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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have enabled the development of Al
agents capable of multi-step reasoning. How-
ever, deploying these agents in real-world appli-
cations requires planners that adapt to domain-
specific tools and workflows, where traditional
prompting frameworks often struggle to ac-
curately represent available functional depen-
dencies. To address this gap, we propose
Graph-O-Planner, a novel graph-learning
method that explicitly encodes tool relation-
ships and execution sequences into LLM plan-
ning. Our approach constructs graph embed-
dings of available tools, enabling agents to dy-
namically map dependencies while minimizing
context window overload. Evaluations across
multiple benchmarks, including UltraTool and
Task Bench, demonstrate that Graph-O-Planner
achieves upto 68 % higher and 60% higher
performance with our approach, compared to
state-of-the-art graph based planners and LLM-
finetuned planners respectively, while signifi-
cantly reducing any hallucination in LLM gen-
eration. The method’s tool knowledge com-
pression further reduces inference latency by
50%, validating its effectiveness in resource-
constrained environments and making it more
compatible for real-life practical deployment.
We release our code here.

1 Introduction

The advent of Large Language Model (LLM)-
powered agents marks a paradigm shift in artifi-
cial intelligence, with transformative potential for
real-world applications ranging from autonomous
robotics to precision medicine. Early implementa-
tions like HuggingGPT (Shen et al., 2023a) demon-
strates problem-solving flexibility in controlled
benchmarks, and agents such as Voyager (Wang
et al., 2023a) showcase emergent strategic reason-
ing in gaming environments.

Effective planning modules with precise tool
alignment are essential for developing practical

Al agentic systems in both consumer and industrial
applications. Recent advances leverage prompt-
ing strategies to decompose complex tasks: (Wei
et al., 2022) pioneered chain-of-thought reasoning
through sequential step generation, while (Wang
et al., 2023b) introduced plan-and-solve prompt-
ing for systematic task decomposition. (Yao et al.,
2024) later expanded these concepts with tree-
based reasoning architectures. A parallel research
trajectory has focused on translating these rea-
soning structures into executable tool operations.
(Schick et al., 2023; Shen et al., 2023b; Singh et al.,
2023; Song et al., 2023).

All these methods however are purely prompt
based, and hence are encumbered by some core con-
cerns due to the base LLM performance - demon-
strated in the recent work by (Wu et al., 2024).
They specifically note the following:

1. Hallucination significantly drives down task-
sequence determination, especially with a big-
ger set of tools/sub-tasks (CodeLLlamal3B and
GPT3.5T see 60% hallucination in edge pre-

diction with a set of 260 sub-tasks).
2. Next-token autoregression tends to prioritize

frequent patterns over optimal solutions,
due to its reliance on statistical distributions
learned from the training data. These limita-
tions persist even in tool-specialized frame-
works (Schick et al., 2023), suggesting in-
herent challenges in reconciling stochastic
text generation with structured system require-
ments.
In addition to above, there are other practical con-
straints when considering real-life industry appli-
cations. In a connected tech ecosystem, the set
of tools and functions can range in thousands,
with multiple tools often executing the same sub-
task. Not only does providing long prompts in-
crease LLLM generation latency significantly, it
also makes it more prone to erroneous choices.
These concerns have led to exploring ways in which
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the planning can be made better, instead of just fo-
cusing on effective prompting techniques.

Recent works have explored the use of task
graphs to effectively model the interlinked sub-
tasks and provide the relevant information to the
LLM for tool alignment. Graph Neural Networks
(GNNs) have shown a lot of proficiency in han-
dling complex decision making problems (Khalil
etal.,2017; Xu et al., 2019; Dudzik and Velickovié,
2022). Graph based question answering has also
seen a lot of advancements - wherein, LLMs are
tasked to answer factual questions using retrieved
relevant knowledge from an external knowledge
graph (KG). While initial work focused primarily
on retrieving the relevant subgraph from KG as
foundation for LLM reasoning (Luo et al., 2023;
Zhang et al., 2023; Sun et al., 2023), recent works
have explored building a deeper information injec-
tion bridge to reduce errors propagated due to fault
sub-graph determination (Zhang et al., 2024; Yao
et al., 2022; Liu et al., 2024).

We draw upon these past insights to propose a
module that effectively uses GNN for tool informa-
tion injection while task-planning. Building upon
the initial work done by Wu et al. (2024), we pro-
pose Graph-O-Planner that closely integrates the
interaction between LLM and GNN layers. We
craft an attention enhanced GNN based multi-layer
interaction that allows for a layered learning of
graph representations. This ensures that subgraphs
with distracting hard positive cases do not cause the
LLM to focus on irrelevant information (challenge
1). We also propose a retrieval free graph mech-
anism, indicating that the model can be applied
to a diverse range and size of planning tasks and
datasets without being encumbered by increased
latency with humongous prompt sizes (challenge
2). To validate our hypothesis, we convert vari-
ous open-source planning datasets into tool graphs,
where tool name, description and its input-output
format are used to create graph embedding. We
conduct extensive experimentation to show that
proposed interaction methodology is independent
of the type of LLM used, and can be integrated
with any existing architecture to note significant
planning alignment improvements with reduced
hallucinations.

Our main contributions are summarized as fol-
lows:

* To the best of our knowledge, Graph-O-

Planner is the first attempt to integrate multi-
level interaction of a custom GNN with LLMs

for task planning. This setup uses the lan-
guage understanding skills of LLMs in con-
junction with the effective information propa-
gation capability of GNNss.
* We comprehensively assess Graph-O-Planner
across multiple datasets, evaluating accuracy,
hallucination as well as latency. The exper-
imental results confirms the effectiveness of
our approach, showing remarkable improve-
ments over state-of-the-art baselines in both
the scenarios by huge margin.
We prove the efficacy of adding GNN based
interaction by comparing against base LLM-
only models for the same task prediction.
Graph-O-Planner improves upon the finetuned
LLM performance by nearly 50% while beat-
ing most graph-based benchmarks by 35%.

