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ABSTRACT

Foundation models encompass an extensive knowledge base and offer remarkable
transferability. However, this knowledge becomes outdated or insufficient over time.
The challenge lies in continuously updating foundation models to accommodate
novel information while retaining their original capabilities. Leveraging the fact
that foundation models have initial knowledge on various tasks and domains, we
propose a novel approach that, instead of updating all parameters equally, localizes
the updates to a sparse set of parameters relevant to the task being learned. We strike
a balance between efficiency and new tasks performance, while maintaining the
transferability and generalizability of foundation models. We extensively evaluate
our method on foundational vision-language models with a diverse spectrum
of continual learning tasks. Our method achieves improvements on the newly
learned tasks accuracy up to 7% while preserving the pretraining knowledge with a
negligible decrease of 0.9% on a representative control set accuracy.

1 INTRODUCTION

Recent machine learning models trained on a broad dataset have shown remarkable success in both
natural language processing tasks (OpenAI, 2023) and computer vision tasks (Radford et al., 2021;
Alayrac et al., 2022). These models can directly solve a wide range of tasks, such as recognizing
common objects and answering common questions, thus are dubbed as foundation models (Bom-
masani et al., 2021). What is captured by these models covering various domains and tasks can be
referred to as generic knowledge. Despite this, foundation models could still perform poorly on
specific tasks. For instance, Xiang et al. (2023) found ChatGPT is limited in embodied tasks, while
CLIP (Radford et al., 2021) is shown struggling in recognizing fine-grained classes like cars from
different brands. Therefore, it is crucial to integrate newly revealed data with pre-trained foundation
models and expand their knowledge base. As one common solution, finetuning foundation models
on new data would usually result in a good performance on the new task if done carefully. This
will turn the foundation model into a specific model for a specific task, and would risk losing the
existing capabilities of the model or the generic knowledge it has acquired through long phases of
pretraining. The effect of deteriorating the model’s previous knowledge upon new learning is a typical
phenomenon of neural networks, referred to as catastrophic forgetting (McCloskey & Cohen, 1989).

Continual learning research has been exploring the problem of accumulating knowledge without
forgetting Parisi et al. (2019) over the past years and has provided valuable techniques. However,
most existing works consider this process starting from a randomly initialized model (Ebrahimi et al.,
2019; 2020). Recently, with the success of large pretrained models (Steiner et al., 2021; Wightman,
2019), many works have considered continual learning starting from a pre-trained model (Wang et al.,
2022c;b). Nevertheless, the emphasis lies mostly on the learning and forgetting behavior of the newly
acquired knowledge, in the upcoming task sequence, often side-lining the pre-trained knowledge.
Generic knowledge embedded in large models provides bases for strong performance in various
domains and quick transfer to different tasks; when continuously finetuning a large pretrained model
on newly received tasks with no regard to preserving its pre-existing knowledge, we are losing the
pre-training benefits and being left with merely a large model to deal with.

These prompt a crucial question: Can we effectively and continuously update foundation models
while retaining their generic knowledge? An example is accommodating a generic multimodal model
like CLIP (Radford et al., 2021) to specific fine-grained concepts as various types of vehicles while
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maintaining its generic recognition capabilities of common world concepts such as people, animals,
and plants. In a continuously evolving world, we need to design models to cope with the change.

A particular avenue of recent approaches advocates for preserving the knowledge while refining
foundation models through model editing techniques (Meng et al., 2022; Mitchell et al., 2022a;b). The
key is to identify specific layers to modify and perform local updates to pre-trained models, thereby
correcting the related concepts without hurting other knowledge. While these methods have shown
promise in incorporating specific concepts into the model, their impact on the generic knowledge
remains uncertain, as discussed by Onoe et al. (2023). Additionally, most of these techniques are
designed for specific models for small-scale sample-wise edit of concrete mistakes and updates.
Moreover, they are centered around language models, where the input data has a stronger relationship
to the concept being edited, leaving the vision models, where the input images can contain various of
unrelated visual concepts, relatively unexplored. In contrast, we are interested in allowing continuous
model updates on a set of new coming data samples, which can be scaled up to a larger number of
concepts and a longer never-ending sequence.

Towards this goal, we seek to update foundation models from a continual learning perspective while
preserving their previously acquired generic knowledge. Starting from a large model pretrained on
vast sources of data, it is reasonable to assume that the model has some kind of basic or related
knowledge on the new upcoming data. Thus, we hypothesize that there is an implicit modularity
in the foundation model and design a method to locate which parameters are most relevant to the
new upcoming data. Formally, we first identify specific model layers to be updated based on model
analysis works (Dar et al., 2022; Geva et al., 2021). Among the localized layers, we propose a
mechanism to select parameters that are specialized for the task at hand. We opt for selecting
parameters that small changes to their values would contribute to a greater improvement in the new
task performance compared to other parameters. We localize and update only a small number of the
selected model’s parameters, while keeping a large portion of the model’s parameters untouched. By
only updating a few parameters, we not only provide an efficient method to finetune a large pretrained
model on newly arriving data but also preserve greatly the generalizability and transferability of the
model. Our strategy is to be executed whenever new data corresponding to a new set of classes, a
new task or domain, is received.

To facilitate a comprehensive analysis of the generic knowledge deterioration, we focus on the
classification tasks and formulate the knowledge base as the zero-shot classification ability on a
diverse control set containing a wide range of classes. Our main objective is to demonstrate an
improvement of a pre-trained model’s performance on datasets where it initially exhibits suboptimal
results, while preserving its original ability on a control set, without revisiting it. We evaluate our
method on six continual learning tasks and find that by updating merely 3% of the parameters, our
approach achieves performance on the new tasks superior to that achieved by methods that fully
finetune the model, with almost no deterioration on the generic knowledge, only 0.97% performance
loss on the control set. We further conduct comprehensive analyses to assess the impact of each
component on generic knowledge forgetting.

