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Abstract

We introduce Group SELFIES, a molecular string representation that leverages
group tokens to represent functional groups or entire substructures while main-
taining chemical robustness guarantees. Molecular string representations, such
as SMILES and SELFIES, serve as the basis for molecular generation and opti-
mization in chemical language models, deep generative models, and evolutionary
methods. While SMILES and SELFIES leverage atomic representations, Group
SELFIES builds on top of the chemical robustness guarantees of SELFIES by
enabling group tokens, thereby creating additional flexibility to the representation.
Moreover, the group tokens in Group SELFIES can take advantage of inductive
biases of molecular fragments that capture meaningful chemical motifs. The
advantages of capturing chemical motifs and flexibility are demonstrated in our
experiments, which show that Group SELFIES improves distribution learning of
common molecular datasets. Further experiments also show that random sampling
of Group SELFIES strings improves the quality of generated molecules compared
to regular SELFIES strings. Our open-source implementation of Group SELFIES
is available at https://github.com/aspuru-guzik-group/group-selfies,
which we hope will aid future research in molecular generation and optimization.

1 Introduction

The discovery of functional molecules for drugs and energy materials is crucial to tackling global
challenges in public health and climate change. Different types of generative models can suggest
potential molecules to synthesize and test, but the performance of the models and molecules heavily
relies on the underlying molecular representation. Several models generate molecules represented
as SMILES strings [1–5], but their generated output can be invalid due to syntax errors or incorrect
valency. SELFIES [6] is a molecular string representation that overcomes chemical invalidity
challenges by ensuring that any string of SELFIES characters can be decoded to a molecule with
valid valency. This not only makes it a natural representation for chemical language models that
output molecular strings, but also for genetic algorithms such as GA+D, STONED, and JANUS [7–9]
for molecular optimization.

SELFIES improves string-based molecular generation by encoding prior knowledge of valency
constraints into the representation independently of the optimization method. The representation has
been shown to improve distribution learning by language models [10], as well as image2string and
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Group SELFIES:
[:0toluene][Ring2][:2pyrazole][Ring2]
[:0trifluoromethane][pop][Branch][C]
[=C][C][=C][Branch][C][=C][Ring1]
[=Branch][pop][:0sulfonamide]

SELFIES: 
[C][C][=C][C][=C][Branch1][Branch1][C][=C][Ring1][=Branch1]
[C][=C][C][=Branch2][Ring1][#Branch1][=N][N][Ring1][Branch1]
[C][=C][C][=C][Branch1][Branch1][C][=C][Ring1][=Branch1][S]
[=Branch1][C][=O][=Branch1][C][=O][N][C][Branch1][C][F]
[Branch1][C][F][F]

shuffle

shuffle

Figure 1: Visual overview of SELFIES and Group SELFIES. SELFIES is robust, so shuffling tokens
around will yield new molecules with correct valency. Group SELFIES maintains robustness while
adding group tokens, highlighted in color. When Group SELFIES tokens are shuffled, structures like
benzene rings are more often preserved, while shuffled SELFIES strings rarely ever preserve structures.
Incidentally, Group SELFIES also improves the readability of molecular string representations since
chemists can see what substructures are present.

string2string translation [11, 12] and molecular generation in data-sparse regimes [13]. Additionally,
simple add/replace/delete edits to SELFIES strings can generate new but similar molecules, enabling
genetic algorithms that directly manipulate strings to generate molecules [7]. Alternatively, guiding
these simple string edits with Tanimoto similarity can interpolate between molecules as performed
in STONED by Nigam et al. [8], which can then be applied as crossover operations in genetic
algorithms such as JANUS [9]. Molecular interpolation has also been used to find counterfactual
decision boundaries that explain a molecular classifier’s decisions [14].

While SMILES and SELFIES represent molecules at the individual atom and bond level, human
chemists typically think about molecules in terms of the substructures that they contain. Human
chemists can distinguish molecular substructures based solely on the image of a molecule and induce
the molecular properties those substructures usually imply. Many fragment-based generative models
take advantage of this inductive bias [15–24] by constructing custom representations amenable to
fragment-based molecular design. However, these approaches are not string-based, thereby losing
desirable properties of string representations: easy manipulation, and direct input into established
language models.