2 Related Work

2.1 GNN-based Learning

Graph Neural Networks (GNNSs) contribute sig-
nificantly to enhancing the performance of Large
language models by enabling the modeling of com-
plex relational structures in textual data. While
transformer-based models (Guo et al., 2025; Chung
et al., 2022; Dubey et al., 2024; Yang et al., 2024)
excel at capturing sequential dependencies, they
struggle with long-range syntactic or semantic de-
pendencies like tool dependency info and relation
based knowledge. GNNSs address this by repre-
senting text as graphs, where nodes represent lin-
guistic elements, and edges capture their relation-
ships(Huang et al., 2019; Pham et al., 2023; Zhu
et al., 2021). Through message-passing, GNNs
enable the propagation of contextual information,
enriching LLMs’ understanding of both local and
global dependencies (Wu et al., 2024, 2021b). This
integration improves performance on various NLP
tasks, including machine translation, task planning.

Recent research (Wu et al., 2021a; Hu et al.,
2020; Yang et al., 2021) has also shown that GNNs
enhance multi-hop reasoning knowledge graph han-
dling and can scale more efficiently. The synergy
between GNNs and transformers had led to break-
through in tasks requiring deep semantic under-
standing and reasoning. Moreover, GNNs help
LLMs handle noisy data and improve generaliza-
tion, making them a promising approach for ad-
vanced NLP models (Yasunaga et al., 2021; Mavro-
matis and Karypis, 2024; Chen et al., 2024; Peng
et al., 2024).



2.2 Tool Graph-based Planning

Taking inspiration from Knowledge graph based
learning(Liu et al., 2021; Wang et al., 2021; Ye
et al., 2022; Tena Cucala et al., 2022; Chen et al.,
2020), training GNN using task graph have become
a powerful tool for task planning, enabling the mod-
eling of complex dependencies between tasks, re-
sources, and constraints through graph structure.
They have been applied across diverse domains, in-
cluding MoE task planning (Zhou et al., 2022; Cai
et al., 2024; Li et al., 2025) and multi-agent coordi-
nation where they excel in dynamically adjusting
to changing conditions. In multi-agent system (Wu
et al., 2023; Chan et al., 2023; Talebirad and Nadiri,
2023; Nascimento et al., 2023), they facilitate de-
centralized decision making, GNNs have been used
to enhance scheduling efficiency in combinatorial
optimization problems. Leveraging the success of
graph knowledge, we propose to infuse graph based
knowledge using trained GNNs to support LLMs
for more efficient planning.

3 Preliminaries

In this section, we focus to describe tool graph.
For clarity, we propose tool graphs as dynamically
changing graphs. Subsequent paragraphs defines
detailed description of tool graph, including the use
of tool description and input output format utilized
by proposed Graph-O-Planner.

Tool Graph: Let G = (V,E, A, T, X) where,
V is a set of tool nodes, E corresponds to edges
between node embedding (v;—w;) if output of V;
can be fed to V. A denotes the edge weight matrix
between pair of nodes, such that Afi, j] € (0,1],
if v;,u; € V and (v;,v;) = e;; € E, and 0
otherwise. Tool information is defined as T' =
{n,d,i,o ‘2;221)’ where n is k" tool name, d is
k" tool description, 4 and o corresponds to k" in-
put and output format of tool respectively. Thus,
X = Emb(T), where Emb is the embedding func-
tion. X = {xi}‘&‘:l) contains feature embedding
of tool’s information for each v; € V.

Planning task definition: Given a task query
@, it can be decomposed into sub-tasks S =
81, S2. .. Sy, such that each sub-task s; can be com-
pleted by a unique tool v;. The objective is to
construct a Directed Acyclic Graph (DAG) that rep-
resents the sequence of processes to solve the query
Q.
For the query () and tool graph G, the DAG can
be formally represented as:

DAGZ(01—>U2—>... —>UP)

This equation represents the sequence of tools
that need to be executed in order to solve the query
QQ, where each tool v; is connected to the next tool
v;41 through a dependency edge.

4 Methodology

In this section, we introduce Graph-O-Planner, a
novel infused-graph learning framework for task
planning, to effectively align task steps to the avail-
able tools. Figure 1 illustrates the pipeline of our
proposed approach. We first convert the target
dataset into an aligned tool-graph, incorporating
the tool name, description, required inputs and gen-
erated output (Section 4.1). This is then passed to
a GNN [similar to the one proposed by Q-KGR
(Zhang et al., 2024)] to create its aligned node em-
beddings & edge scores at each layer, as defined
in Section 3. Finally, a layer-wise knowledge in-
jection method is utilized to inject knowledge from
GNN layers to corresponding LLM layers (Section
4.3). This allows the LLM to effectively map the
subtask to the correct tool sequence. The rough
decomposed plan (attained from any global LLM)
is processed sequentially through the LLM layers
with injected information from the GNN to gener-
ate a sequence of tools as a DAG to be executed.
With Graph-O-Planner, both LLMs and GNNs are
trained in alignment with injected knowledge, to
allow the model to build an understanding of how
a subtask relates to a particular sequence of nodes
in the available tool graph.