Our contribution can be concluded as 1) We introduce the evaluation of generic knowledge forgetting
in continual learning starting from foundation models. 2) To ensure the preservation of pre-trained
knowledge, we propose an efficient method that localizes the learnable parameters, selects specialized
parameters for the new coming data, and performs sparse updates. 3) Through comprehensive
evaluations on six datasets, we demonstrate that our algorithm significantly expands the pre-trained
knowledge on new tasks while still preserving the generic knowledge. Additionally, we conduct
in-depth analyses to understand the impact of each component on generic knowledge forgetting.

2 RELATED WORK

Foundation Models. Pretraining techniques have played a crucial role in establishing the so-called
foundation models, such as CLIP (Radford et al., 2021), Flamingo (Alayrac et al., 2022), BLIP-
2 (Li et al., 2023), PaLM-E (Driess et al., 2023), and GPT-4 (OpenAI, 2023). These models are
pre-trained on vast and diverse datasets, providing them with a broad knowledge base and exceptional
generalization and transferability. Consequently, many of these models can be directly applied to
various tasks in a zero-shot manner. Despite their strong abilities, evaluating these foundation models
remains challenging (Xu et al., 2023), given that their strengths lie predominantly in a diverse domain
of generalization. While CLIP (Radford et al., 2021), an early vision-language model pre-trained
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on a large dataset of 400 million images and text samples, namely WebImageText, is an exception
that exhibits impressive performance mainly on zero-shot classification tasks. This straightforward
evaluation format allows us to thoroughly explore the changes in the model’s knowledge base when
implementing updates or modifications. By studying the impact of these changes on CLIP, we aim to
gain a more in-depth understanding of the potential of updating the foundation models.

Continual Learning. In the realm of continual learning, early methods (Chaudhry et al., 2019b;
Kirkpatrick et al., 2017; Chaudhry et al., 2019a; Ebrahimi et al., 2020) train models from scratch
for each specific sequence. Recent methods leverage the power of pre-trained models to handle a
new sequence of tasks. Piggyback (Mallya et al., 2018), as a pioneer, learns separate masks over a
frozen pre-trained model for different tasks in the sequence. It requires storing the masks and access
to task identification to apply the mask during inference, which is a limiting assumption. Another line
of work introduces additional parameters to acquire new knowledge (Wang et al., 2022b;c;a; Smith
et al., 2023). Determining which set of newly added parameters to use during inference remains
challenging. Additionally, the performance of such works is highly dependent on the capacity and
flexibility of the added parameters, where some works only get a marginal improvement over the
pretrained model (Janson et al., 2022). Our work focuses on modifying the pre-trained models
themselves, and shares some similarities with weight regularization methods Kirkpatrick et al. (2017);
Aljundi et al. (2018) where an importance or relevance score is estimated for the model’s parameters.
A clear distinction is that the parameter importance score is estimated after learning a given task
and used to prevent changing those important parameters. Differently, our approach estimates the
parameter’s relevance score for a new task before starting the learning process. Our selection is to
identify which parameters to update. Finally, the majority of these approaches focus on defying
forgetting in the learned sequence, with no consideration for the forgetting of pre-trained knowledge.
Further, they do not scale to preserving pretrained knowledge, as they either require access to the
pretraining dataset (Aljundi et al., 2018; Kirkpatrick et al., 2017; Chaudhry et al., 2019b) or a
duplicate storage of the pretrained model (Li & Hoiem, 2017; Asadi et al., 2023). In contrast, we
consider the accumulation of knowledge, including the pre-trained and newly acquired knowledge,
without any task identification and extra storage of model weights.

Finetuning with Knowledge Preservation. It is usually observed that when finetuning foundation
models on new tasks, the generic knowledge and transferability are severely deteriorated. Recently,
some works (Meng et al., 2022; Ilharco et al., 2022; Xiang et al., 2023; Khattak et al., 2023; Zheng
et al., 2023) started to tackle the issue of updating large pretrained models while preserving their
transferability and the generalizability. Among them, Meng et al. (2022); Ilharco et al. (2022)
proposes model editing algorithms, where the models are first analyzed to pick specific layers to
edit, and then algebra-based or meta-learning based methods are applied to the weight of the local
layer. Usually, a local set is utilized to preserve the background knowledge. Additionally, Xiang
et al. (2023) proposed to finetune language models for embodied tasks while maintaining their
generalization ability to handle unseen embodied tasks. They suggested fine-tuning language models
with LoRa (Hu et al., 2022), i.e., low rank updates, to ensure compute efficiency, while applying
EWC regularization Kirkpatrick et al. (2017) to reduce forgetting of the pretrained knowledge. On the
multimodal models end, Zheng et al. (2023) considered to prevent zero-shot transfer degradation in
the continual learning of CLIP by performing distillation on the pre-trained model weights. However,
it requires access to a massive dataset to represent the pre-training distribution, which is not a trivial
assumption and far from being computationally efficient. In this work, we aim to update foundation
models, such as CLIP, continually to recognize additional concepts and preserve their transferability,
while striving for efficiency.

3 CONTINUAL LEARNING FROM PRE-TRAINED MODELS

In Class Incremental Learning (CIL), we are given a dataset Dt
train = {xk, yk}Nt

k=1 ∼ Dt sampled from
a task-specific distribution Dt for each task t ∈ {1, . . . , T} sequentially, where Xt

train = {xk}Nt

k=1 is
a set of images and Y t

train = {yk}Nt

k=1 is the set of the corresponding labels with yk ∈ Y t
train. Here

Y t
train is the label space of task t. Note that while we focus on image-based data, our method can be

extended to any modality. We are given a model parameterized by θ pre-trained on a vast pre-training
dataset Dp ∼ Dp sampled from the pre-training distribution, which is inaccessible during the CIL
procedure. During the learning of each task, the model parameters θ are to be optimized to minimize
a loss function L on the current training set Dt

train. The loss function depends on the task at hand and
the model deployed. For CLIP model (Radford et al., 2021) and image text pairs data, we deploy
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the same contrastive loss used for CLIP pretraining. After the learning of each task, we evaluate our
model on both the validation set of the seen distributions of the CIL sequence D1:t

test, where Dt
test ∼ Dt,

and a small control set Dcontrol ∼ Dp sampled from the pre-training distribution.

