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Abstract

Expressive human pose and shape estimation (EHPS) unifies body, hands, and
face motion capture with numerous applications. Despite encouraging progress,
current state-of-the-art methods still depend largely on a confined set of training
datasets. In this work, we investigate scaling up EHPS towards the first generalist
foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone
and training with up to 4.5M instances from diverse data sources. With big
data and the large model, SMPLer-X exhibits strong performance across diverse
test benchmarks and excellent transferability to even unseen environments. 1)
For the data scaling, we perform a systematic investigation on 32 EHPS datasets,
including a wide range of scenarios that a model trained on any single dataset cannot
handle. More importantly, capitalizing on insights obtained from the extensive
benchmarking process, we optimize our training scheme and select datasets that
lead to a significant leap in EHPS capabilities. 2) For the model scaling, we
take advantage of vision transformers to study the scaling law of model sizes in
EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models,
allowing them to achieve further performance boosts. Notably, our foundation
model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks
such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm
PVE), and EHF (62.3 mm PVE without finetuning). 2

1 Introduction

The recent progress in expressive human pose and shape estimation (EHPS) from monocular images
or videos offers transformative applications for the animation, gaming, and fashion industries. This
task typically employs parametric human models (e.g., SMPL-X [49]) to adeptly represent the highly
complicated human body, face, and hands. In recent years, a large number of diverse datasets have
entered the field [4, 6, 6, 61, 66, 37, 3, 12, 14, 14, 62, 7], providing the community new opportunities
to study various aspects such as capture environment, pose distribution, body visibility, and camera
views. Yet, the state-of-the-art methods remain tethered to a limited selection of these datasets,
creating a bottleneck in performance across varied scenarios and hindering the ability to generalize to
unseen situations.

Our mission in this study is to explore existing data resources comprehensively, providing key insights
crucial for establishing robust, universally applicable models for EHPS. Accordingly, we establish
the first systematic benchmark for EHPS, utilizing 32 datasets and evaluating their performance
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across five major benchmarks. We find that there are significant inconsistencies among benchmarks,
revealing the overall complicated landscape of EHPS, and calling for data scaling to combat the
domain gaps between scenarios. This detailed examination emphasizes the need to reassess the
utilization of available datasets for EHPS, advocating for a shift towards more competitive alternatives
that offer superior generalization capabilities, and highlights the importance of harnessing a large
number of datasets to capitalize on their complementary nature.

Moreover, we systematically investigate the contributing factors that determine the transferability
of these datasets. Our investigation yields useful tips for future dataset collection: 1) the more
is not necessarily, the merrier: datasets do not have to be very large to be useful as long as they
exceed approximately 100K instances based on our observation. 2) Varying indoor scenes is a
good alternative if an in-the-wild (including outdoor) collection is not viable. 3) synthetic datasets,
despite having traceable domain gaps, are becoming increasingly potent to a surprising extent. 4)
Pseudo-SMPL-X labels are useful when ground truth SMPL-X annotations are unavailable.
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Figure 1: Scaling up EHPS. Both data and
model scaling are effective in reducing mean
errors on primary metrics across key bench-
marks: AGORA [48], UBody [37], EgoBody [66],
3DPW [56] and EHF [49]. OSX [37] and
H4W [44] are SOTA methods. Area of the cir-
cle indicates model size, with ViT variants as the
reference (top right).

Equipped with the knowledge procured from the
benchmark, we exhibit the strength of massive
data with SMPLer-X, a generalist foundation
model that is trained using a diverse range of
datasets and achieves exceptionally balanced
results across various scenarios. To decouple
from algorithmic research works, we design
SMPLer-X with a minimalist mindset: SMPLer-
X has a very simple architecture with only the
most essential components for EHPS. We hope
SMPLer-X could facilitate massive data and pa-
rameter scaling and serve as a baseline for future
explorations in the field instead of a stringent
investigation into the algorithmic aspect. Ex-
periments with various data combinations and
model sizes lead us to a well-rounded model
that excels across all benchmarks that contests
the community norm of limited-dataset train-
ing. Specifically, our foundation models demon-
strate significant performance boost through
both data scaling and model size scaling, re-
ducing the mean primary errors on five major
benchmarks (AGORA [48], UBody [37], EgoB-
ody [66], 3DPW [56], and EHF [49]) from over 110 mm to below 70 mm (demonstrated in Fig. 1),
and showcases impressive generalization capabilities by effectively transferring to new scenarios,
such as DNA-Rendering [7] and ARCTIC [12].

