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Abstract
We propose a framework for adaptive data collec-
tion aimed at robust learning in multi-distribution
scenarios under a fixed data collection budget. In
each round, the algorithm selects a distribution
source to sample from for data collection and
updates the model parameters accordingly. The
objective is to find the model parameters that min-
imize the expected loss across all the data sources.
Our approach integrates upper-confidence-bound
(UCB) sampling with online gradient descent
(OGD) to dynamically collect and annotate data
from multiple sources. By bridging online opti-
mization and multi-armed bandits, we provide the-
oretical guarantees for our UCB-OGD approach,
demonstrating that it achieves a minimax regret
of O(T

1
2 (K lnT )

1
2 ) over K data sources after T

rounds. We further provide a lower bound show-
ing that the result is optimal up to a lnT factor.
Extensive evaluations on standard datasets and a
real-world testbed for object detection in smart-
city intersections validate the consistent perfor-
mance improvements of our method compared to
baselines such as random sampling and various
active learning methods.

1. Introduction
In modern deep learning systems, sufficient and high-quality
data is essential for robust model performance (Hestness
et al., 2017). Although numerous standard datasets and pre-
trained models are publicly available, they could fail to meet
the diverse and specific requirements of applications, espe-
cially when applied to novel or previously unseen scenarios.
Consequently, many applications–such as vision-language
modeling (Laurençon et al., 2024), intelligent monitoring in
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healthcare (Moody & Mark, 1992; Zang et al., 2023), and
object detection in smart cities (Cordts et al., 2016; Turkcan
et al., 2024)–necessitate the collection and annotation of
custom datasets to address the unique characteristics of their
respective problem.

As a motivating example in smart-city applications, consider
the task of vehicle detection at an urban traffic intersection.
The objective is to develop a robust vehicle detection model
that is capable of operating effectively under varying condi-
tions, such as changes in lighting, occlusions, and weather
variations. Three strategically placed cameras, each provid-
ing a unique perspective of traffic flow, are available for data
collection. The trained model will be deployed across all
three cameras, with the goal of optimizing the worst-case de-
tection performance among them. However, annotating data
for complex tasks such as detection, tracking, and segmen-
tation is particularly expensive. This involves meticulous
labeling of bounding boxes, object identities across frames,
and pixel-level masks to generate accurate ground truths.
Given a limited annotation budget (e.g. 2,500 images), it is
crucial to strategically allocate the annotation budget across
the three cameras to maximize the worst-case detection
performance at the intersection.

In this paper, we present a framework for adaptive data
collection and model training in multi-distribution scenar-
ios under a fixed data annotation budget. The proposed
framework operates iteratively, alternating between data col-
lection (annotation) and model optimization in each round.
Our objective is to devise a budget allocation strategy across
the distribution sources such that the trained model achieves
performance guarantee across all the distributions.

1.1. Related Work

Active Learning. The challenge of data annotation has
driven significant advancements in the field of active learn-
ing (AL). The key idea of AL is to let the learning algorithm
interactively query an annotator to label a subset of data
points from a set of unlabeled data (Settles, 2009). In par-
ticular, pool-based methods assume that a pre-existing pool
of unlabeled data is available and aim to select the most
relevant samples from the pool to query for their labels.
The relevance of a sample is often determined by criteria
such as uncertainty measure (Lewis & Catlett, 1994) or
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committee votes (Seung et al., 1992). On the other hand,
stream-based methods observe a consecutive stream of sam-
ples and decide for every sample whether to query for its
label or discard it. A similar branch of work is active class
selection, where the learner is allowed to query a known
class label for new samples (Lomasky et al., 2007; McClurg
et al., 2023). AL methods are widely applied to Deep Neural
Networks (DNNs) (Ren et al., 2022) in tasks such as clas-
sification (Ranganathan et al., 2017; Yoo & Kweon, 2019;
Sinha et al., 2019) and object detection (Aghdam et al.,
2019; Feng et al., 2019; Choi et al., 2021).

Despite their empirical effectiveness, AL methods are re-
stricted by the quality of the generated queries. In a scenario
with a trivial initial sample pool or a biased initial model,
AL algorithms can exhibit unstable behavior by overfitting
to a specific region of the data space or exacerbating the
initial bias (Baldridge & Palmer, 2009; Karamcheti et al.,
2021). Moreover, the existing theoretical analysis of AL is
mainly restricted to linear hypothesis classes or basic prob-
lem setups like binary classification (Dasgupta, 2005; Wang
et al., 2021; Gentile et al., 2022). Whereas some studies
have derived coarse sample complexity bounds (Dasgupta,
2005) or analyzed convolutional neural networks using core-
set techniques (Sener & Savarese, 2018), general theoretical
guarantees remain elusive when it comes to more complex
problem setups, such as those involving DNNs.

Estimating the Dataset Size. The relationship between
DNN performance and the amount of available training data
can be empirically characterized by the neural scaling law
(Bisla et al., 2021; Hestness et al., 2017; Mahmood et al.,
2022a). As a result, recent work models DNN training as
a Markov Decision Process (Mahmood et al., 2022b) or a
Gaussian Process (Tejero et al., 2023) with respect to (w.r.t.)
the dataset size. The amount of data required given a specific
performance metric can therefore be empirically predicted,
although the composition of multiple data sources is often
not explicitly accounted for.

The theoretical guarantees on dataset size can also be estab-
lished by leveraging predefined data quality metrics, such
as information functions (Xu & Zheng, 2017), submodular
functions (Akcin et al., 2023a; Mirzasoleiman et al., 2016),
or a target data distribution (Akcin et al., 2023b). Many
centralized AL algorithms (e.g. uncertainty- or entropy-
based sampling) share similar intuitions by selecting the
most relevant data to annotate using such metrics. However,
the robustness of real-world applications are often measured
in terms of the worst-case model performances rather than
the quality of the data itself. Therefore, it is more common
in robust learning to directly minimize the worst-case loss,
which we mainly discuss in this paper.

Robust Learning and Multi-Armed Bandits. Robust
learning focuses on model generalization under distribution

shifts during training and testing (Ahuja et al., 2020). Specif-
ically, distributionally robust optimization (DRO) formal-
izes this by minimizing worst-case loss over a pre-defined
uncertainty set of distributions, often characterized via met-
rics like Wasserstein distance or f -divergence (Duchi &
Namkoong, 2021; Agarwal & Zhang, 2022). In such spirit,
group-DRO explicitly incorporates group annotations to en-
sure uniform performance across subgroups, and utilizes
bandit algorithms to address robustness and fairness (Hagh-
talab et al., 2022; Zhang et al., 2023).

Particularly, Multi-Armed Bandit (MAB) studies a sequen-
tial decision problem that seeks to maximize cumulative
reward over time where the action at each time step is se-
lected from multiple fixed choices with unknown reward
distributions (Robbins, 1952; Gittins, 1979). Popular algo-
rithms, such as ϵ-Greedy and UCB, have been extensively
studied and analyzed for stochastic bandits (Auer et al.,
2002). While adversarial bandits (Bubeck & Nicolò, 2012)
are typically utilized in group-DRO literature, such algo-
rithms often disregard the notion of a dataset by considering
an oracle-based setup, which samples directly from the data
distribution to obtain an unbiased loss (and gradient) estima-
tor. Despite its theoretical convenience, directly sampling
from the data distribution every time is not always feasible
due to practical limitations. In contrast, this work seeks to
utilize the information contained in the collected dataset by
leveraging algorithms from stochastic bandits and perspec-
tives from contextual bandits (Langford & Zhang, 2007;
Slivkins, 2011).