4 METHODOLOGY: SELECTIVE PARAMETER UPDATE

Most existing continual learning methods that start from randomly initialized models optimize all
parameters equally, as such a starting point has no knowledge or relevance to the task being learned.
However, foundation models often have a reasonable initial performance on novel tasks, indicating
some pre-existing knowledge relevant to these tasks. With the strive for efficiency and the preservation
of the generic knowledge, we suggest identifying a small set of parameters corresponding to these
pre-existing knowledge and only updating them instead of modifying all the pre-trained model
parameters. We now introduce how to localize the update to specific layers and how to identify a
sparse set of specialized parameters to be optimized.

Figure 1: We first localize our update to the first
layer of MLP blocks, and then select a sparse set of
parameters specialized to the new task to update.

Localization. The objective of our work is to
accumulate new knowledge without catastroph-
ically forgetting the generic knowledge. To
achieve this, we introduce a method that per-
forms local changes restricted to specific layers
in the pre-trained transformer backbones. As
shown in Figure 1, a transformer block con-
tains a multi-head attention block and a two-
layer MLP block. Recent research on trans-
former analysis (Geva et al., 2021) has shown
that MLP blocks emulate key-value neural mem-
ories, where the first layer of MLP acts as mem-
ory keys, operating as pattern detectors. Each
individual key corresponds to a specific pattern
seen in the input data. Whereas, the second layer
learns the distribution over the detected patterns.
Our work aims to add, update, or refine current
knowledge embedded in the model, and with the
analogy to the key-value memories, we opt for refining the keys (corresponding to pattern detectors)
to accommodate the new information. Empirically, we investigated whether we need to change the
patterns’ distributions represented by the second layer as well, and it turned out that updating the
first layer is sufficient and more effective, as we shall show in the experiments Section 5.5. With
this in mind, we localize the model updates to the first layer of the MLP in each transformer block.
With such localization, our candidate parameters to change are only around one third of the total
parameters.

Parameter Selection. Pre-trained foundational models have inherent knowledge, as evidenced by
their capacity to execute diverse tasks without fine-tuning. Moreover, recent investigations (Geva
et al., 2021; 2022; Bills et al., 2023) have unveiled the correlation between the concepts and specific
neurons’ output in foundation language models. Therefore, we hypothesize that there exists some
sort of modulation and specialization among specific neurons and their corresponding parameters
in foundation models. Upon these, we propose to identify which parameters in the first MLP layer
are specialized on the task at hand based on a scoring function. As shown in Figure 1, we select
parameters associated with top scores and minimize the new task loss by only updating those selected
parameters. In practice, we only make small changes to 3% of the total parameters, leading to
efficiency and effectiveness in preventing forgetting, as we shall show in later experiments. We now
formally outline our parameter selection methodology.

We receive the current task dataset Dt representing a task t in a continual learning sequence and
localize the updates to the first MLP layer θl for each transformer block, where l denotes the localized
first layer indexed over transformer blocks. We aim to define an element-wise scoring function
S(θli,j , Dt), for each parameter in a localized layer θli,j ; i, j refers to the parameter connecting an
input element i (the i-th output entry of the attention layer) to the neuron j in the first MLP layer. We
propose to select a subset of parameters θlU ⊆ θl that has the largest scores {S(θli,j , Dt)}, subject

to |θl
U |

|θl| = r, where | · | is the parameter size and r is the selection rate. This set is then expected

4



Under review as a conference paper at ICLR 2024

to combine the most relevant parameters to the current task represented by the dataset Dt. We
select parameters regardless of their corresponding neurons and ablate the effect of selecting the
entire parameters of identified neurons in Appendix B. In the sequel, we present two variants of our
parameter scoring function. For clarity, the presentation of the method is focused on θl, and it can be
generalized to a plural of selected layers covering all transformer blocks.

Gradient-Based Scoring Function. We aim to identify which parameters are more relevant to
the new task at hand. We formulate this as finding parameters where small changes to their values
could lead to a greater improvement in the task performance. When achieving this, we only make
small changes to the model and thus can preserve the generic knowledge while improving the new
task performance. As a proxy to the new task performance, we use the task loss function and
approximate the changes in this loss function amid small changes in each parameter. Specifically, we
can approximate the change in the loss function upon small changes δ in the parameters’ values with

L(θl + δ;xk)− L(θl;xk) ≈
∑
i,j

gij(xk)δij , (1)

where L is the loss function, gij(xk) =
∂(L(θl;xk))

∂θl
ij

is the gradient of the loss function regarding the

parameter θlij evaluated at the data point xk ∈ Dt. The above first-order approximation suggests that
small changes made to parameters with the largest gradient magnitude ∥ gij ∥ in the opposite direction
of the gradient would incur a larger reduction in the loss function, and hence greater improvements
with minor changes.

Following this, we define our scoring function as:

S(θ
l
ij , D

t
) = ∥

1

N ′
t

N′
t∑

k=1

gij(xk)∥, (2)

where N ′
t is the number of samples we use to compute the gradient. Note that N ′

t can be much
smaller than the total number of samples in the dataset, Nt as we shall show in the experiments 5.3.