4.1 Tool Graph Creation

We first pass the dataset’s tool informarion through
a pre-trained embedding model (ModernBERT
Large(Warner et al., 2024)) for its embeddings .

x; = Emb(T ool Name, Tool Desc.,

1
ToolInputs, ToolOutput) M)

where x; is i*" tool embedding and Emb is embed-
ding model. For a given set of task steps, some
nodes and edges are more semantically relevant
than others. To effectively model this by leverag-
ing core semantic information, the edge connec-
tions between the tools are scored. Alignment with
the requirements of the decomposed task steps is
obtained by using a bilinear layer to estimate the
relevance score for each edge given the embed-
ding of the sub-task. Finally, these embeddings are
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Figure 1: The overall framework of Graph-O-Planner. The figure illustrates the data flow, key components and
interactions between different layers and modules. The visualization provides a comprehensive understanding of the
model’s training pipeline. Yellow layers consist of trainable parameters while purple represents frozen parameters
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Figure 2: Representation of the Attention-Enhanced Graph Convolution

normalized to increase computational efficiency.
Motivated by Jang et al. (2017), we used Gumbel
softmax approach to model the output as soft la-
bels with a stop gradient mechanism to address the
problem of gradient propagation of hard labels dur-
ing backward pass. The node and the scored edge
embeddings together comprise the required Tool
Graph (mathematically defined in Section 3).

4.2 Attention-Enhanced Graph Convolution

The scored tool graph is then passed through a con-
volutional graph network, to attain its graphical
embedding representation at every layer. This is
pictorially shown in Figure 2. We use Attention-
Enhanced Graph convolution (AGC) layers for en-

coding the tool info graph representations X =
{z1229,....2,}, via iterative convolutional opera-
tions between neighboring nodes of the graph net-
work.

1. Edge Encoding
Given a graph, G = (V,E, A, T, X) (refer
section 3.1), with node features b € R? (ini-
tially h? = x;,x; € X), and auxiliary node
features ¢ € RI%1*4, our goal is to learn node
representations that captures structural neigh-
borhood patterns and edge semantic relation-
ship. For each edge ¢;; € F, we obtain its
encoding €;; as:

€ij = fedge(Pei; © Th; © Tk;) 2)



where f,q4¢ is a multi-layer MLP, (e, TEpIE-
sents the Gumbel Softmax of edge e;;, and
Tk, and 7i,; represents the Gumbel Softmax
of node k; and k; respectively, with @ as the
concatenate function.

. Multi-Head Heterogeneous Attention

Each edge’s representation ¢;; is then uti-
lized to transform node representations us-
ing a multi-head heterogeneous attention, M.
Specifically, for each graph node, we obtain
the normalized attention of the pre-head com-
putations. The node embedding h; is obtained
by concatenating node features and its fea-
tures of its neighboring edges N (i), to better
capture neighborhood patterns every iteration:

hi=hi® @ e 3)
JEN (i)

The pre-heads of Key, Query and Value for
the k-th node are thus computed as:

QF = Whh; 4)
Kf = Wih; )
Qf = Wiih; 6)

which is then normalized based on the degree
of the node:

(g%, kF)
o = L xexp

(N

_ (q¥ kF)
where Z; = > icn@)dj * exp 7 and

d; = |N(7)| is the out degree of node j.

. Message Aggregation

The multi head attention output are aggre-
gated through a two stage process to synthe-
size neighborhood information. First for each
attention head k, messages from neighboring
nodes are weighted by their normalized coef-
ficients afj producing head specific represen-

tations

mf = Z (afjvfj) 8

JEN(7)

These head embeddings are then concatenated
across all £ heads and linearly projected to the
original dimension d using learnable weights
W, to obtain M - edge aware attention. This
ensures structured fusion of heterogeneous
relation patterns. The hybrid approach re-
tains structural information while allowing the

model to learn incremental feature updates,
balancing neighborhood influence with node-
specific characteristics.

Finally, the AGC layer uses a three phase com-
putation over the edge-attention M to obtain the
embeddings for every time-stamp:

o' = MLP(Agg(M(H',E,¢))) (9

4.3 Graph-O-Planner

In this section, we discuss the process by which we
enabled the injection of GNN knowledge into LLM
layers for effective tool-aligned subtask creation.
For a chosen subset of LLLM layers, the standard
multi-head self-attention and feed-forward layer is
extended to fuse the modalities between text and
graph domain. The accumulated hidden embed-
dings from graph H of nodes are fused with LLM
decoder module to obtain an intermediate represen-
tation /. formulated as follows:

Ic = {ekey 53] u)k’eya Hquery @ ¢query7

(10)
evalue @ Q;Z)vahw}

where 1); are aligned values obtained from GNN
after passing through two Feed Forward Layers.
The injection pipeline is aligned with the LoRA
layers of the LLM to avoid re-training of the com-
plete LLM. As the knowledge injection methodol-
ogy only needs aligned layer output fusion, it is
independent of the architecture of the LLM in use.

5 Experimental Setup and Results

In this section, we describe the training setup
and datasets used. We also enumerate a detailed
set of experiments to evaluate the performance
of Graph-O-Planner against state-of-the-art graph-
based baselines and LLMs finetuned on four open-
source datasets. For our primary pipeline, we
choose Flan-T5-XL(3B) as the LLM with a LoRA
of rank 8 and alpha 16. All models are trained us-
ing Adam Optimizer, with the batch size of 32 and
learning rate of 1e — 4 and 3e — 4 for the LLM and
GNN respectively. All models are trained using
A-6000 GPU in a Pytorch framework and CUDA
12.6. We provide specific hardware and software
versions information in appendix A.2

5.1 Datasets

We train and evaluate our model on four open
source datasets - UltraTool (Huang et al., 2024),



Table 1: Accuracy, Edge-F1 and Node-F1 scores across all four datasets. All result are in (%) with the best bold and
runner-up underlined. * indicates graph based approaches and that the numbers are sourced from Wu et al. (2024)
(NA when scores were unavailable). I indicates LLM-only models finetuned for each dataset. The information

about the baseline models are described in Appendix A.6.