Similar to how SELFIES incorporates prior knowledge of valency constraints, we can also incorporate
prior knowledge in the form of functional groups and molecular substructures into the representation.
In this work, we combine the flexibility of string representations with the chemical robustness of
SELFIES and the interpretability and inductive bias of fragment-based approaches into a novel string
representation: Group SELFIES, a robust string representation that extends SELFIES to include
tokens which represent functional groups or entire substructures.

In Section 2, we discuss how Group SELFIES fits into related research and then formally introduce
the representation in Section 3. Specifically, we outline how molecules are encoded into and decoded
from Group SELFIES, and we show that arbitrary Group SELFIES strings can be decoded to
molecules with valid valency. The representation enables users to easily specify their own groups
or extract fragments from a dataset, leveraging the wide area of cheminformatics research available
there. In Section 4, we find that Group SELFIES is more compact than SMILES or SELFIES
and improves distribution learning. Additionally, we compare molecules generated via randomly
sampling SELFIES and Group SELFIES strings and find that Group SELFIES improves the quality
of generated molecules. Molecular generation via random sampling provides greater emphasis on
the representation itself by abstracting away the complexities of the type of generative method used,
which we leave to future work as described in Section 5.

Overall, Group SELFIES provides the flexibility of group representation, the ability to represent
extended chirality via chiral group tokens and chemical robustness as summarized in Table 1.
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Representation Robustness Substructure
Control

Extended
Chirality

Distribution
Learning

SMILES no no no ~
SELFIES yes no no ~

Group SELFIES yes yes yes improved

Table 1: Comparison of the capabilities of SMILES, SELFIES, and Group SELFIES. Group
SELFIES provides group representation, representation of extended chirality and chemical robustness.
Additionally as shown in Section 4, Group SELFIES improves distribution learning compared to
other representations.

2 Related Work

Fragment-Based String Representations: Group SELFIES is not the first fragment-based string
representation that has been proposed. Historical string representations, such as Wiswesser Line
Notation (WLN) [25–27], Hayward Notation [28], and Skolnik Notation [29], all predate SMILES
and represent molecules non-atomically. They use tokens that represent functional groups, such
as carboxyls or phenyls, as well as ring systems. WLN strings are usually shorter and sometimes
easier for trained humans to understand than SMILES, as it is easier to recognize functional groups
encoded as single characters than functional groups encoded atomically. SYBYL Line Notation (SLN)
[30] allows for “macro atoms” which specify multiple atoms in a substructure. The Hierarchical
Editing Language for Macromolecules (HELM) [31] represents complex biomolecules by declaring
monomers and then connecting them in a polymer line notation. Human-Readable SMILES [32]
applies common abbreviations for chemical substituents to process and compress SMILES strings
into a more human-readable format. SMILES Pair Encoding [33] breaks down SMILES strings by
tokenizing them in a data-driven way that recognizes common substructures.

Learned Grammars: Data-Efficient Graph Grammar Learning (DEG) [22] is a recent approach for
extracting useful formal graph grammars from small datasets of molecules. In this context, a “useful
grammar” means that molecules generated by applying random applicable production rules usually
have high scores. The learned production rules of the graph grammar can be thought of as similar to
functional groups applied in Group SELFIES. Group SELFIES allows for flexibility and fine control
of substructures, which can extracted from any procedure including DEG.

3 Representation

3.1 SELFIES Framework

Before introducing in Group SELFIES in greater detail, we summarize the primary features of
SELFIES and the reasons underlying its chemical robustness. SELFIES is equipped with an encoder
and a decoder. The encoder takes in a molecule and converts it to a SELFIES string, and the decoder
takes in a SELFIES string and converts it to a molecule. To encode a molecule in SELFIES, one
traverses its molecular graph and outputs the processed traversal as a string of SELFIES tokens.
To decode a SELFIES string, one reads through the string token-by-token, building the molecular
graph along the way until arriving at the finished graph. Since the encoding and decoding process
alone does not guarantee chemical robustness, the SELFIES decoder further includes two important
features:

1. Each token in SELFIES is overloaded to ensure that it can be interpreted sensibly in all contexts.
For instance, all tokens in SELFIES can also be interpreted as numbers, which is useful when
expressing branch and ring lengths.

