
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RELAX AND MERGE: A SIMPLE YET EFFECTIVE
FRAMEWORK FOR SOLVING FAIR k-MEANS AND k-
SPARSE WASSERSTEIN BARYCENTER PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The fairness of clustering algorithms has gained widespread attention across var-
ious areas in machine learning. In this paper, we study fair k-means clustering
in Euclidean space. Given a dataset comprising several groups, the fairness con-
straint requires that each cluster should contain a proportion of points from each
group within specified lower and upper bounds. Due to these fairness constraints,
determining the locations of k centers and finding the induced partition are quite
challenging tasks. We propose a novel “Relax and Merge” framework that returns a
(1 + 4ρ+O(ϵ))-approximate solution, where ρ is the approximate ratio of an off-
the-shelf vanilla k-means algorithm and O(ϵ) can be an arbitrarily small positive
number. If equipped with a PTAS of k-means, our solution can achieve an approxi-
mation ratio of (5 +O(ϵ)) with only a slight violation of the fairness constraints,
which improves the current state-of-the-art approximation guarantee. Furthermore,
using our framework, we can also obtain a (1+4ρ+O(ϵ))-approximate solution for
the k-sparse Wasserstein Barycenter problem, which is a fundamental optimization
problem in the field of optimal transport, and a (2 + 6ρ)-approximate solution for
the strictly fair k-means clustering with no violation, both of which are better than
the current state-of-the-art methods. In addition, the empirical results demonstrate
that our proposed algorithm can significantly outperform baseline approaches in
terms of clustering cost.

1 INTRODUCTION

Clustering is one of the most fundamental problems in the area of machine learning. A wide range of
practical applications rely on effective clustering algorithms, such as feature engineering (Glassman
et al., 2014; Alelyani et al., 2018), image processing (Coleman & Andrews, 1979; Chang et al., 2017),
and bioinformatics (Ronan et al., 2016; Nugent & Meila, 2010). In particular, the k-means clustering
problem has been extensively studied in the past decades (Jain, 2010). Given an input dataset P ⊂ Rd,
the goal of the k-means problem is to find a set S of at most k points for minimizing the clustering
cost, which is the sum of the squared distances from every point of P to its nearest neighbor in S. In
recent years, motivated by various fields like education, social security, and cultural communication,
the study on fairness of clustering has in particular attracted a great amount of attention (Chierichetti
et al., 2017; Bera et al., 2019; Huang et al., 2019; Chen et al., 2019; Ghadiri et al., 2021).

In this paper, we consider the problem of (α, β)-fair k-means clustering that was initially proposed
by Chierichetti et al. (2017) and then generalized by Bera et al. (2019). Informally speaking, we
assume that the given dataset P consists of m groups of points, and the “fairness” constraint requires
that in each obtained cluster, the points from each group should take a fraction between pre-specified
lower and upper bounds. Bera et al. (2019) showed that a ρ-approximate algorithm for vanilla
k-means can provide a (2 +

√
ρ)2- approximate solution 1 for (α, β)-fair k-clustering with a slight

violation on the fairness constraints, where the “violation” is formally defined in Section 2. Regarding
the no violation scenario, Dai et al. (2022) and Wu et al. (2024) both obtained a O(logk)-approximate
solution for fair k-median. Wu et al. (2024) achieved a quasi-polynomial-time approximate scheme.

1In their paper, the approximate ratio is written as (2 + ρ) because they added a squared root to the k-means
cost function.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Furthermore, Böhm et al. (2021) studied the “strictly” fair k-means clustering problem, where it
requires that the number of points from each group should be uniform in every cluster; they obtained
a (2 +

√
ρ)2 approximate solution without violation. These fair k-means algorithms can also be

accelerated by using the coreset techniques, such as (Huang et al., 2019; Braverman et al., 2022;
Bandyapadhyay et al., 2024). There also exist polynomial-time approximation scheme (PTAS) for fair
k-means, such as the algorithms proposed in (Böhm et al., 2021; Schmidt et al., 2020; Bandyapadhyay
et al., 2024), but their methods have an exponential time complexity in k. We are also aware of
several other different definitions of fairness for clustering problems, such as the proportionally fair
clustering (Chen et al., 2019; Micha & Shah, 2020) and socially fair k-means clustering (Ghadiri
et al., 2021; Abbasi et al., 2021; Makarychev & Vakilian, 2021; Chlamtáč et al., 2022).

Another problem closely related to fair k-means is the so-called “k-sparse Wassertein Barycenter
(WB)” (Agueh & Carlier, 2011) (the formal definition is shown in Section 2). The Wasserstein
Barycenter is a fundamental concept in optimal transport theory, and it represents the “average” or
central distribution of a set of probability distributions. It plays a crucial role in various applications
such as image processing (Bonneel et al., 2015; Cuturi & Doucet, 2014), data analysis (Rabin et al.,
2012), and machine learning (Backhoff-Veraguas et al., 2022; Metelli et al., 2019). Given m > 1
discrete distributions, the goal of the k-sparse WB problem is to find a discrete distribution (i.e., the
barycenter) that minimizes the sum of the Wasserstein distances (Villani, 2021) between itself to all
the given distributions, and meanwhile the support size of the barycenter is restricted to be no larger
than a given integer k ≥ 1. If relaxing the “k-sparse” constraint (i.e., the barycenter is allowed to
take a support size larger than k), Altschuler & Boix-Adsera (2021) presented an algorithm based on
linear programming, which can compute the WB within fixed dimensions in polynomial time. If
the locations of the WB supports are given, the problem is called “fixed support WB”, which can
be solved by using several existing algorithms (Claici et al., 2018; Cuturi & Doucet, 2014; Cuturi
& Peyré, 2016; Lin et al., 2020). If we keep the “k-sparse” constraint, it has been proved that the
problem is NP-hard (Borgwardt & Patterson, 2021). To the best of our knowledge, the current lowest
approximation ratio of k-sparse WB problem is also (2 +

√
ρ)2 (same with the aforementioned

approximation factor for fair k-means), as recently studied by Yang & Ding (2024). In fact, we can
regard this problem as a special case of fair k-means clustering, where each input distribution is an
individual group and the unique cost measured by “Wasserstein distance” is implicitly endowed with
a kind of fairness. This observation from Yang & Ding (2024) inspires us to consider solving the
k-sparse WB problem under our framework.

Why fair k-means is so challenging? Though the fair k-means clustering has been extensively
studied in recent years, their current state-of-the-art approximation qualities are still not that satisfying.
The major difficulty arises from the lack of “locality property” (Ding & Xu, 2020; Bhattacharya et al.,
2018) caused by fair constraints. More precisely, in a clustering result of vanilla k-means, each client
point obviously belongs to its closest center. That is, a k-means clustering implicitly forms a Voronoi
diagram, where the cell centers are exactly the k cluster centers, and the client points in each Voronoi
cell form a cluster. However, when we add some fair constraints, such as requiring that the proportion
of points of each group should be equal in each cluster, the situation becomes more complicated.
Given a set of cluster center locations, because the groups of client points within a Voronoi cell may
not be equally distributed, some points are forced to be assigned to other Voronoi cells. This loss of
locality introduces significant uncertainty for the selection of cluster center positions. The previous
works (Bera et al., 2019; Böhm et al., 2021) do not pay much attention on how to handle this locality
issue when searching for the cluster centers, instead, they directly apply vanilla k-means algorithms
to the entire input dataset or a group, and use the obtained center locations as the center locations for
fair k-means. It is easy to notice that their methods could result in a certain gap with the optimal fair
k-means solution. To narrow this gap, we attempt to design some more effective way to determine
the center locations, where the key part that we believe, should be how to encode the fair constraints
into the searching algorithm.

Our key ideas and main results. Our key idea relies on an important observation, where we find
that the fair k-means problem is inherently related to a classic geometric structure, “ϵ-approximate
centroid set”, which was firstly proposed by Matoušek (2000). Roughly speaking, given a dataset,
an ϵ-approximate centroid set should contain at least one point that approximately represents the
centroid location of any subset of this given dataset. It means that the ϵ-approximate centroid set
contains not only the approximate centroids based on the Voronoi diagram, but also the approximate
centroids of those potential fairness-preserving clusters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Inspired by the above observation, we illustrate the relationship between fair k-means and ϵ-
approximate centroid set first, and then propose a novel Relax-and-Merge framework. In this
framework, we relax the constraints on the number of clusters k; we focus on utilizing fair constraints
to cluster the data into small and fair clusters, which are then merged together to determine the
positions of k cluster centers. As shown in Table 1, our result is better than the state of the art
works (Bera et al., 2019; Böhm et al., 2021). Equipped with a PTAS for k-means problem (e.g., the
algorithm from Cohen-Addad et al. (2019)), our algorithm yields a 5 +O(ϵ) approximation factor.
We also present two important extensions from our work. The first extension is an (1 + 4ρ+O(ϵ))
solution for k-sparse Wasserstein Barycenter. The second one is about strictly fair k-means. We
give a refined algorithm of Relax and Merge that yields a no-violation solution with a (2 + 6ρ)
approximation factor, which is better than the state of the art work (Böhm et al., 2021).

Algorithms Approximation
ratio

When
ρ = 1 +O(ϵ)

Note on the quality

Bera et al. (2019) (2 +
√
ρ)2 9 +O(ϵ) general case

Schmidt et al. (2020) 5.5ρ+ 1 6.5 +O(ϵ) two groups only
Böhm et al. (2021) (2 +

√
ρ)2 9 +O(ϵ) strictly only, no violation

Yang & Ding (2024) (2 +
√
ρ)2 9 +O(ϵ) k-sparse WB

Algorithm 1, now 1 + 4ρ+O(ϵ) 5 +O(ϵ) general case
Algorithm 2, now 2 + 6ρ 8 +O(ϵ) strictly only, no violation

Table 1: Comparison of the approximation ratios for fair k-means and k-sparse WB. The “general
case” includes (α, β)-fair k-means, strictly (α, β)-fair k-means and k-sparse WB.