Method/Dataset Huggingface Ultratool Multimedia Dailylife
Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1 Acc. Edge-F1 Node-F1

GraphToken* 20.08 32.55 62.15 NA NA NA 35.06 74.57 63.71 69.42  73.57 92.50
GraphSAGE* 33.88 52.62 78.49 37.22 47.68 70.75 62.37 70.25 88.86 86.57 85.80 97.42
GCN* NA 40.74 66.54 NA NA NA 61.25 50.76 73.34 7549 65.49 86.39
GIN* NA 53.07 78.45 NA NA NA NA 69.84 88.74 NA 85.80 97.42
Graph Transformer* NA 52.27 78.30 NA NA NA NA 70.24 88.90 NA 85.80 97.42
Qwen 2.5 Coder 3Bf 81.32 6823 87.77 NA NA NA 21.48 26.96 56.94 89.86 91.83 99.24
Deepseek R1 1.5B § 79.28 80.22 84.33 85.28 89.27 87.33 82.25 83.24 81.27 87.23 88.23 86.24
Flan T5 XL{ 49.0 63.48 74.11 73.8  73.87 83.87 4340 58.25 58.25 63.87 48.77 66.45
Graph-O-Planner(Ours) 82.6  88.25 96.21 97.39 97.56 98.88 92.0 93.55 97.11 96.81 95.06 97.51

HuggingFace Tool, Multimedia and TaskBench-
Daily Life (Shen et al., 2023b). Each dataset is
converted to a Tool Graph as described in Section
4.1. Detailed dataset description has been provided
in the Appendix A.5.

5.2 Results & Analysis

We present our model performance across various
metrics, detailed in the section below. In all ex-
periments, our base pipeline uses FlanT5-XL as
LLM and a convolutional GNN. We compare our
model performance against various existing SOTA
models. We also demonstrate the impact of a graph
based knowledge injection by comparing the per-
formance against traditional LLLM only approaches.
We report tool and sequence performances along
with hallucination and model latency for all four
target datasets in below sections.

5.2.1 Tool and Sequence Detection

The primary requirement of a tool aligned planner
is to ensure that the model is able to correctly pick
from the provided set of available tools. A planner
that provides a "somewhat-correct" output is not
scalable in a real-life application. We thus measure
node prediction F1-score as a primary metric of per-
formance evaluation. Node-F1 score is estimated
as the correctness of predicted tool nodes required
to complete a given task.

Another crucial performance metric is to ensure
that the correct nodes are detected in the correct
sequence. Thus, the edges between various task
nodes and their relative sequence is of utmost im-
portance. Accordingly, we design Edge-F1 score
which compares the predicted links with the ground
truth edges, using the tool network topology popu-
lated adjacency matrices. We present the edge and
node F1 algorithm in Appendix A.8.

For F1 scores, the set of predicted nodes/edges

and set of ground truth nodes/edges is used for each
sample ¢ among N total samples.

L 1 & |Predicted; N Ground Truth,|
Precision = — Z

— |Predicted; |

(11)
N .
1 |Predicted; N Ground Truth;|
Recall = —

eea N ; |Ground Truth;|
(12)
F1 Score — 2 - Precision - Recall (13)

Precision + Recall

We also evaluate the success rate at the task level
using the Accuracy (Acc) metric. The Accuracy
metric is defined as:

N
1
Accuracy = Y IFL=1) (14
=1

Here, I(F1; = 1) is an indicator function that
assigns a value of 1 if the F1 score for a given task
1 is perfect (i.e., all nodes are correctly predicted),
and 0 otherwise. This binary evaluation allows us
to assess the model’s ability to accurately predict
all nodes in a task.

Table 1 shows our performance across four dif-
ferent datasets, which included a variety of task
types and complexities. This suggests that our
method is flexible and can be applied to differ-
ent problems and datasets. Specifically, across
the more voluminous daily life dataset (with
260+ tools), graph planner shows a 33% improve-
ment over older graph interaction methods and
8% improvement against deepseek, even when the
pipeline using a lesser competent llm (flant5). This
improvement is even more significant when con-
sidering the more convoluted huggingface dataset,
with graph-o-planner seeing nearly 68 % improve-
ment over previous models.
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Figure 3: Hallucination in Flan T5 XL vs Graph-O-Planner

5.2.2 Hallucination Reduction

We also demonstrate the efficacy of integrating
GNNs in reducing hallucination in LLMs. We use
two hallucination metrics: micro hallucination and
macro hallucination. These metrics are designed to
quantify the extent of hallucination in the predicted
sets of nodes compared to the ground truth sets.

Let N be the total number of samples, P; be the
predicted set of nodes for the i*" sample, and let V/
be the set of valid nodes.

Micro hallucination calculates the fraction of
predicted nodes that are absent in the ground truth,
averaged over all samples, represented as:

PV

N
. .. 1
Micro Hallucination = N Zl ———— (15
1=

| i

where | P; \ V| represents the number of nodes
in P; that are not in V, essentially the number of
hallucinated nodes in the prediction.

Macro hallucination checks if any of the pre-
dicted nodes are absent from the ground truth and
assigns 1 if at least one node is absent, O otherwise,
and then averages over all samples:

N
o 1
Macro Hallucination = N Z_; I(P\V #0)

(16)
where I(P;\'V # () equals 1 if there are any
nodes in P; not in V' (i.e., P; \ V is not empty),
and 0 otherwise.

As shown in figure 3a and 3b, our proposed
GNN-based approach achieves a substantial reduc-
tion in hallucination, with a 13% decrease in in-
correct edge predictions.

The results suggest that the GNN’s ability to
model complex structural relationships between
tasks is instrumental in mitigating hallucination.
By representing task sequences as graphs and lever-
aging the strengths of GNNs, we can better cap-
ture the nuances of task dependencies and generate
more accurate and contextually relevant responses.

