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ABSTRACT

The fairness of clustering algorithms has gained widespread attention across var-
ious areas in machine learning. In this paper, we study fair k-means clustering
in Euclidean space. Given a dataset comprising several groups, the fairness con-
straint requires that each cluster should contain a proportion of points from each
group within specified lower and upper bounds. Due to these fairness constraints,
determining the locations of k centers and finding the induced partition are quite
challenging tasks. We propose a novel “Relax and Merge” framework that returns a
(1 + 4ρ+O(ϵ))-approximate solution, where ρ is the approximate ratio of an off-
the-shelf vanilla k-means algorithm and O(ϵ) can be an arbitrarily small positive
number. If equipped with a PTAS of k-means, our solution can achieve an approxi-
mation ratio of (5 +O(ϵ)) with only a slight violation of the fairness constraints,
which improves the current state-of-the-art approximation guarantee. Furthermore,
using our framework, we can also obtain a (1+4ρ+O(ϵ))-approximate solution for
the k-sparse Wasserstein Barycenter problem, which is a fundamental optimization
problem in the field of optimal transport, and a (2 + 6ρ)-approximate solution for
the strictly fair k-means clustering with no violation, both of which are better than
the current state-of-the-art methods. In addition, the empirical results demonstrate
that our proposed algorithm can significantly outperform baseline approaches in
terms of clustering cost.

1 INTRODUCTION

Clustering is one of the most fundamental problems in the area of machine learning. A wide range of
practical applications rely on effective clustering algorithms, such as feature engineering (Glassman
et al., 2014; Alelyani et al., 2018), image processing (Coleman & Andrews, 1979; Chang et al., 2017),
and bioinformatics (Ronan et al., 2016; Nugent & Meila, 2010). In particular, the k-means clustering
problem has been extensively studied in the past decades (Jain, 2010). Given an input dataset P ⊂ Rd,
the goal of the k-means problem is to find a set S of at most k points for minimizing the clustering
cost, which is the sum of the squared distances from every point of P to its nearest neighbor in S. In
recent years, motivated by various fields like education, social security, and cultural communication,
the study on fairness of clustering has in particular attracted a great amount of attention (Chierichetti
et al., 2017; Bera et al., 2019; Huang et al., 2019; Chen et al., 2019; Ghadiri et al., 2021).

In this paper, we consider the problem of (α, β)-fair k-means clustering that was initially proposed
by Chierichetti et al. (2017) and then generalized by Bera et al. (2019). Informally speaking, we
assume that the given dataset P consists of m groups of points, and the “fairness” constraint requires
that in each obtained cluster, the points from each group should take a fraction between pre-specified
lower and upper bounds. Bera et al. (2019) showed that a ρ-approximate algorithm for vanilla
k-means can provide a (2 +

√
ρ)2- approximate solution 1 for (α, β)-fair k-clustering with a slight

violation on the fairness constraints, where the “violation” is formally defined in Section 2. Regarding
the no violation scenario, Dai et al. (2022) and Wu et al. (2024) both obtained a O(logk)-approximate
solution for fair k-median. Wu et al. (2024) achieved a quasi-polynomial-time approximate scheme.

1In their paper, the approximate ratio is written as (2 + ρ) because they added a squared root to the k-means
cost function.
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Furthermore, Böhm et al. (2021) studied the “strictly” fair k-means clustering problem, where it
requires that the number of points from each group should be uniform in every cluster; they obtained
a (2 +

√
ρ)2 approximate solution without violation. These fair k-means algorithms can also be

accelerated by using the coreset techniques, such as (Huang et al., 2019; Braverman et al., 2022;
Bandyapadhyay et al., 2024). There also exist polynomial-time approximation scheme (PTAS) for fair
k-means, such as the algorithms proposed in (Böhm et al., 2021; Schmidt et al., 2020; Bandyapadhyay
et al., 2024), but their methods have an exponential time complexity in k. We are also aware of
several other different definitions of fairness for clustering problems, such as the proportionally fair
clustering (Chen et al., 2019; Micha & Shah, 2020) and socially fair k-means clustering (Ghadiri
et al., 2021; Abbasi et al., 2021; Makarychev & Vakilian, 2021; Chlamtáč et al., 2022).

Another problem closely related to fair k-means is the so-called “k-sparse Wassertein Barycenter
(WB)” (Agueh & Carlier, 2011) (the formal definition is shown in Section 2). The Wasserstein
Barycenter is a fundamental concept in optimal transport theory, and it represents the “average” or
central distribution of a set of probability distributions. It plays a crucial role in various applications
such as image processing (Bonneel et al., 2015; Cuturi & Doucet, 2014), data analysis (Rabin et al.,
2012), and machine learning (Backhoff-Veraguas et al., 2022; Metelli et al., 2019). Given m > 1
discrete distributions, the goal of the k-sparse WB problem is to find a discrete distribution (i.e., the
barycenter) that minimizes the sum of the Wasserstein distances (Villani, 2021) between itself to all
the given distributions, and meanwhile the support size of the barycenter is restricted to be no larger
than a given integer k ≥ 1. If relaxing the “k-sparse” constraint (i.e., the barycenter is allowed to
take a support size larger than k), Altschuler & Boix-Adsera (2021) presented an algorithm based on
linear programming, which can compute the WB within fixed dimensions in polynomial time. If
the locations of the WB supports are given, the problem is called “fixed support WB”, which can
be solved by using several existing algorithms (Claici et al., 2018; Cuturi & Doucet, 2014; Cuturi
& Peyré, 2016; Lin et al., 2020). If we keep the “k-sparse” constraint, it has been proved that the
problem is NP-hard (Borgwardt & Patterson, 2021). To the best of our knowledge, the current lowest
approximation ratio of k-sparse WB problem is also (2 +

√
ρ)2 (same with the aforementioned

approximation factor for fair k-means), as recently studied by Yang & Ding (2024). In fact, we can
regard this problem as a special case of fair k-means clustering, where each input distribution is an
individual group and the unique cost measured by “Wasserstein distance” is implicitly endowed with
a kind of fairness. This observation from Yang & Ding (2024) inspires us to consider solving the
k-sparse WB problem under our framework.

Why fair k-means is so challenging? Though the fair k-means clustering has been extensively
studied in recent years, their current state-of-the-art approximation qualities are still not that satisfying.
The major difficulty arises from the lack of “locality property” (Ding & Xu, 2020; Bhattacharya et al.,
2018) caused by fair constraints. More precisely, in a clustering result of vanilla k-means, each client
point obviously belongs to its closest center. That is, a k-means clustering implicitly forms a Voronoi
diagram, where the cell centers are exactly the k cluster centers, and the client points in each Voronoi
cell form a cluster. However, when we add some fair constraints, such as requiring that the proportion
of points of each group should be equal in each cluster, the situation becomes more complicated.
Given a set of cluster center locations, because the groups of client points within a Voronoi cell may
not be equally distributed, some points are forced to be assigned to other Voronoi cells. This loss of
locality introduces significant uncertainty for the selection of cluster center positions. The previous
works (Bera et al., 2019; Böhm et al., 2021) do not pay much attention on how to handle this locality
issue when searching for the cluster centers, instead, they directly apply vanilla k-means algorithms
to the entire input dataset or a group, and use the obtained center locations as the center locations for
fair k-means. It is easy to notice that their methods could result in a certain gap with the optimal fair
k-means solution. To narrow this gap, we attempt to design some more effective way to determine
the center locations, where the key part that we believe, should be how to encode the fair constraints
into the searching algorithm.

Our key ideas and main results. Our key idea relies on an important observation, where we find
that the fair k-means problem is inherently related to a classic geometric structure, “ϵ-approximate
centroid set”, which was firstly proposed by Matoušek (2000). Roughly speaking, given a dataset,
an ϵ-approximate centroid set should contain at least one point that approximately represents the
centroid location of any subset of this given dataset. It means that the ϵ-approximate centroid set
contains not only the approximate centroids based on the Voronoi diagram, but also the approximate
centroids of those potential fairness-preserving clusters.
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Inspired by the above observation, we illustrate the relationship between fair k-means and ϵ-
approximate centroid set first, and then propose a novel Relax-and-Merge framework. In this
framework, we relax the constraints on the number of clusters k; we focus on utilizing fair constraints
to cluster the data into small and fair clusters, which are then merged together to determine the
positions of k cluster centers. As shown in Table 1, our result is better than the state of the art
works (Bera et al., 2019; Böhm et al., 2021). Equipped with a PTAS for k-means problem (e.g., the
algorithm from Cohen-Addad et al. (2019)), our algorithm yields a 5 +O(ϵ) approximation factor.
We also present two important extensions from our work. The first extension is an (1 + 4ρ+O(ϵ))
solution for k-sparse Wasserstein Barycenter. The second one is about strictly fair k-means. We
give a refined algorithm of Relax and Merge that yields a no-violation solution with a (2 + 6ρ)
approximation factor, which is better than the state of the art work (Böhm et al., 2021).