1.2. Contributions

Our main contributions can be summarized as follows.

• We introduce an adaptive data collection framework for
robust learning across multiple distributions under a
limited data collection and annotation budget, without
relying on an initially collected set of annotated or
unannotated samples.

• We propose the UCB-OGD algorithm that combines
UCB sampling and online gradient descent which
achieves O(T

1
2 (K lnT )

1
2 ) minimax regret, matching

the theoretical lower bound up to a lnT factor.

• We conduct experiments on both standard datasets and
a real-world testbed for complex tasks and demon-
strate that the proposed UCB-OGD algorithm achieves
higher minimax performance on multiple tasks com-
pared to well-known AL algorithms.

2. Problem Statement
Notations. We consider a data space X with K data sources
and a parametrized model we wish to train for some task.
This can be classification, multi-class object detection and
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segmentation, or even single-class tasks where the data can
be obtained from different sources (e.g. see our motivat-
ing smart-city example in Section 1). Each data source
k ∈ {1, 2, . . . ,K} is associated with an unknown data dis-
tribution Dk over X. Let θ be the parameter of the train-
able model in some parameter space Θ. Let ℓ(θ,X) be
the loss function for data point X ∈ X1. Let µk(θ) :=
EX∼Dk

[ℓ(θ,X)] denote the expected loss associated with
data source k, and ∇µk(θ) := EX∼Dk

[∇θℓ(θ,X)] be the
gradient of µk(θ) w.r.t. the parameter θ.

For instance, in the motivating smart-city example in Sec-
tion 1, there are K = 3 data sources, one for each camera,
X is an image randomly obtained from a camera with cor-
responding data source index, object classes, and bounding
boxes, θ is the parameter vector of an object detection model,
and ℓ(θ,X) is the loss of the model prediction over the input
X given its annotation.

Let S be a set of samples and denote Sk := {X ∈ S :
X ∼ Dk} as the subset of S that belongs to data source k.
Then the empirical estimate of µk(θ) over the set of samples
S can be computed as µ̂k(θ;S) :=

∑
X∈Sk

ℓ(θ,X)/|Sk|,
where |·| denotes the set cardinality. Similarly, the empirical
estimate of ∇µk(θ) over the set of samples S is computed
as ∇µ̂k(θ;S) :=

∑
X∈Sk

∇θℓ(θ,X)/|Sk|.

Optimization Objective. If S is a fixed training set that ex-
ists in advance, a natural objective is to minimize the empiri-
cal loss over the training set, i.e.,

∑
X∈S ℓ(θ,X)/|S| (a.k.a.

empirical risk minimization). This objective function can be
interpreted as the weighted average of the empirical losses
of all data sources, where each data source is weighted by
the ratio of its samples in S , i.e.,

∑K
k=1(|Sk|/|S|)µ̂k(θ;S).

However, the construction of the training set itself may
worth more careful considerations, especially in real-world
applications where the annotation budget is limited. As
opposed to allocating the budget of training samples among
the data sources in a predefined way (e.g. uniformly), we
allow the samples to be actively collected and annotated dur-
ing the training process. In this scenario, the requirement
of a preexisting training set S is alleviated. Since no prior
exists for the ratio |Sk|/|S|, we consider an objective that is
independent of this ratio through minimax optimization:

min
θ

max
k=1,...,K

µk(θ). (1)

Note that the expected loss functions µk(θ), for k =
1, . . . ,K, are unknown. The objective (1) is of particu-
lar interest for the purpose of optimizing data collection. It
focuses on optimizing the worst-case expected loss which
ensures the fairness of the algorithm (Papadaki et al., 2022)

1To be precise, X = (x, y) where x is the input, and y is the
desired output (annotation) from the model with input x. Then
ℓ(θ,X) measures how different the prediction ŷ of the model with
parameter θ is from the true output y.

Algorithm 1 General Framework of Online Optimization
with Adaptive Data Collection
Require: Total training rounds T , batch size M , randomly

initialized θ1
1: X0 ← ∅
2: for t = 1, 2, . . . , T do
3: kt ← SELECT(θt,Xt−1)
4: Bt ← {X1, . . . , XM ∼ Dkt

}
5: Xt ← Xt−1

⋃
Bt

6: θt+1 ← UPDATE(θt,Xt, kt)
7: end for

and is less prone to overfitting towards a particular data
source. Minimax learning is also preferred for its robustness
to distributional uncertainties (Farnia & Tse, 2016), since
we want to train a model that works well across a range of
data distributions one might encounter during real-world
deployment.

Algorithm Framework. We propose a general framework
by combining adaptive data collection and online optimiza-
tion as presented in Algorithm 1. The algorithm starts with
an empty training set X0 = ∅ and an initialized θ1. In
every round t, in SELECT step, it selects a data source
kt ∈ {1, 2, . . . ,K} to collect and annotate a batch of sam-
ples Bt. The decision is made based on the current model
parameter θt and the existing training set Xt−1. The batch
of new samples Bt is then added to Xt−1 to get the updated
training set Xt. For the simplicity of the analysis, we as-
sume the batch size is fixed, i.e., |Bt| = M ≥ 1. Then, in
UPDATE step, the algorithm updates the model parameter θt
based on the updated training set Xt and the selected data
source kt, and obtains θt+1 for the next round.

Performance Metric. After T rounds of execution, an
online algorithm A generates a sequence of data source
indices k1, . . . , kT and a sequence of model parameters
θ1, . . . , θT . A natural metric to quantify the performance
of an online algorithm that solves the optimization problem
(1) is based on the minimax regret, which is defined as
the cumulated gap between the global optimal loss and the
maximum loss achieved by the current model in each round.

Definition 2.1 (Minimax Regret). The minimax regret of
an algorithm A over T rounds is defined as

R(AT ) :=

T∑
t=1

max
k

µk(θt)− T min
θ

max
k

µk(θ), (2)

where we use AT = {(kt, θt), t = 1, . . . , T} to denote
the sequence of data source indices and model parameters
generated by algorithm A after T rounds.

We mainly focus on the expectation of the minimax regret,
E[R(AT )], since the trajectory AT is random.
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The minimax regret metric can be connected to the conver-
gence of time-averaged model parameter under algorithm
A, defined as θ̄AT

:=
∑T

t=1 θt/T . The time-average con-
vergence is commonly adopted in the literature of online and
stochastic algorithms, as it facilitates more straightforward
theoretical guarantees (Hazan, 2016; Tejero et al., 2023).
While there is no direct equivalence between the average
parameter θ̄AT

and the final parameter θT (which is a more
common choice in actual implementations), advanced opti-
mizers such as SGD with Momentum and Adam (Polyak,
1964; Kingma & Ba, 2017) run a moving average over the
gradients ∇µ̂k to improve the robustness of the algorithm.
These two concepts are analogous in terms of promoting
smoother update steps for the model.

When the loss functions are convex, we can build an intuitive
relationship between the minimax regret and the optimality
gap as follows.

Proposition 2.2 (Optimality Gap). Let µ1, . . . , µK be con-
vex in θ. Then any algorithm A satisfies

E
[
max

k
µk(θ̄AT

)

]
−min

θ
max

k
µk(θ) ≤

E[R(AT )]

T
, (3)

where θ̄AT
=
∑T

t=1 θt/T .

The proof of Proposition 2.2 follows from the convex-
ity of maxk µk and application of Jensen’s inequality,
i.e., maxk µk(θ̄AT

) ≤
∑T

t=1 maxk µk(θt)/T .