5.2.3 Model Latency

A complementary benefit of our proposed approach
is the reduction in input context size during both
training and inference as presented in more detail
in Appendix A.4. In the current literature, training
Large Language Model (LLM) planners typically
involves passing all the tool information, including
name, description, input/output format, directly to
the prompt. This approach can become cumber-
some and even pose significant challenges when
dealing with a large number of tools, as seen in the
Ultratool dataset. Even with a generous context
length of 8192, we observed a spill-over of input
tokens, highlighting the limitations of this method.
Our approach, on the other hand, addresses this is-
sue by injecting tool knowledge as tool embeddings
directly into the Graph Neural Network (GNN) lay-
ers, while the LLM focuses on the input query and
the steps needed to execute the task.

Graph-O-Planner significantly reduces input con-
text size by bypassing extensive tool information,
alleviating information overflow, reducing compu-
tational requirements, and enabling the LLM to
focus on essential task-related information - result-
ing in more accurate and relevant generations. This
makes it a more scalable and reliable solution for
handling complex task sequences and a large num-
ber of tools.



Table 2: Computational analysis of the model across different datasets.

Model Parameters Time (min/epoch)
Huggingface Multimedia Dailylife Ultratool

GraphSAGE 337,240,064 120.3 114.3 98.4 134.7
GCN 336,191,488 45.6 434 39.8 44.3
GIN 337,241,088 52.3 45.8 48.1 56.7
Graph Transformer 339,340,288 47.8 51.3 44.2 53.6
Flan-T5 XL 2,858,014,720 40.0 47.0 44.3 42.1
DeepSeek 1,840,564,264 65.2 64.0 61.9 72.2
Qwen 2.5 3,263,276,464 71.2 69.3 73.5 83.3
Graph-O-Planner 2,864,335,140 23.1 27.3 29.6 32.2

This also significantly reduces inference time
latency, as shown in Figure 4, making it more
suitable for real-time applications due to the re-
duced input size, computational requirements, and
focused input context. The faster generation times
and compact input length contribute to a more ro-
bust generation process, enabling the LLM to pro-
duce high-quality outputs more efficiently while
being less prone to generating false or irrelevant
information.

30000

Il Deepseek R1 1.5B
3 Qwen 2.5 Coder 3B
25000+ EER FlanT5 XL

I Graph-O-Planner

20000 A
15000 | g
10000 |- g . ] B T mw |
5000 | S - - .
04

Multimedia Dailylife Ultratool
Datasets

Time (ms/query)

Huggingface

Figure 4: Inference time comparison of different models.
The bar plot illustrates the average inference time (in
milliseconds) for each model, highlighting performance
variations. On average, across all datasets Graph-O-
Planner generates under 7500 ms.

6 Conclusion

In this work, we propose Graph-O-Planner, a graph-
based task selection method for generalized agent
planning. Traditional prompt based methods of
LLM based agent creation are hindered by con-
cerns related to ever increasing tool context length,
hallucinations and inductive biases. We propose
using a GNN based network to effectively em-
bed the information of the available tools, and use

a knowledge-injection methodology in Graph-O-
Planner to empower the LLM to map the sub-tasks
to the appropriate tool sequence. Our method en-
ables a more modular and flexible architecture by
decoupling tool knowledge from the input prompt
and injecting it into GNN layers, allowing for seam-
less integration of new tools and task sequences
complementing the LLM for better performance
as presented in Appendix A.3. We evaluate our
model across 4 open-source datasets, comparing
with multiple existing SOTA methodologies. As
noted in results, we beat existing benchmarks by
significant levels - enforcing the efficacy of the
proposed model. The impact of tool information
compression is also seen in inference latency - with
a 2x increased inference speed. To the best of our
knowledge, proposed work is the first of its kind,
exploring a deeply integrated GNN-LMM frame-
work for effective task planning.

Limitations

Despite encouraging performance, this work is only
the beginning of exploring the GNN-LMM interac-
tion in-depth. We also want to extend the pipeline
to make the planning truly generalizable across
any unseen tool-graph and task type as well. In
real-life application scenarios, the available tools
and user preferences will be constantly evolving
and varied from person-to-person. A truly intelli-
gent agent should be able to effectively generalize
across all such interactions without the need of any
fine-tuning or adaption. We aim to look into more
details on these in future works.
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A Appendix

A.1 Notations

The symbolic notations used in the paper are sum-
marized in Table 3.

A.2 Implementation Details

Detailed information on the experimental setup sec-
tion 5. Hardware. All the models are trained
using PyTorch 2.3.1 framework in Python 3.11
conda environment. Ubuntu server equipped with
four 48GB Nvidia-RTX A6000 with driver version
560.35.03 and CUDA 12.6 are utilized to perform
the study.

GNN. The dimensions of GNN module is con-
verted from 1024 embedding size to 200, which
can be modified as per user’s choice and a variable
number of layer of GNN modules between 5 and 7
both inclusive with a dropout of 0.18 applied within
each consecutive layer.

Training. All models are trained using Adam
optimizer. Learning rate of LLM module and GNN
module is kept le-4 and 3e-4 respectively, with
batch size of 32. We choose FLAN-T5-XL(3B)
model as LLM for Low-Rank Adaption (LoRA)
training with rank 8 and alpha 16. The maximum
token length across tokenizer is kept variable as per
the requirement of dataset.

A.3 Additional aid to LLM with
Graph-O-Planner

In the figure 5, 6, 7, 8, 9, 10 shown Deyv, test
and loss for only LLM approach in comparison
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with Graph-O-Planner approach. From figure 5
and 6, it is observed that Graph-O-Planner ap-
proach with the help of tool embeddings from GNN
through multilevel interaction learn meaningful in-
sights about the tool graph and surpass 80% edge-
fl in merely 5 epochs and settles at >90% after 10
epochs. While in T5 only training approach we
find that the overall edge-fl1 cannot surpass 60%
even after 30 epochs as shown in figure 7 and 10.