Algorithms Approximation
ratio

When
ρ = 1 +O(ϵ)

Note on the quality

Bera et al. (2019) (2 +
√
ρ)2 9 +O(ϵ) general case

Schmidt et al. (2020) 5.5ρ+ 1 6.5 +O(ϵ) two groups only
Böhm et al. (2021) (2 +

√
ρ)2 9 +O(ϵ) strictly only, no violation

Yang & Ding (2024) (2 +
√
ρ)2 9 +O(ϵ) k-sparse WB

Algorithm 1, now 1 + 4ρ+O(ϵ) 5 +O(ϵ) general case
Algorithm 2, now 2 + 6ρ 8 +O(ϵ) strictly only, no violation

Table 1: Comparison of the approximation ratios for fair k-means and k-sparse WB. The “general
case” includes (α, β)-fair k-means, strictly (α, β)-fair k-means and k-sparse WB.

Other Related Works on k-Means The vanilla k-means problem is a topic that has been widely
studied in both theory and practice. It has been proved that k-means clustering is NP-hard even
in 2D if k is large (Mahajan et al., 2012). In high dimensions, even if k is fixed, say k = 2, the
k-means problem is still NP-hard (Drineas et al., 2004). Furthermore, Lee et al. (2017) proved
the APX-hardness result for Euclidean k-means problem, which implies that it is impossible to
approximate the optimal solution of k-means below a factor 1.0013 in polynomial time under the
assumption of P ̸= NP. Therefore, a number of approximation algorithms have been proposed in
theory. If the dimension d is fixed, Kanungo et al. (2002) obtained a (9+O(ϵ))-approximate solution
by using the local search technique. Roughly speaking, the idea of local search is swapping a small
number of points in every iteration, so as to incrementally improve the solution until converging at
some local optimum. Following this idea, Cohen-Addad et al. (2019) and Friggstad et al. (2019)
proposed the PTAS for k-means in low dimensional space. For high-dimensional case with constant
k, Kumar et al. (2010) proposed an elegant peeling algorithm that iteratively finds the k cluster centers
and eventually obtain the PTAS.

2 PRELIMINARIES

Notations. In this paper, we always assume that the dimensionality d of the Euclidean space is
constant. Let P denote the set of n client points located in Euclidean space Rd. The set P consists
of m different groups (not necessarily disjoint), i.e., P = ∪m

i=1P
(i), and each group has the size

|P (i)| = n(i) (we use the superscript “(i)” to denote the group’s index). The Euclidean distance
between two points a, b ∈ Rd is denoted by ∥a − b∥; the distance between a point a and any set
Q ⊂ Rd is denoted by dist(a,Q) = minq∈Q ∥a− q∥, and the nearest neighbor of a in Q is denoted
as N (a,Q). The centroid of a set Q is denoted by Cen(Q).

For the vanilla k-means problem, the client points are always assigned to their nearest center. However,
if the fairness constraint is considered, the assignment may not be that straightforward. To describe
the fair k-means clustering more clearly, we introduce the “assignment matrix” first. Given any
candidate set of k cluster centers S, we define the assignment matrix ϕS : P × S → R+ to indicate
the assignment relation between the client points and cluster centers. For every p ∈ P and s ∈ S,
ϕS(p, s) denotes the proportion that is assigned to center s (e.g., we may respectively assign 30%
and 70% to two different centers). Obviously, we have

∑
s∈S ϕS(p, s) = 1. For each center s ∈ S,

we use w(s) =
∑

p∈P ϕS(p, s) to denote the amount of weight assigned to s; for each group P (i),
we similarly define the function w(i)(s) =

∑
p∈P (i) ϕS(p, s). Let Cost(P, S, ϕS) denote the cost of
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input instance P with given S and ϕS :

Cost(P, S, ϕS) =
∑
p∈P

∑
s∈S

∥p− s∥2ϕS(p, s). (1)

Problem 1 ((α, β)-fair k-means clustering (Bera et al., 2019)). Given an instance P as described
above and two parameter vectors α, β ∈ [0, 1]m, the goal of the (α,β)-fair k-means clustering is
to find the set S consisting of k points and an assignment matrix ϕS , such that the clustering cost
(1) is minimized, and meanwhile each cluster center s ∈ S should satisfy the fairness constraint:
βiw(s) ≤ w(i)(s) ≤ αiw(s) for every i ∈ {1, 2, · · · ,m}. Here, we use αi, βi to denote the i-th
entry of α and β, respectively.

Moreover, if the m groups are disjoint with equal size (i.e., n(i) = n/m for any i), and αi = βi =
1/m for each group P (i), we say this is a strictly (α,β)-fair k-means clustering problem.

For Problem 1, we can specify two types of solutions: fractional and integral. Their difference is
only from the restriction on the assignment matrix ϕS . For the first one, each entry ϕS(p, s) can be
any real number between 0 and 1; but for the latter one, we require that the value of ϕS(p, s) should
be either 0 or 1, that is, the whole weight of p should be assigned to only one cluster center.

How to round a fractional solution into integral while preserving fairness constraints is still an open
problem. Bera et al. (2019) introduced the violation factor to measure the violations of fairness
constraints after rounding: an assignment matrix ϕS is a λ-violation solution if βi

∑
p∈P ϕS(p, s)−

λ ≤
∑

p∈P (i) ϕS(p, s) ≤ αi

∑
p∈P ϕS(p, s) + λ, ∀s ∈ S, ∀i ∈ [m]. In their paper, a fractional

solution can always be rounded to integral, but it introduces some violations , which will be discussed
in Section 3.1. In this paper, we use OPT to denote the optimal integral cost of Problem 1. We
use Sopt = {s̃1, s̃2, · · · , s̃k} to denote the optimal solution of integral fair k-means problem and its
assignment matrix is denoted by ϕSopt

. For each s̃j , let Cj = {p ∈ P | ϕSopt
(p, s̃j) > 0} be the

corresponding cluster, i.e., the set of point assigned to it. A simple observation is that, if given a
fixed candidate cluster centers set S, the assignment matrix ϕS can be obtained via solving a linear
programming (we can view the n× k entries of ϕS as the variables):

min
ϕS

∑
p∈P

∑
s∈S

∥p− s∥2ϕS(p, s)

s.t. βi

∑
p∈P

ϕS(p, s) ≤
∑

p∈P (i)

ϕS(p, s) ≤ αi

∑
p∈P

ϕS(p, s), ∀s ∈ S, ∀i ∈ [m],

∑
s∈S

ϕS(p, s) = 1, ∀p ∈ P.

(2)

If we want to compute an integral solution, the above (2) should be an integer LP. Given a set S, ϕ∗
S

denotes the optimal solution of (2) and ϕ̃S denotes the corresponding optimal integral solution.

The following proposition is a folklore result that has been used in many articles on clustering
algorithms (e.g., (Kanungo et al., 2002)). We will also repeatedly use it in our proofs.
Proposition 1. Given a finite weighted point set Q ⊂ Rd, for any point a,

∑
q∈Q w(q)∥a− q∥2 =∑

q∈Q w(q)∥q − Cen(Q)∥2 + w(Q) · ∥a− Cen(Q)∥2, where w(Q) is the total weight of Q.

Next we introduce an important geometric structure “ϵ-approximate centroid set”, which was firstly
proposed by Matoušek (2000). Roughly speaking, the ϵ-approximate centroid set approximately
covers the centroids of any subset of given data, even though the subsets do not align with the
“Voronoi diagram” structure (as discussed in Section 1).
Definition 1. Given a finite set P ⊂ Rd and a small parameter ϵ > 0, we use CSϵ(P ) to denote an
ϵ-approximate centroid set of P that satisfies: for any nonempty subset Q ⊆ P , there always exists a
point v ∈ CSϵ(P ) such that ∥v − Cen(Q)∥ ≤ ϵ

3

√
1

|Q|
∑

q∈Q ∥q − Cen(Q)∥2.

Remark 1. Matoušek (2000) also presented a construction algorithm based on the space partitioning
technique “quadtree” (Finkel & Bentley, 1974). In Appendix A, we briefly illustrate the role of the
ϵ-approximate centroid set in preserving fairness constraints and how to construct it. The size of the
obtained ϵ-approximate centroid set is O(|P |ϵ−d log(1/ϵ)) and the construction time complexity is
O(|P | log |P |+ |P |ϵ−d log(1/ϵ)).
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Next, we give the formal definition of k-sparse Wasserstein Barycenter problem.
Definition 2 (Wasserstein Distance). Let P and Q be weighted point sets supported in Rd.
Wasserstein distance is the minimum transportation cost between P and Q: W(P,Q) =

minF
√∑

p∈P

∑
q∈Q F (p, q)∥p− q∥2, where the transport matrix F : P × Q → [0, 1] should

satisfy:
∑

p∈P F (p, q) = w(q) for any q ∈ Q, and
∑

q∈Q F (p, q) = w(p) for any p ∈ P .