Other Related Works on k-Means The vanilla k-means problem is a topic that has been widely
studied in both theory and practice. It has been proved that k-means clustering is NP-hard even
in 2D if k is large (Mahajan et al., 2012). In high dimensions, even if k is fixed, say k = 2, the
k-means problem is still NP-hard (Drineas et al., 2004). Furthermore, Lee et al. (2017) proved
the APX-hardness result for Euclidean k-means problem, which implies that it is impossible to
approximate the optimal solution of k-means below a factor 1.0013 in polynomial time under the
assumption of P ̸= NP. Therefore, a number of approximation algorithms have been proposed in
theory. If the dimension d is fixed, Kanungo et al. (2002) obtained a (9+O(ϵ))-approximate solution
by using the local search technique. Roughly speaking, the idea of local search is swapping a small
number of points in every iteration, so as to incrementally improve the solution until converging at
some local optimum. Following this idea, Cohen-Addad et al. (2019) and Friggstad et al. (2019)
proposed the PTAS for k-means in low dimensional space. For high-dimensional case with constant
k, Kumar et al. (2010) proposed an elegant peeling algorithm that iteratively finds the k cluster centers
and eventually obtain the PTAS.

2 PRELIMINARIES

Notations. In this paper, we always assume that the dimensionality d of the Euclidean space is
constant. Let P denote the set of n client points located in Euclidean space Rd. The set P consists
of m different groups (not necessarily disjoint), i.e., P = ∪m

i=1P
(i), and each group has the size

|P (i)| = n(i) (we use the superscript “(i)” to denote the group’s index). The Euclidean distance
between two points a, b ∈ Rd is denoted by ∥a − b∥; the distance between a point a and any set
Q ⊂ Rd is denoted by dist(a,Q) = minq∈Q ∥a− q∥, and the nearest neighbor of a in Q is denoted
as N (a,Q). The centroid of a set Q is denoted by Cen(Q).

For the vanilla k-means problem, the client points are always assigned to their nearest center. However,
if the fairness constraint is considered, the assignment may not be that straightforward. To describe
the fair k-means clustering more clearly, we introduce the “assignment matrix” first. Given any
candidate set of k cluster centers S, we define the assignment matrix ϕS : P × S → R+ to indicate
the assignment relation between the client points and cluster centers. For every p ∈ P and s ∈ S,
ϕS(p, s) denotes the proportion that is assigned to center s (e.g., we may respectively assign 30%
and 70% to two different centers). Obviously, we have

∑
s∈S ϕS(p, s) = 1. For each center s ∈ S,

we use w(s) =
∑

p∈P ϕS(p, s) to denote the amount of weight assigned to s; for each group P (i),
we similarly define the function w(i)(s) =

∑
p∈P (i) ϕS(p, s). Let Cost(P, S, ϕS) denote the cost of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

input instance P with given S and ϕS :

Cost(P, S, ϕS) =
∑
p∈P

∑
s∈S

∥p− s∥2ϕS(p, s). (1)

Problem 1 ((α, β)-fair k-means clustering (Bera et al., 2019)). Given an instance P as described
above and two parameter vectors α, β ∈ [0, 1]m, the goal of the (α,β)-fair k-means clustering is
to find the set S consisting of k points and an assignment matrix ϕS , such that the clustering cost
(1) is minimized, and meanwhile each cluster center s ∈ S should satisfy the fairness constraint:
βiw(s) ≤ w(i)(s) ≤ αiw(s) for every i ∈ {1, 2, · · · ,m}. Here, we use αi, βi to denote the i-th
entry of α and β, respectively.

Moreover, if the m groups are disjoint with equal size (i.e., n(i) = n/m for any i), and αi = βi =
1/m for each group P (i), we say this is a strictly (α,β)-fair k-means clustering problem.

For Problem 1, we can specify two types of solutions: fractional and integral. Their difference is
only from the restriction on the assignment matrix ϕS . For the first one, each entry ϕS(p, s) can be
any real number between 0 and 1; but for the latter one, we require that the value of ϕS(p, s) should
be either 0 or 1, that is, the whole weight of p should be assigned to only one cluster center.

How to round a fractional solution into integral while preserving fairness constraints is still an open
problem. Bera et al. (2019) introduced the violation factor to measure the violations of fairness
constraints after rounding: an assignment matrix ϕS is a λ-violation solution if βi

∑
p∈P ϕS(p, s)−

λ ≤
∑

p∈P (i) ϕS(p, s) ≤ αi

∑
p∈P ϕS(p, s) + λ, ∀s ∈ S, ∀i ∈ [m]. In their paper, a fractional

solution can always be rounded to integral, but it introduces some violations , which will be discussed
in Section 3.1. In this paper, we use OPT to denote the optimal integral cost of Problem 1. We
use Sopt = {s̃1, s̃2, · · · , s̃k} to denote the optimal solution of integral fair k-means problem and its
assignment matrix is denoted by ϕSopt

. For each s̃j , let Cj = {p ∈ P | ϕSopt
(p, s̃j) > 0} be the

corresponding cluster, i.e., the set of point assigned to it. A simple observation is that, if given a
fixed candidate cluster centers set S, the assignment matrix ϕS can be obtained via solving a linear
programming (we can view the n× k entries of ϕS as the variables):

min
ϕS

∑
p∈P

∑
s∈S

∥p− s∥2ϕS(p, s)

s.t. βi

∑
p∈P

ϕS(p, s) ≤
∑

p∈P (i)

ϕS(p, s) ≤ αi

∑
p∈P

ϕS(p, s), ∀s ∈ S, ∀i ∈ [m],

∑
s∈S

ϕS(p, s) = 1, ∀p ∈ P.

(2)

If we want to compute an integral solution, the above (2) should be an integer LP. Given a set S, ϕ∗
S

denotes the optimal solution of (2) and ϕ̃S denotes the corresponding optimal integral solution.

The following proposition is a folklore result that has been used in many articles on clustering
algorithms (e.g., (Kanungo et al., 2002)). We will also repeatedly use it in our proofs.
Proposition 1. Given a finite weighted point set Q ⊂ Rd, for any point a,

∑
q∈Q w(q)∥a− q∥2 =∑

q∈Q w(q)∥q − Cen(Q)∥2 + w(Q) · ∥a− Cen(Q)∥2, where w(Q) is the total weight of Q.

Next we introduce an important geometric structure “ϵ-approximate centroid set”, which was firstly
proposed by Matoušek (2000). Roughly speaking, the ϵ-approximate centroid set approximately
covers the centroids of any subset of given data, even though the subsets do not align with the
“Voronoi diagram” structure (as discussed in Section 1).
Definition 1. Given a finite set P ⊂ Rd and a small parameter ϵ > 0, we use CSϵ(P) to denote an
ϵ-approximate centroid set of P that satisfies: for any nonempty subset Q ⊆ P , there always exists a
point v ∈ CSϵ(P) such that ∥v − Cen(Q)∥ ≤ ϵ

3

√
1

|Q|
∑

q∈Q ∥q − Cen(Q)∥2.

Remark 1. Matoušek (2000) also presented a construction algorithm based on the space partitioning
technique “quadtree” (Finkel & Bentley, 1974). In Appendix A, we briefly illustrate the role of the
ϵ-approximate centroid set in preserving fairness constraints and how to construct it. The size of the
obtained ϵ-approximate centroid set is O(|P |ϵ−d log(1/ϵ)) and the construction time complexity is
O(|P | log |P |+ |P |ϵ−d log(1/ϵ)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Next, we give the formal definition of k-sparse Wasserstein Barycenter problem.
Definition 2 (Wasserstein Distance). Let P and Q be weighted point sets supported in Rd.
Wasserstein distance is the minimum transportation cost between P and Q: W(P,Q) =

minF
√∑

p∈P

∑
q∈Q F (p, q)∥p− q∥2, where the transport matrix F : P × Q → [0, 1] should

satisfy:
∑

p∈P F (p, q) = w(q) for any q ∈ Q, and
∑

q∈Q F (p, q) = w(p) for any p ∈ P .

For a weighted set S, we use supp(S) to denote its support, i.e., the set that shares the same location
of S but not weighted. The number of points is supp(S) is denoted by |supp(S)|.
Problem 2 (k-sparse Wassertein Barycenter (k-sparse WB)). Given m discrete probability distri-
butions P (1), · · · , P (m) supported on Rd, WB is the probability distribution S minimizing the sum
of squared Wasserstein distances to them, i.e., argminS

∑m
i=1 W2(P (i), S). The problem is called

k-sparse Wasserstein Barycenter if we restrict |supp(S)| ≤ k

In Section 3.2, we explain why this problem can be regarded as a fair k-means clustering.

3 OUR “RELAX AND MERGE” FRAMEWORK

In general, there are two stages in clustering with fair constraints. The first stage is to find the proper
locations of clustering centers, and the second stage is to assign all the client points to the centers by
solving LP (2). The previous approaches often use the vanilla k-means in the first stage to obtain
the location of centers, and then take the fairness into account in the second stage (Bera et al., 2019;
Böhm et al., 2021). In our proposed framework, we aim to shift the consideration of fair constraints
to the first stage, so as to achieve a lower approximation factor in the final result. The following
theorem is our main result.
Theorem 1. Given an instance of Problem 1 and a ρ-approximate vanilla k-means clustering
algorithm, there exists an algorithm that can return a fractional (1 + 4ρ + O(ϵ)) approximate
solution for Problem 1. Further, one can apply a rounding method to transform this fractional
solution to an integral one with a constant violation factor while ensuring the cost does not increase.

The details for computing the fractional solution are shown in Algorithm 1. The set T in Algorithm 1
contains the approximate centroids of all the potential clusters with preserving fair constraints. Then
we solve a linear program to obtain the relaxed solution (T, ϕ∗

T) that also preserves the fair constraints.
Because of that, the following k-means procedure is able to determine the appropriate locations for
the cluster centers of Problem 1.