We also observed a much reliable training with
Graph-O-Planner approach. As seen from Figure 9,
the loss curve much cohesively justifies the overall
loss when compared with the improvement seen
from test eval curve. While for TS5 only approch in
Figure 10 we can observe that the loss drops dras-
tically till 40th epoch, but soon reaches a stagnant
curve, however as can be observed from 8, the test
edge-f1 has a lot of scope for improvement. From
these result we can come to conclusion that Knowl-
edge fusion between LLLM and GNN can lead to
benefits listed below:

* Unified Task Perspective. In our approach,
the LLM can be directly leveraged to produce
outputs for multiple tasks. For varying tasks,
it can either operate in a masked mode using
precomputed embeddings—eliminating the
need for re-computing task graph. This under-
scores our core contribution: the LLM+GNN
functions as a flexible, "plug-and-play" mod-
ule, significantly improving efficiency and per-
formance over conventional large language
model (LLM)-only approaches by storing pre-
computed task graph embeddings and lower
context length requirement.

Integrated Fusion Strategy. Our fusion strat-
egy facilitates concurrent information propa-
gation from tool graphs (hidden embeddings)
and (task-specific output vectors) to the query
input. This enables structured knowledge in-
jection and task-specific adaptation, making
our LLM + Graph Network (GNN) paradigm
superior to LLM-only models, which often
struggle with structural reasoning and compo-
sitional generalization. By leveraging graph
representations, our approach effectively cap-
tures relational dependencies, improving both
adaptability and interpretability across tasks.



Table 3: Notation table in Graph-O-Planner

Notations Definition

G, V,E Tool graph with set of nodes V and edges E

T;, A; Features embeddings i-th tool in graph G, A represents adjacency matrix

T Tool information in graph G

Q; i-th query of dataset

S; = 81,...5n Subtasks of query Q_i

Emb(.) Embedding function representing tool info in graph space for GNN training
h® GNN node representation at step [

M(.) Edge aware attention function

L) Encoded edge features obtained after applying Gumbel softmax transform
L) Encoded node features obtained after applying Gumbel softmax transform
(€i5) Edge representation obtained after concatenation of encoded edge and node features
qf, kf, vfj Query, Key and Value projections of k-th GNN node

afj Normalized node attention based on out degree of k-th GNN node

N(i) Out degree of i-th node

mf Head Specific attention of k-th GNN node after message passing to neighbors
h; Edge representation of GNN node after message passing

1. Intermediate LLM+GNN interaction layer

ekeyv equeryv Hvalue
Qbkeya ¢querya ¢Ualue

A.4 Graph-O-Planner overcomes context
overflow problem

The integration of Large Language Models (LLMs)
with Graph Neural Networks (GNNs) presents
a compelling advancement over LLM-only ap-
proaches for task planning, particularly in scenarios
involving an extensive set of tools with complex
specifications. Traditional LLM-based methods
rely on tokenization to encode tool-related infor-
mation, which inherently limits scalability due to
increasing sequence lengths and associated com-
putational costs. In our experiments, we observed
that models such as Qwen struggle when provided
with a large number of tools and their descriptions
in Ultratool dataset. The excessive tokenization
required to process tool details not only constrains
the model’s ability to handle more elaborate queries
but also results in increased latency and memory
overhead, making real-time task planning ineffi-
cient.

Our proposed Graph-O-Planner framework mit-
igates these limitations by encoding tool informa-
tion as embeddings within a graph structure, rather
than representing them as lengthy text sequences.
By leveraging GNNs to store and propagate tool-
specific embeddings, we significantly reduce to-
kenization overhead, enabling the LLM to allo-
cate more of its token budget toward processing
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Key, Query and Value obtained from LLM decoder
Key, Query and Value obtained from GNN decoder

complex queries rather than repetitive tool descrip-
tions. This structured approach enhances efficiency
by shifting the burden of tool representation from
token-based encoding to a graph-based framework,
leading to more scalable and interpretable reason-
ing over available tools. Furthermore, the graph
structure inherently captures relational dependen-
cies between tools, facilitating a more structured
understanding of tool applicability and interoper-
ability.

Beyond tokenization efficiency, the incorpora-
tion of GNNs also enhances inference speed by
caching for repetitive Task info embeddings on first
fly. In LLM-only approaches, each query requires
reprocessing tool descriptions, leading to redun-
dant computation. In contrast, our GNN-enhanced
model precomputes and stores tool embeddings,
allowing for direct retrieval and propagation of rel-
evant tool information without unnecessary recom-
putation. This not only accelerates inference but
also ensures that the model retains a more contextu-
ally enriched and persistent representation of tools
across different task planning queries. By leverag-
ing message-passing mechanisms within the GNN,
our approach ensures efficient information flow, re-
ducing the reliance on autoregressive decoding for
tool-related reasoning.

By encoding tool knowledge in a structured



graph representation, we achieve a dual advantage:
reducing tokenization demands while improving
inference efficiency. This allows for handling more
complex and multi-step task planning scenarios,
where an LLLM alone would struggle due to token
constraints and redundant processing. Our findings
demonstrate that integrating structured graph-based
reasoning with LLMs enables more effective tool
selection, faster response times, and improved scal-
ability, making it a superior approach for real-world
Agentic planning applications.

Dev Accuracy

—— multimedia Dataset
daily Dataset
! —— huggingface Dataset

T T T T T T T T
0 2 4 6 8 10 12 14

# of Epochs

Figure 5: Dev edge-fl of Graph-O-Planner

Test Accuracy
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/ —— multimediatest
—— huggingfacetest
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# of Epochs

Figure 6: Test edge-f1 of Graph-O-Planner

A.5 Dataset

In this section we will deep dive into dataset men-
tioned in section 5.1.