2. SELFIES keeps track of the available valency at each step in the decoding process; if a bond
would be formed that would exceed this valency, it changes the bond order or ignores the bond.
For instance, when decoding [C][O][=C], adding [=C] would exceed the valency of [O], so
SELFIES changes the bond order and adds [C] instead.
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Figure 2: Visual explanation of Group SELFIES encoding/decoding of celecoxib. Top-left: molecular
structure of celecoxib. Top-middle: the structure of celecoxib colored by its groups and atoms, with
arrows and attachment indices indicating how the encoder and decoder navigate around the groups.
Top-right: index overload table in Group SELFIES, indicating how tokens are interpreted as numbers.
Bottom: Celecoxib represented in Group SELFIES. Tokens are colored by the groups and atoms they
act on. Index overloads are shown where interpreted. Arrows indicate how branches return to their
original branchpoints and how rings form bonds with previously placed atoms (light-blue).

By preserving these properties in the Group SELFIES decoder, we ensure chemical robustness is
preserved.

3.2 Basic Tokens in Group SELFIES

Group SELFIES strings consist of the following fundamental tokens:

• [X] adds an atom with the atomic symbol X.

• [Branch] creates a new branch off the current atom and saves the current atom as a branchpoint
to return to later, and is analogous to an opening parenthesis ( in SMILES. [pop] exits the current
branch, returning to the most recent branchpoint, and is analogous to a closing parenthesis ) in
SMILES. Unlike in SMILES, however, [Branch] and [pop] tokens need not come in pairs, which
helps maintain robustness. This token is also different from the [BranchX] tokens in SELFIES.
Experiments in Appendix A.5 indicate this change does not substantially affect the performance of
Group SELFIES.

• [RingX] indicates that a ring bond will be formed from the current atom. The next X tokens
immediately following [RingX] will be interpreted as a number N , and we will count backwards
N atoms in placement order to determine the target of the ring bond. For example, [Ring2]
indicates that the next 2 tokens will be interpreted as a 2-digit base-16 number N . Ring bonds are
stored until after all tokens have been read by the decoder; only then are ring bonds placed, and
only if it would not violate valency. Due to the addition of groups, it is sometimes necessary to
form ring bonds to atoms that are added after the current atom (e.g. ring bonds within groups).
To indicate this, we use the [->] token before the number token to specify that we will count
forwards instead of backwards.

All tokens can be modified by adding =, #, \ or / to change the bond order or stereochemistry of their
parent bond (e.g. [#Branch] or [/C]). The parent bond is the bond to the previous atom.
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3.3 Groups

The primary difference between SELFIES and Group SELFIES is the addition of groups. Each group
is defined as a set of atoms and bonds representing the molecular group with its attachment points,
indicating how the group can participate in bonding. Each attachment point has a specified maximum
valency, which allows us to continue tracking available valency while decoding. These attachment
points are labeled by attachment indices, and the encoder and decoder will navigate around these
attachment indices as described in Section 3.4.

Users must specify the groups they want to use using a dictionary that maps group names to groups.
This tells the encoder what groups to recognize, and tells the decoder how to map group tokens to
groups. We call this dictionary a “group set”, and every group set defines its own distinct instance of
Group SELFIES. In particular, the decoder will not recognize a Group SELFIES string that contains
group tokens not present in the current group set.

To distinguish group tokens from other tokens, we include a : character at the front of the token
(e.g. [:4benzene]). All group tokens are of the form [:S<group-name>], where S is the starting
attachment index of the group, and <group-name> is any alphanumeric string that does not start
with a number.

Optionally, a priority value can be specified for each group, indicating the priority with which the
group should be recognized when encoding into Group SELFIES. Priority affects the Group SELFIES
encoder as described in Section 3.4. For each group, one can also specify its index overload value,
which is the value the group token takes when the decoder must interpret the token as a number.

Figure 3: Representation of a possible “benzene” group and its use in a corresponding group token.
The *N notation represents an attachment point with valency N. Each attachment point is labeled
with its attachment index 0th,1st... The starting attachment point represented in the token is also
highlighted.