Learnable Scoring Function. Although the gradient is an efficient approximation of the parameters’
relevance to the task at hand, selecting parameters independently based on their gradient magnitude
might not consider the contribution of the parameters together when updated, and can potentially
cause redundancy in the selection. To explore this, we propose to involve an optional optimization
stage to adjust the scoring function based on the initial gradient values. Specifically, for parameters
θl ∈ Rm×n, we define S ∈ Rm×n to be the learnable parameters scores. We initialize S with the
gradients computed on the current task, where Sij =

1
N ′

t

∑N ′
t

k=1 gij(xk). We consider the estimated
gradient as the bases for a target update of the model parameters and construct an imaginary update:

θl′ = θl − µ · S, (3)

where µ is the update step size (learning rate). We then optimize S by minimizing the task loss L
and an additional L1 loss (∥S∥1)

S′ = argmin
S

L(θl′;Dt) + λ∥S∥1, (4)

where λ is a hyperparameter that weighs the contribution of L1 loss. L1 loss is introduced to
encourage sparsity in the estimated scores, guiding the optimization to tolerate parameters with large
gradient magnitude (and hence large initial scores) when proven relevant to the minimization of the
task loss while zeroing out gradients of irrelevant or redundant parameters.

We optimize S for a few epochs. Then, we define S(θlij , Dt) = S′
i,j and select top r parameters as

the most relevant parameters for the task at hand. Note that here we estimate parameters scores for
one selected layer θl, but the formulation can generalize to an arbitrary number of layers.

While this holds the promise of a better selection, it requires more computation due to the additional
optimization phase of S compared to the gradient scores. For efficiency consideration, we report our
main results in Table 5.2 with the scoring function of gradient approximation, and present the efficacy
of this optional stage in Section 5.4.

Sparse update. Upon selecting the relevant parameters θU = {θlU}, we freeze all other model
parameters and learn the current dataset Dt by only optimizing θU .

Following the current practice in class incremental learning methods, (Asadi et al., 2023; Ebrahimi
et al., 2020; Wang et al., 2022c) we deploy a replay buffer to reduce the forgetting across the new
tasks sequence. We keep a replay buffer M of a fixed size, and sample batches from it of the same
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size as the batch from the current dataset at each optimization step. We update the replay buffer at the
end of learning of each task by reservoir sampling (Chaudhry et al., 2019b).

Our final objective function at task t can be written as

min
θU

L(θ;Dt
train) + L(θ;M) (5)

where L(θ;D) is the current task loss computed on the training set Dt.

Algorithm applicability. Our algorithm involves three key steps: localizing update layers, selecting
relevant parameters, and training on the new task with sparse updates. It is important to note that while
we primarily delve into the localization within the transformer architecture, the concept of selectively
updating certain layers while keeping others frozen to achieve efficiency and comparable performance
is not confined to this architecture alone.(Santurkar et al., 2021; Caccia et al., 2020). Should the
need arises to extend our approach to different architectures, the first step of our methodology can
be readily adapted. Furthermore, the processes of parameter selection and sparse updates remain
architecture-agnostic, making them versatile across various model structures. We refer to our method
as SPU short for Selective Parameter Finetuning.

5 EXPERIMENTS

We evaluate our proposed framework on various datasets compared to different methods and baselines
in Section 5.2, and analyze different components of our method and ablate our design choices in
Section 5.5. We provide further ablations on defying generic knowledge loss in the Appendix.

5.1 SETUP

Backbone. We assess the efficacy of our approach through its application to vision-language
classification tasks, given the straightforward measurement of knowledge base in such tasks. we
choose the pre-trained CLIP-ViT/B-16 (Radford et al., 2021) as our backbone.

Datasets. We assess the performance of our algorithms on a total of six datasets— four fine-grained
datasets (Birdsnap (Berg et al., 2014), CUB-200-2011 (Wah et al., 2011), FGVC-Aircraft (Maji
et al., 2013), Stanford Cars (Krause et al., 2013)), one coarse dataset (CIFAR100 Krizhevsky et al.
(2009)), and one out of distribution dataset (GTSRB (Stallkamp et al., 2012)) . These datasets were
chosen primarily based on their initially low zero-shot performance with CLIP pre-trained models.
To form the continual learning sequences, we split each dataset into 10 subsets with disjoint classes
composing 10 tasks. For methods that leverage a replay buffer, we use a buffer size of around 4%
of the dataset size. Ablation study of buffer size is shown in Section 5.5. For more comprehensive
information, including detailed statistics, data sources, and implementation details, please refer to
Appendix A.

Baselines. We conduct a comprehensive comparison of our method against various baselines to
demonstrate its effectiveness. Firstly, we evaluate our approach against the fine-tuning baseline of
CLIP, FLYP (Goyal et al., 2023). We further integrate classical continual learning components to
evaluate their performance on the CLIP backbone, including reservoir replay buffer (Chaudhry et al.,
2019b), weight regularization method, MAS (Aljundi et al., 2018), and functional regularization
methods LwF (Li & Hoiem, 2017) and PRD (Asadi et al., 2023). We combine these functional
regularization methods with experience replay. Furthermore, against recent work that also prioritize
the preservation of generic knowledge, namely ZSCL (Zheng et al., 2023). Finally, we compare our
method with the latest pre-trained model based continual learning techniques, namely L2P (Wang
et al., 2022c) and DualPrompt (Wang et al., 2022b). We find that these two methods struggle
with CLIP backbone and fail to produce sensible results despite our best attempts to tune their
hyperparameters. Results, evaluation with ImageNet pretrained backbones of these methods, and
discussion are in Appendix A.

Evaluation. We measure the Average Accuracy (Avg. Acc.) at the end of the class-incremental
process, as well as the forgetting rate following prior arts (Chaudhry et al., 2019b;a). Additionally,
we aim to understand how the knowledge base shifts as we continually update the pre-trained models.
To achieve this, and similar to (Ilharco et al., 2022), we evaluate the model on a diverse dataset with
generic knowledge before and after the continual learning procedure. Specifically, we report the
zero-shot classification accuracy on the validation set of ImageNet (Deng et al., 2009) as the control
set Accuracy (C.), and compare it with that from the frozen pre-trained models.
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Table 1: Average Accuracy (Acc.), Forgetting (F.), and control set Accuracy (C.) of our method SPU and
baselines on 6 CIL sequences, demonstrating our superior knowledge accumulation and preservation. We
highlight parameter efficiency via parameters size and learnable parameters rate, and data efficiency via data use.