As a result of Proposition 2.2, to show that an algorithm
converges to the minimax optimum, it is sufficient to show
that its (expected) minimax regret is sublinear in T .

We adopt the following assumptions for the analysis pre-
sented in this paper.

Assumption 2.3 (Bounded Lipschitz Loss). There exists
some C ≥ 0 s.t. ℓ(θ,X) ∈ [0, C] for all X and θ. Also, the
expected loss µk(θ) is L-Lipschitz in θ for all k.

Assumption 2.4 (Finite Domain). The model parameters
generated by Algorithm 1 in all rounds, θ1, . . . , θT , lie in a
bounded subset of Θ with diameter D ≥ 0. 2

Assumption 2.5 (Finite Gradient Noise). There exists
some σ ≥ 0 s.t. the variance of the gradient is finite,
i.e., EX∼Dk

[∥∇ℓ(θ,X)−∇µk(θ)∥2] ≤ σ2 for all k, θ.

Assumption 2.6 (IID Sampling). Data collected from every
data source k is sampled i.i.d. from the associated data
distribution Dk.

3. Algorithms and Main Results
We present three specific algorithms within the framework
of Algorithm 1 and their corresponding performances. Since

2This will be defined more rigorously in Appendix A.3.

we fix the batch size M and the total number of rounds T ,
the algorithm collects a total number of MT samples from
all data sources, allowing for uniform comparisons between
different algorithms based on their minimax regret.

For the optimization step (Line 6 of Algorithm 1), we con-
sider Online Gradient Descent (OGD) (Hazan, 2016). Re-
call that kt is the data source selected for the current round
t. Denote Xt,kt

:= {X ∈ Xt : X ∼ Dkt
} as the subset of

Xt collected from data source kt. Let S be a batch of data
points uniformly sampled from Xt,kt

. Then OGD updates
the model parameter of the next round by taking a step in
the direction of the estimated gradient of the mean loss of
source kt at the current round, i.e.,

θt+1 ← θt − ηt∇µ̂kt
(θt;S), (4)

where ηt := 1/(2L
√
t) is the learning rate.

For the data source selection step (Line 3 of Algorithm 1),
we consider the following three methods.

Random Selection. The simplest baseline is to pick the data
source uniformly at random, i.e., kt ∼ U({1, . . . ,K})3.
This is equivalent to uniformly allocating the budget of MT
samples among the K data sources, yielding approximately
MT/K samples per data source. We refer to Algorithm 1
with random selection and OGD as Rand-OGD.

Intuitively, Rand-OGD is not designed for the minimax ob-
jective in Equation (1), since all data sources are queried in a
balanced way regardless of their losses (see Appendix A.4).
A more viable selection method that addresses the minimax
problem is to greedily select the data source that incurs the
highest loss, i.e., kt ← maxk µk(θt). However, the true
expectation µk(θt) is unknown and we can only measure its
empirical estimate µ̂k(θt;Xt−1) which is a random variable.
Moreover, the deviation of µ̂k from its expectation can be
particularly large with a small number of samples.

While we need to focus on optimizing the maximum loss
associated with the data source that incurs it as much as pos-
sible (i.e., exploitation), we also need to ensure that enough
samples are collected from other data sources in order to re-
duce the variance of the estimated losses (i.e., exploration).
This resembles the exploration-exploitation trade-off in
MAB (Multi-Armed Bandit) problems. We consider the
following two data source selection methods inspired by
MAB algorithms (Auer et al., 2002).

Decaying ϵ-Greedy Selection. For t > 1, define an explo-
ration probability ϵt as

ϵt :=
1

2
3
√
αK ln t/(2M(t− 1)), (5)

where α ≥ 1/2 is a constant. We specially define ϵ1 := 1.
Then, in every round t, with probability ϵt, we select kt ∼

3U(S) denotes the uniform distribution over set S.
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U({1, . . . ,K}), otherwise, we select

kt ← argmax
k

µ̂k(θt;Xt−1). (6)

We refer to Algorithm 1 with ϵt-Greedy selection and OGD
as Eps-OGD.

Upper-Confidence-Bound (UCB) Selection. UCB is an-
other popular exploration-exploitation strategy in MAB that
balances the the empirical estimate and its uncertainty. De-
fine a confidence radius for each data source k given some
set of samples S as

rk(S) := C
√
α ln t/(2|Sk|), (7)

where C is defined in Assumption 2.3, α ≥ 1/2 is a con-
stant, and |Sk| is the number of samples in S that belongs
to from data source k. Then, in every round t, we pick the
data source with the maximum UCB value, i.e.,

kt ← argmax
k

µ̂k(θt|Xt−1) + rk(Xt−1). (8)

We refer to Algorithm 1 with UCB selection and OGD as
UCB-OGD.

The following theorem states our main result regarding the
minimax regret of Eps-OGD and UCB-OGD for convex
loss functions.
Theorem 3.1 (Minimax Regret). Let µ1, . . . , µK be convex
in θ. Then Eps-OGD and UCB-OGD achieve the following
minimax regrets:

E[R(Eps-OGDT )] = O(T
2
3 (K lnT )

1
3 )

E[R(UCB-OGDT )] = O(T
1
2 (K lnT )

1
2 )
. (9)

Note that, by Proposition 2.2, we can subsequently conclude
that the expected minimax optimality gap of Eps-OGD and
UCB-OGD diminishes at the rate O(T− 1

2 (K lnT )
1
2 ) and

O(T− 1
3 (K lnT )

1
3 ), respectively.

Remark 3.2. When the loss functions are non-convex, it is
generally not feasible to converge to the global optimum
of (1). In this case, we can only show convergence to
a pareto-stationary point (Sener & Savarese, 2018). For-
mally, θs is called Pareto Stationary if there exists a set
of α1, . . . , αK s.t.

∑K
k=1 αk∇µk(θs) = 0, where αk ≥ 0

for all k and
∑K

k=1 αk = 1. We can use time-smoothing
w.r.t. a non-trivial window 1≪ w ≤ T and corresponding
time-smoothed OGD algorithms from the online non-convex
optimization (Hazan et al., 2017; Hallak et al., 2021). Then
we can show that asymptotically, as T,w →∞, any time-
smoothed OGD-based algorithm A converges to a pareto-
stationary point θs where

∑K
k=1 αk∇µk(θs) = 0, and αk

is the fraction of rounds that data source k is selected in the
long run under A. We provide the formal statement of this
result and its proof in Appendix A.5 for completeness.

A natural question is whether the bounds in Theorem 3.1
can be improved. We can establish the following lower-
bound for the minimax regret of any algorithm which shows
UCB-OGD is optimal, up to a lnT factor.

Proposition 3.3 (Minimax Lower-Bound). The minimax
regret of any online algorithm A satisfies E[R(AT )] ≥
O(T

1
2 ) in the worst case.

The proof of Proposition 3.3 is based on a simple case and
is provided in Appendix A.6.

4. Proof of Main Results (Theorem 3.1)
In Algorithm 1, both the SELECT step and the UPDATE step
seek to utilize the information within the collected training
set Xt, rather than generating fresh samples from the data
distribution (Haghtalab et al., 2022; Zhang et al., 2023).
The intuition is that discarding previous samples will result
in the model being trained on every data point only once,
which is infeasible for most modern DL tasks such as object
detection. Instead, it is conventional to reuse past samples
while maintaining a training set, at the cost of potential
complexities in generalization during theoretical analysis.