3.4 Encoding and Decoding

Encoding: To encode a molecule in Group SELFIES, the encoder first recognizes and replaces
substructure matches of groups from the molecule. By default, the encoder iterates through the group
set and recognizes the largest groups first, but users can override this by specifying a priority for
each group. Setting a high priority value for a group indicates that it will be recognized first when
encoding into Group SELFIES, ensuring that other group replacements will not overlap with this
group. This encoding strategy iterates implies that increasing the size of the group set will increase
the running time of the encoder linearly. We then traverse the graph similar to the encoding process
for SMILES and SELFIES, while also placing the correct tokens for tracking the attachment indices
of where the encoder entered and exited a group.

Decoding: When decoding Group SELFIES, the process is essentially the same as regular SELFIES
except when reading group tokens. When a group token is read by the decoder, the group set
dictionary determines the corresponding group. Subsequently, all atoms of the group are placed and
the main chain is connected to the starting attachment point. The decoder selects the next attachment
point to branch off from by reading in the next token as a relative index. By adding the current
attachment index to a relative index modulo the total number of attachment points in the group, the
decoder selects the next attachment point. From the specified attachment point, the decoder implicitly
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branches off of the group and continues traversing until a [pop] token is read. Once the branch is
“popped”, the decoder returns to the group and can navigate to the next attachment point using another
relative index. If the selected attachment point is occupied, then the next available attachment point
is used. If all attachment points have been used up, then the group itself is immediately “popped”,
returning to the most recent branchpoint before the group was placed.

We verified the robustness of Group SELFIES by encoding and decoding 25M molecules from
the eMolecules database [34]. We provide a detailed example of encoding/decoding the molecule
celecoxib in Appendix A.1.

Group SELFIES manages chirality differently than SMILES and SELFIES. Rather than use @-
notation to specify tetrahedral chirality, all chiral centers must be specified as groups. We provide
an “essential set” of 23 groups which encode all relevant chiral centers in the eMolecules database.
Equipped with this essential set, every molecule can be encoded-decoded while maintaining chirality.
It is also an option to not use the essential set, or only use a subset of it, depending on what chiral
centers are relevant to the problem at hand. If a molecule has a chiral center not specified in the group
set, then encode-decode will not preserve chirality.

3.5 Determining Fragments

Group SELFIES has a built-in flexibility for assigning the set of fragments that make up a group
set. Hence, the construction of a useful group set often remains an open design choice. Users can
specify groups using a SMILES-like syntax, which could be useful if one knows what groups are
synthetically available or are expected to be useful for their particular design task. Fragments can
also be obtained from several fragment libraries found in the literature [35–37]. Generally, a useful
set of groups will appear in many molecules in the dataset and replace many atoms, with similar
fragments merged together to reduce redundancy.

In our experiments, we also tested various fragmentation algorithms that extract fragments from
a dataset, including a naïve technique that cleaves side chains from rings and a method based on
matched molecular pair analysis [38]. Several other fragmentation algorithms from cheminformatics
can be readily applied [22, 39–43] and the essential features of Group SELFIES outlined in Section 1
remain robust to different fragment discovery methods.

4 Experiments

The experiments in the subsequent sections outline some of the advantages of Group SELFIES
compared to SMILES and regular SELFIES representations. Concretely, we show that: (1) Group
SELFIES is shorter and more compressible than SMILES and SELFIES; (2) Group SELFIES
preserves useful properties during generation; (3) Group SELFIES improves distribution learning.

4.1 Compactness

Group SELFIES strings are typically shorter than their SMILES and SELFIES equivalents when
using a generic set of groups. In Figure 4, this generic set was generated by taking a random selection
of 10,000 molecules from ZINC-250k [44] and fragmenting them into 30 useful groups using various
algorithms (see Determining Fragments). We then combined these 30 groups with the 23 groups of
the essential set. Figure 4 shows histograms of the lengths of SMILES/SELFIES/Group SELFIES
strings of the entire ZINC-250k dataset. Length is the number of characters in SMILES strings, and
the number of tokens in (Group) SELFIES strings. Group SELFIES strings are usually shorter than
their SELFIES and SMILES counterparts because group tokens can represent multiple atoms in a
molecule.

Since Group SELFIES has a larger alphabet than SMILES or SELFIES, we estimate the complexity of
each representation with the compressed filesize of ZINC-250k. We find that out of all representations,
Group SELFIES can be compressed the most (see Appendix A.2).
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Figure 4: Histogram of lengths of SMILES, SELFIES, and Group SELFIES strings of the ZINC-250k
dataset. Here, Group SELFIES uses a group set of 53 groups.