For a weighted set S, we use supp(S) to denote its support, i.e., the set that shares the same location
of S but not weighted. The number of points is supp(S) is denoted by |supp(S)|.
Problem 2 (k-sparse Wassertein Barycenter (k-sparse WB)). Given m discrete probability distri-
butions P (1), · · · , P (m) supported on Rd, WB is the probability distribution S minimizing the sum
of squared Wasserstein distances to them, i.e., argminS

∑m
i=1 W2(P (i), S). The problem is called

k-sparse Wasserstein Barycenter if we restrict |supp(S)| ≤ k

In Section 3.2, we explain why this problem can be regarded as a fair k-means clustering.

3 OUR “RELAX AND MERGE” FRAMEWORK

In general, there are two stages in clustering with fair constraints. The first stage is to find the proper
locations of clustering centers, and the second stage is to assign all the client points to the centers by
solving LP (2). The previous approaches often use the vanilla k-means in the first stage to obtain
the location of centers, and then take the fairness into account in the second stage (Bera et al., 2019;
Böhm et al., 2021). In our proposed framework, we aim to shift the consideration of fair constraints
to the first stage, so as to achieve a lower approximation factor in the final result. The following
theorem is our main result.
Theorem 1. Given an instance of Problem 1 and a ρ-approximate vanilla k-means clustering
algorithm, there exists an algorithm that can return a fractional (1 + 4ρ + O(ϵ)) approximate
solution for Problem 1. Further, one can apply a rounding method to transform this fractional
solution to an integral one with a constant violation factor while ensuring the cost does not increase.

The details for computing the fractional solution are shown in Algorithm 1. The set T in Algorithm 1
contains the approximate centroids of all the potential clusters with preserving fair constraints. Then
we solve a linear program to obtain the relaxed solution (T, ϕ∗

T ) that also preserves the fair constraints.
Because of that, the following k-means procedure is able to determine the appropriate locations for
the cluster centers of Problem 1.

Algorithm 1: FRACTIONAL FAIR k-MEANS

Input: The dataset P , k, α, β, and ϵ > 0
1 Relax: Construct a relaxed solution T , i.e., an ϵ-approximate centroid set, such that

Cost(P, T, ϕ∗
T ) ≤ (1 +O(ϵ)) ·OPT (see Lemma 2). Here, we relax the size constraint of

centers to be polynomial of n rather than exactly k, so as to achieve a sufficiently low cost.
2 Solve LP (2) on T to obtain the optimal assignment matrix ϕ∗

T . T and ϕ∗
T can be viewed as a

relaxed solution for (α, β)-fair k-means, i.e., the number of centers may be more than k, and
meanwhile, the cost is bounded and the fairness constraints are also preserved.

3 Adjust the location of T . For each t ∈ T , we update the location of t to be the corresponding

cluster centroid π(t) =
∑

p∈P p·ϕ∗
T (p,t)

w(t) . The adjusted T is denoted by π(T ).
4 Merge: Run a ρ-approximate k-means algorithm on π(T ) to obtain centers set S. Then, solve

LP (2) on S to obtain the optimal assignment matrix ϕ∗
S .

5 return S and ϕ∗
S

3.1 ALGORITHM FOR (α, β) FAIR k-MEANS PROBLEM

In this section, we mainly focus on the fractional version of (α, β)-fair k-means problem. More
precisely, we allow the value of the assignment function ϕS to be a real number in [0, 1] rather than
{0, 1}. To prove Theorem 1, we need the following lemmas first. Specifically, Lemma 1 provides the

5
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bound for the cost from the merged solution S; Lemma 2 shows that the ϵ-approximate centroid set
provides a satisfied relaxed solution with a cost no more than (1 +O(ϵ))OPT . Combining with the
rounding methods, Theorem 1 can be obtained.
Lemma 1. Let η be any positive number. If we suppose Cost(P, T, ϕ∗

T ) ≤ η ·OPT , then the solution
(S, ϕ∗

S) returned by Algorithm 1 is an
(
η + (2η + 2)ρ

)
-approximate solution for Problem 1.

Proof. According to the definition of fractional fair k-means problem, the cost can be written as

Cost(P, S, ϕ∗
S) =

∑
p∈P

∑
s∈S

∥p− s∥2ϕ∗
S(p, s). (3)

Now we consider another assignment strategy: we firstly assign P to T according to ϕ∗
T ( recall that

ϕ∗
T is the optimal fractional assignment matrix from P to T ), and then we assign every weighted

point in T to some s ∈ S such that s is closest point to π(t). Since ϕ∗
S is the optimal assignment

matrix from P to S, the cost of this assignment strategy should have:∑
p∈P

∑
t∈T

∥p−N (π(t), S)∥2ϕ∗
T (p, t) ≥ Cost(P, S, ϕ∗

S). (4)

Since π(t) is the centroid of the weighted points assigned to t, according to Proposition 1, we know
the left-hand side of (4) should have the upper bound∑

t∈T

[∑
p∈P

∥p− π(t)∥2ϕ∗
T (p, t) + ∥π(t)−N (π(t), S)∥2w(t)

]
=

∑
p∈P

∑
t∈T

∥p− π(t)∥2ϕ∗
T (p, t)︸ ︷︷ ︸

(a)

+
∑
t∈T

∥π(t)−N (π(t), S)∥2w(t)︸ ︷︷ ︸
(b)

. (5)

Then we bound (a) and (b) separately.

(a) =
∑
p∈P

∑
t∈T

∥p− π(t)∥2ϕ∗
T (p, t) ≤

∑
p∈P

∑
t∈T

∥p− t∥2ϕ∗
T (p, t) ≤ η ·OPT. (6)

The first inequality holds because π(t) is the centroid of the weighted points assigned to t, minimizing
the weighted sum of the squared distances between them. The second inequality holds because
Cost(P, T, ϕ∗

T ) ≤ η ·OPT . Next, we focus on (b). Suppose Smeans is the optimal k-means solution
of T . Then we have:

(b) =
∑
t∈T

∥π(t)−N (π(t), S)∥2w(t) ≤ ρ
∑
t∈T

∥π(t)−N (π(t), Smeans)∥2w(t)

= ρ
∑
p∈P

∑
t∈T

∥π(t)−N (π(t), Smeans)∥2ϕ∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

∥π(t)−N (π(t), Smeans)∥2ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

∥π(t)− s̃∥2ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t).

(7)

Further, according to squared triangle inequality, we have

(b) ≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

[
∥π(t)− p∥+ ∥p− s̃∥

]2
ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

2∥π(t)− p∥2ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

+ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

2∥p− s̃∥2ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

= 2ρ
∑
p∈P

∑
t∈T

∥π(t)− p∥2ϕ∗
T (p, t) + 2ρ

∑
p∈P

∑
s̃∈Sopt

∥p− s̃∥2ϕ∗
Sopt

(p, s̃).

(8)
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The last equality holds because for any p ∈ P ,
∑

s̃∈Sopt
ϕ∗
Sopt

(p, s̃) = 1. The first term is exactly 2ρ

times of (a) and the second term equals 2ρ ·OPT . Through combining (a) and (b), we can obtain an
approximation factor of η + (2η + 2)ρ.

Algorithm 1 reduces the fair k-means problem to computing the set T . The following lemma shows
that an ϵ-approximate centroid set is a good candidate for T .
Lemma 2. If T is an ϵ-approximate centroid set of P , then Cost(P, T, ϕ∗

T ) ≤ (1 +O(ϵ))OPT .

Proof. According to Definition 1, let ti ∈ T denote the point such that ∥ti − Cen(Ci)∥ ≤
ϵ
3

√
1

|Ci|
∑

p∈Ci
∥p− Cen(Ci)∥2. Let T ′ = {t1, · · · , tk}. A key observation is that each opti-

mal center s̃i is always the centroid of Ci, i.e., cen(Ci) = s̃i, so we have ∥ti − Cen(Ci)∥2 ≤
ϵ2

9|Ci|
∑

p∈Ci
∥p− s̃i∥2 = ϵ2

9|Ci|OPTi, where OPTi =
∑

p∈Ci
∥p− s̃i∥2.