Algorithm 1: FRACTIONAL FAIR k-MEANS

Input: The dataset P , k, α, β, and ϵ > 0
1 Relax: Construct a relaxed solution T , i.e., an ϵ-approximate centroid set, such that

Cost(P, T, ϕ∗
T) ≤ (1 +O(ϵ)) ·OPT (see Lemma 2). Here, we relax the size constraint of

centers to be polynomial of n rather than exactly k, so as to achieve a sufficiently low cost.
2 Solve LP (2) on T to obtain the optimal assignment matrix ϕ∗

T . T and ϕ∗
T can be viewed as a

relaxed solution for (α, β)-fair k-means, i.e., the number of centers may be more than k, and
meanwhile, the cost is bounded and the fairness constraints are also preserved.

3 Adjust the location of T . For each t ∈ T , we update the location of t to be the corresponding

cluster centroid π(t) =
∑

p∈P p·ϕ∗
T (p,t)

w(t) . The adjusted T is denoted by π(T).
4 Merge: Run a ρ-approximate k-means algorithm on π(T) to obtain centers set S. Then, solve

LP (2) on S to obtain the optimal assignment matrix ϕ∗
S .

5 return S and ϕ∗
S

3.1 ALGORITHM FOR (α, β) FAIR k-MEANS PROBLEM

In this section, we mainly focus on the fractional version of (α, β)-fair k-means problem. More
precisely, we allow the value of the assignment function ϕS to be a real number in [0, 1] rather than
{0, 1}. To prove Theorem 1, we need the following lemmas first. Specifically, Lemma 1 provides the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

bound for the cost from the merged solution S; Lemma 2 shows that the ϵ-approximate centroid set
provides a satisfied relaxed solution with a cost no more than (1 +O(ϵ))OPT . Combining with the
rounding methods, Theorem 1 can be obtained.
Lemma 1. Let η be any positive number. If we suppose Cost(P, T, ϕ∗

T) ≤ η ·OPT , then the solution
(S, ϕ∗

S) returned by Algorithm 1 is an
(
η + (2η + 2)ρ

)
-approximate solution for Problem 1.

Proof. According to the definition of fractional fair k-means problem, the cost can be written as

Cost(P, S, ϕ∗
S) =

∑
p∈P

∑
s∈S

∥p− s∥2ϕ∗
S(p, s). (3)

Now we consider another assignment strategy: we firstly assign P to T according to ϕ∗
T (recall that

ϕ∗
T is the optimal fractional assignment matrix from P to T), and then we assign every weighted

point in T to some s ∈ S such that s is closest point to π(t). Since ϕ∗
S is the optimal assignment

matrix from P to S, the cost of this assignment strategy should have:∑
p∈P

∑
t∈T

∥p−N (π(t), S)∥2ϕ∗
T (p, t) ≥ Cost(P, S, ϕ∗

S). (4)

Since π(t) is the centroid of the weighted points assigned to t, according to Proposition 1, we know
the left-hand side of (4) should have the upper bound∑

t∈T

[∑
p∈P

∥p− π(t)∥2ϕ∗
T (p, t) + ∥π(t)−N (π(t), S)∥2w(t)

]
=

∑
p∈P

∑
t∈T

∥p− π(t)∥2ϕ∗
T (p, t)︸ ︷︷ ︸

(a)

+
∑
t∈T

∥π(t)−N (π(t), S)∥2w(t)︸ ︷︷ ︸
(b)

. (5)

Then we bound (a) and (b) separately.

(a) =
∑
p∈P

∑
t∈T

∥p− π(t)∥2ϕ∗
T (p, t) ≤

∑
p∈P

∑
t∈T

∥p− t∥2ϕ∗
T (p, t) ≤ η ·OPT. (6)

The first inequality holds because π(t) is the centroid of the weighted points assigned to t, minimizing
the weighted sum of the squared distances between them. The second inequality holds because
Cost(P, T, ϕ∗

T) ≤ η ·OPT . Next, we focus on (b). Suppose Smeans is the optimal k-means solution
of T . Then we have:

(b) =
∑
t∈T

∥π(t)−N (π(t), S)∥2w(t) ≤ ρ
∑
t∈T

∥π(t)−N (π(t), Smeans)∥2w(t)

= ρ
∑
p∈P

∑
t∈T

∥π(t)−N (π(t), Smeans)∥2ϕ∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

[∑
s̃∈Sopt

∥π(t)−N (π(t), Smeans)∥2ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

[∑
s̃∈Sopt

∥π(t)− s̃∥2ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t).

(7)

Further, according to squared triangle inequality, we have

(b) ≤ ρ
∑
p∈P

∑
t∈T

[∑
s̃∈Sopt

[
∥π(t)− p∥+ ∥p− s̃∥

]2
ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

2∥π(t)− p∥2ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

+ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

2∥p− s̃∥2ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

= 2ρ
∑
p∈P

∑
t∈T

∥π(t)− p∥2ϕ∗
T (p, t) + 2ρ

∑
p∈P

∑
s̃∈Sopt

∥p− s̃∥2ϕ∗
Sopt

(p, s̃).

(8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The last equality holds because for any p ∈ P ,
∑

s̃∈Sopt
ϕ∗
Sopt

(p, s̃) = 1. The first term is exactly 2ρ

times of (a) and the second term equals 2ρ ·OPT . Through combining (a) and (b), we can obtain an
approximation factor of η + (2η + 2)ρ.

Algorithm 1 reduces the fair k-means problem to computing the set T . The following lemma shows
that an ϵ-approximate centroid set is a good candidate for T .
Lemma 2. If T is an ϵ-approximate centroid set of P , then Cost(P, T, ϕ∗

T) ≤ (1 +O(ϵ))OPT .

Proof. According to Definition 1, let ti ∈ T denote the point such that ∥ti − Cen(Ci)∥ ≤
ϵ
3

√
1

|Ci|
∑

p∈Ci
∥p− Cen(Ci)∥2. Let T ′ = {t1, · · · , tk}. A key observation is that each opti-

mal center s̃i is always the centroid of Ci, i.e., cen(Ci) = s̃i, so we have ∥ti − Cen(Ci)∥2 ≤
ϵ2

9|Ci|
∑

p∈Ci
∥p− s̃i∥2 = ϵ2

9|Ci|OPTi, where OPTi =
∑

p∈Ci
∥p− s̃i∥2.

If we assign all points of Ci to ti, the cost of every Ci can be written as
∑

p∈Ci
∥ti − p∥2 =∑

p∈Ci

∥ti − s̃i∥2 +
∑
p∈Ci

∥p− s̃i∥2 ≤ ϵ2

9
OPTi +OPTi = (1 +O(ϵ))OPTi. (9)

The first equality holds due to Proposition 1. Since ϕ∗
T ′ is the optimal assignment matrix of T ′,

Cost(P, T ′, ϕ∗
T ′) ≤

∑k
i=1

∑
p∈Ci

∥ti−p∥2 ≤ (1+O(ϵ))
∑k

i=1 OPTi ≤ (1+O(ϵ))OPT . Finally,
since T ′ is a subset of T , we have Cost(P, T, ϕ∗

T) ≤ Cost(P, T ′, ϕ∗
T ′) ≤ (1 +O(ϵ))OPT .

Through combining Lemma 1 and Lemma 2, we can immediately obtain Lemma 3.
Lemma 3. Equipped with the ϵ-approximate centroid set by Matoušek (2000), the cost of the solution
returned by Algorithm 1 is at most (1 + 4ρ + O(ϵ))OPT . Furthermore, by utilizing the PTAS of
vanilla k-means algorithm, the cost of the solution is at most (5 +O(ϵ))OPT .

Rounding for integral solution. Note that Lemma 3 only guarantees a fractional solution. Recall the
“violation factor” introduced in Section 2. According to the rounding method proposed in (Bera et al.,
2019), a fractional solution of Problem 1 can be rounded to be integral with (3∆+4) violation, where
∆ is the maximum number of groups a point can join in (e.g., if a point can belong to three groups,
∆ should be equal to 3). Their main idea is to reduce the fair assignment problem to the minimum
degree-bounded matroid basis (MBDMB) problem, and then solve the MBDMB by iteratively solving
a linear program (LP). In the current article, we further propose a new rounding method that can
improve this violation factor to “2” when assuming ∆ = 1, i.e., the groups are mutually disjoint,
and the each point belongs to exactly one group (if using the method of (Bera et al., 2019), the
factor should be 7). Actually, it is natural to assume that the groups are disjoint, e.g., each person
may belong to one race. Fair clustering problem in disjoint groups has also been studied in Bercea
et al. (2018); Wu et al. (2022); Chierichetti et al. (2017). Our key idea is building a “hub-guided”
minimum cost circulation problem. Roughly speaking, we utilize a set of carefully designed “hubs”
in a transportation network, for guiding the integral fair matching between the input points and the
obtained cluster centers. We show the result in Lemma 4, and place the proof to Appendix C due to
the space limit.
Lemma 4. If the groups are mutually disjoint, one can round the fractional solution returned by
Algorithm 1 to be integral with at most 2-violation, while the cost does not increase.

Finally, Theorem 1 can be obtained by combining either the rounding method from (Bera et al., 2019)
for general case, or Lemma 4 for disjoint case.