Formally, consider the empirical loss µ̂k(θt;Xt) for some
k, θt and a training set Xt. When θt is trained over the
collected samples in Xt, optimization steps like OGD in
Equation (4) introduces implicit dependency between θt
and Xt, which makes the empirical loss estimator (thus the
empirical gradient estimator) biased, i.e.,

µ̃k(θt) := E[µ̂k(θt;Xt)|At] ≲ µk(θt). (10)

Indeed, µ̃k(θt) tends to underestimate µk(θt) due to poten-
tial overfitting. In practical DL training, this is mitigated
empirically by techniques such as data augmentation and
regularization, which we also adopt in the experiments in
Section 5.

To characterize the minimax regret (Definition 2.1) of the
algorithms, we present several standard regret definitions
from the literature.

Optimization Regret. Recall that Algorithm 1 picks one
data source kt in every round t and generates a θt+1 for the
next round (t+ 1) based on the updated data set Xt. After
T rounds of execution, we define an optimization regret
for algorithm A based on the cumulated gap between the
expected empirical loss µ̃kt

(θt) achieved by the algorithm
in round t and the best fixed model parameter θ chosen in
hindsight given the sequence of data sources k1, k2, . . . , kT
(Hazan, 2016), i.e.,

Ro(AT ) :=

T∑
t=1

µ̃kt(θt)−min
θ

T∑
t=1

µ̃kt(θ). (11)
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Bandit Regret. Consider a K-armed contextual bandit,
where the reward of each arm k is ℓ(θ,X), X ∼ U(Xt,k)
with expectation µ̃k(θ) under context θ. In our problem, the
arms are the data sources and the context θ is the model
parameter. Further, the reward distribution of every arm-
context pair is stationary4. After T rounds, we define the
bandit regret of an algorithm A based on the cumulated gap
between the optimal expected empirical loss when the arms
are chosen optimally in a context-aware manner and the
actual expected empirical loss achieved by the algorithm in
each round (Slivkins, 2011), i.e.,

Rb(AT ) :=

T∑
t=1

(
max

k
µ̃k(θt)− µ̃kt

(θt)

)
. (12)

Generalization Regret. We further define the generaliza-
tion regret as the cumulated gap between the expected worst-
case empirical loss and the worst-case true loss, i.e.,

Rg(AT ) :=

T∑
t=1

(
max

k
µk(θt)−max

k
µ̃k(θt)

)
. (13)

Using the definitions above, the minimax regret (Defini-
tion 2.1) can be decomposed as follows.

Proposition 4.1 (Regret Decomposition). Let Equation (10)
hold. Then the minimax regret of any algorithm A over T
rounds satisfies R(AT ) ≤ Ro(AT )+Rb(AT )+Rg(AT ).

Proof. By definition, we can write

Ro(AT ) +Rb(AT ) +Rg(AT )

=

T∑
t=1

max
k

µk(θt)−min
θ

T∑
t=1

µ̃kt(θ)

≥
T∑

t=1

max
k

µk(θt)−min
θ

T∑
t=1

µkt
(θ)

≥
T∑

t=1

max
k

µk(θt)− T min
θ

max
k

µkt
(θ)

= R(AT )

. (14)

The first inequality in Equation (14) follows from Equa-
tion (10), and the second inequality from the fact that
µkt

(θ) ≤ maxk µk(θ) for any kt, θ.

For the optimization regret Ro, we can establish the follow-
ing result for both Eps-OGD and UCB-OGD.

4This means, at any two time steps t1, t2 ∈ {1, . . . , T}, if
kt1 = kt2 = k and θt1 = θt2 , then ℓ(θt1 , X1), and ℓ(θt2 , X2)
for X1, X2 ∼ U(Xt,k) are i.i.d.

Proposition 4.2 (Optimization Regret). Let µ1, . . . , µK be
convex in θ. With step sizes ηt = 1/(2L

√
t), the optimiza-

tion regret of any OGD-based algorithm A over T rounds
satisfies

E[Ro(AT )] ≤ L(D2 + 1)
√
T + L−1σ2

√
T , (15)

where L, D, and σ are defined in Assumption 2.3, Assump-
tion 2.4, and Assumption 2.5, respectively.

Proof of Proposition 4.2 follows from the analysis of stan-
dard OGD (Hazan, 2016) with modifications to account
for Lipschitz loss function (Assumption 2.3) and the gra-
dient noise (Assumption 2.5) in our stochastic setting. We
also alleviate the dependence of the learning rate ηt on the
diameter D (Assumption 2.4) to be more in line with the
conventions in stochastic optimization literature (Garrigos
& Gower, 2024). The complete proof of Proposition 4.2 is
provided in Appendix A.1.

For the bandit regret Rb, our problem adopts the structure of
a contextual bandit in a rigorous manner. However, we are
not necessarily playing the bandit game here. When a new
context θt arrives in round t, the player in a rigorous bandit
game can only learn about the context from the specific
problem structure (e.g. similarity information in the context
space), or by pulling the arms for new samples. In contrast,
both Eps-OGD and UCB-OGD in our case are allowed to
learn about the new context θt directly by evaluating the loss
over the collected samples, i.e., computing the empirical
loss µ̂k(θt|·). This provides us with information about the
new context θt even if no new samples are collected in the
current round. We can take this advantage to bypass the
challenge of navigating through arm-context pairs based on
similarity and directly utilize the empirical loss as a more
informative source of knowledge about θt.

We sketch the outline of the bandit regret analysis below and
provide the detailed proofs in Appendices A.2 and A.3. The
core steps involve establishing the concentration inequality
and characterizing the bandit gap.

Lemma 4.3 (Loss Concentration). Let S ∼ U(Xt) be a
batch of training data randomly sampled from the training
set Xt. Then it holds for any constants k ∈ {1, . . . ,K} and
r > 0 that

Pr[|µ̂k(θt;S)− µ̃k(θt)| > r]

≤ 2 exp

(
−2|Sk|

C2
· r2
)
, (16)

where |Sk| denotes the number of samples in S that belongs
to data source k, and C is defined in Assumption 2.3.

The proof of Lemma 4.3 follows from constructing a mar-
tingale over the sequence of ℓ(θt, Xi) for each Xi ∈ Sk and
applying the Azuma’s inequality, detailed in Appendix A.2.
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Using the tail bound provided in Lemma 4.3, now we show
the concentration of the empirical loss on expectation, ex-
pressed in terms of a confidence radius. While the UCB
algorithm directly defines its confidence radius in Equa-
tion (7), we similarly define the confidence radius of the
ϵ-Greedy algorithm given some set of samples S as

rk(S) := C
√
αK ln t/(2|S|ϵt). (17)

Further denote µ̃⋆(θt) := maxk µ̃k(θt) the maximum ex-
pected empirical loss, and r⋆(S) the corresponding confi-
dence radius defined in Equations (7) and (17). Let µ̂⋆(θt;S)
be the empirical estimate of µ̃⋆(θt) given S . The following
is a direct consequence of Lemma 4.3.

Lemma 4.4 (Bandit Gap). Let ∆k(θt) := µ̃⋆(θt)− µ̃k(θt)
and ∆̂k(θt;S) := µ̂⋆(θt;S) − µ̂k(θt;S). Then for any
constant α ≥ 1/2 and confidence radius rk defined in Equa-
tions (7) and (17), it holds that

E[∆k(θt)|At,S] ≤ rk(S) + r⋆(S)
+ ∆̂k(θt;S) +O(t−α)

. (18)

This indicates that, by following the decision rules of the
bandit algorithms that carefully controls ∆̂kt(θt; ·) with
appropriately chosen confidence radius, the estimation of
the worst-case loss is accurate with high probability. Since
the bandit regret in Equation (12) is an accumulation of the
bandit gaps ∆kt

(θt) in each round, Lemma 4.4 effectively
provides a provable probability bound on the concentration
of the empirical estimation of the bandit gaps, which also
guarantees the quality of the OGD updates.