Ultratool. It consist of 260 tools with 3527
task and steps samples. On average each sample’s
plan include 2.42 tool callings. All samples within
ultratool have at least one tool calling. In particular
64.24% of samples consist of two tool calling and
rest consist of multiple tool calling. Each sample
contains at least two tool calls.
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Figure 9: Loss graph of Graph-O-Planner after training
for 15 epochs

Huggingface. It consist of 40 tools with 7546
training samples. The tools comprises of hugging
face hosted models fine-tuned to perform various
downstream tasks. The overall dataset requires
20177 tool callings with an average of 3.28 argu-
ments per tool call. The dataset consist of 40.64%
of samples with single tool calling.

Multimedia. This dataset also consist of 40



Training Loss

— t5ultraloss
tsmultimedialoss

—— t5dailyloss

—— t5huggingfaceloss

3500 4
3000 -
2500 1

2000 +
n

Los!

1500 +

1000 4

500 +

T T T T T
200 250 300 350 400

# of steps

T T T T
0 50 100 150

Figure 10: Loss of Flan T5 XL while training for 30
Epochs

unique tools with 5584 training samples. The tools
comprises of generic multimedia tools like ‘Video-
to-Audio’, ‘Audio-Splicer’ etc. It consist of 15860
distinct tool calls with 3.49 arguments per tool call.
Out of 5584 samples 36.48% of samples requires
only single tool calling.

Dailylife. The dataset contains 40 distinct tools
with 4320 samples out of which 1258 samples con-
tains single tool calls. In the dataset it requires on
average of 3.09 tool calls per sample with average
of 4.95 arguments per tool call. The tool consist of
general tool present in most virtual assistants like
‘book_hotel’ , ‘book_flight’ etc.

Next we show sample input data fed from these
dataset.

Huggingface
text{'id ': '57993067",

'seed ': 513420,

'n_tools ": 1,

'sampled_nodes '

[{"task ': 'Object Detection ',

"input —type ': [ 'image'],
"output—type ': ['text ']}],
"sampled_links ': [],
'"user_request ': "I need
to identifyand label objects
in the provided image
"example . jpg '." ,
"task_steps ': [
"Step 1: Use Object
Detection to identify
objects in the image
and label them.'
I,
"task_nodes ': [{

"task ': 'Object Detection ',
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‘arguments

}
1,
"task_links ':

ltype 1
Multimedia
"id "

'seed ':

'n_tools ': 3,

1

;[ "example.jpg ']

[1,

"single '}

'16097613 ",
154967,

'sampled_nodes '

[{ "input—-type

"text '],

'output —type '
"Audio Effects '},

',

"task ':
{'input—type

"output —type

"task ':
Reduction '}
{'input—type

'output —type '
'Video-to—-Audio '} ],

"task ':

’
L

"sampled_links

{'source
Reduction

"target ':
{"source '

’

[ 'audio ',
[ "audio '],

[ 'audio '],
[ "audio '],

"Audio Noise

['video '],
[ "audio '],

l: [
"Audio Noise

"Audio Effects '},
'Video—-to —Audio ',
"Audio Noise

"target ':

Reduction '} ],
'user_request ': 'l
file example.mp4,

extract its
background
noise ,
effect.

Please provide the

audio track,

have a video
and I want to
reduce

and then add a reverb

processed audio file.',

"task_steps ": [

"Extract audio from the given

video file ',

'Reduce noise from the

'

extracted audio

>

"Apply audio effects to the
noise —reduced
audio according to user
instructions '],
"task_nodes ': [
{'task ': '"Audio Effects ',
"arguments '
['<node-1>"', 'reverb ']},
{'task ': 'Audio Noise

'

Reduction ',



"arguments ': ['<node-2>"']},
{'task ': 'Video-to—-Audio ',

"arguments ':[ 'example.mp4']}],
"task_links ': [
{'"source ': 'Audio
Noise Reduction ',
"target ': 'Audio Effects '},
{'source ': 'Video—-to—-Audio',
"target ': 'Audio Noise
Reduction '} ],
"type ': 'chain '}
Dailylife
{'id ': '13590101",
'seed ': 283717,
'n_tools ': 1,
'sampled_nodes ': [
{'task ': 'play_movie_by_title '
"arguments ':[ { 'name': ' title '
"type ': 'string ',
‘desc ': 'The title of the

movie to play '}]1}],

"'sampled_links ': [],
'user_request ': "I want to
watch the movie titled
"Example Movie'",

"task_steps ': ["Step 1: Call

play_movie_by_title API

with title: 'Example Movie'"],
"task_nodes ': [
{'arguments ": [
{ 'mame ': 'title ',
"value ': 'Example Movie'}],
"task ': 'play_movie_by_title '}],
"task_links ': [],
"type ': 'single '}
Ultratool
{'id': '3186",

'"user_request 'l need to
cancel the single alarm set
for 8:00 AM today, and change
the daily alarm from 7:00 AM
to 6:30 AM every day.\n',
"task_steps ': [

"Step 1 Call clock_alarm_cancel
to cancel the alarm set for
8:00 AM today ',

"Step 2 Call clock_alarm_change
to change the daily

alarm from 7:00 AM to 6:30 AM
every day'],
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"task_nodes

P
{'task '":
'"clock_alarm_cancel '},
{'task '":
‘clock_alarm_change '} ],

"task_links ': [

{"source ':
"clock_alarm_cancel ',
"target ':
"clock_alarm_change '} ],
'n_tools ': 2,
"type ': 'chain '}
A.6 Baselines

In this appendix section, we present the details of
baselines shown in Table 1.

Graph Token. A method that introduces a
global virtual token to GNNs allowing im-
proved global information aggregation and
better graph-level representations.

GraphSAGE. A GNN that learns node em-
beddings by sampling and aggregating infor-
mation from a nodes’ neighborhood, enabling
scalable learning on large graphs.

GCN(Graph Convolutional Network). A
fundamental GNN model that extends convo-
lutional operations to graph structure by prop-
agating and aggregating node features using
adjacency-based weight metrics

* GAT(Graph Attention Network). A GNN

model that incorporates attention mechanism
to assign different importance weights to
neighboring nodes, improving feature aggre-
gation adaptively.