Furthermore, we validate the efficacy of finetuning our generalist foundation models to evolve into
domain-specific specialists, delivering outstanding performance on all benchmarks. Specifically, we
follow the same data selection strategy that empowers our specialist models to set new records on the
AGORA leaderboard by being the first model to hit 107.2mm in NMVE (an 11.0% improvement)
and achieving SOTA performance on EgoBody, UBody, and EHF.

Our contributions are three-fold. 1) We build the first systematic and comprehensive benchmark on
EHPS datasets, which provides critical guidance for scaling up the training data toward robust and
transferable EHPS. 2) We explore both data and model scaling in building the generalist foundation
model that delivers balanced results across various scenarios and extends successfully to unseen
datasets. 3) We extend the data selection strategy to finetune the foundation model into potent
specialists, catering to various benchmark scenarios.

2 Related Work
Expressive Human Pose and Shape Estimation (EHPS). Due to the erupting 3D virtual human
research applications [64, 65, 19, 18, 5] and the parametric models (e.g., SMPL [40] and SMPL-
X [49]), capturing the human pose and shape (HPS) [26, 31, 28, 29, 36, 57, 58], and additionally
hands and face (EHPS) [49, 59, 8, 51, 68, 13, 54, 63] from images and videos have attracted increasing
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Figure 2: Dataset attribute distributions. a) and d) are image feature extracted by HumanBench [55]
and OSX [37] pretrained ViT-L backbone. b) Global orientation (represented by rotation matrix)
distribution. c) Body pose (represented by 3D skeleton joints) distribution. Both e) scenes and f)
Real/Synthetic are drawn on the same distribution as d). All: all datasets. UMAP [41] dimension
reduction is used with the x and y-axis as the dimensions of the embedded space (no unit).

attention. Optimization-based methods (e.g., SMPLify-X [49]) detect 2D features corresponding to
the whole body and fit the SMPL-X model. However, they suffer from slow speed and are ultimately
limited by the quality of the 2D keypoint detectors. Hence, learning-based models are proposed. One
of the key challenges of EHPS is the low resolution of hands and face compared with the body-only
estimation, making the articulated hand pose estimation and high-quality expression capture difficult.
Accordingly, mainstream whole-body models first detect and crop the hands and face image patches,
then resize them to higher resolutions and feed them into specific hand and face networks to estimate
the corresponding parameters [8, 51, 68, 13, 54, 44, 63, 33]. Due to the highly complex multi-stage
pipelines, they inevitably cause inconsistent and unnatural articulation of the mesh and implausible
3D wrist rotations, especially in occluded, truncated, and blurry scenes. Recently, OSX [37] proposes
the first one-stage framework based on ViT-based backbone [11] to relieve the issues in previous
multi-stage pipelines. This method provides a promising and concise way to scale up the model.
However, they only use confined training datasets for a fair comparison and do not explore the
combination of more data toward generalizable and precise EHPS.

Multi-dataset Training for Human-centric Vision. Recent efforts have been using multiple datasets
in pretraining a general model for a wide range of downstream human-centric tasks. For example,
HumanBench [55] leverages 37 datasets, whereas UniHCP [9] utilizes 33 datasets for tasks such as
ReID, pedestrian detection, and 2D pose estimation. However, these works have only evaluated the
efficacy of 2D tasks. Sárándi et al. [52] take advantage of 28 datasets in training a strong model for
3D keypoint detection, which recovers only the skeleton of subjects without estimating body shapes
and meshes. Pang et al. [47] analyze 31 datasets for human pose and shape estimation (i.e., SMPL
estimation). However, hands and face estimation is not included, and only fewer than ten datasets are
used concurrently in the most diverse training. This paper targets to scale training data and model
size for EHPS, that simultaneously recovers the expressive pose and shape of the human body, hands,
and face.

3 Benchmarking EHPS Datasets

3.1 Preliminaries

SMPL-X. We study expressive human pose and shape estimation via 3D parametric human model
SMPL-X [49], which models the human body, hands, and face geometries with parameters. Specif-
ically, our goal is to estimate pose parameters θ ∈ R55×3 that include body, hands, eyes, and jaw
poses; joint body, hands and face shape β ∈ R10, and facial expression ψ ∈ R10. The joint regressor
J is used to obtain 3D keypoints from parameters via Rθ(J (β)) where Rθ is a transformation
function along the kinematic tree.
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Table 1: Benchmarking EHPS datasets. For each dataset, we train a model on its training set and
evaluate its performance on the val set of AGORA and testing sets of UBody, EgoBody (EgoSet),
3DPW, and EHF. Datasets are then ranked by mean primary error (MPE). Top-1 values are bolded,
and the rest of Top-5 are underlined. #Inst.: number of instances used in training. ITW: in-the-wild.
EFT [25], NeuralAnnot (NeA) [45] and UP3D [32] produce pseudo labels.