The following results on the bandit regret match the standard
regret bounds of stationary bandits (Auer et al., 2002) de-
spite the non-stationary setting of our problem. The detailed
proof is given in Appendix A.3.

Proposition 4.5 (Bandit Regret). The bandit regret (Equa-
tion (12)) is O(T

2
3 (K lnT )

1
3 ) for Eps-OGD, i.e.,

E[Rb(Eps-OGDT )] ≤
3(2
√
2 + 1)C

2

3

√
αKT 2 lnT

2M
,

(19)
and O(N

1
2 (K lnT )

1
2 ) for UCB-OGD, i.e.,

E[Rb(UCB-OGDT )] ≤ 2C

√
2αKT lnT

M
. (20)

Remark 4.6. In the rigorous contextual bandit setting where
one can only learn about the new context from the problem
structure, it is common to assume that the reward function
is Lipschitz w.r.t. to the context. The uniform partition al-
gorithm (Hazan & Megiddo, 2007) proposes to partition
the context space and run a stationary bandit algorithm on

every partition and incurs the regret O(T 1− 1
2+K+H ), where

H is the covering dimension of the context space Θ. Since
usually H ≫ 1 for modern DNNs (Mao et al., 2024), the
uniform partition algorithm and other similar contextual
bandit algorithms (Slivkins, 2011) may struggle to obtain a
meaningful regret in our setting.

The final step is to bound the generalization regret Rg , which
has been studied extensively in robust learning literature
(Dziugaite & Roy, 2017; Arora et al., 2018; Cao & Gu,
2019). While this is out-of-scope for the purpose of this
paper, the takeaway is that the generalization bound takes
the form of

Rg(AT ) ≤

√
C(θ)
|XT |

= O(T− 1
2 ), (21)

where C(θ) is a constant determined by the complexity of the
model. Intuitively, the generalization is better when the size
of the dataset is sufficiently large, and when the model is not
too over-parametrized. This is indeed true for a wide range
of complex DL tasks, including our motivating example of
urban vehicle detection described in Section 1.

Proof of Theorem 3.1. The proof is a direct consequence
of Proposition 4.1 and the fact that the optimization regret
in Proposition 4.2, the bandit regrets in Proposition 4.5, and
the generalization regret in Equation (21) are all sublinear.

5. Experimental Results
In this section, we present the experimental results of the
three algorithms described in Section 3, compared to other
state-of-the-art AL (active learning) algorithms. We con-
sider the following tasks with different notions of data
source, demonstrating the flexibility of our framework in
practical settings.

Classification. We perform image classification on the
CIFAR10 dataset (Krizhevsky et al., 2009) with a budget
of 10,000 images, where every class is a data source. We
also report the results on the MNIST dataset (Lecun et al.,
1998) to test different optimizer configurations and get more
insight into the distribution of collected samples from dif-
ferent classes under different algorithms. The metric are the
mean and minimum class-wise accuracies among all classes.
We use a simple three-layer convolutional neural network
(CNN) architecture with ReLU activations for this task.

Multi-class Object Detection. We perform object detection
on the PASCAL VOC2012 dataset (Everingham et al.) with
a budget of 3,000 images. Since each image may contain a
mixture of objects from different classes, we define the data
source as a set of different classes whose objects are likely
to appear in the same image, i.e., indoor, wildlife, transport,
and human. Then we partition the dataset into four subsets,
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each containing a collection of images from one of the four
data sources. Details of data source assignment is given
in Appendix B. We use mean Average Precision with an
intersection-over-union (IOU) threshold of 0.5 (mAP@50)
to measure the performance of the algorithms within each
subset. The metrics are the mean and minimum mAP@50
among all subsets of images. We use the SSD300 (Liu et al.,
2016) architecture with input image size of 300 for this
task. The backbone network is VGG16 (Liu & Deng, 2015)
pretrained on ImageNet (Deng et al., 2009).

Vision-Language Modeling. We perform a simple Vi-
sual Question Answering (VQA) task under a budget of
1,000 question-answer pairs from the VQAv2 dataset (Antol
et al., 2015) using the proposed algorithms. We partition
the dataset into three data sources based on the type of the
questions, i.e., yes/no questions, numerical questions, and
descriptive questions. The metrics are the mean and mini-
mum per-token accuracies of each data source. We adopt a
pretrained SmolVLM-256M-Base model (Marafioti et al.,
2025) for this task.

Single-class Object Detection. We further implement the
proposed algorithms on the COSMOS testbed (Raychaud-
huri et al., 2020) for detecting vehicles in an urban intersec-
tion (our motivating example in Section 1) with a budget
of 2,500 images. The COSMOS testbed includes a traffic
intersection in New York City, with three cameras overlook-
ing the traffic flows from different angles. Further details
of the testbed setup is given in Appendix B. We collect and
annotate the captured images from the three cameras in the
testbed and consider each camera as a data source. The
metrics are the mean and minimum Average Precision with
IOU threshold of 0.5 (AP@50) among all cameras. We use
the same model architecture as the one used for the above
multi-class task but with an input image size of 320.

To understand how the three algorithms differ from each
other and what training configurations to use, we run the
classification task on the MNIST dataset under various se-
tups. Each algorithm executes 1,000 rounds and collects
a batch of 8 samples every 4 rounds under a total budget
of 2,000 training images. The results are depicted in Fig-
ure 1. It can be observed that Eps-OGD and UCB-OGD con-
sistently outperform Rand-OGD (Figure 1(a)), with UCB-
OGD exhibiting comparatively better accuracy. The colored
band associated with each line represents the range of mini-
mum and maximum class-wise accuracy of each algorithm.
We also observe from Figure 1(b) that the Adam optimizer
with cosine-annealing learning rate scheduler (LRS) and
L2 regularization (Reg) provides the smoothest trajectory,
which we adopt for the following experiments. Figure 1(c)
shows the distribution of the samples collected from each
digit. It can be seen that UCB-OGD tends to explore the
data sources with fewer samples more aggressively com-

Table 1. Performance of the proposed algorithms, UCB-OGD and
Eps-OGD, compared to Rand-OGD and active learning algorithms
on standard datasets and complex real-world tasks.

DATASET
(BUDGET) MODEL ALG

MIN
ACC

MEAN
ACC

CIFAR10
(10K) CNN

UC 49.3 68.7
EN 53.0 68.1

BALD 45.0 66.5
DBAL 52.7 68.6

BADGE 40.0 61.0
RAND-OGD 36.3 63.3
EPS-OGD 48.9 64.5
UCB-OGD 52.3 66.5

VOC2012
(3K) SSD300

MDN 42.2 47.2
RAND-OGD 40.6 51.3
UCB-OGD 44.7 53.0

VQAV2
(1K) SMOLVLM RAND-OGD 20.9 20.9

UCB-OGD 22.6 22.9

TESTBED
(2K5) SSD300 RAND-OGD 57.0 66.7

UCB-OGD 61.7 69.2

pared to Eps-OGD. Other details of the implementation are
given in Appendix B.

