
P1-finite element approximation of the solution u. Suppose that Assumption 1 holds for
the task distributions Pa, PV and assume further that a(x) ∈ C1(Ω) Pa-a.s and V ∈ C(Ω)
Pv-a.s. Then by classical regularity estimates for elliptic PDEs, the solution u ∈ H2(Ω) and
satisfies ∥u∥H2(Ω) ≲ ∥f∥L2(Ω) up to a universal constant. Moreover, by Theorem 3.16 in
Ern and Guermond (2004), the FEM-solution ud satisfies the discretization error estimate

∥u− ud∥H1(Ω) ≲ h∥u∥H2(Ω).

It follows that

E
[
∥u− ud∥2H1(Ω)

]
≲ h2E[∥u∥2H2(Ω)] ≲ h2E[∥f∥2L2(Ω)] = h2Tr(Σf ),

where Σf : L2(Ω) → L2(Ω) is the covariance operator of f ∼ Pf . In addition, it can
be shown that for piecewise linear FEM on 1D, the stiffness and mass matrices satisfy
λmax(Φ−1/2Φ′Φ−1/2) ≲ h−2 (see e.g. equation (2.4) of Boffi (2010)). By Theorem 2, we
conclude that in the practical regime that m ≤ n, the PDE recovery error of the transformer
is bounded by

E
[
∥u− ûh∥2H1(Ω)

]
≲ h2 +

1

h2

( 1

m
+

C4
A∥Σ−1∥2op

n2
+

d2∥Σ−1∥4op√
N

)
.

Note that the terms ∥Σ−1∥op and C4
A depend on the number of Galerkin basis functions d.

For the matrix A corresponding to the FEM discretization, it can be shown that CA ≲ h−2.
In addition, when the covariance operator of the random source is given by Σf = (−∆+I)−α

for some α > 0 which controls the smoothness of the source term, it follows from the inverse
inequalities (Ern and Guermond, 2004, Lemma 12.1) that ∥Σ−1∥op ≲ h2α. Inserting this
estimate to above leads to the final PDE recovery bound in terms of the mesh size h

E
[
∥u− ûh∥2H1(Ω)

]
≲ h2 +

1

h2m
+

1

h10+4αn2
+

1

h4+8α
√
N

, (12)

or equivalently in terms of the number of Galerkin basis functions d

E
[
∥u− ûh∥2H1(Ω)

]
≲

1

d2
+

d2

m
+

d10+4α

n2
+

d4+8α

√
N

. (13)

Here, we have hidden all constants from the estimate of Theorem 1 that do not depend on
the dimension d.

3.3 OOD-generalization under task distribution shift

Let θ̂ denote the minimizer of the empirical risk Rn,N over the bounded set {∥θ∥ ≤ M}
for some M > 0, and recall that the training tasks (modeled by A) are drawn from a
distribution pA. Let p′A denote the distribution of A in the downstream tasks, and let

10
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Rm,R′
m be the prediction risk functionals defined as in (8) where the expectations over

tasks are taken with respect to pA and p′A respectively. We would like to bound the quantity

R′
m(θ̂), which represents the test error of the trained transformer under a shift on the task

distribution. We say that a pre-trained model θ̂ achieves OOD-generalization if its
population risk with respect to the downstream task distribution p′A converges to zero in

probability: lim(m,n,N)→∞R′
m(θ̂)

P→ 0. In order to state our results on OOD-generalization,
we first introduce the following “infinite-context” variant of the in-domain denoted by R∞:

R∞(θ) = EA∼pA∥(PA−1ΣQ−A−1)Σ1/2∥2F . (14)

We also define and OOD-generalization risk R′
∞ similar to above with pA replaced by p′A.

We denote by M∞ and M′
∞ the sets of minimizers of R∞ and R′

∞ respectively. We now
present a rather general theorem that bounds the OOD-generalization error.

Theorem 3. Let pA and p′A denote the pre-training and downstream task distributions
respectively and assume both satisfy Assumption 1. Let M∞(pA) and M∞(p′A) denote

the minimizers of R∞ and R′
∞ respectively, and let θ̂ ∈ argmin∥θ∥≤MRn,N (θ) denote the

empirical risk minimizer. Then

R′
m(θ̂) ≲ Rm(θ̂) +

d(pA, p
′
A)

m
+ dist(θ̂,M∞(pA))2 + dist(θ̂,M∞(p′A))2,

where d(pA, p
′
A) is a distance between the distributions pA and p′A, and the implicit constants

depend on M , Σ, and the constant cA defined in Assumption 1.

The precise definition of the discrepancy d(pA, p
′
A) is technical and can be found in

the statement of Lemma 2 in the appendix. Theorem 3 bounds OOD generalization error
by a sum of three terms: the in-domain generalization error, the task-shift error, and the
model error, the latter of which is captured by dist(θ̂n,M∞) and dist(θ̂,M′

∞). A salient
feature of Theorem 4, compared to the prior ICL-generalization bound Mroueh (2023) under
distribution shift, is that the task-shift error inherits a factor of m−1, which elucidates the
robustness of transformers under shifts in the task distribution. Theorem 4 also extends the
prior OOD-generalization result of ICL for linear regression Zhang et al. (2023a) to learning
linear systems. However, unlike in the linear regression setting, the set of minimizers of the
population risk in the linear system setting can vary substantially when the task distribution
changes. Because of this, the terms dist(θ̂,M∞) and dist(θ̂,M∞)′ warrant a more careful
examination. Since the empirical risk Rn,N recovers the infinite-context population risk

R∞ as n and N tend to ∞ and θ̂ is a minimizer, we expect dist(θ̂,M∞) to tend to zero
as n and N tend to ∞; this is made precise in Lemma 3 in the appendix. Without further
assumptions, we cannot expect the term dist(θ̂,M′

∞) to decay as the sample size increases,
because θ̂ is not trained on data from p′A. However, we note that if M∞ ⊆ M′

∞, then

dist(θ̂,M′
∞) ≤ dist(θ̂,M∞), and hence we can expect all terms in Theorem 3 to decay as

the sample size increases. This motivates the following key notion of task diversity.

Definition 1. The pre-training task distribution pA is diverse relative to the downstream
task distribution p′A if M∞ ⊆ M′

∞.

11
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The importance of task diversity has been observed in the prior work Tripuraneni et al.
(2020) for transfer learning. Our notion of diversity differs from the previous notion in that
we compare the set of minimizers of population losses instead of the loss values. Theorem
4, which is a direct corollary of Theorem 3, shows that the task diversity, in the sense of
Definition 1, is sufficient for the pre-trained transformer to achieve OOD-generalization.

Theorem 4. Let pA and p′A denote the pre-training and downstream task distributions

respectively, and suppose pA is diverse relative to p′A. Then, with θ̂ ∈ argmin∥θ∥≤MRn,N (θ),
we have

R′
m(θ̂) ≲ Rm(θ̂) +

d(pA, p
′
A)

m
+ dist(θ̂,M∞)2,

where d(pA, p
′
A) is a discrepancy between the pre-training and downstream task distributions

that satisfies d(pA, p
′
A) = 0 if pA = p′A.

Remark 1. Theorem 4 can be combined with Theorem 2 to obtain bounds on the OOD-
generalization error for learning the corresponding PDE solution. Specifically, if θ̂ is the
transformer parameter obtained by empirical risk minimization on the in-domain risk, û
the corresponding PDE solution, and p′A the downstream task distribution, then the proof of
Theorem 2 immediately implies that

Eu∼p′A
[∥u− û∥2H1(Ω)] ≲ Eu∼p′A

[∥u− ud∥2H1(Ω)] +
(
1 + λmax(Φ−1/2Φ′Φ−1/2)

)
R′

m(θ̂).

Notice that, under the task diversity assumption, Theorem 4 can be used to bound R′
m(θ̂).

In Figure 3, we numerically demonstrate the robustness of pre-trained transformers
under shifts on the PDE coefficients. The numerical results show that even under more ex-
treme shifts, the OOD-generalization error is mitigated by increasing the prompt length, as
predicted by Theorem 4. This suggests that the pre-training task distributions correspond-
ing to elliptic PDE problems are sufficiently diverse in the sense of Definition 1, although
proving this rigorously remains an open question.

Since task diversity is sufficient to achieve OOD-generalization, it is natural to ask what
conditions on pA and p′A would guarantee task diversity. The following result provides two
sufficient conditions. To state the result, we recall that the notion of the centralizer C(S)
of a subset S ⊆ Rd×d : C(S) = {P ∈ Rd×d : PS = SP ∀S ∈ S}.

Theorem 5. Let pA, p
′
A be two distributions on the matrices A that satisfy Assumption 1.

Then

1. If supp(p′A) ⊆ supp(pA), then pA is diverse relative to pA.

2. Define S(pA) := {A1A
−1
2 : A1, A2 ∈ supp(pA)}. If C(S(pA)) = {cId : c ∈ R}, then pA

is diverse relative to any distribution p′A.

The first statement of Theorem 5 is natural: it says that the pre-training task dis-
tribution is diverse whenever the downstream task distribution is a “subset” of it, in the
sense of supports. The second condition is particularly interesting because it implies OOD-
generalization (by Theorem 4) regardless of the downstream task distribution. The second
condition based on the centralizer of the set S(pA) is less obvious, but heuristically it

12
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enforces that the support of pA must be large enough that the only matrices which can
commute with all pairwise products in S(pA) are scalars. Our empirical results suggest
that the task distributions associated to elliptic PDE problems are diverse.

An inspection of the proof of Theorem 5 reveals that if supp(pA) satisfies the condition
that the centralizer of {A1A

−1
2 : A1, A2 ∈ supp(pj)} is trivial, then all minimizers of R∞

are of the form {(P,Q) = (cId, c
−1Σ−1) : c ̸= 0}. In this case, it is worth noting that the

discrepancy on task distributions d(pA, p
′
A) defined in Theorem 4 admits a much simpler

expression. We state this result as a corollary below.

Corollary 1. Under the assumption that the pre-training task distribution pA satisfies the
centralizer condition

C
(
{A1A

−1
2 : A1, A2 ∈ supp(pj)}

)
= {cId : c ∈ R},

the out-of-distribution generalization error admits the more tractable expression

R′
m(θ̂) ≤ Rm(θ̂) +

(d + 1)
∣∣∣Tr((EA∼pA [A−2] − EA′∼p′A

[(A′)−2]
)

Σ
)∣∣∣

m
+ dist(θ̂,M∞(pA))2.

In particular, the second term, reflecting the discrepancy between pA and p′A, depends only
on the second moments of A−1 and (A′)−1.

To conclude this section, we investigate the diversity of task distributions whose support
consists of simultaneously diagonalizable matrices. The simultaneous-diagonalizability of
task matrices has been a key assumption in the existing theoretical analysis of in-context
learning of linear systems (Chen et al. (2024a)) and in the in-context learning of linear
dynamical systems (Sander et al. (2024)). It is therefore natural to ask whether a task
distribution whose support consists of simultaneously diagonalizable matrices is diverse in
the sense of Definition 1. This question has an important interpretation in the in-context
learning of elliptic PDEs: if the diffusion coefficient a(x) and potential V (x) are both
constant, a(x) ≡ a0, V (x) ≡ v0, then the solution operator of the corresponding elliptic

PDE is given by
(
− a0∆ + v0I

)−1
, whose diagonalization is independent of the constants

a0 and v0. Thus, in order to understand whether a transformer that is pre-trained to solve
elliptic PDEs with constant coefficients can make accurate predictions on equations with
non-constant coefficients, it is essential to understand the diversity of task distributions
whose support consists of simultaneously diagonalizable matrices.