Frozen FLYP ZSCL SPU (Ours)

+ MAS + ER + ER
+ LwF

+ ER
+ PRD

Parameter Size 149.5M 149.5M 149.5M 149.5M 299M 299M 299M 149.5M

Learnable Parameter Rate 0.00 1.00 1.00 1.00 0.5 0.5 0.5 0.03

Data Source - current
task

current
task

current
task,

buffer

current
task,

buffer

current
task,

buffer

current
task,

CC12M

current
task,

buffer

Aircraft
Acc. 24.45 18.63 33.69 41.42 36.08 37.11 30.96 44.43

F. - 39.93 27.50 31.48 18.12 17.35 15.65 14.42
C. 63.55 41.04 61.09 50.41 63.06 63.38 65.53 63.48

Bird
snap

Acc. 43.20 44.06 47.42 56.22 50.23 51.34 49.85 55.35
F. - 23.43 17.12 21.63 10.20 9.45 13.28 12.78
C. 63.55 51.06 60.05 56.72 62.08 62.85 63.13 61.94

Cars
Acc. 64.63 51.64 69.43 69.08 72.56 74.08 67.79 77.51

F. - 25.65 9.18 16.42 4.04 3.75 8.27 3.26
C. 63.55 52.25 61.17 58.07 62.59 62.96 62.90 63.42

CIFAR
100

Acc. 68.25 46.26 63.88 82.86 74.32 79.66 80.50 83.99
F. - 37.78 21.16 3.41 8.16 3.10 1.05 -0.39
C. 63.55 26.53 49.35 42.10 55.71 59.01 61.90 61.38

CUB
Acc. 55.13 45.74 61.72 64.07 65.11 65.92 61.09 71.51

F. - 26.62 12.05 17.72 5.90 6.55 7.69 4.84
C. 63.55 44.30 57.35 51.30 62.05 62.09 62.78 62.87

GTSRB
Acc. 43.38 21.76 42.04 96.28 53.56 63.00 62.92 94.25

F. - 55.48 25.38 -7.40 11.86 12.44 13.54 -7.87
C. 63.55 1.59 42.06 17.34 57.99 61.04 62.92 62.55

Avg. Acc. Impr. (↑) 0.0 -11.82 3.19 18.48 8.80 12.01 9.01 21.34
Avg. F. (↓) - 34.81 18.73 13.88 9.71 8.77 9.91 4.51
Avg. C. Drop (↓) 0.0 27.42 8.37 17.56 2.97 1.66 0.36 0.94

To provide a comprehensive view of baseline performance across all 6 datasets, we present the
improvement of Average Accuracy (Avg. Acc. Impr.) from the frozen pre-trained model across these
datasets, as well as the average Forgetting rate (Avg. F.) and the average loss of control set accuracy
(Avg. C. Drop.).

Implementation Details. We follow (Goyal et al., 2023) to both perform selection and sparse
update on the visual tower and text tower of the CLIP model, and use contrastive loss as our loss
function. Within our algorithm, we use a selection rate of 10%, which optimally balances learning and
forgetting. We perform an ablation study on the selection rate in section 5.5. More implementation
details of all baselines can be found in Appendix A.

5.2 RESULTS

We present the comparison between our method with baselines in Table 1. In the subsequent sections,
we delve into our observations from the dual lenses of learning and forgetting.

Learning. Regarding the accumulation of novel information, we achieve state-of-the-art results in
four out of six datasets, i.e., Aircraft, Cars, CIFAR100, and CUB, and comparable results in Birdsnap
and GTSRB, with a notable 1% - 10% average improvement over the existing continual learning
methods. Among the continual learning baselines we’ve compared to, FLYP+ER stands as the only
comparable contender in terms of average accuracy. However, it exhibits a significant drawback in
the form of forgetting, averaging at 13.88% in the forgetting of the current dataset, and a notable
decrease of 17.56% in average control set accuracy. In stark contrast, our approach demonstrates a
much more favorable performance regarding these two key metrics, with a mere 4.90% forgetting
rate and 0.94% decrease in average control set accuracy.

Forgetting. While accumulating novel knowledge remains paramount, we also prioritize the knowl-
edge retention. This includes both the fading of newly accumulated information within the task
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Table 2: Our SPU efficiency compared to full finetuning. 1) CIL performance with one pass to the data (1
epoch), 2) parameters update time, 3) forward and backward passes time.

Aircraft Birdsnap Cars CUB Optimizer
Step

Time (ms)

Batch
Time (s)

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

FLYP+ER 31.32 10.04 61.17 55.08 11.87 60.62 65.30 4.66 61.47 58.27 6.06 60.02 83.544 0.363
SPU (Ours) 31.17 12.20 63.67 52.21 7.15 64.12 69.98 2.72 63.52 61.25 5.68 63.51 4.167 0.155

sequence, measured by the F. metric, and the retention of pre-training phase knowledge, measured by
the C. metric. Our method yields a marked improvement across all datasets, resulting in a substantial
margin in both metrics. Notably, distillation-based methods such as FLYP+ER+LwF/PRD and ZSCL
generally perform good at preserving the pre-trained knowledge, all displaying control set accuracy
drop of less than 3%. However, their flexibility in learning the new tasks, as indicated by their average
accuracy, remains limited, reflecting a discernible gap of over 8% when compared to our method.

Fine-grained Datasets. The diverse characteristics of various datasets also lead to distinct behaviors.
Across fine-grained datasets like Aircraft, Cars, and CUB, we achieve SOTA average accuracy,
outperforming the baselines by around 3%, while demonstrating minimal degradation in control set
accuracy of less than 1%.