AGORA [48] UBody [37] EgoBody [66] 3DPW [56] EHF [49]

Dataset #Inst. Scene Real/Synthetic SMPL SMPL-X PVE↓ ⋆ PVE↓ ⋆ PVE↓ ⋆ MPJPE↓ ⋆ PVE↓ ⋆ MPE↓
BEDLAM [4] 951.1K ITW Syn - Yes 164.7 4 132.5 8 109.1 2 98.1 1 81.1 1 117.1
SynBody [61] 633.5K ITW Syn - Yes 166.7 5 144.6 11 136.6 4 106.5 5 112.9 5 133.5
InstaVariety [27] 2184.8K ITW Real NeA - 195.0 9 125.4 4 140.1 9 100.6 3 110.8 4 134.3
GTA-Human II [6] 1802.2K ITW Syn - Yes 161.9 3 143.7 10 139.2 8 103.4 4 126.0 12 134.8
MSCOCO [38] 149.8K ITW Real EFT NeA 191.6 8 107.2 2 139.0 7 121.2 10 116.3 7 135.0
EgoBody-MVSet [66] 845.9K Indoor Real Yes Yes 190.9 7 191.4 18 127.0 3 99.2 2 101.8 2 142.1
AGORA [48] 106.7K ITW Syn Yes Yes 124.8 1 128.4 6 138.4 6 131.1 12 164.6 24 145.4
Egobody-EgoSet [66] 90.1K Indoor Real Yes Yes 207.1 15 126.8 5 103.1 1 134.4 18 121.4 10 147.5
RICH [20] 243.4K ITW Real - Yes 195.6 10 168.1 15 137.9 5 115.5 8 127.5 13 148.9
MPII [2] 28.9K ITW Real EFT NeA 202.1 11 123.9 3 155.5 15 131.9 14 140.8 16 150.8
MuCo-3DHP [43] 465.3K ITW Real Yes - 187.7 6 185.4 17 146.4 12 119.4 9 134.7 15 154.7
PROX [17] 88.5K Indoor Real - Yes 204.1 13 180.3 16 151.8 13 132.5 17 122.5 11 158.2
UBody [37] 683.3K ITW Real - Yes 207.0 14 78.7 1 145.6 11 149.4 23 132.1 14 158.5
SPEC [30] 72.0K ITW Syn Yes - 161.5 2 146.1 12 154.8 14 139.7 21 197.8 27 160.0
CrowdPose [34] 28.5K ITW Real NeA - 207.1 16 129.8 7 156.9 16 156.3 25 154.5 22 160.9
MPI-INF-3DHP [42] 939.8K ITW Real NeA NeA 221.5 20 166.7 14 142.7 10 131.6 13 155.5 23 163.6
HumanSC3D [15] 288.4K Studio Real - Yes 215.2 18 237.8 22 167.3 17 113.0 7 107.1 3 168.1
PoseTrack [1] 28.5K ITW Real EFT - 218.1 19 161.0 13 180.8 21 150.2 24 149.9 21 172.0
BEHAVE [3] 44.4K Indoor Real Yes - 208.3 17 205.8 20 175.8 19 132.0 15 145.0 18 173.4
CHI3D [14] 252.4K Studio Real - Yes 203.3 12 264.7 25 175.7 18 122.6 11 121.0 9 177.5
Human3.6M [21] 312.2K Studio Real Yes NeA 226.0 21 276.1 26 200.6 24 112.3 6 120.8 8 187.2
DNA-R-HiRes [7] 998.1K Studio Real - Yes 230.0 22 278.2 27 179.2 20 134.5 19 149.7 20 194.3
3DPW [56] 22.7K ITW Real Yes NeA 234.0 23 259.3 23 192.6 23 140.6 22 142.9 17 207.2
ARCTIC [12] 1539.1K Studio Real - Yes 308.5 29 200.7 19 186.4 22 202.5 26 182.5 25 216.1
DNA-R [7] 3992.0K Studio Real - Yes 274.7 26 341.5 30 214.4 27 138.4 20 115.5 6 216.9
UP3D [32] 7.1K ITW Real UP3D - 257.5 24 224.1 21 216.6 28 211.5 27 194.8 26 220.9
Talkshow [62] 3326.9K Indoor Real - Yes 286.4 27 133.2 9 203.6 25 291.3 29 201.9 28 223.3
FIT3D [16] 1779.3K Studio Real - Yes 329.7 30 404.0 31 213.8 26 132.1 16 148.1 19 245.5
MTP [46] 3.2K ITW Real Yes Yes 272.7 25 284.9 28 273.2 29 265.2 28 244.6 29 268.1
OCHuman [67] 2.5K ITW Real EFT - 307.1 28 263.3 24 279.3 30 293.4 30 281.7 30 285.0
LSPET [23] 2.9K ITW Real EFT - 365.7 31 292.6 29 340.1 31 339.8 31 316.3 31 330.9
SSP3D [53] 311 ITW Real Yes - 549.8 32 522.4 32 548.1 32 439.0 32 539.5 32 519.8