If we assign all points of Ci to ti, the cost of every Ci can be written as
∑

p∈Ci
∥ti − p∥2 =∑

p∈Ci

∥ti − s̃i∥2 +
∑
p∈Ci

∥p− s̃i∥2 ≤ ϵ2

9
OPTi +OPTi = (1 +O(ϵ))OPTi. (9)

The first equality holds due to Proposition 1. Since ϕ∗
T ′ is the optimal assignment matrix of T ′,

Cost(P, T ′, ϕ∗
T ′) ≤

∑k
i=1

∑
p∈Ci

∥ti−p∥2 ≤ (1+O(ϵ))
∑k

i=1 OPTi ≤ (1+O(ϵ))OPT . Finally,
since T ′ is a subset of T , we have Cost(P, T, ϕ∗

T ) ≤ Cost(P, T ′, ϕ∗
T ′) ≤ (1 +O(ϵ))OPT .

Through combining Lemma 1 and Lemma 2, we can immediately obtain Lemma 3.
Lemma 3. Equipped with the ϵ-approximate centroid set by Matoušek (2000), the cost of the solution
returned by Algorithm 1 is at most (1 + 4ρ + O(ϵ))OPT . Furthermore, by utilizing the PTAS of
vanilla k-means algorithm, the cost of the solution is at most (5 +O(ϵ))OPT .

Rounding for integral solution. Note that Lemma 3 only guarantees a fractional solution. Recall the
“violation factor” introduced in Section 2. According to the rounding method proposed in (Bera et al.,
2019), a fractional solution of Problem 1 can be rounded to be integral with (3∆+4) violation, where
∆ is the maximum number of groups a point can join in (e.g., if a point can belong to three groups,
∆ should be equal to 3). Their main idea is to reduce the fair assignment problem to the minimum
degree-bounded matroid basis (MBDMB) problem, and then solve the MBDMB by iteratively solving
a linear program (LP). In the current article, we further propose a new rounding method that can
improve this violation factor to “2” when assuming ∆ = 1, i.e., the groups are mutually disjoint,
and the each point belongs to exactly one group (if using the method of (Bera et al., 2019), the
factor should be 7). Actually, it is natural to assume that the groups are disjoint, e.g., each person
may belong to one race. Fair clustering problem in disjoint groups has also been studied in Bercea
et al. (2018); Wu et al. (2022); Chierichetti et al. (2017). Our key idea is building a “hub-guided”
minimum cost circulation problem. Roughly speaking, we utilize a set of carefully designed “hubs”
in a transportation network, for guiding the integral fair matching between the input points and the
obtained cluster centers. We show the result in Lemma 4, and place the proof to Appendix C due to
the space limit.
Lemma 4. If the groups are mutually disjoint, one can round the fractional solution returned by
Algorithm 1 to be integral with at most 2-violation, while the cost does not increase.

Finally, Theorem 1 can be obtained by combining either the rounding method from (Bera et al., 2019)
for general case, or Lemma 4 for disjoint case.

Overall time complexity. As we mentioned in Remark 1, computing an ϵ-approximate centroid
set of P needs O(n log n + nϵ−d log(1/ϵ)) time. The adjustment of the location of T can be
completed in O(kn) time. Suppose the time complexities of linear programming, vanilla k-means
are denoted by TLP and Tmeans, respectively. The overall time complexity of Algorithm 1 is
O(n log n+ nϵ−d log(1/ϵ)) + TLP + O(kn) + Tmeans. It is worth noting the the complexity can
be further reduced by using the assignment preserving coreset ideas (Huang et al., 2019; Braverman
et al., 2022; Bandyapadhyay et al., 2024). By doing this, we need to introduce an extra running time
for coreset construction, which is linear to n, but we can compress the data size from n to poly(k, ϵ).
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3.2 EXTENSION TO k-SPARSE WASSERSTEIN BARYCENTER

A cute property of Algorithm 1 is that it can be easily extended to address the k-sparse WB problem.
Recall the definition of k-sparse WB in Problem 2. The given m distributions can be viewed
as m groups of weighted points. And the sum of Wasserstein distances between barycenter and
given distributions can be rewritten as the sum of squared Euclidean distances from P to the
centers. Moreover, the flows induced by Wasserstein distances between barycenter and the given
distributions can implicitly ensure the fairness, i.e., for each point s in barycenter, w(i)(s) = 1

mw(s)
for any i ∈ [m]. Namely, we can directly perform our “Relax and Merge” framework by setting
αi = βi = 1/m. First, we calculate the ϵ-approximate centroid (here we ignore the weight of
points) set to obtain T , then we use T as the support of the Barycenter to run a “fixed support” WB
algorithm (Claici et al., 2018; Cuturi & Doucet, 2014; Cuturi & Peyré, 2016; Lin et al., 2020) to
obtain the weights of T (due to the space limit, we leave some details on fixed support WB algorithms
to Appendix D). Finally, we run a vanilla k-means algorithm on T to obtain the k-sparse solution.

Theorem 2. If T is an ϵ-approximate centroid set of ∪m
i=1P

(i), Algorithm 1 returns a (1+4ρ+O(ϵ))-
approximate solution for k-sparse Wasserstein Barycenter problem.

3.3 STRICTLY FAIR k-MEANS WITHOUT VIOLATION

Since the strictly fair k-means is a special case of (α, β)-fair k-means, by using Algorithm 1 and the
rounding technique introduced by Section 3.1, we can obtain an integral solution but with certain
violation. In this section, we consider how to obtain an integral solution with no violation. Specifically,
we compute the fairlet decomposition (Chierichetti et al., 2017) for the input groups and use its
centroids as the relaxed solution T rather than ϵ-approxiamte centroid set. First, we give the definition
of fairlet decomposition for multiple groups, which extends the original definition of (Chierichetti
et al., 2017) from two groups to multiple groups.
Definition 3 (Fairlet Decomposition). Given a dataset P that has m equal-sized disjoint groups, We
say a set G of m points is a fairlet of P , if G contains exactly one point from each group of P . A set
G of n/m fairlets is a fairlet decomposition of P , if all fairlets in G are disjoint, where n/m is the
number of points in each group of P .

We define the cost of fairlet decomposition G as Costfairlet(G) =
∑

G∈G
∑

p∈G ∥p− Cen(G)∥2. It
is easy to know that fairlet decomposition is indeed a solution of strictly fair n/m-means. Hence, we
can still use the “Relax and Merge” technique: regard the centroids of fairlets in fairlet decomposition
as a relaxed solution, and then run ρ-approximate vanilla k-means algorithm on these centroids.
So, we reduce the strictly fair k-means problem to the fairlet decomposition problem. We propose
Algorithm 2, which first computes a 2-approximate fairlet decomposition and then generates a
(2 + 6ρ)-approximate integral solution for strictly fair k-means.

Algorithm 2: STRICYTLY FAIR k-MEANS

Input: The dataset P = ∪m
i=1P

(i), k
1 for i = 1 to m do
2 for j = 1 to m and i ̸= j do
3 Compute the perfect one-to-one matching τij between P (i) and P (j) by using the

Hungarian algorithm (Kuhn, 1955). For each point p ∈ P (i), the point matched with p
in P (j) is denoted as τij(p).

4 end
5 Construct a fairlet decomposition Gi (initially empty) according to the matchings: for each

point p ∈ P (i), add the fairlet {τi1(p), τi2(p), · · · , τim(p)} to Gi.
6 end
7 Choose Gv where v = argmini

∑
p∈P (i)

∑m
j=1 ∥p− τij(p)∥2 as G.

8 Construct the relaxed solution T = {Cen(G) | G is any fairlet of G}.
9 Run a ρ-approximate k-means algorithm on T , and obtain the solution S.

10 Integral assignment: Assign all the points according to the fairlet decomposition G, i.e., if a
point p belongs to some fairlet G, then assign p to N (Cen(G), S).

11 return S and the obtained integral assignment

8
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Theorem 3. Algorithm 2 returns a (2 + 6ρ)-approximate integral solution of strictly fair k-means.

To prove Theorem 3, we need to prove the following lemma, which shows that G is a 2-approximate
fairlet decomposition. Then, we can use the same idea of Lemma 1 to obtain Theorem 3. Recall
that Lemma 1 shows that if we have a relaxed solution T with a bounded cost η · OPT , then the
merged solution will have constant approximate ratio. Here, T obtained by Algorithm 2 also provides
a relaxed solution whose cost does not exceed 2OPT . Hence, after we merge T and obtain S, the
approximate ratio should no more than (η + (2η + 2)ρ) = 2 + 6ρ. Furthermore, if we use PTAS for
k-means, the overall approximate ratio of Algorithm 2 is 8 +O(ϵ).

Lemma 5. If G is the fairlet decomposition obtained by Algorithm 2, then Costfairlet(G) ≤ 2OPT .