Out of Distribution Dataset. We consider GSTRB as out of distribution regarding CLIP pretraining,
as it is the only considered dataset with CLIP zero shot performance significantly lower than the
performance of a linear classifier trained on ResNet50 features Radford et al. (2021). In our results,
GSTRB proves an outlier for SOTA CIL methods with significantly low Acc., our method proves
robust. FLYP+ER achieves an average accuracy of 96.28% in GTSRB, but at the expense of a 46.21%
control set accuracy, equating to around 60% loss in the control set accuracy, referring to a large decay
in the generic knowledge after learning such out of distribution dataset. In contrast, our proposed
method achieves competitive accuracy, concurrently delivering small control set loss of around 1%,
signifying minimal loss of generic knowledge.

Coarse Dataset. In contrast, in the case of the coarser CIFAR100 dataset, we still achieve an
impressive SOTA learning accuracy of 83.99%, albeit with a marginal trade-off of approximately 2%
in control set accuracy. Even with this reduction, our approach stands out as significant compared
to other continual learning techniques that experience losses of generic knowledge ranging from
4% to 21%. This phenomenon can be attributed to that CIFAR100 encapsulates a degree of generic
knowledge, possibly causing inference in the information on control sets like ImageNet1k.

5.3 EFFICIENCY

We introduce the total parameter size and the rate of learnable parameters in Table 1. While most of
the current methods necessitate a complete parameter update, our approach only requires an update
of a sparse subset of parameters, which only consists of 3% of the total model’s parameters. This
characteristic contributes to both computational and data efficiency. We perform experiments that
only train one epoch with our algorithm and FLYP + ER on four fine-grained datasets, and measure
the average per optimization step time and per batch time on the same machine by line profiler
(Crall & Kern, 2023). The Results are shown in Table 2. With only one epoch of the experiment,
we achieve better results on cleaner fine-grained datasets like CUB and Cats. We achieve 69.98%
accuracy in Cars and 61.25% accuracy in CUB, which is only around 8% lower than the main results
in Table 1. And it is 4% higher than the baseline of FLYP+ER. From the perspective of running time,
we reduce the per optimization step time from 85.433 ms to 4.167 ms. Although we need an extra
masking operation, we reduced the average batch time from 0.363s to 0.155s. Note that the masking
step can be done prior to the training, further reducing the batch processing time.

We further perform an ablation study on the number of samples N ′
t used to approximate the scoring

function. Results show that our method can still have good performance even when using only one
batch of samples for the approximation. This implies that the computation of the scoring function
is also efficient which does not require a full pass of the data prior to the training, and can be done
transparently with the first received batch. Details are shown in Appendix B.

5.4 SCORING FUNCTION

We presented two scoring functions, one is gradient-based, and the other is learnable in Section 4.
Here we study their effect on the different metrics, shown in Table 3. While the average accuracy
(Acc.) is similar among the two scoring mechanisms, the learnable one tends to have slightly less
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Table 3: Our method SPU performance when updated parameters are selected based on the gradient-based
scoring function compared to learnable scoring function.

Scoring
Function

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

Gradient-based 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55
Learnable score 43.95 14.80 63.58 54.23 13.10 62.23 76.92 3.56 63.43 84.30 -1.07 62.08 71.11 4.78 62.98 92.41 -7.33 62.63

forgetting and less control set accuracy loss. This suggests that the learnable variant can alleviate
some redundancy in parameters scoring and hence suffers fewer changes on the pretrained parameters.
Overall, the simple and efficient gradient-based scoring is quite robust compared to the learnable one.
Implementation details can be found in Appendix A.

5.5 ABLATION STUDY

In this section, we perform ablation studies on the individual components comprising our algorithm.
These analyses serve to validate the rationale behind our design of these components. We only show
the average results here. Refer to Appendix B for more details

Table 4: Ablation on localized layers

Localized
Layer

Avg. Acc.
Impr. Avg. F. Avg. C.

Drop

First 21.34 4.51 0.94
Second 20.51 4.35 1.85
Both 21.18 4.88 1.51

Parameters localization. We compare localizing the update to
the of the first MLP layer parameters (our choice) to that of the
second layer and to localizing both layers together in Table 4.
All variants update the same number of parameters. Updating
parameters from the second layer suffers double the generic
knowledge loss compared to that of the First layer parameters.
Updating parameters in both layers is also worse in both forgetting and control set accuracy than
localizing the updates to the first layer only. We conclude that localizing the updates to selected
parameters of the first layer only is sufficient to achieve the best trade-offs.

Table 5: Selection rate ablation

Selection
Rate r

Avg. Acc.
Impr. Avg. F. Avg. C.

Drop

0.01 17.70 3.10 1.11
0.10 21.34 4.51 0.94
0.50 21.73 7.76 0.95

Selection rate. Table 15 illustrates the variants of our method
under varying selection rates applied to the first layer of MLP
blocks. Across all selection rates, our method demonstrates
competitive average accuracy, forgetting, and control set ac-
curacy when compared with other baselines in Table 1. Even
with a 0.5 selection rate, the learnable parameters comprise
only 30% of the total parameters. We note that as the selection rate increases, there is a marginal
enhancement in learning performance, but accompanied by a compromise in forgetting. For instance,
raising from 0.1 to 0.5 selection rate, the Average Accuracy improves around 0.5% and the forgetting
also raises around 3%. Therefore, we opt for a selection rate of 0.1, which gives the best trade-off
between the accumulation of the new knowledge and preservation of the pre-trained knowledge.

Table 6: Buffer size ablation

Method Buffer
Size

Avg. Acc.
Impr. Avg. F. Avg. C.