GIN(Graph Isomophism Network). A pow-
erful GNN variant designed to be as expres-
sive as the Weisfeiler-Lehman graph isomor-
phism test, using MLP-based neighborhood
aggregation.

Deepseek R1. DeepSeek-R1 is a reasoning
model that achieves performance compara-
ble to OpenAl-ol across math, code, and rea-
soning tasks, and is open-sourced along with
its distilled dense models to support the re-
search community. DeepSeek-R1 is devel-
oped through a pipeline that incorporates rein-
forcement learning and supervised fine-tuning,



and its reasoning patterns can be distilled
into smaller models, resulting in better per-
formance on benchmarks. like Multi head
Latent attention.

Qwen 2.5 Coder. Qwen2.5-Coder is a large
language model series with six mainstream
model sizes, offering improved code gener-
ation, reasoning, and fixing capabilities. It
has become the state-of-the-art open-source
codeLLM, matching the coding abilities of
GPT-40 with enhanced coding capabilities and
long-context support up to 128K tokens.

A.7 More Detailed Study

1. Proof of effectiveness of GNN. In this sec-
tion, we will theoretically prove that using <our-
approach> can significantly improve the LLM gen-
eration performance. Assume X as input tokens
to the LLM and G as input tool graph features to
the GNN, Y represents target output tool labels.
We introduce a dependency function DF'(.) that
quantifies the dependency between input labels X
and Y, which reflects the performance of LLM. By
introducing tool-graph knowledge into GNN, we
can impactfully improve model performance in pre-
dicting labels Y as DF(X;,G,Y) > DF(X,,Y).
The following outlines the derivation:

DF(X,,G,Y) — DF(X;,Y)
= op [ PG YY)
_ X%Y p(X1,G,Y)log (p(X’ G)p(y))

N o (Xl’ Y)
2 Pyl (o)

> (X1, G.Y) log (p((XziGY)

)

X.,.G.Y p(X,G)p(Y)

- 3 ey (i)
- B e (S )
_ X%Y p(X1,G,Y)log (p(G\?('());l(g;;l(/))(h Y))
= 3 G0 o (p( - g’(()’;(g‘)f (>Y|X))

2. Computational cost analysis In this section
we provide the computation comparison of LLM
only v/s Graph-O-Planner approach. Results are
tabulated in Table 2.

Training Efficiency. During the experiments,
the number of trainable parameters remains con-
stant across all the dataset. We observed that for
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Graph-O-Planner approach the time time required
for each epoch ranges between 23-32 minutes,
while for LLM only approach the time taken to
complete one epoch ranges between 150- 180 min-
utes. From these results we infer that our approach
is much faster and promising than other SOTA
methods.

A.8 Algorithms

In this section we provide detailed description of
all the major algorithms explained in section 5.2.1.
Algorithm 1: Node F1. The algorithm takes
two list as input. Lines 1-2 contains ground truth
tools L and predicted tools R which is given to
the function in Line 3-19 to calculate node f1. In
more detail Lines 4-5 computes the length of lists
L and R and stores them in gt_len and pred_len
respectively. Lines 8-10 stores unique tool names
from ground truth in set gt_tools and respectively
for predicted tools in pred_tools in Lines 11-13.

Finally, the node f1 is calculated in Line 14-
17 by taking precision and recall and storing in
variables p and r and then computing node_f1.

Algorithm 2: Edge F1. The algorithm takes
two list. Lines 1-2 contains ground truth tools L
and predicted tools R which is given to the function
in Line 3-19 to calculate edge f1. Lines 4-5 com-
putes the length of lists I and R and stores them
in gt_len and pred_len respectively. Lines 7-13
takes every tool link present in predicted links and
checks if the tool is present in ground truth links.
If the tools is present, the counter of common links
c_links is increased by 1. Finally in Line 14, 15
precision and recall for links are computed and then
edge_f1 is calculated in Line 17.

Finally, the node accuracy is calculated in Line
14-15 as length of intersection set between pre-
dicted tool names and ground truth tool names set
over length of gt_tools.

Algorithm 1:Node-F1

1: L+« [ly,la,...,1,] > List of ground truth tool
pairs. 7; : (tool;1,tool;a)
2: R+« [r1,r9,...,7] © List of predicted tool
pairs. 7; : (toolj1,tool;s)
procedure NODE F1(L, R)
gt_len < length of L
pred_len < length of R
gt_tools < {}
pred_tools < {}
for : = 1to gt_len do

3:
4:
5:
6:
7
8



9: gt_tools = gt_nodes U L|[i][0] U

L[] [1]

10: end for

11: for i = 1 to pred_len do

12: pred_tools = gt_nodes U R[i] [0] U
R[i] [1]

13: end for

14: c_tools < pred_tools N gt_tools

length(c_tools)

15: D<= length(pred_tools)
. length(c_tools)
16: re length(gt_tools)
. _ 2xpxr
17: node_f1 = pirta
18: return node_f1

19: end procedure

Algorithm 2:Edge-F1

1: L <+ [l1,l3,...,1,] > List of ground truth tool
pairs. T (tOOlil,tOOlig)

2: R« [r1,re,...,m] > Listof predicted tool
pairs. 7; : (toolj1,tool;s)

3: procedure EDGE F1(L, R)

4 gt_len < length of L

5: pred_len < length of R

6: c_links + 0

7 for i = 1 to pred_len do

8 for j = 1to gt_len do

9

: if R [i] == L [j] then
10: c_links « c_links +1
11: end if
12: end for
13: end for
14: c_tools < pred_tools N gt_tools

) length(c_tools)
15: p length(pred_len)

length(c_tools)

16: length(gt_len)

. c_links
17: edge_f1 + T len
18: return edge_f1

19: end procedure
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