Overall time complexity. As we mentioned in Remark 1, computing an ϵ-approximate centroid
set of P needs O(n log n + nϵ−d log(1/ϵ)) time. The adjustment of the location of T can be
completed in O(kn) time. Suppose the time complexities of linear programming, vanilla k-means
are denoted by TLP and Tmeans, respectively. The overall time complexity of Algorithm 1 is
O(n log n+ nϵ−d log(1/ϵ)) + TLP + O(kn) + Tmeans. It is worth noting the the complexity can
be further reduced by using the assignment preserving coreset ideas (Huang et al., 2019; Braverman
et al., 2022; Bandyapadhyay et al., 2024). By doing this, we need to introduce an extra running time
for coreset construction, which is linear to n, but we can compress the data size from n to poly(k, ϵ).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 EXTENSION TO k-SPARSE WASSERSTEIN BARYCENTER

A cute property of Algorithm 1 is that it can be easily extended to address the k-sparse WB problem.
Recall the definition of k-sparse WB in Problem 2. The given m distributions can be viewed
as m groups of weighted points. And the sum of Wasserstein distances between barycenter and
given distributions can be rewritten as the sum of squared Euclidean distances from P to the
centers. Moreover, the flows induced by Wasserstein distances between barycenter and the given
distributions can implicitly ensure the fairness, i.e., for each point s in barycenter, w(i)(s) = 1

mw(s)
for any i ∈ [m]. Namely, we can directly perform our “Relax and Merge” framework by setting
αi = βi = 1/m. First, we calculate the ϵ-approximate centroid (here we ignore the weight of
points) set to obtain T , then we use T as the support of the Barycenter to run a “fixed support” WB
algorithm (Claici et al., 2018; Cuturi & Doucet, 2014; Cuturi & Peyré, 2016; Lin et al., 2020) to
obtain the weights of T (due to the space limit, we leave some details on fixed support WB algorithms
to Appendix D). Finally, we run a vanilla k-means algorithm on T to obtain the k-sparse solution.

Theorem 2. If T is an ϵ-approximate centroid set of ∪m
i=1P

(i), Algorithm 1 returns a (1+4ρ+O(ϵ))-
approximate solution for k-sparse Wasserstein Barycenter problem.

3.3 STRICTLY FAIR k-MEANS WITHOUT VIOLATION

Since the strictly fair k-means is a special case of (α, β)-fair k-means, by using Algorithm 1 and the
rounding technique introduced by Section 3.1, we can obtain an integral solution but with certain
violation. In this section, we consider how to obtain an integral solution with no violation. Specifically,
we compute the fairlet decomposition (Chierichetti et al., 2017) for the input groups and use its
centroids as the relaxed solution T rather than ϵ-approxiamte centroid set. First, we give the definition
of fairlet decomposition for multiple groups, which extends the original definition of (Chierichetti
et al., 2017) from two groups to multiple groups.
Definition 3 (Fairlet Decomposition). Given a dataset P that has m equal-sized disjoint groups, We
say a set G of m points is a fairlet of P , if G contains exactly one point from each group of P . A set
G of n/m fairlets is a fairlet decomposition of P , if all fairlets in G are disjoint, where n/m is the
number of points in each group of P .

We define the cost of fairlet decomposition G as Costfairlet(G) =
∑

G∈G
∑

p∈G ∥p− Cen(G)∥2. It
is easy to know that fairlet decomposition is indeed a solution of strictly fair n/m-means. Hence, we
can still use the “Relax and Merge” technique: regard the centroids of fairlets in fairlet decomposition
as a relaxed solution, and then run ρ-approximate vanilla k-means algorithm on these centroids.
So, we reduce the strictly fair k-means problem to the fairlet decomposition problem. We propose
Algorithm 2, which first computes a 2-approximate fairlet decomposition and then generates a
(2 + 6ρ)-approximate integral solution for strictly fair k-means.

Algorithm 2: STRICYTLY FAIR k-MEANS

Input: The dataset P = ∪m
i=1P

(i), k
1 for i = 1 to m do
2 for j = 1 to m and i ̸= j do
3 Compute the perfect one-to-one matching τij between P (i) and P (j) by using the

Hungarian algorithm (Kuhn, 1955). For each point p ∈ P (i), the point matched with p
in P (j) is denoted as τij(p).

4 end
5 Construct a fairlet decomposition Gi (initially empty) according to the matchings: for each

point p ∈ P (i), add the fairlet {τi1(p), τi2(p), · · · , τim(p)} to Gi.
6 end
7 Choose Gv where v = argmini

∑
p∈P (i)

∑m
j=1 ∥p− τij(p)∥2 as G.

8 Construct the relaxed solution T = {Cen(G) | G is any fairlet of G}.
9 Run a ρ-approximate k-means algorithm on T , and obtain the solution S.

10 Integral assignment: Assign all the points according to the fairlet decomposition G, i.e., if a
point p belongs to some fairlet G, then assign p to N (Cen(G), S).

11 return S and the obtained integral assignment

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 3. Algorithm 2 returns a (2 + 6ρ)-approximate integral solution of strictly fair k-means.

To prove Theorem 3, we need to prove the following lemma, which shows that G is a 2-approximate
fairlet decomposition. Then, we can use the same idea of Lemma 1 to obtain Theorem 3. Recall
that Lemma 1 shows that if we have a relaxed solution T with a bounded cost η · OPT , then the
merged solution will have constant approximate ratio. Here, T obtained by Algorithm 2 also provides
a relaxed solution whose cost does not exceed 2OPT . Hence, after we merge T and obtain S, the
approximate ratio should no more than (η + (2η + 2)ρ) = 2 + 6ρ. Furthermore, if we use PTAS for
k-means, the overall approximate ratio of Algorithm 2 is 8 +O(ϵ).

Lemma 5. If G is the fairlet decomposition obtained by Algorithm 2, then Costfairlet(G) ≤ 2OPT .

Proof. Suppose G is a fairlet, and we use G(i) to denote the point in G and belongs to group P (i),
i.e., G(i) = G ∩ P (i). We use GOPT to denote the optimal fairlet decomposition that has the lowest
cost (we cannot obtain GOPT in reality, and here we just use it for conducting our analysis). For each
p ∈ P , let GOPT (p) denote the fairlet of GOPT that p belongs to, i.e., p ∈ GOPT . Suppose that P (u)

is the “closest” group to GOPT , i.e. u = argmini∈[m]

∑
p∈P (i) ∥Cen(GOPT (p))− p∥2. We have

Costfairlet(G) =
∑
G∈G

∑
p∈G

∥p− Cen(G)∥2

≤
∑
G∈G

∑
p∈G

∥p− Cen(G)∥2 +m
∑
G∈G

∥G(v) − Cen(G)∥2
(10)

According to Proposition 1, the right side of (10) equals to
∑

p∈P (v)

∑m
j=1 ∥p − τvj(p)∥2, so we

have Costfairlet(G) ≤∑
p∈P (v)

m∑
j=1

∥p− τvj(p)∥2 ≤
∑

p∈P (u)

m∑
j=1

∥p− τuj(p)∥2 ≤
∑

p∈P (u)

m∑
j=1

∥p− (GOPT (p))
(j)∥2. (11)

The first inequality holds because v = argmini
∑

p∈P (i)

∑m
j=1 ∥p − τij(p)∥2. And the last in-

equality holds because τ is the perfect one-to-one matching. Using Proposition 1 again, we have
CostOPT (G) ≤∑

p∈P (u)

m∑
j=1

∥Cen(GOPT (p))− (GOPT (p))
(j)∥2 +m

∑
p∈P (u)

∥Cen(GOPT (p))− p∥2. (12)

Note that G is the optimal fairlet decomposition, as well as the optimal strictly fair n/m-means
solution, so the first term of (12) should be at most OPT . As for the second term, since P (u) is the
“closest” group to G, it should be no larger than m · 1

mOPT ≤ OPT (because the minimum distance
“
∑

p∈P (u) ∥Cen(GOPT (p)) − p∥2” should not exceed the average distance 1
mOPT). Overall, we

complete the proof of Lemma 5.

4 EXPERIMENTS

In this section, we perform the empirical evaluation on our algorithms. Our experiments are conducted
on a server equipped with Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz CPU and 512GB memory.
We implement our algorithms in C++ and python (with linear programming solver gurobi (Gurobi
Optimization, LLC, 2023)). We use the following datasets which are commonly used in previous
works: Bank (Moro et al., 2014)(4522 points with 5 groups), Adult (Becker & Kohavi, 1996) (32561
points with 7 groups), Census (Zhou & Chen, 2002)(50000 points with 10 groups), creditcard (Yeh
& Lien, 2009) (30000 points with 8 groups), Biodeg (Mansouri et al., 2013) (1055 points with
2 groups), Breastcancer (Wolberg,William, Mangasarian,Olvi, Street,Nick, and Street,W., 1995)
(570 points with 2 groups), Moons (scikit-learn developers, 2007-2023) (200 points with 2 groups),
Hypercube(200 points with 2 groups), Cluto (Karypis et al., 1999) (800 points with 8 groups), and
Complex (800 points with 8 groups). The last four datasets consist of disjoint and equal sized groups,
so we can perform strictly fair k-means algorithms on them. We place the detailed information of
these datasets in Appendix F. Regarding the selection of α and β, we set αi = βi =

|P (i)|
|P | and we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

also discuss more choices for α and β, and provide more experimental results, including the part of
k-sparse Wasserstein Barycenter, in the Section F of the appendix. We use k-means++ (Ostrovsky
et al., 2013) as the k-means solver in our Algorithm 1.

Results on (α, β)-Fair k-means. We compared the cost of (α, β)-fair k-means of our Algorithm 1
and baselines. We choose the algorithm proposed by Bera et al. (2019) (denoted by NIPS19) and
Böhm et al. (2021) (denoted by ORL21) as the baselines. The construction of an ϵ-approximate
centroid set is a theoretical algorithm that can be replaced by some efficient methods in practice. In our
experiments, we adopted the alternative implementation of Kanungo et al. (2002), which combines
the kd-tree (Friedman et al., 1977) and a sampling technique. Figure 1 shows that our algorithm gives
the lowest cost of (α, β)-fair k-means, indicating that Algorithm 1 can find better center locations.
This improvement is possible due to that our method considers the fairness information of groups
when choosing the locations of centers.

Figure 1: The cost obtained by the algorithms with different k.

Results on Strictly Fair k-means. We compare our strictly fair k-means algorithm with the state-
of-the-art algorithm ORL21 (Böhm et al., 2021). Both ORL21 and Algorithm 2 can return integral
solution with no violation. Figure 2 shows that our method has significant advantage in terms of the
clustering cost.

Figure 2: The cost of strictly fair k-means.