Drop

FLYP+ER
1% 8.97 22.27 19.18
2% 13.24 19.35 18.24
4% 18.48 13.88 17.56

SPU
1% 16.18 10.28 1.00
2% 18.63 8.14 0.96
4% 21.34 4.51 0.94

Buffer size. In Table 1, we present the outcomes
of our approach using a buffer size equivalent to 4%
of the total dataset size. Table 6 shows our perfor-
mance over an array of buffer sizes, ranging from
1% to 4% of the total dataset size, compared with
ER. Evidently, our algorithm excels in preserving
pre-training knowledge across all buffer sizes, all
with less than 1% drop in control set accuracy. As
we decrease the buffer size, FLYP+ER encounters
substantial influence; our method with 1% buffer size doubles Avg. Acc. improvement of FLYP+ER
with 1% buffer and suffers 50% less forgetting while only tolerating 1% control set accuracy loss.

6 DISCUSSION

With the rise of advanced foundation models pretrained on vast datasets, we propose a method that
preserves pre-learned information in continual learning. We base on the fact that foundation models
already have initial knowledge for the task in hand, and identify specific model layers and parameters
corresponding to this knowledge for sparse updates. As such, we perform small update for the model
to cope with the new knowledge while preserving the previously acquired generic knowledge. We
evaluate our method extensively and show superior performance. However, our current method
operates unidirectional, and future research could explore knowledge accumulation across diverse
domains. Additionally, expanding our focus from discriminative to generative tasks would enhance
the applicability of our techniques.
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A IMPLEMENTATION DETAILS

A.1 DATASET

Birdsnap Birdsnap is a large bird dataset originally consisting of 49,829 images from 500 bird species
with 47,386 images used for training and 2,443 images used for testing. We download the dataset
from the official link. We follow the official train-test split. We use a fixed buffer of size 1,500 for
this dataset.

CUB-200-2011 The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset is for fine-grained
visual categorization task. It contains 11,788 images of 200 subcategories belonging to birds, 5,994
for training and 5,794 for testing. We use the Hugging Face implementation of the dataloader. We
use a fixed buffer of size 240 for this dataset.

CIFAR100 This dataset has 100 classes containing 600 images each. There are 500 training images
and 100 testing images per class. We use the PyTorch implementation of the dataloader. We used a
fixed buffer of 2,000 for this dataset.

FGVCAircraft The dataset contains 10,200 images of aircraft, with 100 images for each of 102
different aircraft model variants, most of which are airplanes. The data is divided into three equally-
sized training, validation and test subsets. We use the PyTorch implementation of the dataloader,
where train and valid set are used for training, and the test set is used for testing. We use a fixed
buffer of size 250 for this dataset.

Stanford Cars The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into
8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50
split. Classes are typically at the level of Make, Model, Year, ex. 2012 Tesla Model S or 2012 BMW
M3 coupe. We use the Hugging Face implementation of the dataloader. We use a fixed buffer of size
240 for this dataset.

GTSRB This dataset is designed for recognition of traffic signs. By the time we download it, it
contains 43 classes with 26,640 training samples and 12,630 testing samples. We use the PyTorch
implementation of the dataloader. We used a fixed buffer of 1,000 for this dataset.

For each dataset, during the training, we use the prompt a photo of {} with class name as text
inputs. We evaluate each baseline on the test set using the original prompts and ensembling strategy
provided by Radford et al. (2021).

A.2 BASELINE DETAILS AND HYPER-PARAMETERS

For our algorithm, we use PyTorch implemented AdamW optimizer (Loshchilov & Hutter, 2017)
and learning rate scheduler of Cosine Annealing with Warmup (Loshchilov & Hutter, 2016) for
our algorithm, as well as FLYP combined with ER and other CL regularization methods. We use a
learning rate of 7.5e-6 and train for 10 epochs for all datasets. We report results based on an average
of 5 different random seeds. We run all our experiments on one single Nvidia A100 GPU.

Here’s the implementation for other baselines.

FLYP For all FLYP based baselines, we tune the learning rate in [2.5e-6, 5e-6, 7.5e-6] and training
epochs in [5,10,15] and report the best results

FLYP + MAS We follow avalanche (Lomonaco et al., 2021) to implement MAS regularier with
FLYP. To normalize the magnitude of MAS importance weights so that it copes with the large-scale
architecture, we normalize the estimated importance wights by its maximum value. We tune the
scaling factor of MAS loss in [0.01, 0.05, 0.1] and report the best.

FLYP + ER + LwF/PRD For the distillation-based baselines, we follow the implementation of
avalanche and official implementation of PRD. We further tune temperature in [0.01,0.1,1.0,5.0] and
loss scaling factor in [0.01, 0.05, 0.1] and report the best results.

L2P, Dualprompt For the prompt-based baselines, we deploy them with the CLIP pre-trained ViT
provided by timm library. We believe that these methods are highly tailored for ImageNet pretrained
transformers and do not scale to other backbones, leading to surprisingly bad performance when
combined with CLIP in sight of our best efforts to tune the hyper-parameters carefully. The results are

14



Under review as a conference paper at ICLR 2024

Table 7: L2P and DualPrompt performance with CLIP-ViT backbone

Aircraft Birdsnap Cars CIFAR100 CUB GTSRBmethod Acc. F. Acc. F. Acc. F. Acc. F. Acc. F. Acc. F.

L2P 3.06 15.80 2.53 13.31 1.41 13.34 7.28 37.74 5.28 17.51 7.19 39.40
DualPrompt 3.27 10.27 2.91 3.49 1.50 7.14 3.76 28.63 3.64 11.64 6.63 46.05

Table 8: L2P and DualPrompt performance accuracy on CIRAR100 with different pre-trained weights.

ViT Pre-trained
Weights Source

Pretrained on
ImageNet 21k

Released by CLIP
finetuned on
ImageNet 1k

Released by CLIP
finetuned on

ImageNet 12k

Released by
CLIP

L2P 83.32 12.82 11.73 7.28
DualPrompt 82.55 52.72 25.29 3.76

shown in table 7. To validate this, we report the continual learning average accuracy of the sequence
10 split CIFAR100 with different pre-trained weights in Table 8.