Evaluation Metrics. We use standard metrics for EHPS. PVE (per-vertex error) and MPJPE (mean
per-joint position error) measure the mean L2 error for vertices and regressed joints, respectively.
The “PA" prefix indicates Procrutes Alignment is conducted before error computation. AGORA
Leaderboard [48] introduces NMVE (normalized mean vertex error) and NMJE (normalized mean
joint error) that take detection performance F1 score into consideration. Moreover, we propose MPE
(mean primary error) that takes the mean of multiple primary metrics (MPJPE for 3DPW [56] test,
and PVE for AGORA, UBody, EgoBody, and EHF) to gauge generalizability. All errors are reported
in millimeters (mm).

3.2 Overview of Data Sources

In this work, we study three major types of datasets. 1) motion capture datasets that leverage
optical [21, 14, 12, 15, 16, 42] or vision-based [66, 17, 7, 5] multi-view motion capture systems,
are typically collected in a studio environment. However, it is possible to include an outdoor setup,
or utilize additional sensors such as IMUs [56]. These datasets generally provide high-quality 3D
annotations but are less flexible due to physical constraints, especially those built with immobile
capture systems that require accurate sensor calibrations. 2) pseudo-annotated datasets [38, 1, 34,
37, 43, 27, 67, 2, 23, 46, 62, 53] that re-annotate existing image datasets with parametric human
annotations [24, 45, 37]. These datasets take advantage of the diversity of 2D datasets, and the
pseudo-3D annotations, albeit typically not as high-quality, have been proven effective [47, 31, 24].
3) synthetic datasets [4, 6, 30, 48, 61] that are produced with renderings engines (e.g., Unreal Engine).
These datasets produce the most accurate 3D annotations and can easily scale up with high diversity.
However, the synthetic-real gap is not fully addressed. Key attributes of the datasets are included in
Table 1.

To evaluate the EHPS capability across diverse scenarios, we select multiple key datasets to form
a comprehensive benchmark. They should possess the desirable traits such as 1) having accurate
SMPL or SMPL-X annotations, 2) being representative of certain aspects of real-life scenarios, 3)
being widely used, but this requirement is relaxed for the new datasets which are released within
two years, and 4) has a clearly defined test set. To this end, five datasets (AGORA [48], UBody [37],
EgoBody [66], 3DPW [56], and EHF [49]) representing different aspects are selected as the evaluation
datasets. We briefly introduce these five datasets and the rest in the Supplementary Material. AGORA
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is the most widely-used benchmark for SMPL-X evaluation. It is a synthetic dataset featuring diverse
subject appearances, poses, and environments with high-quality annotation. We evaluate on both
validation and test set (leaderboard) as the latter has a monthly limit of submissions. UBody is the
latest large-scale dataset with pseudo-SMPL-X annotations that covers fifteen real-life scenarios, such
as talk shows, video conferences, and vlogs, which primarily consist of the upper body in images.
We follow the intra-scene protocol in training and testing, where all scenarios are seen. EgoBody
captures human motions in social interactions in 3D scenes with pseudo-SMPL-X annotations. It
comprises a first-person egocentric set (EgoSet) and a third-person multi-camera set (MVSet). We test
on the EgoSet with heavy truncation and invisibility. 3DPW is the most popular in-the-wild dataset
with SMPL annotations. Since SMPL-X annotation is not available, we map SMPL-X keypoints
and test on 14 LSP [22] keypoints following the conventional protocol [26, 31]. EHF is a classic
dataset with 100 curated frames of one subject in an indoor studio setup, with diverse body poses and
especially hand poses annotated in SMPL-X vertices. It has a test set but no training or validation
sets. Hence, it is only used to evaluate cross-dataset performance.