4.2 Molecular Generation

To specifically compare the suitability of the SELFIES and Group SELFIES representations for
molecular generation, we use a primitive generative model which samples random strings. First, we
convert a subset of N = 100,000 molecules from ZINC-250k into (Group) SELFIES strings. Then,
we tokenize all strings and combine them into a single bag of tokens. To generate a new string, we
first pick a random (Group) SELFIES string from our chosen subset and take its length l. We then
randomly sample l tokens from the bag, and concatenate into a generated string. We generate N
random strings for each representation. For Group SELFIES, we use the same 53 groups used for the
length histogram in Section 4.1.

We show histograms of the SAScore [45] and QED [46] of molecules generated from ZINC in Figure
5. The distributions of generated Group SELFIES more closely overlap with the original ZINC
dataset than the generated SELFIES, showing that even with an extremely simplistic generative
model, Group SELFIES can preserve important structural information. We perform a similar analysis
for a dataset of nonfullerene acceptors (NFA) [47] in Appendix A.3 and find that Group SELFIES
preserves many aromatic rings in contrast to SELFIES, which rarely ever preserves aromatic rings.

Figure 5: Molecules generated by our primitive generative model are binned by SAScore and
QED. For both properties, generated Group SELFIES have greater overlap with the original ZINC
distribution. Bracketed values indicate the Wasserstein distance (a measure of overlap) to the ZINC
distribution. Dashed lines indicate the means.
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4.3 Distribution Learning

To further quantify the effectiveness of Group SELFIES in generative models, we use the MOSES
benchmarking framework [48] to evaluate variational autoencoders (VAEs) trained with both Group
SELFIES and SELFIES strings. Models were trained for 125 epochs. The group set for the Group
SELFIES VAE was created by fragmenting the training set provided by MOSES and selecting the 300
most diverse groups. A set of 100,000 molecules was then generated from each model and evaluated
on the metrics provided by MOSES.

Model Valid (↑) Unique@1k (↑) Unique@10k (↑) FCD (↓) SNN (↑)
Test TestSF Test TestSF

Train 1.0 1.0 1.0 0.008 0.4755 0.6419 0.5859
Group-VAE-125 1.0(0) 1.0(0) 0.9985(4) 0.1787(29) 0.734(109) 0.6051(4) 0.5599(3)
SELFIES-VAE-125 1.0(0) 0.9996(5) 0.9986(4) 0.6351(43) 1.3136(128) 0.6014(3) 0.5566(2)

Model Frag (↑) Scaf (↑) IntDiv (↑) IntDiv2 (↑) Filters (↑) Novelty (↑)Test TestSF Test TestSF

Train 1.0 0.9986 0.9907 0.0 0.8567 0.8508 1.0 1.0
Group-VAE-125 0.9995(0) 0.9977(1) 0.9649(21) 0.0608(65) 0.8587(1) 0.8528(1) 0.9623(7) 0.7187(11)
SELFIES-VAE-125 0.9989(0) 0.9965(1) 0.9588(15) 0.0675(37) 0.8579(1) 0.8519(1) 0.96(4) 0.7345(16)

Table 2: Group SELFIES VAE and SELFIES VAE evaluated on MOSES metrics. The Group
SELFIES VAE mostly matches or outperforms the SELFIES VAE.

For most metrics, Group SELFIES performs approximately the same as SELFIES. Validity is the
percentage of generated molecules that are accepted by RDKit’s parser. Uniqueness is the percentage
of generated molecules that are not identical to any other generated molecule. Similarity to nearest
neighbor (SNN) is the average Tanimoto similarity between generated molecules and the nearest
neighbor in the reference set. Fragment similarity (Frag) is a cosine similarity based on the distribution
of BRICS fragments [43] of generated and reference molecules. Scaffold similarity (Scaf) is a cosine
similarity based on the distribution of Bemis-Murcko scaffolds [49] of generated and reference
molecules. Internal diversity (IntDiv) measures the chemical diversity of the generated molecules
using Tanimoto similarity. Filters is the fraction of generated molecules that pass filters for unwanted
fragments. Novelty is the fraction of generated molecules not in the training set.