Theorem 6. Let pA and p′A denote the pre-training and downstream task distributions,
and suppose that the matrices in supp(pA) are simultaneously diagonalizable for a common
orthogonal matrix U . Suppose additionally that there exist matrices A1, A2 ∈ supp(pA) and
A′

1A
′
2 ∈ supp(p′A) such that A1A

−1
2 and A′

1(A
′
2)

−1 have no repeated eigenvalues.

1. If supp(p′A) is also simultaneously diagonalizable with respect to U , then pA is diverse
relative to p′A.

2. If there exist matrices A′
3, A

′
4 ∈ supp(p′A) such that A′

3(A
′
4)

−1 is not diagonalizable
with respect to U , then pA is not diverse relative to p′A.
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Theorem 6 reveals that a simultaneously-diagonalizable task distribution cannot achieve
out-of-distribution generalization under arbitrary shifts in the downstream task distribution;
in general, the downstream task distribution must also be simultaneously diagonalizable in
the same basis. However, it also shows that, provided the pre-training and downstream
task distributions are simultaneously diagonalizable, pre-trained transformers can generalize
under arbitrary shifts on the distribution shifts on the eigenvalues of the task matrices. This
provides a precise characterization of the diversity of a simultaneously diagonalizable task
distribution. In Figure 4, we demonstrate the importance of task diversity by computing the
OOD generalization error of a transformer pre-trained to solve Equation (1) with constant
coefficients when the task distribution at inference corresponds to a PDE with non-constant
coefficients. We find that the transformer is much more sensitive to task shifts in this case,
but the OOD generalization error is improved if the transformer parameters are initialized
around robust population risk minimizers.

3.4 OOD-generalization under covariate distribution shift

We now study the OOD-generalization error due to the distribution shift with respect to the
Gaussian covariates {y1, . . . ,yn}, i.e., the vectors at which a task matrix A is evaluated.
The next proposition provides a quantitative upper bound for the generalization error in
terms of the discrepancy between the covariance matrices. To simplify the proof, we use a
Frobenius norm bound on the empirical risk minimizer. However, this choice of norm is not
essential to the result.

Theorem 7. Let Σ = WΛW T and Σ̃ = W̃ Λ̃W̃ T be the covariance matrices of Gaussian
covariates used in the training and testing respectively. Let (P̂ , Q̂) be minimizers of the
empirical risk associated to covariates sampled from N(0,Σ) and take M > 0 such that

max
(
∥P̂∥F , ∥Q̂∥F

)
≤ M. Then

RΣ̃
m(P̂ , Q̂) ≲ RΣ

m(P̂ , Q̂) + ∥Σ − Σ̃∥op +
1

m
∥W − W̃∥op,

where the implicit constants depend on M , Σ, Σ̃, and the constant cA defined in Assumption
1.

Theorem 7 states that the OOD-generalization error with respect to the covariate distri-
bution shift is Lipschitz stable with respect to changes in the covariance matrix. However,
unlike the case of task distribution shift, the covariate distribution shift error cannot be
mitigated by increasing the prompt-length in the downstream task; see also Figure 3. A
similar phenomenon was observed in Zhang et al. (2023a).

4 Numerical experiments

4.1 In-domain generalization

We investigate numerically the neural scaling law of the transformer model for solving the
linear system associated to the Galerkin discretization of the elliptic PDE (1) in the setting
of in-domain generalization. In more detail, we consider the one dimensional elliptic PDE
(−∆ + V (x))u(x) = f(x) on Ω = [0, 1] with Dirichlet boundary condition. We assume that
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the source term f is white noise, i.e. f ∼ N(0, I), where I denotes the identity operator.
Further, we assume that the potential V is uniform random field that is obtained by dividing
the domain into 2d+1 sub-intervals and in each cell independently, the potential takes values
uniformly in [1, 2]. We discretize the PDE using Galerkin projection under d sine bases:
ϕi(x) = sin(πix), i = 1, · · · , d. This leads to the linear system Au = f , where f ∼ N(0, Id)
and

Aij = k2π2δij + ⟨ϕi, V ϕj⟩L2 .

The prompts used for pre-training are then built on observations of the form

((f1, A
−1f1), . . . , (fn, A

−1fn)).

In Figure 1: A-C, we demonstrate the empirical scaling law of the linear transformer for
learning the discrete linear system by showing the log-log plots of the ℓ2-errors as functions
of the number of pre-training tasks N , the sequence length n during training and the
sequence length m at inference. These numerical results suggest that the decaying rates of
the prediction errors are O(N− 1

2 ), O(n−2) and O(m−1) respectively, which almost agrees
with the rates predicted in Theorem 1, except in the regime where m > n; in this case,
the numerics suggest that the scaling of the population risk with respect to n is O(n−2),
whereas Theorem 1 predicts that the error is O(n−1) in this regime. This gives further
evidence towards the potential sub-optimality of our proof strategy. Figure 1:D shows that
prediction error increases as d increases indicating that ICL of the linear system becomes
harder as the d increases.

We also demonstrate the ICL-generalization error for learning the PDE solutions. Figure
2:B shows the H1-error curve between the numerical solution predicted by the ICL-model
and the ground-truth as a function of the number of bases d, while fixing the prompt-lengths
and the number of tasks. The U-shaped curve indicates the trade-off between the dimension
of the discrete problem and the amount of data.

4.2 Out-of-domain generalization

We validate the ICL-capability of pre-trained transformers for learning the linear systems
and PDEs under shifts in the distribution of both the PDE coefficients and the source term.

Task shifts on the PDE coefficients. For task shifts, we first test the behavior of pre-
trained transformers when the smoothness of the PDE coefficients differs between training
and inference, see Figure 3, Plots (A) and (B). Specifically, for the PDE (1) in one di-
mension, we consider the task distribution shifts in a and V exclusively. Throughout this
experiment, the distribution of the source term f is fixed as the centered Gaussian measure
with covariance operator (−∆ + I)−1.

We consider a as a random field sampled from a log-normal distribution, denoted
by pa(α, τ), i.e. a(x) = eb(x) where b(x) is a random field sampled from the centered
Gaussian measure with covariance operator (−∆ + τI)−α. For the potential V , we assume
that V is uniform random field sampled from a distribution, denoted by pV (a, b), that is
obtained by dividing the domain into 2d + 1 sub-intervals and in each cell independently,
the potential takes values uniformly in [a, b]. In this experiment we fix the number of basis
d = 50. The transformer model for solving the 50-dimensional linear system is trained over
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Figure 1: The figures A-D show the log-log plots for the ℓ2-error of learning the linear
system associated to the PDE discretization with respect to the number of tasks
N , the prompt length n during training, the prompt length m during inference,
and the dimension d of the linear system.

N = 5000 tasks with n = 300 pairs of (f ,u). In Figure 3: A-B, we show the generalization
errors of the pre-trained transformer under distribution shifts with respect to a with a fixed
V ∼ pV (1, 2) and with respect to V with a fixed a ∼ pa(3, 5), respectively. As for error
metrics, we consider the ℓ2-error for learning the coefficient vectors, as well as the relative
L2 and relative H1 metrics for the PDE solutions. Figure 3: A shows that the pre-trained
transformer can perform equally well on tasks on a variety of smoothness parameters α of
the log-normal field a but perform slightly worse on tasks with less regular a. We refer to
Figure 6 in the appendix for additional plots on the distribution shifts errors with a wide
range of τ and α. Figure 3: B shows the OOD-generalization errors under distribution
shifts on the range of the uniform field V . As shown in the figure, the errors increase as the
distribution shift of the range becomes stronger, but they decrease as the context length at
inference increases, as predicted by Theorem 4.

Covariate shifts. Next, we test the performance of the pre-trained transformer under
covariate distribution shifts. Specifically, we train the model to solve the PDE (1), where
the distribution on the coefficients is given by a(x) ∼ pa(3, 5) and V (x) ∼ pV (1, 2). We
assume that the source term f ∼ N(0, Cc,β) for Cc,β = (−∆ + cI)−β. During pre-training,
we set c = β = 1. Then, at inference, we consider solving the PDE (1), with the same
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Figure 2: The left plot shows the PDE solution defined by the pre-trained transformer
with the reference solution, obtained by Galerkin’s method with 2000 basis func-
tions. The right plot shows the H1-error between the solution predicted by the
transformer and reference solution with respect to the number of Galerkin basis
functions d.

distribution on the coefficients a(x), V (x), but under two types of covariate shifts on the
source term f :

1. At inference, instead of sampling f ∼ N(0, C1,1) as in pre-training, we sample f ∼
N(0, 3 · C1,1) and f ∼ N(0, 5 · C1,1). In other words, we consider distribution shifts
defined by scalar multiplication on the covariance matrix; the errors are shown in
Figure 3:C.

2. At inference, we sample f ∼ N(0, Cc,β) with (c, β) ̸= (1, 1). In other words, we
shift the parameters of the covariance of the covariance matrix which control the
smoothness of f ; the errors are shown in Figure 3:D.

Figure 3: C-D show that the pre-trained transformers are generally not robust to covariate
distribution shifts. In addition, increasing the prompt-length m does not reduce the pre-
diction errors. We refer to Figure 6 in the appendix for additional plots on the covariate
shift errors for a wider range of parameters that specify the covariance operator for f .

Testing the task diversity assumption. As another task distribution shift, we consider
pre-training a transformer to solve the equation (−∆ + V (x))u(x) = f on [0, 1] with zero
boundary conditions, where the potential function V (x) is almost surely constant and f ∼
N(0, I) is white noise3 Specifically, during pre-training, we set V (x) ≡ v0, where v0 is
sampled from the uniform distribution on [1, 2]. Then, at inference, we consider solving the
same PDE with f ∼ N(0, I) but where the potential V (x) ∼ pV (a, b) for various choices of
a and b In particular, the potential function is non-constant for the downstream tasks.

In this case, under a Galerkin discretization of the forward operator in the sine basis,
Theorem 6 implies that the pre-training task distribution is not diverse in the sense of

3. We use white noise for f because we expect the attention matrices that minimize the empirical risk to
be perturbations of the set {(P,Σ−1P−1)}, and we want to ensure that the covariance matrix Σ of the
Galerkin projection of f is well-conditioned.
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Figure 3: Columns A and B show the prediction error of the transformer under distribution
shifts on the coefficients a and V respectively. Columns C and D show the error
under the covariate shift in the source term f . The model is trained with d = 50,
n = 300 and N = 5000.

Definition 1, since the pre-training task distribution consists of diagonal matrices. More
specifically, any parameter of the form (P,Q) = (P, P−1), where P is an invertible diagonal
matrix, is a minimizer of the infinite-context risk for the pre-training task distribution.
However, the test error of such minimizers is larger when P does not commute with the
support of the task distribution, i.e., when P is not a multiple of the identity matrix. We
therefore expect the OOD-generalization error of the pre-trained transformer to be quite
sensitive to the initialization of the attention parameters.