5 CONCLUSION

In this paper, we utilize the insight on the relationship between the fair k-means problem and a classic
geometric structure, ϵ-approximate centroid set, for developing a novel “Relax and Merge” framework.
It can achieve a (1 + 4ρ + O(ϵ)) approximation ratio of fair k-means and k-sparse Wasserstein
Barycenter problems, which improves the current state-of-the-art approximation guarantees. There
still exists some open problems: how to obtain an integral approximate solution of general case
without violation? In addition, is it possible to extend our ‘Relax and Merge” framework to other
types of clustering problems, such as the proportionally fair clustering (Chen et al., 2019) and socially
fair k-means clustering (Ghadiri et al., 2021).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via equitable
group representations. In Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency, pp. 504–514, 2021.

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924, 2011.

Salem Alelyani, Jiliang Tang, and Huan Liu. Feature selection for clustering: A review. Data
Clustering, pp. 29–60, 2018.

Jason M Altschuler and Enric Boix-Adsera. Wasserstein barycenters can be computed in polynomial
time in fixed dimension. Journal of Machine Learning Research, 22(44):1–19, 2021.

Ethan Anderes, Steffen Borgwardt, and Jacob Miller. Discrete wasserstein barycenters: Optimal
transport for discrete data. Mathematical Methods of Operations Research, 84:389–409, 2016.

Julio Backhoff-Veraguas, Joaquin Fontbona, Gonzalo Rios, and Felipe Tobar. Bayesian learning with
wasserstein barycenters. ESAIM: Probability and Statistics, 26:436–472, 2022.

Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering in metric
and euclidean spaces and their applications. J. Comput. Syst. Sci., 142:103506, 2024.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20 , (CC BY 4.0) license.

Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms for
clustering. Advances in Neural Information Processing Systems, 32, 2019.

Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R Schmidt,
and Melanie Schmidt. On the cost of essentially fair clusterings. arXiv preprint arXiv:1811.10319,
2018.

Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the constrained k-means
problem. Theory of computing systems, 62:93–115, 2018.

Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Cristina Menghini, and Chris Schwiegelshohn.
Algorithms for fair k-clustering with multiple protected attributes. Operations Research Letters,
49(5):787–789, 2021.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 51:22–45, 2015.

Steffen Borgwardt and Stephan Patterson. On the computational complexity of finding a sparse
wasserstein barycenter. Journal of Combinatorial Optimization, 41(3):736–761, 2021.

Vladimir Braverman, Vincent Cohen-Addad, H-C Shaofeng Jiang, Robert Krauthgamer, Chris
Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. The power of uniform sampling for coresets.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 462–473.
IEEE, 2022.

Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Deep adaptive
image clustering. In Proceedings of the IEEE international conference on computer vision, pp.
5879–5887, 2017.

Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clustering. In
International Conference on Machine Learning, pp. 1032–1041. PMLR, 2019.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. Advances in neural information processing systems, 30, 2017.

Eden Chlamtáč, Yury Makarychev, and Ali Vakilian. Approximating fair clustering with cascaded
norm objectives. In Proceedings of the 2022 annual ACM-SIAM symposium on discrete algorithms
(SODA), pp. 2664–2683. SIAM, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sebastian Claici, Edward Chien, and Justin Solomon. Stochastic wasserstein barycenters. In
International Conference on Machine Learning, pp. 999–1008. PMLR, 2018.

Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM Journal on
Computing, 48(2):644–667, 2019.

Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approximation
schemes for clustering in doubling metrics. Journal of the ACM (JACM), 68(6):1–34, 2021.

Guy Barrett Coleman and Harry C Andrews. Image segmentation by clustering. Proceedings of the
IEEE, 67(5):773–785, 1979.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In International
conference on machine learning, pp. 685–693. PMLR, 2014.

Marco Cuturi and Gabriel Peyré. A smoothed dual approach for variational wasserstein problems.
SIAM Journal on Imaging Sciences, 9(1):320–343, 2016.

Zhen Dai, Yury Makarychev, and Ali Vakilian. Fair representation clustering with several pro-
tected classes. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
Transparency, pp. 814–823, 2022.

Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality property.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’15, pp. 1471–1490, USA, 2015. Society for Industrial and Applied Mathematics.

Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality property.
Algorithmica, 82(4):808–852, 2020.

Yefim Dinitz. Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Dokl., 11:1277–1280, 01 1970.

Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh S. Vempala, and V. Vinay. Clustering
large graphs via the singular value decomposition. Mach. Learn., 56(1-3):9–33, 2004. doi:
10.1023/B:MACH.0000033113.59016.96. URL https://doi.org/10.1023/B:MACH.
0000033113.59016.96.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM, 19(2):248–264, April 1972. ISSN 0004-5411. doi: 10.1145/321694.
321699. URL https://doi.org/10.1145/321694.321699.

Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica, 4:1–9, 1974. doi: 10.1007/BF00288933. URL https://doi.org/
10.1007/BF00288933.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404, 1956. doi: 10.4153/CJM-1956-045-5.

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3
(3):209–226, 1977.

Zachary Friggstad, Mohsen Rezapour, and Mohammad R Salavatipour. Local search yields a ptas for
k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.

Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-means clustering. In
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp.
438–448, 2021.

12

https://doi.org/10.1023/B:MACH.0000033113.59016.96
https://doi.org/10.1023/B:MACH.0000033113.59016.96
https://doi.org/10.1145/321694.321699
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/BF00288933

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Elena L Glassman, Rishabh Singh, and Robert C Miller. Feature engineering for clustering student
solutions. In Proceedings of the first ACM conference on Learning@ scale conference, pp. 171–172,
2014.

Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals, and low-
distortion embeddings. In 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings., pp. 534–543. IEEE, 2003.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Lingxiao Huang, Shaofeng Jiang, and Nisheeth Vishnoi. Coresets for clustering with fairness
constraints. Advances in neural information processing systems, 32, 2019.

Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognit. Lett., 31(8):651–666,
2010.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. A local search approximation algorithm for k-means clustering. In Proceedings of
the eighteenth annual symposium on Computational geometry, pp. 10–18, 2002.

George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. computer, 32(8):68–75, 1999.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for clustering
problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010.

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for
k-means. Information Processing Letters, 120:40–43, 2017.

Tianyi Lin, Nhat Ho, Xi Chen, Marco Cuturi, and Michael Jordan. Fixed-support wasserstein barycen-
ters: Computational hardness and fast algorithm. Advances in neural information processing
systems, 33:5368–5380, 2020.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The planar k-means problem
is np-hard. Theor. Comput. Sci., 442:13–21, 2012. doi: 10.1016/J.TCS.2010.05.034. URL
https://doi.org/10.1016/j.tcs.2010.05.034.

Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering. In
Conference on Learning Theory, pp. 3246–3264. PMLR, 2021.

Kamel Mansouri, Tine Ringsted, Davide Ballabio, Roberto Todeschini, and Viviana Consonni.
Quantitative structure–activity relationship models for ready biodegradability of chemicals. Journal
of chemical information and modeling, 53(4):867–878, 2013.

Jiřı́ Matoušek. On approximate geometric k-clustering. Discrete & Computational Geometry, 24(1):
61–84, 2000.

Alberto Maria Metelli, Amarildo Likmeta, and Marcello Restelli. Propagating uncertainty in re-
inforcement learning via wasserstein barycenters. Advances in Neural Information Processing
Systems, 32, 2019.

Evi Micha and Nisarg Shah. Proportionally fair clustering revisited. In 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31, 2014.

Rebecca Nugent and Marina Meila. An overview of clustering applied to molecular biology. Statistical
methods in molecular biology, pp. 369–404, 2010.

13

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/j.tcs.2010.05.034

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of
lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):1–22, 2013.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In Scale Space and Variational Methods in Computer Vision: Third International
Conference, SSVM 2011, Ein-Gedi, Israel, May 29–June 2, 2011, Revised Selected Papers 3, pp.
435–446. Springer, 2012.

Tom Ronan, Zhijie Qi, and Kristen M Naegle. Avoiding common pitfalls when clustering biological
data. Science signaling, 9(432):re6–re6, 2016.

Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming algorithms
for fair k-means. In Approximation and Online Algorithms: 17th International Workshop, WAOA
2019, Munich, Germany, September 12–13, 2019, Revised Selected Papers 17, pp. 232–251.
Springer, 2020.

scikit-learn developers. scikit learn. https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_moons.html#sklearn.datasets.
make_moons, 2007-2023.

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

Wolberg,William, Mangasarian,Olvi, Street,Nick, and Street,W. Breast Cancer Wisconsin (Diagnos-
tic). UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.

Di Wu, Qilong Feng, and Jianxin Wang. New approximation algorithms for fair k-median problem.
arXiv preprint arXiv:2202.06259, 2022.

Di Wu, Qilong Feng, and Jianxin Wang. Approximation algorithms for fair k-median problem
without fairness violation. Theoretical Computer Science, 985:114332, 2024. ISSN 0304-3975.
doi: https://doi.org/10.1016/j.tcs.2023.114332. URL https://www.sciencedirect.com/
science/article/pii/S030439752300645X.

Qingyuan Yang and Hu Ding. Approximate algorithms for k-sparse wasserstein barycenter with
outliers. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence,
IJCAI-24, pp. 5316–5325, 8 2024. doi: 10.24963/ijcai.2024/588. URL https://doi.org/
10.24963/ijcai.2024/588. Main Track.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert systems with applications, 36(2):
2473–2480, 2009.

Zhi-Hua Zhou and Zhao-Qian Chen. Hybrid decision tree. Knowledge-based systems, 15(8):515–528,
2002.

14

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://www.sciencedirect.com/science/article/pii/S030439752300645X
https://www.sciencedirect.com/science/article/pii/S030439752300645X
https://doi.org/10.24963/ijcai.2024/588
https://doi.org/10.24963/ijcai.2024/588

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ϵ-APPROXIMATE CENTROID SET

The algorithm of constructing an ϵ-approximate centroid set is proposed by Matoušek (2000). Here
we briefly introduce the idea. First, we use a quadtree to partition the space into hierarchical cubes.
At each level of the tree, we construct a grid. The length of the grid is set to ensure that the grid
points can always cover all approximate centroids of all cubes at this level. The approximate centroid
set is the union of all grid points across all levels.