Besides being popular or the latest evaluation sets for EHPS, we further analyze if these five datasets
collectively provide wide coverage of existing datasets. In Fig. 3, we randomly downsample all
datasets to equal length (1K examples) and employ UMAP [41] to visualize several key aspects. We
use pretrained ViT-L from HumanBench [55] and OSX [37] to process patch tokens flattened as
feature vectors from images cropped by bounding boxes. HumanBench is trained for various human-
centric tasks (e.g., Re-ID, part segmentation, and 2D pose estimation), whereas OSX is an expert
model on EHPS. As for global orientation, it is closely associated with camera pose as we convert
all data into the camera coordinate frame; we plot its distribution by using flattened rotation matrix
representations. Moreover, we follow [50, 6, 47] to represent poses as 3D keypoints regressed from
the parametric model. Specifically, we flatten 21 SMPL-X body keypoints, and 15 hand keypoints
from each hand, regressed with zero parameters except for the body pose and hand poses. It is shown
that 1) the five benchmark datasets have varied distribution, which is expected due to their different
designated purposes, and 2) collectively, the five datasets provide a wide, near-complete coverage of
the entire dataset pool.

3.3 Benchmarking on Individual Datasets

In this section, we aim to benchmark datasets and find those that do well in various scenarios. To
gauge the performance of each dataset, we train a SMPLer-X model with the training set of that
dataset and evaluate the model on the val/testing sets of five evaluation datasets: AGORA, UBody,
EgoBody, 3DPW, and EHF. Here, the benchmarking model is standardized to use ViT-S as the
backbone, trained on 4 V100 GPUs for 5 epochs with a total batch size of 128 and a learning rate of
1× 10−5. The dataset preprocessing details are included in the Supplementary Material.

In Table 1, we report the primary metrics (Sec. 3.1) and ranking of the 32 datasets. The complete
results in the Supplementary Material. We also compute the mean primary error (MPE) to facilitate
easy comparison between individual datasets. Note that for AGORA, UBody, EgoBody, and 3DPW,
their performances on their own test set are excluded from computing MPE. This is because in-
domain evaluation results are typically much better than cross-domain ones, leading to significant
error drops. In addition, note that there are datasets designed for specific purposes (e.g., Talkshow [62]
for gesture generation, DNA-Rendering [7] for human NeRF reconstruction), being ranked lower on
our benchmark, which focuses on EHPS (a perception task) does not reduce their unique values and
contributions to the computer vision community.

From the benchmark, we observe models trained on a single dataset tend to perform well on the same
domain but often cannot do well on other domains. For example, the model trained on AGORA is
ranked 1st on AGORA (val), but 6th on UBody, 6th on EgoBody, 12th on 3DPW, and 24th on EHF.
This observation indicates that 1) the test scenarios are diverse, showcasing the challenging landscape
of EHPS, and 2) data scaling is essential for training a robust and transferable model for EHPS due to
significant gaps between different domains.

3.4 Analyses on Dataset Attributes

In this section, we study attributes that contribute to generalizability. However, it is important to
acknowledge that such analyses are not a straightforward task: the attributes often exhibit coupled
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Figure 3: Analysis on dataset attributes. We study the impact of a) the number of training instances,
b) scenes, c) real or synthetic appearance, and d) annotation type, on dataset ranking in Table 1.

effects. Consequently, counter-examples are inevitable (e.g., we observe that InstaVariety, an in-the-
wild dataset, demonstrates strong performance, whereas LSPET, another in-the-wild dataset, does not
perform as well). Despite the challenges in pinpointing the exact factors that determine the success
of an individual dataset, we adopt a collective perspective and aim to identify general trends with
several key factors [47, 39, 6] in Fig. 3, and discussed below.

First, Fig. 3a) shows that the performance of a dataset (in terms of ranking) is not strongly as-
sociated with the number of training instances once the instance number exceeds approximately
100K. Although a very small amount of training data is insufficient to train a strong model, having
an exceedingly large amount of data does not guarantee good performance either. For example,
MSCOCO only comprises 149.8K training instances but achieves a higher ranking compared to
datasets with 10× larger scales. This may be attributed to the diverse appearance and complex scenes
present in the MSCOCO dataset. Hence, it would be more cost-effective to channel resources to
improve diversity and quality, when the dataset has become adequately large.