In Figure 4, we plot the ℓ2-error for learning the linear system, the relative L2 error
for learning the PDE, and the relative H1-error for learning the PDE, of two pre-trained
transformers with different initializations. We see that the pre-trained transformer achieves
a lower OOD generalization error when the matrix P is initialized around the identity
matrix, which agrees with Part (2) of Theorem 5 which shows that P = Id is a sufficient
condition on the minimizers of the infinite-context risk to achieve OOD generalization. In
particular, Figure 4: A.3-B.3 demonstrate that when the attention matrix P is initialized
near the identity matrix, the test error (in the relative L2 metric) in solving the PDE
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Figure 4: Column A shows the prediction errors of the transformer model with the attention
parameters initialized around (P,Q) = (Id, Id). Column B shows the prediction
errors of the model with the attention parameters initialized around (P,Q) =
(D,D−1), where D is a diagonal matrix with diagonal term sampled from U(1, 5).

with non-constant coefficients is essentially the same as the error of solving the equation
with constant coefficients; in contrast, when P is initialized away from the identity matrix,
the test error becomes much larger when the PDE has non-constant coefficients. This
demonstrates the claims of Theorem 6 and highlights the importance of task diversity in
achieving OOD generalization.
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5 Conclusion

In this work, we studied the ability of a transformer characterized by a single linear self-
attention layer for learning the solution operator of a linear elliptic PDE in-context. We
characterized the generalization error in learning the associated discrete linear systems
and PDE solutions in terms of the number of pre-training task, the prompt length during
pre-training and testing, the size of the discretization, and various distribution shifts on
the PDE coefficients. We also conducted extensive numerical experiments to validate our
theory. Several questions remain open for future investigations. First, it remains to check
the validity of the centralizer condition in Theorem 5 for random matrices that arise from
the discretization of PDEs with random coefficients. Our numerical experiments empirically
confirmed the validity of such condition for elliptic PDEs with a wide range of random
coefficients, but a rigorous proof is still lacking. Second, it would be interesting to establish
analogous theory for nonlinear and time-dependent PDE problems. In these more complex
settings, it is crucial to characterize the role that depth and nonlinearity play in the ability
of transformers to approximate the PDE solution. Moreover, it is also important to quantify
the prediction error under distribution shifts in the tasks and covariates. We plan to explore
these directions and report the results in the future.
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Appendix A. Notation

Before delving into the proofs of our main results, we briefly go over all relevant notation:

• Physical dimension of PDE problem: d0

• Dimension of task matrix for ICL: d

• Task matrix for ICL: A

• Covariates for ICL: {y1, . . . ,yn}

• Prompt matrix for ICL: Z

• Empirical covariance matrix of {y1, . . . ,yn}: Yn

• Distribution on tasks: pA

• Upper bound on largest eigenvalue of A−1 over supp(pA): cA

• Covariance operator of the distribution on L2(Ω)-valued covariates: Σf

• Covariance matrix of the distribution on Rd-valued covariates: Σ

• Parameters of transformer: θ = (P,Q)

• Prediction of the transformer with parameters θ: TFθ(Z)

• Population risk for training: Rn

• Population risk for inference: Rm

• Empirical risk: Rn,N
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• ”Infinite-context” population risk: R∞

• Number of context examples per prompt during training: n

• Number of context examples per prompt during inference: m

• Number of pre-training tasks: N

Appendix B. Proofs for Subsection 3.1

In this section we prove Theorem 1, which controls the (in-distribution) generalization error
for in-context learning of linear systems in terms of the context length during training, the
context length during inference, and the number of pre-training tasks.

Proof of Theorem 1. Step 1 - error decomposition: Throughout the proof, we use
the notation θ = (P,Q) and ∥θ∥ = max(∥P∥op, ∥Q∥op). Write ℓ(A, Yn,y; θ) = ∥(PA−1YnQ−
A−1)y∥2, so that the risk functionals can be expressed as

Rn(θ) = EA,Yn,yℓ(A, Yn,y; θ), Rn,N (θ) =
1

N

N∑
i=1

ℓ(Ai, Y
(i)
n ,yi; θ).

Let us introduce an auxiliary parameters t > 0 – to be specified precisely at the end of
the proof – and define the events

At(Yn,y) =

{
∥y∥ ≤

√
Tr(Σ) + t, ∥Yn∥op ≤ ∥Σ∥op

(
1 + t +

√
d

n

)}
.

Define the truncated loss function as ℓR,t(A, Yn,y; θ) = ℓ(A, Yn,y; θ) · 1{AR,t}(Yn,y),
and let Rt

n, Rt
n,N , and Rt

m denote the associated truncated risk functionals. Further, let θ∗

denote a fixed parameter, to be specified later on. We decompose the generalization error
into a sum of approximation error, statistical error conditioned on the data being bounded,
and truncation error that leverages the tail decay of the data distribution. In more detail,
we have

Rm(θ̂) =
(
Rm(θ̂) −Rt

m(θ̂)
)

+
(
Rt

m(θ̂) −Rt
m,N (θ̂)

)
+
(
Rt

m,N (θ̂) −Rt
m,N (θ∗)

)
(15)

+
(
Rt

m,N (θ∗) −Rt
m(θ∗)

)
+
(
Rt

m(θ∗) −Rm(θ∗)
)

+ Rm(θ∗) (16)

≤ sup
∥θ∥≤M

(
Rm(θ) −Rt

m(θ)
)

+ 2 sup
∥θ∥≤M

∣∣∣Rt
m(θ) −Rt

m,N (θ)
∣∣∣ (17)

+
(
Rt

m,N (θ̂) −Rt
m,N (θ∗)

)
+ inf

∥θ∗∥≤M
R(θ∗). (18)

where we discarded the nonpositive term
(
Rt(θ∗)−R(θ∗)

)
. This decomposition mimics the

standard decomposition of generalization error into approximation and statistical errors,
with an additional term that arises from truncating the data. Similar techniques have
recently been used in Cole and Lu (2024) and Park et al. (2023). There is one more

technical detail to be addressed. We would like to say that the term
(
Rt

m,N (θ̂)−Rt
m,N (θ∗)

)
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is nonpositive with high probability, as a consequence of the minimality of θ̂. However, the
parameter θ̂ is a minimizer of the empirical risk Rn,N corresponding to the context length n
during training, as opposed to the empirical risk Rm,N corresponding to the context length
m during inference. However, it is easy to see that the following bound holds

Rt
m,N (θ̂) −Rt

m,N (θ∗) ≤ 2 sup
∥θ∥≤M

(
Rt

m,N (θ) −Rt
m(θ)

)
+ 2 sup

∥θ∥≤M

(
Rt

n,N (θ) −Rt
n(θ)

)
(19)

+ sup
∥θ∥≤M

(
Rm(θ) −Rt

m(θ)
)

+ sup
∥θ∥≤M

(
Rn(θ) −Rt

n(θ)
)

(20)

+ 2 sup
∥θ∥≤M

∣∣∣Rm(θ) −Rn(θ)
∣∣∣+
(
Rt

n,N (θ̂) + Rt
n,N (θ∗)

)
. (21)

Plugging the estimate 19 into the bound from (15) gives the final bound

Rm(θ̂) ≤ 2 sup
∥θ∥≤M

(
Rm −Rt

m

)
(θ) + sup

∥θ∥≤M

(
Rn −Rt

n

)
(θ)︸ ︷︷ ︸

data truncation error

(22)

+ 4 sup
∥θ∥≤M

(
Rt

m −Rt
m,N

)
(θ) + 2 sup

∥θ∥≤M

(
Rt

n −Rt
n,N

)
(θ)︸ ︷︷ ︸

statistical error

(23)

+ 2 sup
∥θ∥≤M

∣∣∣Rm(θ) −Rn(θ)
∣∣∣︸ ︷︷ ︸

context mismatch error

+
(
Rt

n,N (θ̂) −Rt
n,N (θ∗)

)
︸ ︷︷ ︸

≤0 w.h.p.

+ Rm(θ∗)︸ ︷︷ ︸
approx. error

(24)

= I + II + III + IV + V. (25)

The plan of action is to bound term I using the tail decay of the data and term II using
tools from empirical process theory; term III is controlled via Lemma 12; term IV can
be shown to be nonpositive with high-probability, and term V , the approximation error, is
controlled by Proposition 1.

Step 2 - bounding the truncation error: By Lemma 7 and Example 6.2 in Wain-
wright (2019), when y ∼ N(0,Σ) and Yn is the empirical covariance of iid samples from
N(0,Σ) we have

P (Ac
t(Yn,y)) ≤ exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

)
for some universal constant C > 0. Therefore, for any ∥θ∥ ≤ M , we can apply the

Cauchy-Schwarz inequality to obtain

Rm(θ) −Rt
m(θ) = E∥(PA−1YmQ−A−1)y∥2 · 1{Ac

R,t(Ym,y)}

≤
(
E∥(PA−1YmQ−A−1)y∥4

)1/2
· P
(
Ac

R,t(Ym,y)
)1/2

≤ c2A

(
M2
(
E∥Yn∥4op

)1/2
+ 1
)(

E∥y∥4
)1/2

·

√
exp

(
− mt2

2

)
+ exp

(
− t2

C∥Σ∥op

)
.
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This shows that the truncation error is quite mild, since R and t can be made large – in fact,
we will see that the generalization error depends only poly-logarithmically on R. Analogous

bounds hold for sup∥θ∥≤M

(
Rn −Rt

n

)
(θ).

Step 3 - Reduction to bounded data: Note that by the union bound,

BN,t :=

N⋂
i=1

At(Y
(i)
n ,yi)

satisfies

P(BN,R,t) ≥ 1 −N
(

exp
(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
.

Moreover, on the event BN,t, we have ℓ(·; θ) = ℓR,t(·; θ), and hence θ̂ = argmin∥θ∥≤MRt
N (θ).

Therefore, if we restrict attention to the event BN,R,t, we may assume boundedness of the
data, which is crucial to proving statistical error bounds, and the error term

IV =
(
Rt

N (θ̂) −Rt
N (θ∗)

)
is nonpositive by the minimality of Rt

N (θ̂). For the remainder of the proof, we assume that
the event BN,R,t holds, i.e., all expectations taken are conditioned on the event BN,R,t.