In Figure 3, we visually illustrate the difference between the k-means clustering center and the fair
k-means clustering center. The vanilla k-means induces a Voronoi diagram, so that every k-means
center is located at the centroid of a k-means cluster. However, a fair k-means center can be located at
the centroid of any potential cluster that satisfies the fairness constraints. The ϵ-approximate centroid
set structure can help us to find these potential centroids and preserves the fairness constraints for the
later procedures.

Figure 3: The difference between the location of k-means clustering centers and the fair k-means
clustering centers. The input dataset contains 3 different groups represented by orange, blue, and
green points respectively. The red diamonds represent the cluster centers under different assumptions
for the clustering problem. (a) shows the clustering result of k-means, while (b) shows the clustering
result of fair k-means.

B OMITTED PROOFS

Theorem 2 If T is an ϵ-approximate centroid set of ∪m
i=1P

(i), Algorithm 1 returns a (1+4ρ+O(ϵ))-
approximate solution for k-sparse Wasserstein Barycenter problem.

To prove this theorem, we need the following lemmas.

Lemma 6. If T is an ϵ-approximate centroid set of ∪m
i=1P

(i) and w(t) for each t ∈ T is obtained by
solving LP(2), then T is a (1 +O(ϵ))-approximate Wasserstein Barycenter.

Proof. A critical fact is that there exist an optimal Wasserstein Barycenter T ∗ such that all points of
T ∗ located in the centroid of some fairlet of P . This claim has been proved in (Anderes et al., 2016)
(Section 2, Equation 4). Therefore, if we calculate an ϵ-approximate centroid set T , then T can always
cover the locations of T ∗, i.e., Cost(P, T, ϕ∗

T) ≤ (1 +O(ϵ))Cost(P, T ∗, ϕ∗
T∗) ≤ (1 +O(ϵ))OPT .

So using the same proof idea with Lemma 2, we can obtain the conclusion of Lemma 6.

Combine Lemma 6 and Lemma 1, we arrive at Theorem 2.

C THE ROUNDING TECHNIQUE

Our rounding algorithm consists of three steps: constructing a network structure of Minimum Cost
Circulation Problem (MCCP), setting the parameters of each edge based on a fractional solution
obtained by Algorithm 1, and solving the MCCP above. This reduction to MCCP is inspired by

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ding & Xu (2015) (Section 4.3), while having some fundamental differences with their method.
Our algorithm has different objectives compared to theirs, as it is based on a different approach to
setting network parameters, and our method offers better time complexity guarantees. Our rounding
algorithm requires only a single call to the minimum-cost circulation algorithm, and it can be
completed in O(n3k2) time even when using the vanilla Edmonds-Karp algorithm (Dinitz, 1970;
Edmonds & Karp, 1972).

The process of our algorithm is described as follows. Recall that the dataset P consists of m different
groups, i.e., P = ∪m

i=1P
(i) and we assume that the groups are disjoint. By executing the Algorithm 1,

we obtain a center set S and corresponding fractional assignment matrix ϕ∗
S . Now, in order to build a

minimum cost circulation instance, we need to construct a network structure as Figure 4 and for each
arc (u, v), we should set the lower/upper bound of the flow f(u, v) and its cost c(u, v). We create a
copy of S, denoted by S(i), for each group P (i). Each S(i) is a ”hub” used for transit, specifically to
receive weights from group P (i) and transmit them to S. To facilitate understanding, we can imagine
that each s

(i)
l ∈ S(i), where l ∈ [k], and its corresponding sl ∈ S are in the same position, but only

accepts the weights from group P (i). We set c(p(i)j , s
(i)
l), i.e., the cost of the arc from any p

(i)
j ∈ P (i),

where j ∈ [n(i)], to an s
(i)
l ∈ S(i) to be ||p(i)j − s

(i)
l ||2. The cost of the remaining arcs are 0.

Figure 4: The instance of the minimum cost circulation problem established through (S, ϕ∗
S). The

upper and lower bounds of the flow for each arc are annotated in the graph.

Next, we set the lower bound and the upper bound of the flow on each arc, as shown in Figure 4. First,
the flow from the ”Source” node to each p ∈ P is restricted to 1, which means that each point p ∈ P (1)

has a weight of 1 to assign to S(1). Then, between each P (i) and its ”hub” S(i), the flow from each
p
(i)
j ∈ P (i) to each s

(i)
l ∈ S(i) is bounded by [0, 1]. Here, the flow f(p

(i)
j , s

(i)
l) denotes the amount of

the weight that assigned from p
(i)
j to sl ∈ S in an (α, β)-fair k-means solution. Subsequently, recall

that in the solution (S, ϕ∗
S) we obtained before, the weight received by a center sl ∈ S from group

P (i) is w(i)(sl). We bound the flow f(s
(i)
l , sl) by

[
⌊w(i)(sl)⌋, ⌈w(i)(sl)⌉

]
. Finally, the flow from

each sl ∈ S to the ”Sink” node is bounded by
[
⌊w(sl)⌋, ⌈w(sl)⌉

]
, and we set f(Sink, Source) = n

to form a circulation. At this point, we have established an instance of the minimum cost circulation
problem, denoted by MCCP (S, ϕ∗

S). Obviously, we have the following observation:

Observation 1. ϕ∗
S induces a feasible solution of MCCP (S, ϕ∗

S).

The observation is straightforward because the flow induced by ϕ∗
S meet all the bounds applied to the

flow. Then, we give the proof of Lemma 4 mentioned in Section 3.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma 4. There exists an algorithm that can round a fractional solution of (α, β)-fair k-means to
integral with at most 2-violation while the cost does not increase.

Proof. It is known that the minimum cost circulation problem has an integrality property (Cormen
et al., 2009), which guarantees that if the arcs have integer capacities, there will always be an optimal
solution with integer flow values on each arc. Utilizing an algorithm for minimum cost circulation
problem or minimum cost flow problem (the two problems are equivalent), which converges to an
integer solution like Ford-Fulkerson (Ford & Fulkerson, 1956), we can obtain an integer optimal
solution of MCCP (S, ϕ∗

S), which has a cost no larger than the solution induced by ϕ∗
S .

Next, we prove that the assignment matrix, say ϕ′
S , induced by the integer optimal solution of

MCCP (S, ϕ∗
S) is a 2-violation assignment from P to S. Recall that we presented the definition of the

violation factor in Section 2: An assignment matrix ϕS is a λ-violation solution if βi

∑
p∈P ϕS(p, s)−

λ ≤
∑

p∈P (i) ϕS(p, s) ≤ αi

∑
p∈P ϕS(p, s)+λ, ∀s ∈ S,∀i ∈ [m]. According to the construction

procedure of MCCP (S, ϕ∗
S), the lower bound of the flow f(s

(i)
l , sl) is ⌊w(i)(sl)⌋, which satisfies:

⌊w(i)(sl)⌋ ≥ ⌊α(i)(⌈w(sl)⌉ − 1)⌋
= ⌊αi⌈w(sl)⌉ − αi⌋
≥ ⌈αi⌈w(sl)⌉ − αi⌉ − 1

≥
(
αi⌈w(sl)⌉ − αi

)
− 1.

(13)

Note that the upper bound of the flow f(sl, Sink) is ⌈w(sl)⌉ so we have:

⌊w(i)(sl)⌋ ≥ αi⌈w(sl)⌉ − αi − 1

≥ αi⌈w(sl)⌉ − 2,
(14)

and similarly,
⌈w(i)(sl)⌉ ≤ βi⌊w(sl)⌋+ βi + 1

≤ βi⌊w(sl)⌋+ 2,
(15)

which indicates that ϕ′
S is a 2-violation assignment and complete the proof of Lemma 4.

D FIXED SUPPORT WASSERSTEIN BARYCENTER

Given m discrete distributions (weighted point sets, each set has total weight sum to 1)
P (1), · · · , P (m) and a set T of WB, the objective of fixed support WB as follows:

min
x

1

m

m∑
l=1

n(i)∑
i=1

n(j)∑
j=1

∥P (l)
i − Tj∥2x(l)

ij

s.t.

|T |∑
j=1

x
(l)
ij = 1, ∀l ∈ [m],∀i ∈ [n(l)]

n(l)∑
i=1

x
(l)
ij w(P

(w)
i) = yj , ∀l ∈ [m],∀j ∈ [|T |]

|T |∑
j=1

yj = 1,

x
(l)
ij ≥ 0, ∀l ∈ [m],∀i ∈ [n(l)],∀j ∈ [|T |]

yj ≥ 0, ∀j ∈ [|T |]

(16)

It is easy to see that fixed support WB problem can be solved using linear programming method.
Several existing works on solving LP (16) including (Claici et al., 2018; Cuturi & Doucet, 2014;
Cuturi & Peyré, 2016; Lin et al., 2020).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For the sake of completeness, we need to clarify how the solution to the k-sparse Wasserstein
barycenter solution is guaranteed to be a distribution. After we run Algorithm 1, we obtain the
support S (the locations of centers) of the returned solution and the assignment matrix ϕ∗

S (the
transportation weight from p = P

(l)
i to f = Sj is denoted by ϕ∗

S(p, f) = x
(l)
ij in (16)). The key

question is how to ensure that the summation of the weight of points in S is equal to 1. Let us
consider an arbitrary given distribution (or ”group” in the context of fair k-means), e.g., P (l). For
every facility f in S, we define its weight w(f) =

∑
p∈P (l) ϕ∗

S(p, f). This ensures that the total
weight of S must be equal to the total weight of P (l), which is 1 because P (l) is a distribution. The
choice of P (l) can be arbitrary because, recall that k-sparse WB can be seen as a special fractional
version of strictly fair k-means, meaning no matter which given distribution you choose, you will
obtain the same weight distribution of S. The optimization will not change by setting the weight of S
because the weight of S does not affect the cost.