Second, we categorize datasets into 1) in-the-wild, which contains data from diverse environments;
2) indoor with several scenes; 3) studio, which has a fixed multi-view setup. Particularly, Fig. 3b)
shows that the top 10 are mostly in-the-wild datasets, indoor datasets concentrate in the top 20 and
the studio dataset tends to be ranked lower in the benchmark. Moreover, Fig. 2e) illustrates that
in-the-wild datasets exhibit the most diverse distribution, covering both indoor and studio datasets.
Indoor datasets display a reasonable spread, and studio datasets have the least diversity. Our findings
validate previous studies that suggest an indoor-outdoor domain gap [25]. Differing from Pang et
al. [47], which does not differentiate between indoor and studio datasets, we argue that categorizing
all datasets collected indoors into a single class oversimplifies the analysis. For example, consider
EgoBody [66] and Human3.6M [21]. Both datasets does not have outdoor data; however, EgoBody
consists of a wide variety of indoor scenes, whereas Human3.6M consists of only one scene, which
may contribute to the better ranking of EgoBody compared to Human3.6M. Hence, this suggests that
in-the-wild data collection is the most ideal, but diversifying indoor scenes is the best alternative.

Third, most of the five contemporary synthetic datasets [4, 61, 48, 30, 6] demonstrate surprising
strength and are ranked highly in Fig. 3c). It is worth noting that four (UBody, EgoBody, 3DPW, and
EHF) of the five evaluation benchmarks used are real datasets, indicating that knowledge learned
from synthetic data is transferable to real scenarios. To explain this observation, we take a close
look at Fig. 2f): although real and synthetic datasets do not have extensive overlap, synthetic data
possesses two ideal characteristics. First, there is a high overlap between real and synthetic data at
the rightmost cluster. Referring to Fig. 2e), which is drawn from the same distribution, we find that
this cluster primarily represents in-the-wild data. Therefore, synthetic data includes a substantial
number of in-the-wild images that closely resemble real in-the-wild scenarios. Second, synthetic data
also have scatters of image features on other clusters, indicating that synthetic data provides coverage
to some extent for various real-world scenarios.

Fourth, Fig. 3d) reveals that a dataset can be valuable with accurate or pseudo-SMPL-X annotations,
as they constitute the most of the top 10 datasets. A prominent example is InstaVariety [27], which
has only pseudo-SMPL-X annotation produced by NeuralAnnot [45], yet, is ranked third in our
benchmark. However, due to the differences in parameter spaces, SMPL annotations are less effective:
it is observed that datasets with SMPL annotations tend to cluster in the lower bracket of the
benchmark, especially those with pseudo-SMPL annotations. This observation suggests that SMPL-X
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Table 2: Foundation Models. We study the scaling law of the amount of data and the model sizes.
The metrics are MPJPE for 3DPW, and PVE for other evaluation benchmarks. Foundation models are
named “SMPLer-X-MN", where M indicates the size of ViT backbone (S, B, L, H), N is the number
of datasets used in the training. FPS: inference speed (frames per second) on a V100 GPU. MPE:
mean primary error. AGORA uses the validation set, and EgoBody uses the EgoSet.

#Datasets #Inst. Model #Param. FPS AGORA [48] EgoBody [66] UBody [37] 3DPW [56] EHF [49] MPE

5 0.75M SMPLer-X-S5 32M 36.2 119.0 114.2 110.1 110.2 100.5 110.8
10 1.5M SMPLer-X-S10 32M 36.2 116.0 88.6 107.7 97.4 89.9 99.9
20 3.0M SMPLer-X-S20 32M 36.2 109.2 84.3 70.7 87.5 86.6 87.7
32 4.5M SMPLer-X-S32 32M 36.2 105.2 82.5 68.1 83.2 74.1 82.6

5 0.75M SMPLer-X-B5 103M 33.1 102.7 108.1 105.8 104.8 96.1 103.5
10 1.5M SMPLer-X-B10 103M 33.1 97.8 76.4 107.3 89.9 74.7 89.2
20 3.0M SMPLer-X-B20 103M 33.1 95.6 75.5 65.3 83.5 73.0 78.6
32 4.5M SMPLer-X-B32 103M 33.1 88.0 72.7 63.3 80.3 67.3 74.3

5 0.75M SMPLer-X-L5 327M 24.4 88.3 98.7 110.8 97.8 89.5 97.0
10 1.5M SMPLer-X-L10 327M 24.4 82.6 69.7 104.0 82.5 64.0 80.6
20 3.0M SMPLer-X-L20 327M 24.4 80.7 66.6 61.5 78.3 65.4 70.5
32 4.5M SMPLer-X-L32 327M 24.4 74.2 62.2 57.3 75.2 62.4 66.2