Proof. Suppose G is a fairlet, and we use G(i) to denote the point in G and belongs to group P (i),
i.e., G(i) = G ∩ P (i). We use GOPT to denote the optimal fairlet decomposition that has the lowest
cost (we cannot obtain GOPT in reality, and here we just use it for conducting our analysis). For each
p ∈ P , let GOPT (p) denote the fairlet of GOPT that p belongs to, i.e., p ∈ GOPT . Suppose that P (u)

is the “closest” group to GOPT , i.e. u = argmini∈[m]

∑
p∈P (i) ∥Cen(GOPT (p))− p∥2. We have

Costfairlet(G) =
∑
G∈G

∑
p∈G

∥p− Cen(G)∥2

≤
∑
G∈G

∑
p∈G

∥p− Cen(G)∥2 +m
∑
G∈G

∥G(v) − Cen(G)∥2
(10)

According to Proposition 1, the right side of (10) equals to
∑

p∈P (v)

∑m
j=1 ∥p − τvj(p)∥2, so we

have Costfairlet(G) ≤∑
p∈P (v)

m∑
j=1

∥p− τvj(p)∥2 ≤
∑

p∈P (u)

m∑
j=1

∥p− τuj(p)∥2 ≤
∑

p∈P (u)

m∑
j=1

∥p− (GOPT (p))
(j)∥2. (11)

The first inequality holds because v = argmini
∑

p∈P (i)

∑m
j=1 ∥p − τij(p)∥2. And the last in-

equality holds because τ is the perfect one-to-one matching. Using Proposition 1 again, we have
CostOPT (G) ≤∑

p∈P (u)

m∑
j=1

∥Cen(GOPT (p))− (GOPT (p))
(j)∥2 +m

∑
p∈P (u)

∥Cen(GOPT (p))− p∥2. (12)

Note that G is the optimal fairlet decomposition, as well as the optimal strictly fair n/m-means
solution, so the first term of (12) should be at most OPT . As for the second term, since P (u) is the
“closest” group to G, it should be no larger than m · 1

mOPT ≤ OPT (because the minimum distance
“
∑

p∈P (u) ∥Cen(GOPT (p)) − p∥2” should not exceed the average distance 1
mOPT ). Overall, we

complete the proof of Lemma 5.

4 EXPERIMENTS

In this section, we perform the empirical evaluation on our algorithms. Our experiments are conducted
on a server equipped with Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz CPU and 512GB memory.
We implement our algorithms in C++ and python (with linear programming solver gurobi (Gurobi
Optimization, LLC, 2023)). We use the following datasets which are commonly used in previous
works: Bank (Moro et al., 2014)(4522 points with 5 groups), Adult (Becker & Kohavi, 1996) (32561
points with 7 groups), Census (Zhou & Chen, 2002)(50000 points with 10 groups), creditcard (Yeh
& Lien, 2009) (30000 points with 8 groups), Biodeg (Mansouri et al., 2013) (1055 points with
2 groups), Breastcancer (Wolberg,William, Mangasarian,Olvi, Street,Nick, and Street,W., 1995)
(570 points with 2 groups), Moons (scikit-learn developers, 2007-2023) (200 points with 2 groups),
Hypercube(200 points with 2 groups), Cluto (Karypis et al., 1999) (800 points with 8 groups), and
Complex (800 points with 8 groups). The last four datasets consist of disjoint and equal sized groups,
so we can perform strictly fair k-means algorithms on them. We place the detailed information of
these datasets in Appendix F. Regarding the selection of α and β, we set αi = βi =

|P (i)|
|P | and we

9
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also discuss more choices for α and β, and provide more experimental results, including the part of
k-sparse Wasserstein Barycenter, in the Section F of the appendix. We use k-means++ (Ostrovsky
et al., 2013) as the k-means solver in our Algorithm 1.

Results on (α, β)-Fair k-means. We compared the cost of (α, β)-fair k-means of our Algorithm 1
and baselines. We choose the algorithm proposed by Bera et al. (2019) (denoted by NIPS19) and
Böhm et al. (2021) (denoted by ORL21) as the baselines. The construction of an ϵ-approximate
centroid set is a theoretical algorithm that can be replaced by some efficient methods in practice. In our
experiments, we adopted the alternative implementation of Kanungo et al. (2002), which combines
the kd-tree (Friedman et al., 1977) and a sampling technique. Figure 1 shows that our algorithm gives
the lowest cost of (α, β)-fair k-means, indicating that Algorithm 1 can find better center locations.
This improvement is possible due to that our method considers the fairness information of groups
when choosing the locations of centers.

Figure 1: The cost obtained by the algorithms with different k.

Results on Strictly Fair k-means. We compare our strictly fair k-means algorithm with the state-
of-the-art algorithm ORL21 (Böhm et al., 2021). Both ORL21 and Algorithm 2 can return integral
solution with no violation. Figure 2 shows that our method has significant advantage in terms of the
clustering cost.

Figure 2: The cost of strictly fair k-means.

5 CONCLUSION

In this paper, we utilize the insight on the relationship between the fair k-means problem and a classic
geometric structure, ϵ-approximate centroid set, for developing a novel “Relax and Merge” framework.
It can achieve a (1 + 4ρ + O(ϵ)) approximation ratio of fair k-means and k-sparse Wasserstein
Barycenter problems, which improves the current state-of-the-art approximation guarantees. There
still exists some open problems: how to obtain an integral approximate solution of general case
without violation? In addition, is it possible to extend our ‘Relax and Merge” framework to other
types of clustering problems, such as the proportionally fair clustering (Chen et al., 2019) and socially
fair k-means clustering (Ghadiri et al., 2021).

10
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A ϵ-APPROXIMATE CENTROID SET

The algorithm of constructing an ϵ-approximate centroid set is proposed by Matoušek (2000). Here
we briefly introduce the idea. First, we use a quadtree to partition the space into hierarchical cubes.
At each level of the tree, we construct a grid. The length of the grid is set to ensure that the grid
points can always cover all approximate centroids of all cubes at this level. The approximate centroid
set is the union of all grid points across all levels.

In Figure 3, we visually illustrate the difference between the k-means clustering center and the fair
k-means clustering center. The vanilla k-means induces a Voronoi diagram, so that every k-means
center is located at the centroid of a k-means cluster. However, a fair k-means center can be located at
the centroid of any potential cluster that satisfies the fairness constraints. The ϵ-approximate centroid
set structure can help us to find these potential centroids and preserves the fairness constraints for the
later procedures.

Figure 3: The difference between the location of k-means clustering centers and the fair k-means
clustering centers. The input dataset contains 3 different groups represented by orange, blue, and
green points respectively. The red diamonds represent the cluster centers under different assumptions
for the clustering problem. (a) shows the clustering result of k-means, while (b) shows the clustering
result of fair k-means.

B OMITTED PROOFS

Theorem 2 If T is an ϵ-approximate centroid set of ∪m
i=1P

(i), Algorithm 1 returns a (1+4ρ+O(ϵ))-
approximate solution for k-sparse Wasserstein Barycenter problem.

To prove this theorem, we need the following lemmas.

Lemma 6. If T is an ϵ-approximate centroid set of ∪m
i=1P

(i) and w(t) for each t ∈ T is obtained by
solving LP(2), then T is a (1 +O(ϵ))-approximate Wasserstein Barycenter.

Proof. A critical fact is that there exist an optimal Wasserstein Barycenter T ∗ such that all points of
T ∗ located in the centroid of some fairlet of P . This claim has been proved in (Anderes et al., 2016)
(Section 2, Equation 4). Therefore, if we calculate an ϵ-approximate centroid set T , then T can always
cover the locations of T ∗, i.e., Cost(P, T, ϕ∗

T ) ≤ (1 +O(ϵ))Cost(P, T ∗, ϕ∗
T∗) ≤ (1 +O(ϵ))OPT .

So using the same proof idea with Lemma 2, we can obtain the conclusion of Lemma 6.

Combine Lemma 6 and Lemma 1, we arrive at Theorem 2.

C THE ROUNDING TECHNIQUE

Our rounding algorithm consists of three steps: constructing a network structure of Minimum Cost
Circulation Problem (MCCP), setting the parameters of each edge based on a fractional solution
obtained by Algorithm 1, and solving the MCCP above. This reduction to MCCP is inspired by
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Ding & Xu (2015) (Section 4.3), while having some fundamental differences with their method.
Our algorithm has different objectives compared to theirs, as it is based on a different approach to
setting network parameters, and our method offers better time complexity guarantees. Our rounding
algorithm requires only a single call to the minimum-cost circulation algorithm, and it can be
completed in O(n3k2) time even when using the vanilla Edmonds-Karp algorithm (Dinitz, 1970;
Edmonds & Karp, 1972).