We also draw comparisons with several state-of-the-art
AL algorithms. For the classification task, we consider
several well-known AL algorithms in the literature (Mun-
jal et al., 2022), i.e., Uncertainty-based Sampling (UC),
Entropy-based Sampling (EN), Bayesian Active Learning
by Disagreement (BALD), Deep Bayesian Active Learning
(DBAL), and Deep Batch Active Learning (BADGE) (Ash
et al., 2020). All AL algorithms are given an initial labeled
pool of 1,000 samples (10% of budget), and proceeds to
collect 3,000 samples in each episode from the remaining
dataset for three episodes. For the multi-class object detec-
tion task, we consider the Mixture Density Network (MDN)
that takes a probabilistic approach for uncertainty measure-
ment (Choi et al., 2021). The MDN algorithm is given an
initial labeled pool of 600 samples (20% of budget), and pro-
ceeds to collect 800 samples per episode for three episodes.
We note that the sizes of the initial labeled pool for both
tasks are typically smaller than the common setup in AL
literature in order to emulate data-scarce scenarios. The
results are summarized in Table 1.

For CIFAR10, it can be seen that while all algorithms outper-
form the Rand-OGD baseline, DBAL and UCB-OGD give
similar minimum accuracies of 52.7 and 52.3, surpassing
other algorithms by a noticeable margin. Meanwhile, two
AL methods, UC and DBAL, give a higher mean accuracy
of 68.7 and 68.6 over all classes.

For VOC2012, UCB-OGD outperforms both Rand-OGD
and MDN in both minimum and mean mAP@50. Further-
more, we inspect the effect of the initial pool size on MDN.
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Figure 1. Comparisons of Rand-OGD, Eps-OGD, and UCB-OGD on MNIST over 1,000 rounds
in terms of validation accuracy, optimization configurations, and the distribution of the number
of samples collected from each data source (i.e., digit).
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Figure 2. Initial MDN pool size
v.s. the final mAP@50 compared
to Rand-OGD and UCB-OGD.

We fix the total budget of 3,000 samples and change the
number of samples allocated during each episode. The re-
sults are shown in Figure 2. It can be observed that MDN
requires 1,200 initially labeled samples (40% of budget) in
order to top UCB-OGD on both the minimum and mean
mAP@50. This finding affirms that pool-based AL algo-
rithms like MDN can be sensitive to the initial sample pool,
and our proposed method is more suitable when the amount
of labeled samples is limited.

We further note that AL methods achieve the reported perfor-
mances by incrementally sampling from the entire unlabeled
pool, while our methods only make decisions based on the
annotated portion of the dataset, which is much smaller.
Appendix C provides other experimental results such as the
performances of new models trained on the collected data.

For the VQA task, UCB-OGD outperforms Rand-OGD
on both mean and minimum accuracy. Although larger
experiments are still required, we believe the results are
able to demonstrate that our proposed framework can be
applied to complex tasks like vision-language modeling
where the training data incorporates various modalities. This
is especially beneficial for training small models (such as
Smol-VLM) under scenarios where the data budget and
computational resources are both limited.

Finally, our experiments on the testbed show that UCB-
OGD achieves a 4.7 improvement in minimum AP@50
compared to Rand-OGD. Moreover, while Rand-OGD re-
ports 57.0 AP@50 after collecting 2,500 samples, UCB-
OGD achieves the same milestone with only 2,160 samples,
saving more than 13% of the total budget.

6. Conclusions and Future Work
We introduce an adaptive data collection framework that
enables robust learning across multiple distributions under a
fixed data collection budget constraint. Our theoretical anal-
ysis establishes a general minimax regret guarantee. More-
over, our method consistently outperforms existing base-

lines, including random sampling and several well-known
Active Learning (AL) approaches. By optimizing data col-
lection decisions, our framework achieves comparable or
better model performance with fewer (labeled and unla-
beled) samples, effectively reducing annotation costs while
improving generalization across heterogeneous distributions
in real-world deployment. These results highlight the po-
tential of integrating online optimization and bandit-based
sampling for efficient data acquisition, offering a scalable
solution for robust learning in real-world applications.

An important direction for future work is to further tighten
the regret bounds for more restrictive types of objective func-
tions and verify their applicability in DNNs. Incorporating
a Bayesian perspective could further improve the efficiency
during sampling. For the experimental verifications, larger-
scale evaluations on diverse, real-world datasets with more
complex multi-modal distributions would provide deeper
insights into the effectiveness of the proposed framework.
Expanding experiments to include dynamic environments,
such as continuously evolving traffic patterns in smart cities,
would further validate the framework’s robustness and scal-
ability to broader applications.
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A. Proofs
A.1. Proof of Proposition 4.2

We first restate Assumption 2.4 on the domain of θ.

Assumption A.1 (Finite Domain). The model parameters generated by Algorithm 1 in all rounds, i.e., θ1, . . . , θT , satisfies
E[∥θt − θ̃⋆∥] ≤ D for some D ≥ 0, where θ̃⋆ := argminθ

∑T
t=1 µkt

(θ).

We further state the following lemma (Garrigos & Gower, 2024).

Lemma A.2 (Gradient Norm). Let Assumption 2.3 and Assumption A.1 hold. Then for some set of inputs S, we have

E[∥∇µ̂k(θ;S)−∇µk(θ)∥2] ≤
2(L2 + σ2)

|Sk|
.

Now we prove Theorem 3.1.

Proof. By the property of convex functions,

µkt(θt)− µkt(θ̃
⋆) ≤ ⟨∇µkt(θt), θt − θ̃⋆⟩,

where θ̃⋆ is defined in Assumption A.1 and ⟨x, y⟩ is the inner product between vectors x, y in Θ. Since θt+1 = θt −
ηt∇µ̂kt(θt; ·), we have

∥θt+1 − θ⋆∥2 = ∥θt − θ⋆∥2 + η2t ∥∇µ̂kt
(θt; ·)∥2 − 2ηt⟨∇µ̂kt

(θt; ·), θt − θ̃⋆⟩.

By rearranging and taking the expectation, we have

2E[⟨∇µ̃kt
(θt), θt − θ̃⋆⟩] = E[E[2⟨∇µ̂kt

(θt; ·), θt − θ̃⋆⟩|AT ]]

= η−1
t E[∥θt − θ∗∥2]− η−1

i E[∥θt+1 − θ̃⋆∥2] + ηtE[∥∇µ̂kt(θt; ·)∥2]
,

Further let η−1
0 := 0. Then the optimization regret in Equation (11) writes

2E[Ro(AT )] = 2

T∑
t=1

E[µ̃kt(θt)− µ̃kt(θ̃
⋆)]

≤ 2

T∑
t=1

E[⟨µ̃kt
(θt), θi − θ̃⋆⟩]

≤
T∑

t=1

(
η−1
t E[∥θt − θ̃⋆∥2]− η−1

t E[∥θt+1 − θ̃∗∥2] + ηtE[∥∇µ̂kt
(θt; ·)∥2]

)
≤ D2

T∑
t=1

(η−1
t − η−1

t−1) + 2(L2 + σ2)

T∑
t=1

ηt

,

where the inequality is a result of Assumption A.1 and Lemma A.2 with |Sk| ≥ 1. Setting ηt = 1/(2L
√
t) for t ≥ 1 and

recalling that
∑T

t=1 1/
√
t ≤ 2

√
T , we have

2E[Ro(AT )] ≤ 2L(D2 + 1)
√
T + 2L−1σ2

√
T .

This concludes the proof.

A.2. Proof of Lemma 4.3 and Lemma 4.4

For Lemma 4.3, we construct the martingale as follows.
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Proof. For each Xi ∈ S ⊆ Xk and some k, let

Zi := ℓ(θt, Xi)− µ̃k(θt), i = 1, . . . , |Sk|.