E EXTEND ALGORITHM 1 TO k-MEDIAN AND k-MEANS IN GENERAL
METRIC SPACE

Although we mainly consider the fair k-means problem in Euclidean space in this paper, for the sake
of completeness, in this section, we illustrate how to extend our framework to solve k-median and
k-means in general metric space. In summary, if the potential facility set is given, our framework
achieves a (1 + 2ρ)-approximate solution for k-median ((2 + 8ρ)-approximate solution for k-means)
in metric space, where ρ is the approximation ratio for vanilla k-median (k-means) with a constant
violation factor. If the metric space has a fixed doubling dimension (Gupta et al., 2003), then equipped
with existing PTAS for metric k-median and k-means (Cohen-Addad et al., 2021; 2019; Friggstad
et al., 2019), the best approximation ratios our framework can achieve are (3+O(ϵ)) for fair k-median
and (10 +O(ϵ)) for fair k-means.

Unfortunately, our theoretical guarantees in general metric space are weaker than those of Bera et al.
(2019), in which they obtained a (ρ+2)-approximation for k-median and a (

√
ρ+2)2-approximation

for k-means. The obstacle to achieving a better approximation ratio for our framework is the
”candidate set”. In Euclidean space, we have an approximate centroid set. However, in general metric
space, how can we obtain a candidate set that has similar properties to Proposition 1, which provides
a more powerful tool than the basic triangle inequality? This is not only a potential future work of
our framework but also an important open theoretical problem.

k-Median in metric space. Firstly, we consider fair k-median in general metic space. We use
dist(·, ·) to denote the distance between two points. We assume that the potential facility set T
is given. Therefore, in Algorithm 1, we just use the given facility set T rather than computing the
approximate centroid set. The cost of fair k-median can be written as

Cost(P, S, ϕ∗
S) =

∑
p∈P

∑
s∈S

dist(p, s)ϕ∗
S(p, s). (17)

Similar to Lemma 1, we have the following lemma.

Lemma 7. Let η be any positive number. If we suppose Cost(P, T, ϕ∗
T) ≤ η · OPT , then the

solution (S, ϕ∗
S) returned by Algorithm 1 (the construction of T should be slightly changed) is an(

η + (η + 1)ρ
)
-approximate solution for fair k-median problem in metric space, where ρ is the

approximation ratio of vanilla k-median.

Proof. Now we consider another assignment strategy: we firstly assign P to T according to ϕ∗
T (

recall that ϕ∗
T is the optimal fractional assignment matrix from P to T), and then we assign every

weighted point in T to some s ∈ S such that s is closest point to π(t). Since ϕ∗
S is the optimal

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

assignment matrix from P to S, the cost of this assignment strategy should have:

Cost(P, S, ϕ∗
S) ≤

∑
p∈P

∑
t∈T

dist(p,N (t, S))ϕ∗
T (p, t)

≤
∑
t∈T

∑
p∈P

[
dist(p, t) + dist(t,N (t, S))

]
ϕ∗
T (p, t)

=
∑
p∈P

∑
t∈T

dist(p, t)ϕ∗
T (p, t)︸ ︷︷ ︸

(a)

+
∑
p∈P

∑
t∈T

dist(t,N (t, S))ϕ∗
T (p, t)︸ ︷︷ ︸

(b)

.

(18)

The second inequality is triangle inequality. Then we bound (a) and (b) separately. Firstly,

(a) =
∑
p∈P

∑
t∈T

dist(p, t)ϕ∗
T (p, t) = Cost(P, T, ϕ∗

T) ≤ η ·OPT (19)

Next, we focus on (b). Suppose Smedian is the optimal k-median solution of T . Then we have:

(b) =
∑
p∈P

∑
t∈T

dist(t,N (t, S))ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

dist(t,N (t, Smedian)ϕ
∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

[∑
s̃∈Sopt

dist(t,N (t, Smedian))ϕ
∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

[∑
s̃∈Sopt

dist(t, s̃)ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t).

(20)

Further, according to the triangle inequality, we have

(b) ≤ ρ
∑
p∈P

∑
t∈T

[∑
s̃∈Sopt

[
dist(t, p) + dist(p, s̃)

]
ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

dist(t, p)ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

+ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

dist(p, s̃)ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

dist(t, p)ϕ∗
T (p, t) + ρ

∑
p∈P

∑
s̃∈Sopt

dist(p, s̃)ϕ∗
Sopt

(p, s̃).

(21)

The last equality holds because for any p ∈ P ,
∑

s̃∈Sopt
ϕ∗
Sopt

(p, s̃) = 1 and
∑

t̃∈T ϕ∗
T (p, t) = 1.

The first term is exactly ρ times of (a) and the second term equals ρ ·OPT . Through combining (a)
and (b), we can obtain an approximation factor of η + (η + 1)ρ.

k-Means in metric space. Using the same idea of Lemma 7 with squared triangle inequality
dist2(a, b) ≤ 2dist2(a, c) + 2dist2(c, b), we can immediately obtain the following corollary.

Corollary 1. Let η be any positive number. If we suppose Cost(P, T, ϕ∗
T) ≤ η · OPT , then the

solution (S, ϕ∗
S) returned by Algorithm 1 (slightly changed as above) is an

(
2η + (4η + 4)ρ

)
-

approximate solution for fair k-means problem in metric space, where ρ is the approximation ratio of
vanilla k-means.

When considering k-clustering problem in metric space, we usually assume that the potential facility
set is given. We just use it as our candidate set T . Hence, the η = 1 in the above analysis, which
leads a (2 + ρ)-approximation for fair k-median and a (2 + 8ρ)-approximation for fair k-means.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F SUPPLEMENTARY EXPERIMENT

F.1 DATASETS

The detailed information of our datasets is shown in Table 2. The group partition of every dataset
is based on the “Group Column”. Every group column has some group values. The set of groups
is the Cartesian product of group values of all group column. For example, the groups of Bank
dataset are (married, yes), (married, no), (single, yes), (single, no), (divorced, yes), (divorced, no).
For large dataset Census and Creditcard, we sample 1000 points to make sure the LP solver works
in acceptable time.

Dataset Size Dimension Group Column Groups Values
Bank 9999 3 marital married, single, divorced

default yes, no

Adult 4522 5 sex female, male
race Amer-ind, asian-pac-isl,

black, other, white
Creditcard 30000 5 marriage married, single, other, null

education 7 groups
Census1990 50000 12 dAge 8 groups

iSex female, male
Moons 200 2 color 2 groups

Hypercube 200 3 color 2 groups
Complex 3032 2 color 9 groups

Cluto 10000 2 color 8 groups
Breastcancer 570 31 label 2 groups

Biodeg 1055 40 label 2 groups

Table 2: Detailed Datasets Information

F.2 COMPARISON ON COST WITH DIFFERENT k AND (α, β)

In the main paper, we set αi = βi =
|P (i)|
|P | . Here, we try different α and β to compare our algorithm

to baselines. In order to make sure that the values of α and β are feasible, we introduce the parameter
δ ∈ (0, 1), which represents the degree of relaxation of fairness constraints, with a larger δ indicating

looser constraints. We set αi =
|P (i)|
|P | · 1

1−δ and βi =
|P (i)|
|P | · (1− δ). We set δ = 0.1 and 0.2 to

compare the cost with baselines. The results are shown in Figure 5 and Figure 6, respectively.

In fact, as δ increases, the fairness constraints of the (α, β)-fair k-means problem become more
relaxed, and the corresponding fair k-means problem approaches the vanilla k-means problem. In
cases where δ is large, in each cluster, the legal range of points from each group is larger, making
the protection of fairness constraints less important, thus resulting in the optimal fair k-means center
positions being very close to the centers of vanilla k-means. In the Table 2 of (Böhm et al., 2021), it
is mentioned that when δ = 0.2, the clustering results of vanilla k-means only violate the fairness
constraints by 0.4%-2%, which makes our algorithm less advantageous under a relatively relaxed δ
value.

F.3 COMPARISON ON COST OF k-SPARSE WASSERSTEIN BARYCENTER

We compare our algorithm with the very recent work (Yang & Ding, 2024) (denoted by IJCAI24)
who obtain (2 +

√
ρ)2-approximate solution of k-sparse WB. The results are shown in Figure 7. In

most cases, our algorithm can achieve a 10%-30% cost advantage over the previous work.

F.4 COST ON DIFFERENT SAMPLING RATIO

In our algorithm, the most time consuming step is to solve LP(2) on T . A key observation during
our experiment is that, after solving LP(2) on T , a large amount of points of T have weight of 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 5: Comparison on Clustering Cost with δ = 0.1

Figure 6: Comparison on Clustering Cost with δ = 0.2

Therefore, it is possible to reduce the size of T while maintain the quality of T . Meanwhile, smaller
T helps to reduce the running time. In order to verify our thoughts, we use sampling method after
we obtain T . We use sampling ratio of 100%, 50%, 20% and 10% and calculate the final cost of
Algorithm 1 with different k. The results are shown in Figure 891011. In these figures, we can see
that in most cases, the cost of sampled T do not increase too much (50% sample yields no more than
10% cost increasing and even 10% sample yields no more than 20% cost increasing in most cases).

Figure 7: Comparison on the Cost of k-sparse Wasserstein Barycenter

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 8: The cost on centriod set T with different sampling ratio when k = 5

Figure 9: The cost on centriod set T with different sampling ratio when k = 10

Figure 10: The cost on centriod set T with different sampling ratio when k = 15

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 11: The cost on centriod set T with different sampling ratio when k = 20

F.5 RUNNING TIME WITH DIFFERENT SAMPLING RATIO ON T

As we discussed in F.4, sampling on relaxed solution T can reduce the running time while the overall
cost not increasing too much. We also test the running time with different sampling ratio. In summary,
the running time of solving LP(2) on T and overall Algorithm 1, shown in Table 3 and Table 4, can
be significantly reduced by sampling.