The process of our algorithm is described as follows. Recall that the dataset P consists of m different
groups, i.e., P = ∪m

i=1P
(i) and we assume that the groups are disjoint. By executing the Algorithm 1,

we obtain a center set S and corresponding fractional assignment matrix ϕ∗
S . Now, in order to build a

minimum cost circulation instance, we need to construct a network structure as Figure 4 and for each
arc (u, v), we should set the lower/upper bound of the flow f(u, v) and its cost c(u, v). We create a
copy of S, denoted by S(i), for each group P (i). Each S(i) is a ”hub” used for transit, specifically to
receive weights from group P (i) and transmit them to S. To facilitate understanding, we can imagine
that each s

(i)
l ∈ S(i), where l ∈ [k], and its corresponding sl ∈ S are in the same position, but only

accepts the weights from group P (i). We set c(p(i)j , s
(i)
l ), i.e., the cost of the arc from any p

(i)
j ∈ P (i),

where j ∈ [n(i)], to an s
(i)
l ∈ S(i) to be ||p(i)j − s

(i)
l ||2. The cost of the remaining arcs are 0.

Figure 4: The instance of the minimum cost circulation problem established through (S, ϕ∗
S). The

upper and lower bounds of the flow for each arc are annotated in the graph.

Next, we set the lower bound and the upper bound of the flow on each arc, as shown in Figure 4. First,
the flow from the ”Source” node to each p ∈ P is restricted to 1, which means that each point p ∈ P (1)

has a weight of 1 to assign to S(1). Then, between each P (i) and its ”hub” S(i), the flow from each
p
(i)
j ∈ P (i) to each s

(i)
l ∈ S(i) is bounded by [0, 1]. Here, the flow f(p

(i)
j , s

(i)
l ) denotes the amount of

the weight that assigned from p
(i)
j to sl ∈ S in an (α, β)-fair k-means solution. Subsequently, recall

that in the solution (S, ϕ∗
S) we obtained before, the weight received by a center sl ∈ S from group

P (i) is w(i)(sl). We bound the flow f(s
(i)
l , sl) by

[
⌊w(i)(sl)⌋, ⌈w(i)(sl)⌉

]
. Finally, the flow from

each sl ∈ S to the ”Sink” node is bounded by
[
⌊w(sl)⌋, ⌈w(sl)⌉

]
, and we set f(Sink, Source) = n

to form a circulation. At this point, we have established an instance of the minimum cost circulation
problem, denoted by MCCP (S, ϕ∗

S). Obviously, we have the following observation:

Observation 1. ϕ∗
S induces a feasible solution of MCCP (S, ϕ∗

S).

The observation is straightforward because the flow induced by ϕ∗
S meet all the bounds applied to the

flow. Then, we give the proof of Lemma 4 mentioned in Section 3.1.
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Lemma 4. There exists an algorithm that can round a fractional solution of (α, β)-fair k-means to
integral with at most 2-violation while the cost does not increase.

Proof. It is known that the minimum cost circulation problem has an integrality property (Cormen
et al., 2009), which guarantees that if the arcs have integer capacities, there will always be an optimal
solution with integer flow values on each arc. Utilizing an algorithm for minimum cost circulation
problem or minimum cost flow problem (the two problems are equivalent), which converges to an
integer solution like Ford-Fulkerson (Ford & Fulkerson, 1956), we can obtain an integer optimal
solution of MCCP (S, ϕ∗

S), which has a cost no larger than the solution induced by ϕ∗
S .

Next, we prove that the assignment matrix, say ϕ′
S , induced by the integer optimal solution of

MCCP (S, ϕ∗
S) is a 2-violation assignment from P to S. Recall that we presented the definition of the

violation factor in Section 2: An assignment matrix ϕS is a λ-violation solution if βi

∑
p∈P ϕS(p, s)−

λ ≤
∑

p∈P (i) ϕS(p, s) ≤ αi

∑
p∈P ϕS(p, s)+λ, ∀s ∈ S,∀i ∈ [m]. According to the construction

procedure of MCCP (S, ϕ∗
S), the lower bound of the flow f(s

(i)
l , sl) is ⌊w(i)(sl)⌋, which satisfies:

⌊w(i)(sl)⌋ ≥ ⌊α(i)(⌈w(sl)⌉ − 1)⌋
= ⌊αi⌈w(sl)⌉ − αi⌋
≥ ⌈αi⌈w(sl)⌉ − αi⌉ − 1

≥
(
αi⌈w(sl)⌉ − αi

)
− 1.

(13)

Note that the upper bound of the flow f(sl, Sink) is ⌈w(sl)⌉ so we have:

⌊w(i)(sl)⌋ ≥ αi⌈w(sl)⌉ − αi − 1

≥ αi⌈w(sl)⌉ − 2,
(14)

and similarly,
⌈w(i)(sl)⌉ ≤ βi⌊w(sl)⌋+ βi + 1

≤ βi⌊w(sl)⌋+ 2,
(15)

which indicates that ϕ′
S is a 2-violation assignment and complete the proof of Lemma 4.

D FIXED SUPPORT WASSERSTEIN BARYCENTER

Given m discrete distributions (weighted point sets, each set has total weight sum to 1)
P (1), · · · , P (m) and a set T of WB, the objective of fixed support WB as follows:

min
x

1

m

m∑
l=1

n(i)∑
i=1

n(j)∑
j=1

∥P (l)
i − Tj∥2x(l)

ij

s.t.

|T |∑
j=1

x
(l)
ij = 1, ∀l ∈ [m],∀i ∈ [n(l)]

n(l)∑
i=1

x
(l)
ij w(P

(w)
i ) = yj , ∀l ∈ [m],∀j ∈ [|T |]

|T |∑
j=1

yj = 1,

x
(l)
ij ≥ 0, ∀l ∈ [m],∀i ∈ [n(l)],∀j ∈ [|T |]

yj ≥ 0, ∀j ∈ [|T |]

(16)

It is easy to see that fixed support WB problem can be solved using linear programming method.
Several existing works on solving LP (16) including (Claici et al., 2018; Cuturi & Doucet, 2014;
Cuturi & Peyré, 2016; Lin et al., 2020).
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For the sake of completeness, we need to clarify how the solution to the k-sparse Wasserstein
barycenter solution is guaranteed to be a distribution. After we run Algorithm 1, we obtain the
support S (the locations of centers) of the returned solution and the assignment matrix ϕ∗

S (the
transportation weight from p = P

(l)
i to f = Sj is denoted by ϕ∗

S(p, f) = x
(l)
ij in (16)). The key

question is how to ensure that the summation of the weight of points in S is equal to 1. Let us
consider an arbitrary given distribution (or ”group” in the context of fair k-means), e.g., P (l). For
every facility f in S, we define its weight w(f) =

∑
p∈P (l) ϕ∗

S(p, f). This ensures that the total
weight of S must be equal to the total weight of P (l), which is 1 because P (l) is a distribution. The
choice of P (l) can be arbitrary because, recall that k-sparse WB can be seen as a special fractional
version of strictly fair k-means, meaning no matter which given distribution you choose, you will
obtain the same weight distribution of S. The optimization will not change by setting the weight of S
because the weight of S does not affect the cost.

E EXTEND ALGORITHM 1 TO k-MEDIAN AND k-MEANS IN GENERAL
METRIC SPACE

Although we mainly consider the fair k-means problem in Euclidean space in this paper, for the sake
of completeness, in this section, we illustrate how to extend our framework to solve k-median and
k-means in general metric space. In summary, if the potential facility set is given, our framework
achieves a (1 + 2ρ)-approximate solution for k-median ((2 + 8ρ)-approximate solution for k-means)
in metric space, where ρ is the approximation ratio for vanilla k-median (k-means) with a constant
violation factor. If the metric space has a fixed doubling dimension (Gupta et al., 2003), then equipped
with existing PTAS for metric k-median and k-means (Cohen-Addad et al., 2021; 2019; Friggstad
et al., 2019), the best approximation ratios our framework can achieve are (3+O(ϵ)) for fair k-median
and (10 +O(ϵ)) for fair k-means.

Unfortunately, our theoretical guarantees in general metric space are weaker than those of Bera et al.
(2019), in which they obtained a (ρ+2)-approximation for k-median and a (

√
ρ+2)2-approximation

for k-means. The obstacle to achieving a better approximation ratio for our framework is the
”candidate set”. In Euclidean space, we have an approximate centroid set. However, in general metric
space, how can we obtain a candidate set that has similar properties to Proposition 1, which provides
a more powerful tool than the basic triangle inequality? This is not only a potential future work of
our framework but also an important open theoretical problem.

k-Median in metric space. Firstly, we consider fair k-median in general metic space. We use
dist(·, ·) to denote the distance between two points. We assume that the potential facility set T
is given. Therefore, in Algorithm 1, we just use the given facility set T rather than computing the
approximate centroid set. The cost of fair k-median can be written as

Cost(P, S, ϕ∗
S) =

∑
p∈P

∑
s∈S

dist(p, s)ϕ∗
S(p, s). (17)

Similar to Lemma 1, we have the following lemma.