It is easy to verify that the sequence {Zi, i = 1, . . . , |Sk|} is a martingale difference sequence, i.e.,

E[Zi|At] = E[ℓ(θt, Xi)|At]− µ̃k(θt) = 0.

Applying the Azuma’s inequality on {Zi, i = 1, . . . , |Sk|} gives the statement of the lemma.

To prove Lemma 4.4, simply note that any confidence radius rk(·) in round t is adapted to the algorithm decisions At and
apply Lemma 4.3.

Proof. We start by writing

∆k(θt) = µ̃⋆(θt)− µ̃k(θt)

=
(
µ̂k(θt;S)− µ̃k(θt)

)
−
(
µ̂⋆(θt;S)− µ̃⋆(θt)

)
+ ∆̂k(θt;S)

.

For the term µ̂k(θt;S)− µ̃k(θt), denote

δt := Pr
[
µ̂k(θt;S)− µ̃k(θt) ≥ rk(S)

∣∣At

]
.

Taking its expectation conditioned on At and S, we have

µ̂k(θt;S)− E[µ̃k(θt)|At,S] ≤ (1− δt)rk(S) + Cδt ≤ rk(S) + Cδt.

And similarly for µ̂⋆(θt;S)− µ̃⋆(θt),

µ̂⋆(θt;S)− E[µ̃⋆(θt)|At,S] ≥ −(1− δt)r
⋆(S)− Cδt ≥ −r⋆(S)− Cδt.

Plugging back into the first equation in the proof gives the result of the lemma, where the value of δt can be obtained by
applying the definition of the confidence radius in Equations (7) and (17) to Lemma 4.3, which are of order O(t−α).

A.3. Proof of Proposition 4.5

First we prove the bandit regret for Eps-OGD, which is adapted from the proof of the ϵ-Greedy algorithm for stochastic
bandits (Auer et al., 2002).

Proof. Since a greedy step picks kt to be argmaxk µ̂k(θt|Xt−1), we have µ̂kt(θt|Xt−1) ≥ µ̂⋆(θt|Xt−1). This implies that
we observe ∆̂kt(θt|Xt−1) = 0 with probability 1 − ϵt. Otherwise, an ϵ-exploration step picks kt ∼ U({1, . . . ,K}) and
∆kt

(θt|Xt−1) ≤ C (Assumption 2.3). More formally, when t = 1, we set ϵt = 1 and the data source is selected randomly
with E[∆kt

(θt)] ≤ C. For t > 1, we can write

E[∆̂kt
(θt;Xt−1)] ≤ Cϵt.

According to Lemma 4.4, we have

E
[
∆kt

(θt)
∣∣At,Xt−1

]
≤ rk(Xt−1) + r⋆(Xt−1) + ∆̂kt

(θ;Xt−1) + 2Cδt.

Combining the two equations gives

E[∆kt
(θt)|At] ≤ rk(Xt−1) + r⋆(Xt−1) + 2Cδt + Cϵt.

For the Eps-OGD algorithm, the confidence radius defined in Equation (17) writes

rk(Xt−1) := C

√
αK ln t

2|Xt−1|ϵt
= C

√
αK ln t

2M(t− 1)ϵt
, t > 1.
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Then the concentration probability given by Lemma 4.3 is δt = t−α
K|Xt−1,k|
M(t−1)ϵt . Assume that ϵt decreases monotonically with

t. Then E[|Xt−1,k|] ≥M(t− 1)ϵt/K for all k, yielding E[δt] ≤ t−α. Thus,

E[∆kt
(θt)] ≤ 2C

√
αK ln t

2M(t− 1)ϵt
+ 2Ct−α +Bϵt.

This is minimized by taking ϵt =
3
√

αK ln t/(2M(t− 1))/2 as in Equation (5), which gives

E[∆kt
(θt)] ≤ (2

√
2 + 1)C 3

√
αK ln t

2M(t− 1)
+ 2Ct−α.

To compute the total expected regret, we first bound the following summation

T∑
t=2

3

√
ln t

t− 1
≤ 3
√
lnT ·

T∑
t=2

1
3
√
t− 1

≤ 3
√
lnT

∫ T

0

x− 1
3 dx

=
3

2

3
√
T 2 lnT

.

For any α ≥ 1/2, we have
∑T

t=1 δt ≤ 2
√
T . Thus, we can write

E[Rb(AT )] = C +

T∑
t=2

E[∆kt
(θt)] ≤ C +

3(2
√
2 + 1)C

2

3

√
αKT 2 lnT

2M
+ 4C

√
T .

This concludes the proof.

Now we prove the bandit regret of UCB-OGD.

Proof. Since UCB selection picks kt to be argmaxk µ̂k(θt|Xt−1) + rk(Xt−1), we have

µ̂⋆(θt|Xt−1) + r⋆(Xt−1) ≤ µ̂kt(θt|Xt−1) + rkt(Xt−1),

or, equivalently,

∆̂kt
(θt|Xt−1) ≤ rkt

(Xt−1)− r⋆(Xt−1).

Combining with Lemma 4.4, we have

E[∆kt
(θt)|At,Xt−1] ≤ 2rkt

(Xt−1) + 2Cδt.

Recall the definition of confidence radius rk(Xt−1) in Equation (7), with δt ≤ t−α given by Lemma 4.3. Further let nk(t)
denote the number of times a data source k is selected up to time t. We can write |Xt,k| = Mnk(t) for any k, t. Then the
equation above can be written as

E[∆kt
(θt)] ≤ 2C

√
α ln t

2M
E

[√
1

nk(t− 1)

]
+ 2Cδt.

Let AT,k := {(kt, θt) ∈ AT : kt = k}. We assume that the algorithm iterates over every data source during the first K
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rounds for initial warm-up. Then, the regret incurred by some arm k can be written as

E[Rb(AT,k)] =

T∑
t=1

E [1 {kt = k}∆kt(θt)]

≤ C +

T∑
t=K+1

E [1 {kt = k}∆kt
(θt)]

≤ C +

T∑
t=K+1

(
2C

√
α ln t

2M
E

[
1 {kt = k}√
nk(t− 1)

]
+ 2Cδt

)

≤ C + C

√
2α lnT

M
E

[
T∑

t=K+1

1 {kt = k}√
nk(t− 1)

]
+ 2CE

[
T∑

t=K+1

δt1 {kt = k}

]
.

Notice that between any consecutive rounds t− 1 and t, nk(t) is increased by 1 if and only if kt = k (i.e., the data source is
selected and new samples are added), or the numerator is zero otherwise, hence,

T∑
t=K+1

1 {kt = k}√
nk(t− 1)

=
1

1
+

0

1
+ · · ·+ 0

1
+

1√
2
+

0√
2
+ · · ·

+ · · ·+ 0√
nk(T − 2)

+
1√

nk(T − 1)

=

nk(T−1)∑
n=1

1√
n

≤ 2
√

nk(T − 1)

.

Then expected regret can be written as

E[Rb(AT )] =

K∑
k=1

E[Rb(AT,k)]

≤ KC + 2C

√
2α lnT

M
E

[
K∑

k=1

√
nk(T − 1)

]
+ 2CE

[
K∑

k=1

N∑
i=1

δt1 {kt = k}

]

≤ KC + 2C

√
2α lnT

M
E


√√√√K

K∑
k=1

nk(T − 1)

+ 2CE

[
T∑

t=1

δt

]
,

where the last line follows from the inequality between arithmetic mean and quadratic mean, and the fact that∑K
k=1 1 {kt = k} = 1 for all t. Further recall that

∑K
k=1 nk(t) = t. Then, for any α ≥ 1/2, we have

E[Rb(AT )] ≤ KC + 2C

√
2αKT lnT

M
+ 4C

√
T .