5 0.75M SMPLer-X-H5 662M 17.5 89.0 87.4 102.1 88.3 68.3 87.0
10 1.5M SMPLer-X-H10 662M 17.5 81.4 65.7 100.7 78.7 56.6 76.6
20 3.0M SMPLer-X-H20 662M 17.5 77.5 63.5 59.9 74.4 59.4 67.0
32 4.5M SMPLer-X-H32 662M 17.5 69.5 59.5 54.5 75.0 56.8 63.1

annotations are critical to EHPS; fitting pseudo labels is a useful strategy even if they could be noisy.
Moreover, using SMPL labels effectively for SMPL-X estimation remains a challenge.

4 Scaling up EHPS

4.1 Model Architectures

ViT
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Face Head

Body Head

E
m

bedding

Hand Head

ROI++

~~
Positional 
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T𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 T𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕′

Backbone Neck Heads

Figure 4: Architecture of SMPLer-X, which upholds the
idea that "simplicity is beauty". SMPLer-X contains a back-
bone that allows for easy investigation on model scaling, a
neck for hand and face feature cropping, and heads for differ-
ent body parts. Note that we wish to show in this work that
model and data scaling are effective, even with a straightfor-
ward architecture.

Catering to our investigation, we
design a minimalistic framework
(dubbed SMPLer-X) that only retains
the most essential parts for two rea-
sons. First, it must be scalable and ef-
ficient as we train with a large amount
of data. Second, we aim to create a
framework that is decoupled from spe-
cific algorithm designs, providing a
clean foundation for future research.
To this end, SMPLer-X consists of
three parts: a backbone extracts im-
age features, which we employ Vision
Transformer [11] for its scalability; a
neck that predicts bounding boxes and
crop regions of interest from the fea-
ture map for hands and face; regres-
sion heads that estimate parameters for each part. Note that SMPLer-X does not require third-party
detectors [51], cross-part feature interaction modules [8, 13], projection of coarse SMPL-X estima-
tions [63], or a heavy decoder [37]. As the design of SMPLer-X is not the focus of our investigation,
more details are included in the Supplementary Material.

4.2 Training the Generalist Foundation Models

The SOTA methods [37, 44] usually train with only a few (e.g., MSCOCO, MPII, and Human3.6M)
datasets, whereas we investigate training with many more datasets. However, we highlight that the
dataset benchmark in Table 1 cannot be used: selecting datasets based on their performance on the test
sets of the evaluation benchmarks leaks information about the test sets. Hence, we construct another
dataset benchmark in the Supplementary Material, that ranks individual datasets on the training set of
the major EHPS benchmarks. We use four data amounts: 5, 10, 20, and 32 datasets as the training set,
with a total length of 0.75M, 1.5M, 3.0M, and 4.5M instances. We always prioritize higher-ranked
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Table 3: AGORA test set. † denotes the methods that are finetuned on the AGORA training set.
∗denotes the methods that are trained on AGORA training set only.

NMVE↓ (mm) NMJE↓ (mm) MVE↓ (mm) MPJPE↓ (mm)

Method All Body All Body All Body Face LHand RHand All Body Face LHand RHhand

BEDLAM [4] 179.5 132.2 177.5 131.4 131.0 96.5 25.8 38.8 39.0 129.6 95.9 27.8 36.6 36.7
Hand4Whole [44]† 144.1 96.0 141.1 92.7 135.5 90.2 41.6 46.3 48.1 132.6 87.1 46.1 44.3 46.2
BEDLAM [4]† 142.2 102.1 141.0 101.8 103.8 74.5 23.1 31.7 33.2 102.9 74.3 24.7 29.9 31.3
PyMaF-X [63]† 141.2 94.4 140.0 93.5 125.7 84.0 35.0 44.6 45.6 124.6 83.2 37.9 42.5 43.7
OSX [37] ∗ 130.6 85.3 127.6 83.3 122.8 80.2 36.2 45.4 46.1 119.9 78.3 37.9 43.0 43.9
HybrIK-X [33] 120.5 73.7 115.7 72.3 112.1 68.5 37.0 46.7 47.0 107.6 67.2 38.5 41.2 41.4
SMPLer-X-L20 133.1 88.1 128.9 84.6 123.8 81.9 37.4 43.6 44.8 119.9 78.7 39.5 41.4 44.8
SMPLer-X-L32 122.8 80.3 119.1 77.6 114.2 74.7 35.1 41.3 42.2 110.8 72.2 36.7 39.1 40.1
SMPLer-X-L20† 107.2 68.3 104.1 66.3 99.7 63.5 29.9 39.1 39.5 96.8 61.7 31.4 36.7 37.2