Lemma 7. Let η be any positive number. If we suppose Cost(P, T, ϕ∗
T ) ≤ η · OPT , then the

solution (S, ϕ∗
S) returned by Algorithm 1 (the construction of T should be slightly changed) is an(

η + (η + 1)ρ
)
-approximate solution for fair k-median problem in metric space, where ρ is the

approximation ratio of vanilla k-median.

Proof. Now we consider another assignment strategy: we firstly assign P to T according to ϕ∗
T (

recall that ϕ∗
T is the optimal fractional assignment matrix from P to T ), and then we assign every

weighted point in T to some s ∈ S such that s is closest point to π(t). Since ϕ∗
S is the optimal

18
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assignment matrix from P to S, the cost of this assignment strategy should have:

Cost(P, S, ϕ∗
S) ≤

∑
p∈P

∑
t∈T

dist(p,N (t, S))ϕ∗
T (p, t)

≤
∑
t∈T

∑
p∈P

[
dist(p, t) + dist(t,N (t, S))

]
ϕ∗
T (p, t)

=
∑
p∈P

∑
t∈T

dist(p, t)ϕ∗
T (p, t)︸ ︷︷ ︸

(a)

+
∑
p∈P

∑
t∈T

dist(t,N (t, S))ϕ∗
T (p, t)︸ ︷︷ ︸

(b)

.

(18)

The second inequality is triangle inequality. Then we bound (a) and (b) separately. Firstly,

(a) =
∑
p∈P

∑
t∈T

dist(p, t)ϕ∗
T (p, t) = Cost(P, T, ϕ∗

T ) ≤ η ·OPT (19)

Next, we focus on (b). Suppose Smedian is the optimal k-median solution of T . Then we have:

(b) =
∑
p∈P

∑
t∈T

dist(t,N (t, S))ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

dist(t,N (t, Smedian)ϕ
∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

dist(t,N (t, Smedian))ϕ
∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

dist(t, s̃)ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t).

(20)

Further, according to the triangle inequality, we have

(b) ≤ ρ
∑
p∈P

∑
t∈T

[ ∑
s̃∈Sopt

[
dist(t, p) + dist(p, s̃)

]
ϕ∗
Sopt

(p, s̃)
]
ϕ∗
T (p, t)

≤ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

dist(t, p)ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

+ ρ
∑
p∈P

∑
t∈T

∑
s̃∈Sopt

dist(p, s̃)ϕ∗
Sopt

(p, s̃)ϕ∗
T (p, t)

= ρ
∑
p∈P

∑
t∈T

dist(t, p)ϕ∗
T (p, t) + ρ

∑
p∈P

∑
s̃∈Sopt

dist(p, s̃)ϕ∗
Sopt

(p, s̃).

(21)

The last equality holds because for any p ∈ P ,
∑

s̃∈Sopt
ϕ∗
Sopt

(p, s̃) = 1 and
∑

t̃∈T ϕ∗
T (p, t) = 1.

The first term is exactly ρ times of (a) and the second term equals ρ ·OPT . Through combining (a)
and (b), we can obtain an approximation factor of η + (η + 1)ρ.

k-Means in metric space. Using the same idea of Lemma 7 with squared triangle inequality
dist2(a, b) ≤ 2dist2(a, c) + 2dist2(c, b), we can immediately obtain the following corollary.

Corollary 1. Let η be any positive number. If we suppose Cost(P, T, ϕ∗
T ) ≤ η · OPT , then the

solution (S, ϕ∗
S) returned by Algorithm 1 (slightly changed as above) is an

(
2η + (4η + 4)ρ

)
-

approximate solution for fair k-means problem in metric space, where ρ is the approximation ratio of
vanilla k-means.

When considering k-clustering problem in metric space, we usually assume that the potential facility
set is given. We just use it as our candidate set T . Hence, the η = 1 in the above analysis, which
leads a (2 + ρ)-approximation for fair k-median and a (2 + 8ρ)-approximation for fair k-means.
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F SUPPLEMENTARY EXPERIMENT

F.1 DATASETS

The detailed information of our datasets is shown in Table 2. The group partition of every dataset
is based on the “Group Column”. Every group column has some group values. The set of groups
is the Cartesian product of group values of all group column. For example, the groups of Bank
dataset are (married, yes), (married, no), (single, yes), (single, no), (divorced, yes), (divorced, no).
For large dataset Census and Creditcard, we sample 1000 points to make sure the LP solver works
in acceptable time.

Dataset Size Dimension Group Column Groups Values
Bank 9999 3 marital married, single, divorced

default yes, no

Adult 4522 5 sex female, male
race Amer-ind, asian-pac-isl,

black, other, white
Creditcard 30000 5 marriage married, single, other, null

education 7 groups
Census1990 50000 12 dAge 8 groups

iSex female, male
Moons 200 2 color 2 groups

Hypercube 200 3 color 2 groups
Complex 3032 2 color 9 groups

Cluto 10000 2 color 8 groups
Breastcancer 570 31 label 2 groups

Biodeg 1055 40 label 2 groups

Table 2: Detailed Datasets Information

F.2 COMPARISON ON COST WITH DIFFERENT k AND (α, β)

In the main paper, we set αi = βi =
|P (i)|
|P | . Here, we try different α and β to compare our algorithm

to baselines. In order to make sure that the values of α and β are feasible, we introduce the parameter
δ ∈ (0, 1), which represents the degree of relaxation of fairness constraints, with a larger δ indicating

looser constraints. We set αi =
|P (i)|
|P | · 1

1−δ and βi =
|P (i)|
|P | · (1− δ). We set δ = 0.1 and 0.2 to

compare the cost with baselines. The results are shown in Figure 5 and Figure 6, respectively.

In fact, as δ increases, the fairness constraints of the (α, β)-fair k-means problem become more
relaxed, and the corresponding fair k-means problem approaches the vanilla k-means problem. In
cases where δ is large, in each cluster, the legal range of points from each group is larger, making
the protection of fairness constraints less important, thus resulting in the optimal fair k-means center
positions being very close to the centers of vanilla k-means. In the Table 2 of (Böhm et al., 2021), it
is mentioned that when δ = 0.2, the clustering results of vanilla k-means only violate the fairness
constraints by 0.4%-2%, which makes our algorithm less advantageous under a relatively relaxed δ
value.

F.3 COMPARISON ON COST OF k-SPARSE WASSERSTEIN BARYCENTER

We compare our algorithm with the very recent work (Yang & Ding, 2024) (denoted by IJCAI24)
who obtain (2 +

√
ρ)2-approximate solution of k-sparse WB. The results are shown in Figure 7. In

most cases, our algorithm can achieve a 10%-30% cost advantage over the previous work.

F.4 COST ON DIFFERENT SAMPLING RATIO

In our algorithm, the most time consuming step is to solve LP(2) on T . A key observation during
our experiment is that, after solving LP(2) on T , a large amount of points of T have weight of 0.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 5: Comparison on Clustering Cost with δ = 0.1

Figure 6: Comparison on Clustering Cost with δ = 0.2

Therefore, it is possible to reduce the size of T while maintain the quality of T . Meanwhile, smaller
T helps to reduce the running time. In order to verify our thoughts, we use sampling method after
we obtain T . We use sampling ratio of 100%, 50%, 20% and 10% and calculate the final cost of
Algorithm 1 with different k. The results are shown in Figure 891011. In these figures, we can see
that in most cases, the cost of sampled T do not increase too much (50% sample yields no more than
10% cost increasing and even 10% sample yields no more than 20% cost increasing in most cases).

Figure 7: Comparison on the Cost of k-sparse Wasserstein Barycenter
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Figure 8: The cost on centriod set T with different sampling ratio when k = 5

Figure 9: The cost on centriod set T with different sampling ratio when k = 10

Figure 10: The cost on centriod set T with different sampling ratio when k = 15
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Figure 11: The cost on centriod set T with different sampling ratio when k = 20

F.5 RUNNING TIME WITH DIFFERENT SAMPLING RATIO ON T

As we discussed in F.4, sampling on relaxed solution T can reduce the running time while the overall
cost not increasing too much. We also test the running time with different sampling ratio. In summary,
the running time of solving LP(2) on T and overall Algorithm 1, shown in Table 3 and Table 4, can
be significantly reduced by sampling.