This concludes the proof.

A.4. Mean Convergence

For the Rand-OGD algorithm, since it enforces that the data sources are queried in a balanced way, the algorithm reduces to
a standard stochastic gradient descent for minimizing the average loss over the data sources, i.e.,

∑K
k=1 µk(θ)/K. We have

the following result.
Theorem A.3. Let µ1, . . . , µK be convex in θ. The Rand-OGD algorithm satisfies

E
[
1

K

K∑
k=1

µk(θ̄AT
)

]
−min

θ

1

K

K∑
k=1

µk(θ)

≤ E[Ro(AT )]

T
=

L2(D2 + 1) + σ2

L
√
T

.

(22)
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Proof. Let µ̄(θ) :=
∑K

k=1 µk(θ). Since kt ∼ U({1, . . . ,K}), it holds for any θ that E[µkt(θ)] = µ̄(θ). By the definition
of optimization regret (Equation (11)),

E[Ro(AT )]

T
=

1

T

T∑
t=1

E[µkt
(θt)]−min

θ

1

T

T∑
t=1

E[µkt
(θ)]

=
1

T

N∑
i=1

µ̄(θt)−min
θ

µ̄(θ)

≥ µ̄(θ̄AT
)−min

θ
µ̄(θ)

,

where the last line follows from the convexity of µk and Jensen’s inequality. Recalling the upper bound of optimization
regret in Proposition 4.2 concludes the proof.

A.5. Proof of Pareto-Stationarity

Theorem A.4 (Pareto Staionarity). Let A be a time-smoothed OGD-based algorithm. Then for some t ∼ U({1, . . . , T}), θt
is (asymptotically) Pareto-stationary for µ1, . . . , µK as T,w →∞.

Proof. In this proof, we adopt the time-smoothed OGD framework (Hazan et al., 2017). The time-smoothed gradient at
round t w.r.t. some window w ∈ [1, T ] is defined as

∇µ̄w
k (θ) :=

1

w

w−1∑
i=1

∇µkt−i
(θt).

All µkt
where t ≤ 0 are set to 0 for uniformity. The w-local regret is defined as

Rw
l (AT ) :=

T∑
t=1

∥∥∇µ̄w
kt
(θt)

∥∥2 .
A proper time-smoothed OGD algorithm AT incurs a w-local regret of order O(T/w2) (Hazan et al., 2017; Hallak et al.,
2021). Further, the relationship between individual∇µ̄w

kt
(θt) and the local regret can be given by

Et∼U({1,...,T})

[∥∥∇µ̄w
kt
(θt)

∥∥2] ≤ E[Rw
l (AT )]

T
= O(1/w2).

Let nw
k (t) :=

∑w−1
i=1 1 {kt−i = k} be the number of times an arm k is selected from round t− w + 1 to round t. Then we

can rewrite

∇µ̄w
kt
(θt) =

K∑
k=1

nw
k (t)

w
∇µk(θt).

It follows that

Et∼U({1,...,T})

∥∥∥∥∥
K∑

k=1

nw
k (t)

w
∇µkt

(θt)

∥∥∥∥∥
2
 ≤ O(1/w2).

Note that θs is called Pareto-stationary, according to the definition (Sener & Koltun, 2018), if

K∑
k=1

αk∇µk(θ) = 0, where
K∑

k=1

αk = 1, αk ≥ 0.

Indeed, this is the case for our problem by setting αk = nw
k (t)/w and taking the limit for both T and w.
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A.6. Proof of Proposition 3.3

Proof. Consider a problem with K = 1 data source. Thus the problem reduces to a standard single-objective stochastic
optimization problem. Denote the objective function as µ(θ). Then for any gradient-based algorithm A after T rounds, we
have

R(AT ) =

T∑
t=1

µ(θt)− T min
θ

µ(θ)

≥ T

(
µ(θ̄AT

)−min
θ

µ(θ)

)
,

(23)

where we recall Jensen’s inequality. Note that µ(θ̄AT
) − minθ µ(θ) is the optimality gap of algorithm A. Let µ(θ) be

L-Lipschitz (Assumption 2.3) but non-smooth (e.g. a DNN with ReLU activations). The optimality gap of gradient methods
in general is lower bounded by O(T− 1

2 ) (Shamir & Zhang, 2013). Thus the minimax regret is at least of order O(T
1
2 ).
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B. Implementation Details
B.1. The COSMOS Testbed

The COSMOS (Cloud-enhanced Open Software-defined MObile wireless testbed for city-Scale deployment) testbed
(Raychaudhuri et al., 2020), part of the NSF PAWR program, is being deployed in West Harlem in New York City. It
supports research on ultra-high bandwidth and ultra-low latency wireless technologies in real-world urban environments. The
testbed features programmable infrastructure across multiple layers, including software-defined radios, 28 GHz mmWave
modules, optical transport, edge/core cloud components, and comprehensive control software. Its phased urban deployment
enables diverse experimental research and serves as a valuable educational platform.

Figure 3. Camera setup of an intersection in the COSMOS Testbed.

The testbed includes multiple cameras deployed on the exterior of a multi-story building, illustrated in Figure 3. Each of
the cameras provides a distinct viewpoint of the traffic flow, three of which were used as separate data sources for data
collection in this paper.These strategically positioned cameras enable comprehensive coverage for urban object detection,
facilitating cross-view analysis of vehicles, pedestrians, and street activity.

B.2. Data Collection Schedule

• CIFAR10: We execute our algorithms for 20,000 rounds and collect a batch of 32 samples every 60 rounds until
reaching the budget.

• PASCAL VOC2012: We execute our algorithms by pretraining for 10,000 rounds (freezing the backbone), collecting
a batch of 8 samples every 50 rounds. Then we finetune for 20,000 rounds, collecting a batch of 8 samples 100 rounds
until reaching the budget.

• Testbed: We execute our algorithms by pretraining for 10,000 rounds (freezing the backbone), collecting a batch of
8 samples every 50 rounds. Then we finetune for 20,000 rounds, collecting a batch of 8 samples 200 rounds until
reaching the budget.

B.3. Data Processing for VOC2012

We partition the images in PASCAL VOC2012 data set into the following data sources based on their concurrence within
the same image:

• Indoor: cat, dog, TV monitor, sofa, bottle, potted plant, chair, and dining table.

• Transport: aeroplane, train, boat, motorbike, bicycle, car, and bus.
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• Wildlife: bird, horse, cow, and sheep.

• Human: person.

An image is partitioned to the human data source only if no other classes appear. If objects of multiple sources appear in the
same image, then the upper one in the list above takes priority (e.g. if an image contains both a sofa and a bird, then it is
partitioned to the indoor data source).

Further, for every data source, a class is removed from mAP calculation if has less than 20 objects in all the images from
that source in the validation set.

C. Generalization Results
We inspect the generalization ability of the proposed data collection framework by training other models using classical
training loops on the data collected by uniform allocation strategy and the UCB-OGD strategy. The chosen model is SSD300
for the PASCAL VOC2012 dataset and YOLOv8 for the testbed dataset.

Table 2. Comparisons of the performance of new models trained on the data collected by different strategies.

DATA SOURCE
(BUDGET) MODEL ALLOCATION

MIN
ACC

MEAN
ACC

VOC2012
(3K) SSD300 UNIFORM 35.0 51.7

UCB 36.2 52.2

TESTBED
(2K5) YOLOV8 UNIFORM 62.2 72.5

UCB 63.7 72.9
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