Step 4 - bounding the statistical error: The statistical error is measured by

sup
∥θ∥≤M

∣∣∣Rt
n(θ) −Rt

n,N (θ)
∣∣∣

= sup
∥θ∥≤M

∣∣∣EA,Yn,yℓθ(A, Yn,y) −
N∑
i=1

ℓθ(Ai, Y
(i)
n ,yi)

∣∣∣,
where ℓθ(A, Yn,y) = ∥(PA−1YnQ − A−1)y∥2. By Theorem 26.5 in Shalev-Shwartz and
Ben-David (2014), we have with probability at least 1 − δ,

sup
∥θ∥≤M

∣∣∣EA,Yn,yℓθ(A, Yn,y) −
N∑
i=1

ℓθ(Ai, Y
(i)
n ,yi)

∣∣∣ ≤ RadN ({ℓθ : ∥θ∥ ≤ M}) (26)

+ sup
∥θ∥≤M

∥ℓθ∥∞ ·
√

2 log(1/δ)

N
, (27)

where the RadN ({ℓθ : ∥θ∥ ≤ M}) is the Rademacher complexity defined by

RadN ({ℓθ : ∥θ∥ ≤ M}) = Eϵi∼unif({±1}) sup
∥θ∥≤M

1

N

N∑
i=1

ϵiℓθ(Ai, Y
(i)
n ,yi),

and the expectations over Yn and y are taken over the truncated versions of the original
distributions. Note that on the event BN,t, we have

∥(PA−1
i Y (i)

n Q−A−1
i )yi∥2 ≤ M4c2A∥Σ∥2op

(
1 + t +

√
d

n

)2 (√
Tr(Σ) + t

)2
,
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and hence the second term in Inequality (26) is bounded from above by

M4c2A∥Σ∥2op

(
1 + t +

√
d

n

)2 (√
Tr(Σ) + t

)2
·
√

2 log(1/δ)

N
.

It remains to bound the Rademacher complexity of {ℓθ : ∥θ∥ ≤ M}. Notice that by the
triangle inequality, we have

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥(PA−1
i Y (i)

n Q−A−1
i )yi∥2

= Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi

(
∥PA−1

i Y (i)
n Qyi∥2 + ∥A−1

i yi∥2 − 2⟨PA−1
i Y (i)

n Qyi, A
−1
i yi⟩

)
≤ Eϵi sup

∥θ∥≤M

1

N

N∑
i=1

ϵi∥PA−1
i Y (i)

n Qyi∥2 + 2Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi⟨PA−1
i Y (i)

n Qyi, A
−1
i yi⟩,

where the last inequality follows from the triangle inequality, noting that the term
∑N

i=1 ϵi∥A
−1
i yi∥2

is independent of θ and hence vanishes in the expectation over ϵi. Now, define the function
classes

Θ1(M) = {(A, Yn,y) 7→ ∥PA−1YnQy∥2 : ∥θ∥ ≤ M},
Θ2(M) = {(A, Yn,y) 7→ ⟨PA−1YnQy, A−1y⟩ : ∥θ∥ ≤ M}.

By Dudley’s integral theorem Dudley (1967), it holds that

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥PA−1
i Y (i)

n Qyi∥2 ≤ inf
ϵ>0

12
√

2√
N

∫ D1(M)

ϵ

√
logN

(
Θ1(M), ∥ · ∥N , τ

)
dτ,

(28)

where N
(

Θ1(M), ∥ · ∥N , τ
)

is the τ -covering number of the function class Θ1(M) with

respect to the metric induced by the empirical L2 norm ∥F∥2N = 1
N

∑N
i=1 F (Ai, Y

(i)
n ,yi)

2

and

D1(M) = sup
∥θ∥≤M

∥∥∥∥PA−1YnQy∥2
∥∥∥
N
.

Note the bound

D1(M)2 = sup
∥θ∥≤M

1

N

N∑
i=1

∥PA−1
i Y (i)

n Qyi∥4

≤ 1

N

N∑
i=1

M8c4A∥Σ∥4op
(

1 + t +

√
d

n

)4(√
Tr(Σ) + t

)4
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and hence D1(M) ≤ M4c2A∥Σ∥2op
(

1 + t +
√

d
n

)2(√
Tr(Σ) + t

)2
. Similarly, for θ1 =

(P1, Q1), θ2 = (P2, Q2), with ∥θ1∥, ∥θ2∥ ≤ M , we have

∥θ1 − θ2∥2N =
1

N

N∑
i=1

∥(P1 − P2)A
−1
i Y (i)

n (Q1 −Q2)yi∥4

≤ 16M4c2A∥Σ∥2op
(

1 + t +

√
d

n

)2
R2 · 1

N

N∑
i=1

∥(P1 − P2)A
−1
i Y (i)

n (Q1 −Q2)∥2

≤ M4c4A∥Σ∥4op
(

1 + t +

√
d

n

)4(√
Tr(Σ) + t

)4
· max

(
∥P1 − P2∥2op, ∥Q1 −Q2∥2op

)
.

This shows that the metric induced by ∥ · ∥N is dominated by the metric d(θ1, θ2) =

max
(
∥P1−P2∥op, ∥Q1−Q2∥op

)
, up to a factor of M2c2A∥Σ∥2op

(
1+t+

√
d
n

)2(√
Tr(Σ)+t

)2
.

The covering number of the set {∥θ∥ ≤ M} in the metric d(·, ·) is well-known, from which
we conclude that

logN
(

Θ1(M), ∥ · ∥N , τ
)
≤ 2d2 log

(
M2c2A∥Σ∥2op

(
1 +

2

τ

))
.

Optimizing over the choice of ϵ in Equation (28), this proves that

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi∥PA−1
i Y (i)

n Qyi∥2 (29)

= O
(d2M4c2A∥Σ∥2op

(
1 + t +

√
d
n

)2(√
Tr(Σ) + t

)2
√
N

)
, (30)

where O(·) omits factors that are logarithmic in N . An analogous argument proves a bound
of the same order on the quantity

Eϵi sup
∥θ∥≤M

1

N

N∑
i=1

ϵi⟨PA−1
i Y (i)

n Qyi, A
−1
i yi⟩,

which in turn bounds the Rademacher complexity RadN ({ℓθ : ∥θ∥ ≤ M}) by the right-hand
side of Equation (29). Combining this Rademacher complexity estimate with the overall
statistical error bound (26), we conclude that

sup
∥θ∥≤M

∣∣∣Rt
n(θ) −Rt

n,N (θ)
∣∣∣

= O

(d2 +
√

2 log(1/δ))M4c2A∥Σ∥2op
(

1 + t +
√

d
n

)2(√
Tr(Σ) + t

)2
√
N


holds with probability at least

1 − δ −N
(

exp
(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
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by a union bound. The same argument proves in analogous bound on the statistical error
term

sup
∥θ∥≤M

∣∣∣Rt
m(θ) −Rt

m,N (θ)
∣∣∣,

where n is replaced by m in the bound of Equation (29).

Step 5: Bounding the context mismatch error The context mismatch error satis-
fies the bound

sup
∥θ∥≤M

∣∣∣Rm(θ) −Rn(θ)
∣∣∣ ≤ 2M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣.
The proof of this fact is deferred to Lemma 12.

Step 6 - Approximation error: It remains to bound the approximation error term
R(θ∗). From Proposition 1, we have

Rm(θ∗) ≤
c2ATr(Σ)

m
+

c6A∥Σ−1∥2op∥Σ∥6opTr(Σ)

n2
+ O

( 1

mn

)
for an appropriate choice of θ∗, where C1 and C2 depend only on the task and data
distributions. Moreover, upon inspection of the proof of Proposition 1, we see that the
θ∗ = (Id, Qn) that attains this error is an O(1/n)-perturbation of the pair (Id,Σ

−1). Thus,
if n is sufficiently large, we are guaranteed that θ∗ belongs in the set {∥θ∥ ≤ M} for
M ≥ 2 max(1, ∥Σ−1∥op).

Step 7 - Balancing error terms: Putting everything together and applying the error
decomposition from step 1, we have shown that 4

Rm(θ̂) ≲ c2A

(
M2E[∥Yn∥4op]1/2 + 1

)
E[∥y∥4]1/2 ·

√
exp

(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

)

+
d2M4c2A∥Σ∥2op

(
1 + t +

√
d
n

)2(√
Tr(Σ) + t

)2
√
N

+
2Tr(E[A−2]Σ)

n
,

with probability at least

1 −N
(

exp
(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
.

We choose t and δ such that

δ +
(

exp
(
− nt2

2

)
+ exp

(
− t2

C∥Σ∥op

))
=

1

poly(N)
.

4. For simplicity, we have omitted the terms from the truncation and statistical errors which depend on m,
as they do not change the order of the final bound with respect to m, n, or N .
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It is clear that for this to be satisfied, we can take both t and δ to be logarithmic in N . For
such t and δ, we have, omitting universal constants and log(N) factors, that

Rm(θ̂) ≲
c2ATr(Σ)

m
+

c6A∥Σ−1∥2op∥Σ∥6opTr(Σ)

n2
+

c2A

(
M2E[∥Yn∥4op]1/2 + 1

)
E[∥y∥4]1/2

N

+
d2M4c2A∥Σ∥2op√

N
+ M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣, w.p. ≥ 1 − 1

poly(N)
.

We omit the third term from the final bound, since, asymptotically, it is dominated by the
fourth term.

We now present an important preliminary result, which gives an upper bound on infθ Rm(θ),
the minimal risk achieved by a transformer in the infinite-task limit. To motivate our result,
we first observe that for θ = (P,Q), the output of the transformer TFθ at a prompt Z of
length m corresponding to a task matrix A is

TFθ(Z) = P
( 1

m

m∑
i=1

xiyi
T
)
Qy.

Since xi = A−1yi, we can equivalently write the prediction of the transformer as

TFθ(Z) = PA−1YmQy,

where Ym = 1
m

∑m
i=1 yiyi

T is the empirical covariance associated to the context vectors
{y1, . . . ,ym}. Note that if we set P = Id and Q = Σ−1 to be the inverse of the data
covariance matrix, then for sufficiently large m we have TFθ(Z) ≈ A−1y. This suggests
that the transformer can learn to solve linear systems in a way that is extremely robust to
shifts in the distribution on the task matrices. We note that similar choices of attention
matrices have been studied in the linear regression setting (Ahn et al. (2024), Zhang et al.
(2023a)). Our result essentially employs the parameterization P = Idd and Q = Σ−1, but
with an additional bias term to account for the fact that the sequence length n during
training may differ from the sequence length m during inference.

Before stating our result precisely, let us define B := EA∼pA [A−2]. In addition, recall
the weighted trace of a matrix K with respect to the covariance Σ = WΛW T defined by

TrΣ(K) :=

d∑
i=1

σ2
i ⟨Kφi, φi⟩,

where σ2
1, . . . , σ

2
d are the eigenvalues of Σ and φi = Wei are the eigenvectors. Note that the

weighted trace is independent of the choice of eigenbasis.

Proposition 1. With

Qn = B
(n + 1

n
ΣB +

TrΣ(B)

n
Σ
)−1

,

we have

Rm(Id, Qn) ≤
(c2A + d)Tr(Σ)

m
+

c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(B)

)2
Tr(Σ)

n2
+ O

( 1

mn

)
.
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Proof By Lemma 8, we can write Qn = Σ−1 + 1
nK, where

∥K∥op ≤ ∥Σ−1∥op∥Σ∥op
(

1 + TrΣ(B)
)
C2
A. (31)

It follows that

Rm(Id, Qn) = EA,Ym [Tr(A−1(YmQn − Id)Σ(QnYm − Id)A−1)]

= EYm [Tr(B(YmQn − Id)Σ(QT
nYm − Id))], B := E[A−2]

= Tr(BΣ) + EYm [Tr(BYmQnΣQT
nYm)] − Tr(BΣQnΣ) − Tr(BΣQT

nΣ)

= Tr(BΣ) + Tr(BΣQnΣQnΣ) − Tr(BΣQnΣ) − Tr(BΣQT
nΣ)

+
1

m

(
Tr
(
BΣQnΣQT

nΣ
)

+ TrΣ(QnΣQT
n )Tr(BΣ)

)
where the last equality follows from Lemma 4. Writing Qn = Σ−1 + 1

nK and doing some
simplifying algebra, we find that

Rm(Id, Qn) =
1

m

(
Tr((B + TrΣ(Σ−1Id)Σ)

)
+

1

n2
Tr
(
BΣKΣKTΣ

)
+ O

( 1

mn

)
=

1

m

(
Tr((B + dId)Σ)

)
+

1

n2
Tr
(
BΣKΣKTΣ

)
+ O

( 1

mn

)
,

where we used the fact that TrΣ(Σ−1) = d. Using the bound on the norm of K stated in
Equation (31), and the fact that ∥B∥op ≤ c2A, we have

Tr(BΣKΣKTΣ) ≤ c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(B)

)2
Tr(Σ).