Dataset 100% 50% 20% 10%
Bank 39.97 19.14 7.12 3.39
Adult 66.48 28.58 9.67 4.64

Creditcard 80.235 32.51 11.08 5.43
Census 76.46 37.78 13.96 6.64
Moons 3.75 1.89 0.68 0.33

Breastcancer 11.03 5.28 2.01 1.07
Cluto 192.57 91.72 36.03 18.18

Complex 49.70 24.74 9.11 4.54

Table 3: Time (seconds) of solving LP(2) on T with different sampling ratio

Dataset 100% 50% 20% 10%
Bank 42.03 21.20 9.16 5.44
Adult 69.19 31.24 12.31 7.34

Creditcard 83.42 35.62 14.20 8.57
Census 80.23 41.62 17.86 10.48
Moons 4.07 2.15 0.97 0.60

Breastcancer 11.78 6.05 2.68 1.67
Cluto 201.54 100.64 45.82 27.74

Complex 52.23 27.25 11.66 7.05

Table 4: Overall time (seconds) with different sampling ratio of T when k = 20

F.6 COMPARISON OF RUNNING TIME WITH BASELINES

We compared the running time of our algorithm (Algorithm 1 with our rounding technique) with
the baseline NIPS19 (Bera et al., 2019). For strictly fair datasets, we also tested the running time of
Algorithm 2 and ORL21 (Böhm et al., 2021). The results are shown in Table 5 and Table 6. Below,
we provide a detailed analysis on the comparisons.
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Comparison between Algorithm 1 and NIPS19 (Bera et al., 2019). Algorithm 1 and NIPS19
both have two important subprocedures: linear programming and the k-means algorithm. These two
steps are the bottlenecks for Algorithm 1 and NIPS19. Specifically, NIPS19 first runs the k-means
algorithm (i.e., k-means++), and then calls the LP solver once to compute the fractional assignment.
A different part of our Algorithm 1 is that it calls the LP solver twice, once to compute the weights
of candidate set T and once to compute the fractional assignment, and calls the k-means algorithm
once. In Algorithm 1, we only need to run k-means on T , which should be much smaller than the
whole dataset, leading to less running time for the k-means subprocedure compared to NIPS19.
However, the first call to the LP solver to compute the weight of T consumes more time than the
second call because |T | > k usually. We illustrate the running time of every critical subprocedure of
both algorithms in Table 5. Our k-means step is faster, but we have to run an extra LP step. Therefore,
the running time comparison between these two algorithms is complex. Generally speaking, LP takes
more time than k-means, which means our Algorithm 1 usually runs slower than NIPS19. However,
with the development of LP solvers, we can expect that the runtime of Algorithm 1 could be further
reduced with more advanced LP solvers.

Construct T LP on T k-means LP on S Rounding Total

Bank Algorithm1 0.01 2.4 <0.01 1.23 <0.01 3.78
NIPS19 / / 0.14 0.81 <0.01 1.11

Creditcard Algorithm 1 0.01 4.06 <0.01 2.27 <0.01 6.51
NIPS19 / / 0.18 2.05 <0.01 2.39

Census1990 Algorithm 1 0.01 7.51 0.02 5.19 <0.01 12.99
NIPS19 / / 0.30 3.94 <0.01 4.42

Adult Algorithm 1 0.01 4.14 <0.01 1.80 <0.01 6.12
NIPS19 / / 0.18 1.23 <0.01 1.59

Breastcancer Algorithm 1 0.01 0.19 <0.01 0.82 <0.01 1.33
NIPS19 / / 0.10 0.22 <0.01 0.45

Table 5: Running time (s) on non-strictly fair datasets

Construct T LP on T k-means LP on S Rounding Total

Moons

Algorithm 1 0.01 0.18 <0.01 0.64 <0.01 0.83
NIPS19 / / 0.07 0.70 0.01 0.78

Algorithm 2 / / <0.01 / / 0.59
ORL21 / / 0.02 / / 0.48

Cluto

Algorithm 1 0.01 1.01 <0.01 1.30 <0.01 2.36
NIPS19 / / 0.07 1.54 <0.01 1.66

Algorithm 2 / / < 0.01 / / 0.56
ORL 21 / / 0.56 / / 0.72

Complex

Algorithm 1 0.01 1.08 <0.01 0.61 <0.01 1.71
NIPS19 / / 0.05 0.72 <0.01 0.79

Algorithm 2 / / < 0.01 / / 0.58
ORL21 / / 0.56 / / 0.72

Hypercube

Algorithm 1 0.01 5.71 0.01 4.40 <0.01 10.27
NIPS19 / / 0.15 2.58 <0.01 2.87

Algorithm 2 / / < 0.01 / / 0.39
ORL21 / / 0.67 / / 0.83

Table 6: Running time (s) on strictly fair datasets

Discussion on the construction of T . According to Algorithm 1, T should be an approximate
centroid set (Matoušek, 2000). Thanks to the open-source project by (Kanungo et al., 2002), which
provides an efficient implementation of the approximate centroid set, we used their algorithm as
part of our procedure in our code. Kanungo et al. (2002) used a sampling technique, leading to a
trade-off between performance and efficiency. In our experiment, we sampled 10% of points in the
approximate centroid set as T . A higher sample rate yields better performance (lower cost) but longer
running time.
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Besides, an implicit benefit of the construction of T is that it is irrelevant to the parameters k, α,
and β. So if we consider a real scenario that we need to repeatedly try different choices for these
parameters (e.g., we may want to tune the value k and select the most satisfying result), the step of
constructing T and performing linear programming on T can be seen as preprocessing of datasets
before the tuning. Namely, we just need to run this preprocessing one time, and consequently the
amortized cost over the whole tuning procedure can be reduced significantly.

Running time comparison on strictly fair datasets. For strictly fair datasets, we consider Algo-
rithm 1, NIPS19, Algorithm 2, and ORL21 . Algorithm 2 has an advantage in efficiency in most
datasets. The primary reason is that Algorithm 2 only calls the k-means algorithm once and does not
need to solve the LP. As for ORL21, it needs to run k-means for each group and then choose the best
one. As a result, ORL21 takes longer time than Algorithm 2, especially on the datasets with large
number of groups.

F.7 EXPERIMENTS OF OUR ROUNDING ALGORITHM

In this section, we implement our rounding algorithm in Appendix C and compute the violation factor
across different datasets and parameters. For convenience, we parameterize αi and βi for the i-th
group using a single parameter δ. Specifically, we set βi =

|P (i)|(1−δ)
|P | and αi =

|P (i)|
|P |(1−δ) . Generally

speaking, the smaller the δ, the stricter the fairness constrains are. In Table 7 8 9, the violation
introduced by our rounding algorithm is less than 1 in most of the cases and never exceeds 2, which
aligns with our theoretical analysis.

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0 0 0 0 0 0 0 0 0 0 0

Hypercube 0 0 0 0 0 0 0 0 0 0 0 0
Complex 0.82 0.89 0.5 0.83 0.96 0.95 0.87 0.95 0.91 0.85 0.80 0.89

Cluto 0.80 0.86 0.72 1.01 1.04 0.94 1.0 1.02 0.90 0.90 1.1 0.9
Biodeg 0.05 0.66 0.65 0.63 0.64 0.62 0.63 0.68 0.77 0.79 0 0.01

Breastcancer 0.33 0.34 0.13 0.69 0.87 0.90 0.35 0.94 0.78 0.76 0.76 0.18

Table 7: Violation factor of our rounding algorithm with different k (δ = 0)

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0.3 0.35 0.40 0.30 0.40 0.70 0.5 0.35 0 0.20 0.40

Hypercube 0 0.94 0.98 0.94 0.83 0.95 0.85 0.91 0.80 0.88 1.02 0.83
Complex 0.67 0.98 0.66 0.87 0.88 0.97 0.76 0.77 0.89 0.97 0.67 1.03

Cluto 0.38 1.05 0.99 0.83 0.96 0.94 0.95 0.93 0.94 0.91 0.57 0.99
Biodeg 0 0.01 0.33 0.79 0.38 0.37 0.59 0.38 0.78 0.51 0.78 0.80

Breastcancer 0.18 0.23 0.40 0.23 0.39 0.89 0.53 0.33 0.47 0.51 0.34 0.68

Table 8: Violation factor of our rounding algorithm with different k (δ = 0.1)

dataset k=2 4 6 8 10 12 14 16 18 20 25 30
Moons 0 0.20 0.40 0.40 0.40 0.40 0.60 0.60 0.40 0.40 0.60 0.80

Hypercube 0 0.56 0.69 0.88 0.90 1.125 0.80 0.91 0.90 0.97 0.90 0.90
Complex 0.92 1.02 0.92 0.768 0.96 1.01 0.95 0.79 0.88 0.90 1.04 1.01

Cluto 0.85 0.90 0.90 0.88 0.83 1.024 0.85 0.86 0.90 0.88 0.96 1.00
Biodeg 0 0.50 0.56 0.39 0.51 0.69 0.19 0.57 0.56 0.64 0.75 0.65

Breastcancer 0 0.26 0.42 0.26 0.69 0.39 0.29 0.67 0.80 0.81 0.85 0.68

Table 9: Violation factor of our rounding algorithm with different k (δ = 0.2)
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