A.3 IMPLEMENTATION DETAILS OF THE LEARNABLE SCORING FUNCTION

In practice, we optimize the learnable score matrix S for 5 epochs, with the learning rate of 5e− 4
and step size µ = 5e− 4. We set the L1 loss coefficient λ = 1e− 3

B FULL RESULTS OF ABLATION STUDY

Parameter Localization. Table 9 shows the full results of variants of our method in editing
different layers. In the baseline named “First” or “Second”, we free all other layers except first or
second layers of each of the MLP blocks respectively, and select 10% elements to update. In the
baseline named “Both”, we unfreeze both layers of the MLP block, and select 5% elements on each
layer to update to equate the same number of parameters as in the single layer variant.

Table 9: Full results of ablation on parameter localization

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

First 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55
Second 43.32 14.02 63.24 54.98 12.25 61.17 76.91 3.24 62.77 83.59 -0.42 59.57 70.00 5.40 62.19 93.32 -8.38 61.24
Both 44.21 14.78 63.32 55.10 13.46 61.32 77.25 3.79 63.13 84.15 -0.31 60.47 71.23 5.42 62.34 94.18 -7.85 61.65

Selection Strategy. Table 11 shows the full results of variants of our methods in selection strategy.
In the baseline named “Weight” we compute an element-wise scoring function by Equation 2, and
select the top 10% entries of each weight matrix to update. In the baseline named “Neuron”, we
compute a row-wise scoring function based on the row summation of the element-wise scoring
function by Equation 2. Then we select the 10% rows of each weight matrix to update.

Table 10: Ablation on selection strat-
egy.

Update
Layer

Avg. Acc.
Impr. Avg. F. Avg. C.

Drop

Weight 21.34 4.51 0.94
Neuron 21.09 4.37 0.50

Aljundi et al. (2019) put forth a technique to calculate row-
wise importance scores to perform neuron-based selection.

We conduct variants of our the selection strategy and present
the results in Table 10. In neuron-based selection, we compute
the importance score as the summation of the importance score
of each row. We find that weight-based selection yields slightly
improved learning performance while exhibiting a marginal
decrease in hold-out accuracy. Nonetheless, the overall perfor-
mance trends remain comparable between the two strategies.
This observation highlights the robustness of our localization and importance scoring methods to any
of the selection strategy.
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Table 11: Full results of ablation on selection strategy.

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

Weight 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55
Neuron 44.13 14.02 63.60 55.32 12.66 62.77 77.46 3.33 63.62 83.98 -0.79 61.84 71.14 5.16 63.23 93.54 -8.15 63.22

Selection Rate. Table 12 shows the full results of variants of our methods in the selection rate. Our
main results select the top 10% elements localized layer. We compare to the baselines where the top
1% or the top 50% are selected for update. All other configurations are kept the same.

Table 12: Full results of ablation on selection rate.

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

0.01 37.64 11.45 63.54 53.49 9.87 62.25 74.62 2.20 63.40 83.79 -1.64 60.91 66.79 4.39 63.01 88.89 -7.71 61.53
0.10 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55
0.50 46.73 20.74 63.56 53.96 17.98 61.72 77.64 6.12 63.48 83.47 1.51 61.53 71.89 8.06 62.85 95.74 -7.85 62.43

Buffer Size. Table 13 shows the full results of buffer size ablation. We study buffer sizes of 1%,
2% and 4% of the total dataset size.

Table 13: Full results of ablation on the buffer size.

Buffer
Size

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

ER 1% 27.76 44.49 49.22 43.76 33.59 55.90 61.22 21.19 55.34 73.70 13.34 40.14 53.39 25.26 48.81 93.03 -4.22 16.79
ER 2% 33.42 41.37 49.74 49.96 29.20 56.35 62.83 21.45 57.35 78.72 7.94 41.74 57.90 22.84 50.83 95.64 -6.68 15.82
ER 4% 41.42 31.48 50.41 56.22 21.63 56.72 69.08 16.42 58.07 82.86 3.41 42.10 64.07 17.72 51.30 96.28 -7.40 17.34

SPU 1% 37.82 21.96 63.56 47.54 23.61 61.65 73.68 6.84 63.36 80.44 4.87 61.49 66.06 9.32 62.47 90.55 -4.93 62.76
SPU 2% 40.65 20.31 63.44 51.33 18.97 61.90 75.00 6.17 63.41 82.45 2.03 61.36 68.39 8.42 62.81 92.99 -7.04 62.63
SPU 4% 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55

Table 15: Ablation study on gradient
accumulation samples

Avg. Acc.
Impr. Avg. F. Avg. C.

Drop

one batch 21.24 4.64 0.94
25% 21.34 4.51 0.94
50% 21.35 4.46 0.94
100% 21.37 4.43 0.96

Number of samples to compute gradient approxima-
tion. In Equation 2, we accumulate the gradients of N ′

t
samples to approximate the importance. Here we ablate
the effect of accumulating gradients with one batch, 128
data point, 25% 50%, and 100% of the current set. With
few samples to approximate the scoring function, the com-
putational efficiency will be enhanced. With more samples,
the accuracy is slightly increased, with also slight decrease
of forgetting. Our algorithm is robust to all different con-
figurations in general. Full results are shown in Table 14
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Table 14: Full results of ablation on the number of samples to compute the gradient approximation.

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C.

one batch 44.42 14.40 63.50 55.02 13.33 62.04 77.41 3.36 63.40 83.99 -0.38 61.36 71.48 4.90 62.86 94.14 -7.79 62.52
0.25 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55
0.50 44.33 14.48 63.48 55.31 12.73 61.88 77.54 3.16 63.44 84.03 -0.41 61.37 71.67 4.63 62.87 94.24 -7.82 62.58
1.00 44.40 14.40 63.47 55.28 12.61 61.85 77.61 3.12 63.44 84.05 -0.40 61.35 71.66 4.64 62.87 94.27 -7.81 62.58
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