Similarly, the bound

Tr((B + dId)Σ) ≤ (c2A + d)Tr(Σ)

holds. We conclude that

Rm(Id, Qn) ≤
(c2A + d)Tr(Σ)

m
+

c2AC
4
A∥Σ∥2op∥Σ−1∥2op

(
1 + TrΣ(B)

)2
Tr(Σ)

n2
+ O

( 1

mn

)
.

To justify our ansatz for upper bounding the approximation error (i.e., how the matrix
Qn in Proposition 1 was chosen), we introduce the following lemma.

Lemma 1. The minimizer of the functional Q 7→ Rn(Id, Q) is given by

Qn = B
(n + 1

n
ΣB +

TrΣ(B)

n
Σ
)−1

,

where B = E[A−2] and TrΣ(·) denotes the Σ-weighted trace.
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Proof Let us recall the definition of the population risk functional

R(Id, Q) = E
[∥∥∥A−1

(
YnQ− I

)
y
∥∥∥2],

where Yn := 1
n

∑n
i=1 yiyi

T denotes the empirical covariance of {yi}ni=1. Note that, con-

ditioned on A and {yi}ni=1, A−1
(
YnQ − I

)
y is a centered Gaussian random vector with

covariance A−1
(
YnQ − I

)
Σ
(
QYn − I

)
A−1. In addition, since the task and data distribu-

tions are independent, we can replace the task by its expectation. It therefore holds that

E
[∥∥∥A−1

(
YnQ− I

)
y
∥∥∥2] = EYn

[
Tr
(
B
(
YnQ− I

)
Σ
(
QTYn − I

))]
.

Since this is a convex functional of Q, it suffices to characterize the critical point. Taking
the derivative, we find that the critical point equation for the risk it

∇QR(Id, Q) = EYn [ΣQTYnBYn + YnBYnQΣ] − 2ΣBΣ = 0.

Using Lemma 4 to compute the expectation, we further rewrite the critical point equation
as (n + 1

n
BΣ +

TrΣ(B)

n
Σ
)
Q + QT

(n + 1

n
ΣB +

Tr(Σ)

n
Σ
)

= 2B.

This equation is solved by the matrix Qn defined in the statement of the Lemma.

Appendix C. Proofs and additional results for Subsection 3.2

Proof of Theorem 2. By the triangle inequality, we have

E
[
∥u− ûd∥2H1(Ω)

]
≤ 2E

[
∥u− ud∥2H1(Ω)

]
+ 2E

[
∥ud − ûd∥2H1(Ω)

]
.

Notice that E
[
∥ud− ûd∥2L2(Ω)

]
= Rm(θ̂), where θ̂ is as defined in the statement of Theorem

1. The desired estimate therefore follows, provided we can bound E
[
∥ud − ûd∥2H1(Ω)

]
by a

multiple of E
[
∥ud − ûd∥2L2(Ω)

]
. For any g =

∑d
k=1 ckϕk ∈ span{ϕk}dk=1, we have

∥g∥2H1(Ω) = ∥g∥2L2(Ω) +
∥∥∥ d∑

k=1

ckϕ
′
k(x)

∥∥∥2
L2(Ω)

= cT (Φ + Φ′)c

= c̃(Id + Φ−1/2Φ′Φ−1/2)c̃

≤ (1 + λmax(Φ−1/2Φ′Φ−1/2))∥c̃∥2

= (1 + λmax(Φ−1/2Φ′Φ−1/2))∥g∥2L2(Ω),

where c̃ = Φc We conclude that

E
[
∥ud−ûd∥2H1(Ω)

]
≤ (1+λmax(Φ−1/2Φ′Φ−1/2)·E

[
∥ud−ûd∥2L2(Ω)

]
= 2 max

1≤k≤d
∥ϕk∥2H1(Ω)·Rm(θ̂),
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and therefore that

E
[
∥u− ûd∥2H1(Ω)

]
≲ E

[
∥u− ud∥2H1(Ω)

]
+ (1 + λmax(Φ−1/2Φ′Φ−1/2) · Rm(θ̂).

Appendix D. Proofs and additional results for Subsection 3.3

Proof of Theorem 3. Recall that θ̂ ∈ argmin∥θ∥ ≤MRn,N (θ) is the ERM. Let θ∗ = (P∗, Q∗)

denote a projection of θ̂ onto the set M∞ and let θ′∗ = (P ′
∗, Q

′
∗) denote a projection of θ̂

onto M∞. Let ϵ1 = ∥θ̂ − θ∗∥ and ϵ2 = ∥θ̂ − θ′∗∥. Then we have the error decomposition

R′
m(θ̂) = Rm(θ̂) + (R′

m(θ̂) −R′
m(θ′∗)) + (Rm(θ′∗) −Rm(θ∗)) + (Rm(θ∗) −Rm(θ̂))

Taking the infimum over all projections θ∗ and θ′∗ of θ̂ onto M∞(pA) and M∞(p′A), followed

by the supremum over θ̂ in {∥θ∥ ≤ M}, we arrive at the bound

R′
m(θ̂) ≤ Rm(θ̂) + sup

∥θ̂∥≤M

inf
θ∗,θ′∗

∣∣Rm(θ∗) −R′
m(θ′∗)

∣∣+ sup
∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ2

|Rm(θ1) −Rm(θ2)|

+ sup
∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ1

∣∣R′
m(θ1) −R′

m(θ2)
∣∣ .

The second and third terms can be bounded using a simple Lipschitz continuity estimate.
Note that for m sufficiently large and θ = (P,Q) with ∥θ∥ ≤ M , we have

∥(PA−1YmQ−A−1)Σ1/2∥2F ≲ c2A(1 + ∥Σ∥opM2)2Tr(Σ)

for any A ∈ supp(pA). It follows that

Rm(θ) = EA∼pA,Ym [∥(PA−1YmQ−A−1)Σ1/2∥2F ]

is O
(
c2A(1 + ∥Σ∥opM2)2Tr(Σ)

)
-Lipschitz on {∥θ∥ ≤ M}. We therefore have

sup
∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ1

|Rm(θ1) −Rm(θ2)| ≲
(
c2A(1 + ∥Σ∥opM2)2Tr(Σ)

)
ϵ21.

An analogous bound holds for sup∥θ1∥,∥θ2∥≤M,∥θ1−θ2∥≤ϵ2 |R
′
m(θ1) −R′

m(θ2)|, since the test
distribution p′A is also assumed to satisfy Assumption 1. To bound the term |Rm(θ∗) −R′

m(θ′∗)|,
we recall by Lemma 5 that for any θ = (P,Q),

Rm(θ) = R∞(θ)+
1

m
EA∼pA

[
Tr(PA−1ΣQΣQTΣA−1P T ) + TrΣ(QΣQT )Tr(PA−1ΣA−1P T )

]
and

R′
m(θ) = R′

∞(θ) +
1

m
EA∼p′A

[
Tr(P (A′)−1ΣQΣQTΣ(A′)−1P T )

+ TrΣ(QΣQT )Tr(P (A′)−1Σ(A′)−1P T )
]
.
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In particular, since θ∗ ∈ argminθR∞(θ) and θ′∗ ∈ argminθR′
∞(θ), and each functional

achieves 0 as its minimum value, we have∣∣Rm(θ∗) −R′
m(θ′∗)

∣∣ ≤ 1

m

∣∣∣EA∼pA

[
Tr(P∗A

−1ΣQ∗ΣQT
∗ ΣA−1P T

∗ )

+ TrΣ(Q∗ΣQT
∗ )Tr(P∗A

−1ΣA−1P T
∗ )
]

− EA∼p′A

[
Tr(P ′

∗(A
′)−1ΣQ′

∗Σ(Q′
∗)

TΣ(A′)−1(P ′
∗)

T )

+ TrΣ(Q′
∗Σ(Q′

∗)
T )Tr(P ′

∗(A
′)−1Σ(A′)−1(P ′

∗)
T )
]∣∣∣

=:
1

m

∣∣∣EA∼pA [f(A; θ∗)] − EA′∼p′A
[f(A′; θ′∗)]

∣∣∣ .
It follows that

sup
∥θ̂∥≤M

inf
θ∗,θ′∗

∣∣Rm(θ∗) −R′
m(θ′∗)

∣∣ ≤ 1

m
sup

∥θ̂∥≤M

inf
θ∗,θ′∗

∣∣∣EA∼pA [f(A; θ∗)] − EA′∼p′A
[f(A′; θ′∗)]

∣∣∣
=:

1

m
d(pA, p

′
A),

where, again, the infimum is taken over all θ∗ ∈ argminθ∈M∞(pA)∥θ − θ̂∥2 and θ′∗ ∈
argminθ′∈M∞(p′A)∥θ′ − θ̂∥2. Combining the estimates for each individual term in the er-
ror decomposition, we obtain the final bound in the statement of Theorem 3. The fact that
the bound we have obtained tends to zero as the sample size (m,n,N) → ∞ follows from
examination of each term in the estimate: the in-domain generalization error Rm(θ̂) tends

to zero in probability by Theorem 1, the term
d(pA,p′A)

m is deterministic and tends to zero

as m → ∞, and dist(θ̂,M∞) tends to zero as N and n tend to infinity, respectively, by
Proposition 3.

The discrepancy d(pA, p
′
A) defined in the proof of Theorem 4 may not be a metric, but,

crucially, it satisfies d(pA, pA) = 0. This ensures that the error term due to distribution
shift in Theorem 4 vanishes when the pre-training and downstream tasks coincide. We give
a simple proof of this fact below.

Lemma 2. Let

d(pA, p
′
A) = sup

∥θ̂∥≤M

inf
θ∗,θ′∗

∣∣∣EA∼pA [f(A; θ∗)] − EA′∼p′A
[f(A′; θ′∗)]

∣∣∣,
where the infimum is taken over all projections θ∗ and θ′∗ of θ̂ onto the sets M∞(pA) and
M∞(p′A) respectively, and

f(A; θ) = Tr(PA−1ΣQΣQTΣA−1P T ) + TrΣ(QΣQT )Tr(PA−1ΣA−1P T ), θ = (P,Q).

Then d(pA, p
′
A) = 0 if pA = p′A.