Dataset 100% 50% 20% 10%
Bank 39.97 19.14 7.12 3.39
Adult 66.48 28.58 9.67 4.64

Creditcard 80.235 32.51 11.08 5.43
Census 76.46 37.78 13.96 6.64
Moons 3.75 1.89 0.68 0.33

Breastcancer 11.03 5.28 2.01 1.07
Cluto 192.57 91.72 36.03 18.18

Complex 49.70 24.74 9.11 4.54

Table 3: Time (seconds) of solving LP(2) on T with different sampling ratio

Dataset 100% 50% 20% 10%
Bank 42.03 21.20 9.16 5.44
Adult 69.19 31.24 12.31 7.34

Creditcard 83.42 35.62 14.20 8.57
Census 80.23 41.62 17.86 10.48
Moons 4.07 2.15 0.97 0.60

Breastcancer 11.78 6.05 2.68 1.67
Cluto 201.54 100.64 45.82 27.74

Complex 52.23 27.25 11.66 7.05

Table 4: Overall time (seconds) with different sampling ratio of T when k = 20

F.6 COMPARISON OF RUNNING TIME WITH BASELINES

We compared the running time of our algorithm (Algorithm 1 with our rounding technique) with
the baseline NIPS19 (Bera et al., 2019). For strictly fair datasets, we also tested the running time of
Algorithm 2 and ORL21 (Böhm et al., 2021). The results are shown in Table 5 and Table 6. Below,
we provide a detailed analysis on the comparisons.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Comparison between Algorithm 1 and NIPS19 (Bera et al., 2019). Algorithm 1 and NIPS19
both have two important subprocedures: linear programming and the k-means algorithm. These two
steps are the bottlenecks for Algorithm 1 and NIPS19. Specifically, NIPS19 first runs the k-means
algorithm (i.e., k-means++), and then calls the LP solver once to compute the fractional assignment.
A different part of our Algorithm 1 is that it calls the LP solver twice, once to compute the weights
of candidate set T and once to compute the fractional assignment, and calls the k-means algorithm
once. In Algorithm 1, we only need to run k-means on T , which should be much smaller than the
whole dataset, leading to less running time for the k-means subprocedure compared to NIPS19.
However, the first call to the LP solver to compute the weight of T consumes more time than the
second call because |T | > k usually. We illustrate the running time of every critical subprocedure of
both algorithms in Table 5. Our k-means step is faster, but we have to run an extra LP step. Therefore,
the running time comparison between these two algorithms is complex. Generally speaking, LP takes
more time than k-means, which means our Algorithm 1 usually runs slower than NIPS19. However,
with the development of LP solvers, we can expect that the runtime of Algorithm 1 could be further
reduced with more advanced LP solvers.

Construct T LP on T k-means LP on S Rounding Total

Bank Algorithm1 0.01 2.4 <0.01 1.23 <0.01 3.78
NIPS19 / / 0.14 0.81 <0.01 1.11

Creditcard Algorithm 1 0.01 4.06 <0.01 2.27 <0.01 6.51
NIPS19 / / 0.18 2.05 <0.01 2.39

Census1990 Algorithm 1 0.01 7.51 0.02 5.19 <0.01 12.99
NIPS19 / / 0.30 3.94 <0.01 4.42

Adult Algorithm 1 0.01 4.14 <0.01 1.80 <0.01 6.12
NIPS19 / / 0.18 1.23 <0.01 1.59

Breastcancer Algorithm 1 0.01 0.19 <0.01 0.82 <0.01 1.33
NIPS19 / / 0.10 0.22 <0.01 0.45

Table 5: Running time (s) on non-strictly fair datasets

Construct T LP on T k-means LP on S Rounding Total

Moons

Algorithm 1 0.01 0.18 <0.01 0.64 <0.01 0.83
NIPS19 / / 0.07 0.70 0.01 0.78

Algorithm 2 / / <0.01 / / 0.59
ORL21 / / 0.02 / / 0.48

Cluto

Algorithm 1 0.01 1.01 <0.01 1.30 <0.01 2.36
NIPS19 / / 0.07 1.54 <0.01 1.66

Algorithm 2 / / < 0.01 / / 0.56
ORL 21 / / 0.56 / / 0.72

Complex

Algorithm 1 0.01 1.08 <0.01 0.61 <0.01 1.71
NIPS19 / / 0.05 0.72 <0.01 0.79

Algorithm 2 / / < 0.01 / / 0.58
ORL21 / / 0.56 / / 0.72

Hypercube

Algorithm 1 0.01 5.71 0.01 4.40 <0.01 10.27
NIPS19 / / 0.15 2.58 <0.01 2.87

Algorithm 2 / / < 0.01 / / 0.39
ORL21 / / 0.67 / / 0.83

Table 6: Running time (s) on strictly fair datasets

Discussion on the construction of T . According to Algorithm 1, T should be an approximate
centroid set (Matoušek, 2000). Thanks to the open-source project by (Kanungo et al., 2002), which
provides an efficient implementation of the approximate centroid set, we used their algorithm as
part of our procedure in our code. Kanungo et al. (2002) used a sampling technique, leading to a
trade-off between performance and efficiency. In our experiment, we sampled 10% of points in the
approximate centroid set as T . A higher sample rate yields better performance (lower cost) but longer
running time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Besides, an implicit benefit of the construction of T is that it is irrelevant to the parameters k, α,
and β. So if we consider a real scenario that we need to repeatedly try different choices for these
parameters (e.g., we may want to tune the value k and select the most satisfying result), the step of
constructing T and performing linear programming on T can be seen as preprocessing of datasets
before the tuning. Namely, we just need to run this preprocessing one time, and consequently the
amortized cost over the whole tuning procedure can be reduced significantly.

Running time comparison on strictly fair datasets. For strictly fair datasets, we consider Algo-
rithm 1, NIPS19, Algorithm 2, and ORL21 . Algorithm 2 has an advantage in efficiency in most
datasets. The primary reason is that Algorithm 2 only calls the k-means algorithm once and does not
need to solve the LP. As for ORL21, it needs to run k-means for each group and then choose the best
one. As a result, ORL21 takes longer time than Algorithm 2, especially on the datasets with large
number of groups.

F.7 EXPERIMENTS OF OUR ROUNDING ALGORITHM

In this section, we implement our rounding algorithm in Appendix C and compute the violation factor
across different datasets and parameters. For convenience, we parameterize αi and βi for the i-th
group using a single parameter δ. Specifically, we set βi =

|P (i)|(1−δ)
|P | and αi =

|P (i)|
|P |(1−δ) . Generally

speaking, the smaller the δ, the stricter the fairness constrains are. In Table 7 8 9, the violation
introduced by our rounding algorithm is less than 1 in most of the cases and never exceeds 2, which
aligns with our theoretical analysis.

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0 0 0 0 0 0 0 0 0 0 0

Hypercube 0 0 0 0 0 0 0 0 0 0 0 0
Complex 0.82 0.89 0.5 0.83 0.96 0.95 0.87 0.95 0.91 0.85 0.80 0.89

Cluto 0.80 0.86 0.72 1.01 1.04 0.94 1.0 1.02 0.90 0.90 1.1 0.9
Biodeg 0.05 0.66 0.65 0.63 0.64 0.62 0.63 0.68 0.77 0.79 0 0.01

Breastcancer 0.33 0.34 0.13 0.69 0.87 0.90 0.35 0.94 0.78 0.76 0.76 0.18

Table 7: Violation factor of our rounding algorithm with different k (δ = 0)

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0.3 0.35 0.40 0.30 0.40 0.70 0.5 0.35 0 0.20 0.40

Hypercube 0 0.94 0.98 0.94 0.83 0.95 0.85 0.91 0.80 0.88 1.02 0.83
Complex 0.67 0.98 0.66 0.87 0.88 0.97 0.76 0.77 0.89 0.97 0.67 1.03

Cluto 0.38 1.05 0.99 0.83 0.96 0.94 0.95 0.93 0.94 0.91 0.57 0.99
Biodeg 0 0.01 0.33 0.79 0.38 0.37 0.59 0.38 0.78 0.51 0.78 0.80

Breastcancer 0.18 0.23 0.40 0.23 0.39 0.89 0.53 0.33 0.47 0.51 0.34 0.68

Table 8: Violation factor of our rounding algorithm with different k (δ = 0.1)

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0.20 0.40 0.40 0.40 0.40 0.60 0.60 0.40 0.40 0.60 0.80

Hypercube 0 0.56 0.69 0.88 0.90 1.125 0.80 0.91 0.90 0.97 0.90 0.90
Complex 0.92 1.02 0.92 0.768 0.96 1.01 0.95 0.79 0.88 0.90 1.04 1.01

Cluto 0.85 0.90 0.90 0.88 0.83 1.024 0.85 0.86 0.90 0.88 0.96 1.00
Biodeg 0 0.50 0.56 0.39 0.51 0.69 0.19 0.57 0.56 0.64 0.75 0.65

Breastcancer 0 0.26 0.42 0.26 0.69 0.39 0.29 0.67 0.80 0.81 0.85 0.68

Table 9: Violation factor of our rounding algorithm with different k (δ = 0.2)

25

	Introduction
	Preliminaries
	Our ``Relax and Merge'' Framework
	Algorithm for (,) Fair k-means Problem
	Extension to k-sparse Wasserstein Barycenter
	Strictly Fair k-means without Violation

	Experiments
	Conclusion
	-approximate centroid set
	Omitted Proofs
	The Rounding Technique
	Fixed Support Wasserstein Barycenter
	Extend Algorithm 1 to -Median and -Means in General Metric Space
	Supplementary Experiment
	Datasets
	Comparison on Cost with different k and (,)
	Comparison on Cost of k-sparse Wasserstein Barycenter
	Cost on Different sampling ratio
	Running time with different sampling ratio on T
	Comparison of Running Time with baselines
	Experiments of Our Rounding Algorithm