The Group SELFIES model performs especially well on the Fréchet ChemNet Distance (FCD)
metric [50] when compared to SELFIES. FCD measures the difference between the activations
of the penultimate layer of ChemNet (a model trained to predict the bioactivity of molecules) in
the validation set and in the generated set. Due to how ChemNet was trained, the activations are
likely to encode a mixture of biological and chemical properties important to drug likelihood. This
makes comparing these activations more informative than comparing standard properties like logP
or molecular weight, where the correlation to bioactivity is weaker and less deliberate. To visualize
FCD, some indices of the penultimate activations of ChemNet are graphed in Figure 6. Generated
Group SELFIES match these distributions more closely than generated SELFIES.

5 Discussion

Our experiments show that Group SELFIES has noticeable advantages compared to SMILES and
SELFIES representations, including greater readability provided by the group tokens. With regards
to SMILES, the primary advantage is chemical robustness. The comparison with SELFIES is more
nuanced, as discussed in the section below.

5.1 Group SELFIES vs SELFIES

Substructure Control: Group SELFIES provides more fine-grained control of substructures, which
creates the following advantages: (1) An important scaffold can be preserved during optimization; (2)
Chiral and charged groups can be preserved during optimization, ensuring that charged tokens do not
proliferate and create radicals; (3) Synthetically accessible building blocks can be chosen as groups
to improve synthesizability.

Substructure Control with SELFIES: Various techniques applied to SELFIES can mitigate the
challenges of preserving structure. One such example is to simply combine substrings of SELFIES
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Figure 6: Distribution of some values from the second-to-last layer of ChemNet for molecules
generated by Group SELFIES and SELFIES compared to the validation set. The difference in
distributions is used to calculate FCD. Bracketed values in the legend represent the Wasserstein
distance to the original MOSES distribution.

strings together. Indeed, further experiments in Appendix A.4 show that simply replacing all group
tokens by their SELFIES substrings shows similar performance to Group SELFIES. Within the
SELFIES framework, however, the first token of the inserted substring may need to be interpreted as
a number, which can have cascading effects for the rest of the substring. It is also likely that upon
further insertions, that substructure will not be preserved. Additionally, it is also not clear how an
insertion based approach can create groups with 3 or more branches, since creating a third branch
requires insertion in the middle of the group substring.

Extended Chirality: Group SELFIES is theoretically capable of representing molecules which are
traditionally not able to be represented with SMILES or SELFIES, such as complexes like ferrocene
and molecules with axial/helical/planar chirality. This can be done by taking the entire complex
or chiral substructure and abstracting it into a group, leaving attachment points on the outside for
varying functionalization. We leave this for future work.

Computational Speed: One tradeoff of Group SELFIES is that encoding and decoding is usually
slower than with SELFIES, likely due to overhead of RDKit operations. The encoder is particularly
slow as it relies on performing a substructure match for every group in the group set. The decoder is
faster than the encoder, though still slower than the SELFIES decoder. See Appendix A.6 for timing.
To improve computational performance in future work, one could exploit substructure control of
Group SELFIES to reduce the number of encode/decode calls needed to obtain high performers.
Additionally, the speed of encoding and decoding operations can be improved with distributed
computing, since Group SELFIES is trivially parallelizable for a fixed group set.

5.2 Future Work

One promising extension of Group SELFIES is to incorporate more flexibility into the representation.
In such a case, a group token can represent an entire scaffold, except without the atom identities.
Other tokens can then identify the atom types on the scaffolds. This would allow optimization of the
atom types while maintaining the topological structure of the scaffold. Another current limitation
of Group SELFIES is that groups cannot overlap; more work is needed to develop a representation
that acknowledges how groups might overlap, particularly for generating polycyclic compounds. A
sequence-based representation of cellular complexes [51] or hypergraphs might be promising.

Group SELFIES can serve as a basis for a variety of generative methods that can be applied to
AI-Guided materials design, including but not limited to deep generative models (VAE, GAN),
evolutionary search, and reinforcement learning, especially those that apply fragment-based molecular
design. In this paper we focused on the introduction of the representation and its capabilities and
leave the application of generative methods to future work due to the vast variety of methods the
representation could be applied to. For illustrative purposes, we already included a simple VAE
benchmark in Section 4.3 and works such as JANUS [9] could be extended to leverage Group
SELFIES.
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