Proof Note that we can upper bound d(pA, pA) by

d(pA, pA) ≤ sup
∥θ̂∥≤M

inf
θ∗

∣∣∣EA∼pA [f(A; θ∗)] − EA∼pA [f(A; θ∗)]
∣∣∣,
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where the infimum is now taken only over all projections θ∗ of θ̂ onto M∞(pA). Clearly we
have ∣∣∣EA∼pA [f(A; θ∗)] − EA∼pA [f(A; θ∗)]

∣∣∣ = 0

for all θ∗, hence d(pA, pA) ≤ 0. Since d(pA, pA) is clearly non-negative, we conclude that
d(pA, pA) = 0.

The next proposition gives a characterization of the minimizers of the functionals R∞
and R′

∞. Apart from being interesting in its own right, it is a key tool to prove Theorem 5.

Proposition 2. Fix a task distribution pA satisfying Assumption 1. Then θ = (P,Q) is a
minimizer of R∞ if and only if P commutes with all elements of the set {A1A

−1
2 : A1, A2 ∈

supp(pA)} and Q is given by Q = Σ−1A0P
−1A−1

0 for any A0 ∈ supp(pA).

Proof Recall that

R∞(θ) = EA∼pA [∥(PA−1ΣQ−A−1)Σ1/2∥2F ], θ = (P,Q),

and M∞(pA) = argminθR∞(θ). Let us first prove that for any pA satisfying Assump-
tion 1, θ ∈ M∞(pA) if and only if PA−1ΣQ = A−1 for all A ∈ supp(pA). Let us first
observe that the minimum value of R∞ is 0 - this is attained, for instance, at P = Id
and Q = Σ−1. It is clear that if the equality PA−1ΣQ = A−1 holds over the support
of pA, then EA∼pA [∥(PA−1ΣQ − A−1)Σ1/2∥2F ] = 0. Conversely, suppose (P,Q) satisfies
EA∼pA [∥(PA−1ΣQ − A−1)Σ1/2∥2F ] = 0. Fixing A0 ∈ supp(pA) and ϵ > 0, let pA,ϵ(A0) de-
note the normalized restriction of pA to the ball of radius ϵ centered about A0. Then the
equality EA∼pA [∥(PA−1ΣQ−A−1)Σ1/2∥2F ] = 0 implies that

EA∼pA,ϵ(A0)[∥(PA−1ΣQ−A−1)Σ1/2∥2F ] = 0

for each ϵ > 0. Since pA,ϵ(A0) converges weakly to the Dirac measure centered at A0, we
have that ∥(PA−1

0 ΣQ − A−1
0 )Σ1/2∥2F = 0, and hence that PA−1

0 ΣQ = A−1
0 . As A0 was

arbitrary, this concludes the first part of the proof.
Now, suppose θ = (P,Q) is a minimizer of R∞. By the previous argument, this is

equivalent to the system of equations PA−1ΣQ = A−1 holding simultaneously for all
A ∈ supp(pA). In particular, for any fixed A0 ∈ supp(pA), the equation PA−1

0 ΣQ = A−1
0 can

be solved for Q, yielding Q = Σ−1A0P
−1A−1

0 . Since the matrix Q is constant, this implies
that the function A 7→ AP−1A−1 is a constant on the support of pA. We have therefore
shown that the minimizers of R∞ can be completely characterized as {(P,Σ−1A0P

−1A−1
0 ) :

P ∈ Rd×d}, where A0 is any element of supp(pA). In addition, the fact that the function
A 7→ AP−1A−1 is constant on the support of pA implies that P commutes with all products
of the form {A1A

−1
2 : A1, A2 ∈ supp(pA)}.

We now give a proof of Theorem 5.

Proof of Theorem 5. 1) This is a direct corollary of Proposition 2.
2) Let θ∗ = (P∗, Q∗) be a minimizer of R∞. Then Proposition 2 implies that P∗ ∈

C(S(pA)). Since the centralizer of S(pA) is trivial by assumption, this implies that P∗ = cId

37



Cole, Lu, O’Niell, and Zhang

for some c ∈ R\{0}. Using the characterization of minimizers of R∞ derived in Proposition
2, we have that Q∗ solves the equation cA−1ΣQ∗ = A−1 for all A ∈ supp(pA), and therefore
Q = c−1Σ−1.

Proof of Corollary 1. By combining Theorems 4 and 5, we immediately derive the bound
on the out-of-distribution generalization error

R′
m(θ̂) = Rm(θ̂) +

d(pA, p
′
A)

m
+ dist(θ̂,M∞(pA))2,

where the distance d(pA, p
′
A) is given by

d(pA, p
′
A) =

∣∣Rm(θ∗) −R′
m(θ∗)

∣∣ ,
and θ∗ is defined as the projection of θ̂ onto the M∞(pA). Under our assumptions, we have
M∞(pA) = {(cId, c

−1Σ−1) : c ∈ R\{0}}, and applying Lemma 6 to compute Rm(θ∗) and
R′

m(θ∗), we obtain

d(pA, p
′
A) = (d + 1)

∣∣∣Tr
((

EA∼pA [A−2] − EA′∼p′A
[(A′)−2]

)
Σ
)∣∣∣ .

Before proving Theorem 6, we first introduce a preliminary lemma.

Lemma 3. Let pA be a task distribution satisfying Assumption 1. Suppose that the support
of pA is simultaneously diagonalizable with a common orthogonal diagonalizing matrix U ∈
Rd×d. Assume in addition that there exist A1, A2 ∈ supp(pA) such that A1A

−1
2 has distinct

eigenvalues. Then M∞(pA) = ΘU,Σ, where

ΘU,Σ :=
{

(P,Σ−1P−1) : P = UDUT , D = diag(λ1, . . . , λd)
}
.

Proof By Proposition 2, a parameter (P,Q) belongs to M∞(pA) if and only if P com-
mutes with all products of the form {AiA

−1
j : Ai, Aj ∈ supp(pA)}, in which case Q is

defined by Q = Σ−1A0P
−1A−1

0 for any A0 ∈ supp(pA). Let A1, A2 ∈ supp(pA) be as defined
in the statement of the lemma. Since P and A1A

−1
2 are commuting diagonalizing matri-

ces and A1A
−1
2 has no repeated eigenvalues (Strang (2022)), they must be simultaneously

diagonalizable. This implies that P is diagonal in the basis U , and hence Q is given by
Q = Σ−1A0P

−1A−1
0 = Σ−1P−1.

Proof of Theorem 6. For 1), if the support of p′A is also simultaneously diagonalizable
with respect to U , then Lemma 3 implies that M∞(pA) = M∞(p′A) = ΘU,Σ, where ΘU,Σ,
where ΘU,Σ is as defined in the statement of Lemma 3. This proves that if the support of
p′A is also simultaneously diagonalizable with respect to U , then pA is diverse.

For 2), we must find a minimizer of R∞ which is not a minimizer of R′
∞. Consider

the parameter θ = (P,Σ−1P−1), where P = UDUT for D an invertible diagonal matrix
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with no repeated entries. By Lemma 3, θ is a minimizer of R∞. Let A′
3, A

′
4 ∈ supp(p′A)

be such that A′
3(A

′
4)

−1 is not diagonalizable with respect to U . Since A′
3(A

′
4)

−1 and P are
not simultaneously diagonalizable and P has no repeated eigenvalues (Strang (2022)), P
does not commute with A′

3(A
′
4)

−1. By Proposition 2, θ is therefore not a minimizer of R′
∞,

completing the proof.

Appendix E. Proofs for Subsection 3.4

We begin by stating a more formal version of Theorem 7 where the constants are more
explicit.

Theorem 8. Let Σ = WΛW T and Σ̃ = W̃ Λ̃W̃ T be two covariance matrices, let (P̂ , Q̂)
be minimizers of the empirical risk when the in-context examples follow the distribution

N(0,Σ) and take M > 0 such that max
(
∥P̂∥F , ∥Q̂∥F

)
≤ M. Then

RΣ̃
m(P̂ , Q̂) ≲ RΣ

m(P̂ , Q̂) + c2AM
4 max(∥Σ∥op, ∥Σ̃∥op)2∥Σ − Σ̃∥op

+
1

m
· c2AM4 max(∥Σ∥op, ∥Σ̃∥op)2Tr(Σ̃)

(
∥Σ − Σ̃∥op + ∥Λ − Λ̃∥1 + ∥W − W̃∥op

)
.

Theorem 7 then follows from Theorem 8 by bounding ∥Λ − Λ̃∥1 ≲ ∥Σ − Σ̃∥op, merging
the term

1

m
· c2AM4 max(∥Σ∥op, ∥Σ̃∥op)2Tr(Σ̃)

(
∥Σ − Σ̃∥op + ∥Λ − Λ̃∥1

)
into the second term, and omitting the constant factors.

Proof of Theorem 8. By the triangle inequality, we have

RΣ̃
m(P̂ , Q̂) ≤ RΣ

m(P̂ , Q̂) + sup
∥P∥op,∥Q∥op≤M

∣∣∣RΣ̃
m(P,Q) −RΣ

m(P,Q)
∣∣∣. (32)

It therefore suffices to bound the second term. From the proof of Proposition 1, we know
that

RΣ
m(P,Q) = EA

[m + 1

m
Tr(PA−1ΣQΣQTΣA−1P T +

TrΣ(QΣQT )

m
Tr(PA−1ΣA−1P T )

]
(33)

+ EA

[
Tr(A−1ΣA−1) − Tr(PA−1ΣQΣA−1) − Tr(A−1ΣQTΣA−1P T )

]
. (34)

Similarly, we have

RΣ̃
m(P,Q) = EA

[m + 1

m
Tr(PA−1Σ̃QΣ̃QT Σ̃A−1P T +

TrΣ̃(QΣ̃QT )

m
Tr(PA−1Σ̃A−1P T )

]
(35)

+ EA

[
Tr(A−1Σ̃A−1) − Tr(PA−1Σ̃QΣ̃A−1) − Tr(A−1Σ̃QT Σ̃A−1P T )

]
. (36)
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We seek to bound the difference
∣∣∣RΣ

m(θ) − RΣ̃
m(θ)

∣∣∣ by bounding the respective differences

of each term appearing in the expressions for RΣ
m and RΣ̃

m. By a simple applications of
Hölder’s inequality and the triangle inequality, we see that

EATr(PA−1(ΣQΣ − Σ̃QΣ̃)A−1) ≤ EA∥A−1PA−1∥F ∥ΣQΣ − Σ̃QΣ̃∥F

≤ c2A∥P∥F
(
∥(Σ − Σ̃)QΣ∥F + ∥Σ̃Q(Σ − Σ̃)∥F

)
≤ c2A∥P∥F

(
∥QΣ∥F + ∥Σ̃Q∥F

)
∥Σ − Σ̃∥op

≤ 2c2A∥P∥F ∥Qf max(∥Σ∥op, ∥Σ̃∥op)∥Σ − Σ̃∥op
= 2c2AM

2 max(∥Σ∥op, ∥Σ̃∥op)∥Σ − Σ̃∥op.

Analogous arguments can be used to prove the bounds

EATr(A−1(ΣQTΣ − Σ̃QT Σ̃)A−1P T ) ≤ 2c2AM
2 max(∥Σ∥op, ∥Σ̃∥op)∥Σ − Σ̃∥op,

EATr(A−1(Σ − Σ̃)A−1) ≤ c2A∥Σ − Σ̃∥op
and

EATr(PA−1(ΣQΣQTΣ − Σ̃QΣ̃QT Σ̃)A−1P T ) ≤ c2AM
4 max(∥Σ∥op, ∥Σ̃∥op)2∥Σ − Σ̃∥op.

Notice that the term above dominates each of the preceding three terms. For the final term,
we have

TrΣ(QΣQT )Tr(PA−1ΣA−1P T ) − TrΣ̃(QΣ̃QT )Tr(PA−1Σ̃A−1P T )

≤
∣∣∣TrΣ(QΣQT ) − TrΣ̃(QΣ̃QT )

∣∣∣∣∣∣Tr(PA−1ΣA−1P T )
∣∣∣

+
∣∣∣TrΣ̃(QΣ̃QT )

∣∣∣∣∣∣Tr(PA−1(Σ − Σ̃)A−1P T )
∣∣∣.

By Lemma 10 and Holder’s inequality, the second term satisfies∣∣∣TrΣ̃(QΣ̃QT )
∣∣∣∣∣∣Tr(PA−1(Σ − Σ̃)A−1P T )

∣∣∣ ≤ c2AM
4∥Σ̃∥opTr(Σ̃) · ∥Σ − Σ̃∥op.

Similarly, using Lemma 11, the first term satisfies∣∣∣TrΣ(QΣQT ) − TrΣ̃(QΣ̃QT )
∣∣∣∣∣∣Tr(PA−1ΣA−1P T )

∣∣∣
≤ c2AM

4∥Σ∥op
(

Tr(Σ̃)∥Σ − Σ̃∥op + ∥Σ∥op
(
∥Λ − Λ̃∥1 + 2Tr(Σ̃)∥W − W̃∥op

))
Combining the estimates for each individual term and taking the supremum over the all
P,Q with Frobenius norm bounded by M yields the final bound

RΣ̃
m(P̂ , Q̂) ≲ RΣ

m(P̂ , Q̂) + c2AM
4 max(∥Σ∥op, ∥Σ̃∥op)2∥Σ − Σ̃∥op

+
1

m
· c2AM4 max(∥Σ∥op, ∥Σ̃∥op)2Tr(Σ̃)

(
∥Σ − Σ̃∥op + ∥Λ − Λ̃∥1 + ∥W − W̃∥op

)
.
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Appendix F. Discussion on dependence of constants on dimension

It is important to consider the dependence of the constants appearing in Theorem 1 on the
dimension of the linear system. Recall that in the PDE setting, the dimension d corresponds
to the number of basis functions used in Galerkin’s method, and hence the true PDE solution
is only recovered in the limit d → ∞.

Since the solution operator of the PDE is a bounded operator on L2(Ω), the norm of the
inverse A−1 is uniformly bounded in d, and hence the constant cA = supA∈supp(pA) ∥A−1∥op
is dimension-independent. Similarly, constants involving the norm of the covariance Σ are
dimension-independent, since we always have

∥Σ∥op ≤ ∥Σf∥op, Tr(Σ) ≤ Tr(Σf ),

where Σf is the covariance of the source f on the infinite-dimensional space. However, the
constant CA = supA∈supp(pA) ∥A∥op is unbounded as d → ∞, because the limiting forward

operator is unbounded on L2(Ω). Similarly, the constant ∥Σ−1∥op is unbounded as d → ∞.
The precise growth of these constants depends on the distributions on the coefficients of
the PDE; as a prototypical example, we have ∥A∥op = O(d2) for the Laplace operator
under FEM discretization in 1D. It is thus important to consider the trade-offs between
discretization and generalization error with respect to the dimension d; this is explored in
Example 1 for the specific case of FEM discretization.

Appendix G. Auxiliary lemmas

We make frequent use of the following lemma to compute expectations of products of
empirical covariance matrices.

Lemma 4. Let {y1, . . . , yn} ⊆ Rd be iid samples from N(0,Σ) and assume that Σ =
WΛW T , where Λ = diag(σ2

1, . . . , σ
2
d). Let Yn = 1

n

∑n
k=1 yky

T
k associated to {y1, . . . , yn} and

let K ∈ Rd×d denote a deterministic symmetric matrix. Then

E[YnKYn] =
n + 1

n
ΣKΣ +

TrΣ(K)

n
Σ,

where TrΣ(K) :=
∑d

ℓ=1 σ
2
ℓ ⟨Kφℓ, φℓ⟩ and φℓ := Weℓ denote the eigenvectors of Σ.

Proof Let us first consider the case that W = Id, so that the covariance is diagonal with
entries σ2

1, . . . , σ
2
d. Observe that

E[(YnKYn)ij ] = E

[
d∑

ℓ,ℓ′=1

1

n2

(∑
k ̸=k′

⟨yk, ei⟩⟨yk′ , ej⟩⟨yk, eℓ⟩⟨yk′ , eℓ′ , ⟩Kℓ,ℓ′

+

n∑
k=1

⟨ei, yk⟩⟨ej , yk⟩⟨eℓ, yk⟩⟨eℓ′ , yk⟩Kℓ,ℓ′

)]
.

When i ̸= j, we compute that

d∑
ℓ,ℓ′=1

E
[
⟨yk, ei⟩⟨yk′ , ej⟩⟨yk, eℓ⟩⟨yk′ , eℓ′ , ⟩Kℓ,ℓ′

]
= σ2

i σ
2
jKi,j
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and

d∑
ℓ,ℓ′=1

E
[
⟨yk, ei⟩⟨yk, ej⟩⟨yk, eℓ⟩⟨yk, eℓ′ , ⟩Kℓ,ℓ′

]
= 2σ2

i σ
2
jKi,j .

On the other hand, for i = j, we have

d∑
ℓ,ℓ′=1

E
[
⟨yk, ei⟩⟨yk′ , ei⟩⟨yk, eℓ⟩⟨yk′ , eℓ′ , ⟩Kℓ,ℓ′

]
= σ4

iKi,i

and

d∑
ℓ,ℓ′=1

E
[
⟨yk, ei⟩2⟨yk, eℓ⟩⟨yk, eℓ′ , ⟩Kℓ,ℓ′

]
= 2σ4

iKi,i + σ2
i

d∑
ℓ=1

σ2
ℓKℓ,ℓ.

Putting everything together, we have shown that

E(YnKYn)i,j ] =
n + 1

n
σ2
i σ

2
jKi,j + δij ·

TrΣ(K)

n
σ2
i .

The result then follows since (ΣKΣ)i,j = σ2
i σ

2
jKi,j . For general covariance Σ = WΛW T ,

we have YnKYn = W (ZnW
TKWZn)W T , where Zn is the empirical covariance matrix

associated to {W T y1, . . . ,W
T yn}. Noting that W T y ∼ N(0,Λ) for y ∼ N(0,Σ), we can

apply the above result to W TKW :

E[YnKYn] = WE[Zn(W TKW )Zn]W T

= W
(n + 1

n
ΛW TKWΛ +

TrΣ(K)

n
Λ
)
W T

=
n + 1

n
ΣKΣ +

TrΣ(K)

n
Σ.

We quickly put Lemma 4 to work to give a tractable expression for the population risk.

Lemma 5. For θ = (P,Q), we have

Rn(θ) := EA,Yn [∥(PA−1YnQ−A−1)Σ1/2∥2F ] = EA[∥(PA−1ΣQ−A−1)Σ1/2∥2F ]

+
1

n
EA

[
Tr(PA−1ΣQΣQTΣA−1P T ) + TrΣ(QΣQT )Tr(PA−1ΣA−1P T )

]
.
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Proof This follows from a direct computation of the expectation with respect to Yn :

EA,Yn [∥(PA−1YnQ−A−1)Σ1/2∥2F ] = EA,Yn [Tr((PA−1YnQ−A−1)Σ(QTYnA
−1P T −A−1))]

= EA,Yn [Tr(A−1ΣA−1 + PA−1YnQΣQTYnA
−1P T − PA−1YnQΣA−1 −A−1ΣQTYnA

−1P T )]

= EA[Tr(A−1ΣA−1 − PA−1ΣQΣA−1 −A−1ΣQTΣA−1P T ]

+ EA,Yn [Tr(PA−1YnQΣQTYnA
−1P T )]

= EA[Tr(A−1ΣA−1 − PA−1ΣQΣA−1 −A−1ΣQTΣA−1P T ]

+
n + 1

n
EA[Tr(PA−1ΣQΣQTΣA−1P T )] +

1

n
EA[TrΣ(QΣQT )Tr(PA−1ΣA−1P T )]

= EA[∥(PA−1ΣQ−A−1)Σ1/2∥2F ]

+
1

n
EA

[
Tr(PA−1ΣQΣQTΣA−1P T ) + TrΣ(QΣQT )Tr(PA−1ΣA−1P T )

]
,

where we used Lemma 4 to compute the expectation over Yn in the second-to-last line.

It will also be useful to derive a simpler expression for the population risk Rm(θ) when
θ belongs to the set ΘΣ = {(cId, c

−1Σ−1) : c ∈ R\{0}}.

Lemma 6. Let P = cId, Q = c−1Σ−1 for c ∈ R\{0}. Then

Rm(θ) =
d + 1

n
EA

[
Tr
(
A−1ΣA−1

)]
.

Proof Using Lemma 4 to compute the expectations defining Rm, we have

Rm(θ) = EA[Tr(A−1ΣA−1 − PA−1ΣQΣA−1 −A−1ΣQTΣA−1P T ]

+
n + 1

n
EA[Tr(PA−1ΣQΣQTΣA−1P T )] +

1

n
EA[TrΣ(QΣQT )Tr(PA−1ΣA−1P T )].

Since P = cId and Q = c−1Σ−1, we have that PA−1ΣQΣA−1, A−1ΣQTΣA−1P T , and
PA−1ΣQΣQTΣA−1P T are all equal to A−1ΣA−1, and

EATrΣ(QΣQT )Tr(PA−1ΣA−1P T ) = EATrΣ(Σ−1)Tr(A−1ΣA−1).

Therefore, after some algebra, the population risk simplifies to

Rm(θ) =
1 + TrΣ(Σ−1)

n
EA

[
Tr
(
A−1ΣA−1

)]
.

Noting that TrΣ(Σ−1) = d, we conclude the expression for Rm(θ) as stated in the lemma.

We quote the following result from Theorem 2.1 of Rudelson and Vershynin (2013).

Lemma 7. [Gaussian concentration bound] Let y ∼ N(0,Σ). Then

P
{
∥y∥ ≥

√
Tr(Σ) + t

}
≤ 2 exp

(
− t2

C∥Σ∥op

)
,

where C > 0 is a constant independent of Σ and d.
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We use the following result to control the error between Qn and Σ−1.

Lemma 8.

Let Qn = B
(
n+1
n BΣ + TrΣ(B)

n Σ
)−1

be as defined in Lemma 1. Assume that n satisfies

∥Σ−1∥op
∥∥∥Σ
(
Id + TrΣ(B)B−1

)∥∥∥
op

n
≤ 1

2
.

Then we can write

Qn = Σ−1 +
1

n
E1,

where E1 satisfies

∥E1∥ ≲ ∥Σ−1∥op∥Σ∥op
(

1 + TrΣ(B)
)
C2
A.

Proof Using some algebra, we find

Qn = B
(n + 1

n
BΣ +

TrΣ(B)

n
Σ
)−1

=
(n + 1

n
Σ +

TrΣ(B)

n
ΣB−1

)−1

=
(

Σ +
1

n
Σ
(
Id + TrΣ(B)B−1

))−1
.

By Lemma 9, we have

∥Qn − Σ−1∥op ≤ ∥Σ−1∥op ·
ϵ∗

1 − ϵ∗
,

where

ϵ∗ =
∥Σ−1∥op

∥∥∥Σ
(
Id + TrΣ(B)B−1

)∥∥∥
op

n
.

This gives the final bound

∥Qn−Σ−1∥op ≲
∥Σ−1∥op

∥∥∥Σ
(
Id + TrΣ(B)B−1

)∥∥∥
op

n
≤

∥Σ−1∥op∥Σ∥op
(

1 + TrΣ(B)∥B−1∥op
)

n
,

Here, we used the bound ϵ
1−ϵ ≲ ϵ which holds for ϵ sufficiently small; in particular, for

ϵ ∈ (0, 1/2), we have ϵ
1−ϵ ≤ 2ϵ.

The following result, used to bound the inverse of a perturbed matrix, is a standard
application of matrix power series.

Lemma 9. Suppose that A is an invertible d × d matrix and D ∈ Rd×d satisfies ∥D∥op ≤
ϵ

∥A−1∥op for some ϵ < 1. Then

∥(A + D)−1 −A−1∥op ≤ ∥A−1∥op ·
ϵ

1 − ϵ
.
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Proof Note that A+D = (Id+DA−1)A. Under our assumption on D, we have ∥DA−1∥op ≤
∥D∥op∥A−1∥op < 1, which implies the series expansion

(I + DA−1)−1 =
∞∑
k=0

(−DA−1)k.

It follows that

(A + D)−1 =
((

I + DA−1
)
A
)−1

= A−1
(
I + DA−1

)−1

= A−1
∑
k=0

(−DA−1)k.

In turn, this gives the bound

|(A + D)−1 −A−1∥op =
∥∥∥A−1

∞∑
k=1

(−DA−1)k
∥∥∥
op

≤ ∥A−1∥op
∞∑
k=1

∥DA−1∥kop

≤ ∥A−1∥op
∞∑
k=1

ϵk

= ∥A−1∥op
ϵ

1 − ϵ
.

Recall that for a positive definite matrix Σ = WΛW T and a symmetric matrix K,

TrΣ(K) =

d∑
i=1

σ2
i ⟨Kφi, φi⟩,

where σ2
1, . . . , σ

2
d are the eigenvalues of Σ and φi = Wei are the eigenvectors of Σ.

Lemma 10. For any symmetric matrix K, we have

TrΣ(K) ≤ ∥K∥opTr(Σ).

Proof For each 1 ≤ i ≤ d, we have ⟨Kφi, φi⟩ ≤ ∥Kφi∥∥φi∥ ≤ ∥K∥op. Therefore,

TrΣ(K) =
d∑

i=1

σ2
i ⟨Kφi, φi⟩ ≤ ∥K∥op

d∑
i=1

σ2
i = ∥K∥opTr(Σ).

In order to prove Theorem 7, we also need the following stability bound of TrΣ(K) with
respect to perturbations of both Σ and K.
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Lemma 11. Let Σ = WΛW T and Σ̃ = W̃ Λ̃W̃ T be two symmetric positive definite matrices
and K, K̃ two symmetric matrices, let {σ2

i }di=1 and {σ̃2
i }di=1 be the respective eigenvalues of

Σ and Σ̃ and let {φi}di=1 and {φ̃i}di=1 be the respective eigenvectors. Then∣∣∣TrΣ(K) − TrΣ̃K̃
∣∣∣ ≤ Tr(Σ̃)∥K − K̃∥op + ∥K∥op

(
∥Λ − Λ̃∥1 + 2Tr(Σ̃)∥W − W̃∥op

)
.

Proof We have

TrΣ(K) − TrΣ̃(K̃) ≤
∣∣∣TrΣ(K) − TrΣ̃(K)

∣∣∣+
∣∣∣TrΣ̃(K − K̃)

∣∣∣. (37)

The second term in (37) can be bounded by an application of Lemma 10, which yields∣∣∣TrΣ̃(K − K̃)
∣∣∣ ≤ Tr(Σ̃)∥K − K̃∥op.

To bound the first term in (37), we first use the estimate

∣∣∣TrΣ(K) − TrΣ̃(K)
∣∣∣ ≤ ∣∣∣ d∑

i=1

(
σ2
i − σ̃2

i

)
⟨Kφi, φi⟩

∣∣∣+
∣∣∣ d∑
i=1

σ̃2
i

(
⟨K(φi − φ̃i), φi⟩ + ⟨Kφ̃i, φi − φ̃i⟩

)∣∣∣.
The first term above can be bounded by

∣∣∣ d∑
i=1

(
σ2
i − σ̃2

i

)
⟨Kφi, φi⟩

∣∣∣ ≤ ∥K∥op ·
d∑

i=1

∣∣∣σ2
i − σ̃2

i

∣∣∣ = ∥K∥op · ∥Λ − Λ̃∥1. (38)

To bound the second term in (38), note that for any 1 ≤ i ≤ d, we have

⟨K(φi − φ̃i, φi⟩ ≤ ∥K∥op∥φi − φi∥ ≤ ∥K∥op∥W − W̃∥op,

and similarly ⟨Kφ̃, φ− φ̃⟩ ≤ ∥K∥op∥W − W̃∥op. It therefore holds that

∣∣∣ d∑
i=1

σ̃2
i

(
⟨K(φi − φ̃i), φi⟩ + ⟨Kφ̃i, φi − φ̃i⟩

)∣∣∣ ≤ 2∥K∥opTr(Σ̃)∥W − W̃∥op.

Combining all terms yields the final estimate∣∣∣TrΣ(K) − TrΣ̃K̃
∣∣∣ ≤ Tr(Σ̃)∥K − K̃∥op + ∥K∥op

(
∥Λ − Λ̃∥1 + 2Tr(Σ̃)∥W − W̃∥op

)
.

The following lemma bounds the ’context mismatch error’, which arises in the proof of
Theorem 1.

Lemma 12. The bound

sup
∥θ∥≤M

∣∣∣Rm(θ) −Rn(θ)
∣∣∣ ≤ 2M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ)

∣∣∣ 1
n
− 1

m

∣∣∣
holds.

46



ICL of Linear Systems and Elliptic PDEs

Proof Denote θ = (P,Q). Recall that, as a direct consequence of Lemma 5, we have

Rn(θ) = EA

[
Tr(A−1ΣA−1) − Tr(PA−1ΣQΣA−1) − Tr(A−1ΣQTΣA−1P T )

+
n + 1

n
Tr(PA−1ΣQΣQTΣA−1P T ) +

TrΣ(QΣQT )

n
Tr(PA−1ΣA−1P T )

]
,

An analogous expression holds for Rm(θ). Therefore, for θ satisfying ∥θ∥ = max(∥P∥op, ∥Q∥op) ≤
M, we have the bound∣∣∣Rm(θ) −Rn(θ)

∣∣∣ =
∣∣∣ 1
n
− 1

m

∣∣∣∣∣∣EA

[
Tr(PA−1ΣQΣQTΣA−1P T ) + TrΣ(QΣQT )Tr(PA−1ΣA−1P T )

]∣∣∣
≤
∣∣∣ 1
n
− 1

m

∣∣∣ · 2M4c2A max(Tr(Σ), ∥Σ∥2op)Tr(Σ).

The following lemma is an adaptation of Wald’s consistency theorem of M-estimators
(Van der Vaart, 2000, Theorem 5.14). We use it to prove the convergence in probability of
empirical risk minimizers to population risk minimizers.

Lemma 13. Let θ ∈ Rm, x ∈ Rd, and suppose ℓ(·, ·) : Rd × Rm → [0,∞) is lower semi-
continuous in θ. Let m0 = minθE[ℓ(x, θ)] for some fixed distribution on x, and let Θ0 =
argminθE[ℓ(x, θ)]. Let {θN}N∈N be a collection of estimators such that supN ∥θN∥ < ∞ and

m0 − EN [ℓ(x, θ0)] = oP (1)

Then dist(θN ,Θ0)
P→ 0.

Proposition 3. For any sequence {θ̂n,N}n,N∈N of minimizers of the empirical risk Rn,N

with supN ∥θ̂n,N∥ < ∞ for all n, we have

lim
n→∞

lim
Nto∞

dist(θ̂n,N ,M∞) = 0, in probability.

Proof For each fixed n ∈ N. we can apply Lemma 13 to the empirical risk minimizer
θ̂n,N . In this context, the condition of the lemma amounts to the condition that Rn(θ∗) −
Rn,N (θ̂n,N ) = oP (1), for any θ∗ ∈ argminθRn, which is satisfied since

Rn(θ∗) −Rn,N (θ̂n,N ) =
(
Rn(θ∗) −Rn,N (θ∗)

)
+
(
Rn,N (θ∗) −Rn,N (θ̂n,N )

)
.

The first term tends to zero in probability by the law of large numbers, and the second term
is non-negative by the minimality of θ̂n,N . This proves that

lim
Nto∞

dist(θ̂n,N ,Mn) = 0, in probability,

where Mn = argminθRn(θ). Consequently, since Rn and R∞ are polynomials in θ such
that the coefficients of Rn converge to the coefficients of R∞ as n → ∞, we have by the
triangle inequality that

lim
n→∞

lim
N→∞

dist(θ̂n,N ,M∞) = 0, in probability.
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Appendix H. Additional numerical results

In this section, we present some additional numerics. The plots in Figure 5: A.1-C.1 are
identical to those in Figure 1: A-C, but Figure 1: A.2 - C.2 also show the slopes of the
log-log plots as a function of the sample size. This makes it easier to compare the empirical
scaling laws with those derived in Theorem 1. Figure 6: A.1-A.3 shows the heat maps for
the PDE error with respect to the parameters α and τ that define the log-normal random
field a(x), while Figure 6: B.1-B.3 shows the heat maps for the PDE error with respect to
the parameters c and β of the covariance of the source term f . These plots confirm that
pre-trained transformers are more robust under task shifts than they are under covariate
shifts. They also suggest that the pre-trained transformer is better at tolerating shifts on
the parameter c of the covariance operator compared to shifts on β.

Figure 5: Plots A.1-C.1 are identical to those shown in Figure 1. Plots A.2-C.2 show the
slopes of the error curves in the left column as functions of various sample sizes.
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Figure 6: Column A shows the heat map for the error with respect to the parameters α
and τ on the distribution of a(x) (the training distribution is a(x) = eb(x) with
b(x) ∼ N(0, (−∆ + τI)−α), α = 3 and τ = 5). Column B plots the heat map for
the error with respect to the parameters β and c on the distribution of the data
f(x) (the training distribution is f(x) = b(x) with b(x) ∼ N(0, (−∆ + cI)−β),
β = c = 1). The transformer model is trained with n = 300 and d = 50, and
error is computed on a new task with m = 500 prompts.
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