Table 4: AGORA Val set. † and ∗ are finetuned
on the AGORA training set, and trained on the
AGORA training set only, respectively.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [44]† 73.2 9.7 4.7 183.9 72.8 81.6
OSX [37] 69.4 11.5 4.8 168.6 70.6 77.2
OSX [37]∗ 45.0 8.5 3.9 79.6 48.2 37.9
SMPLer-X-B1∗ 48.9 8.6 4.0 86.1 51.5 41.2
SMPLer-X-L20 48.6 8.9 4.0 80.7 51.0 41.3
SMPLer-X-L32 45.1 8.7 3.8 74.2 47.8 38.7
SMPLer-X-L20† 39.1 9.3 3.8 62.5 42.3 32.8

Table 5: EHF. As EHF does not have a training
set to benchmark datasets, we do not perform
finetuning. Moreover, EHF is not seen in our
training and can be used to validate our founda-
tion models’ transferability.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [44] 50.3 10.8 5.8 76.8 39.8 26.1
OSX [37] 48.7 15.9 6.0 70.8 53.7 26.4
SMPLer-X-L20 37.8 15.0 5.1 65.4 49.4 17.4
SMPLer-X-L32 37.1 14.1 5.0 62.4 47.1 17.0

datasets. To prevent larger datasets from shadowing smaller datasets, we adopt a balanced sampling
strategy. Specifically, all selected datasets are uniformly upsampled or downsampled to the same
length and add up to the designated total length. To facilitate training, we follow OSX [37] to use
AGORA, UBody, MPII, 3DPW, Human3.6M in COCO-format [38], and standardize all other datasets
into the HumanData [10] format. We also study four ViT backbones of different sizes (ViT-Small,
Base, Large and Huge), pretrained by ViTPose [60]. The training is conducted on 16 V100 GPUs,
with a total batch size of 512 (256 for ViT-Huge) for 10 epochs. More training details such as adapting
SMPL or gendered SMPL-X in the training are included in the Supplementary Material.

Table 10: 3DPW. ‡ denotes the methods
that use a head for SMPL regression. †
and ∗ are finetuned on the 3DPW train-
ing set and trained on 3DPW training set
only, respectively. Unit: mm.

Method MPJPE PA-MPJPE

Body-only (SMPL) Methods

OSX-SMPL [37]‡∗ 74.7 45.1
HybrIK [35] 71.6 41.8
CLIFF [36] 68.0 43.0

Whole-Body (SMPL-X) Methods

Hand4Whole [44] 86.6 54.4
ExPose [8] 93.4 60.7
OSX [37]† 86.2 60.6
SMPLer-X-B1∗ 95.6 67.6
SMPLer-X-L20 78.3 52.1
SMPLer-X-L32 75.2 50.5
SMPLer-X-L20† 76.8 51.5

In Table 2, we show experimental results with a various
number of datasets and foundation model sizes. Founda-
tion models are named “SMPLer-X-MN”, where M can
be S, B, L, H that indicates the size of the ViT backbone,
and N indicates the number of datasets used in the train-
ing. For example, SMPLer-X-L10 means the foundation
model takes ViT-L as the backbone, and is trained with
Top 10 datasets (ranked according to the individual dataset
performance on the training sets of the key evaluation
benchmarks). It is observed that 1) more training data
(data scaling) leads to better performance in terms of MPE.
The model performance improves gradually as the number
of training datasets increases. However, besides the incre-
ment in training instances, more datasets provide a richer
collection of diverse scenarios, which we argue is also a
key contributor to the performance gain across evaluation
benchmarks. 2) A larger foundation model (model scaling)
performs better at any given amount of data. However, the
marginal benefits of scaling up decrease beyond model
size L. Specifically, ViT-H has more than twice the parameters than ViT-L, but the performance gain
is not prominent. 3) The foundation model always performs better than in-domain training on a single
training set. For example, SMPLer-X-B20, performs better on the validation set of AGORA, and test
sets of UBody, EgoBody, and 3DPW, than models trained specifically on the corresponding training
set in Table 1. This is useful for real-life applications: instead of training a model for each of the user
cases, a generalist foundation model contains rich knowledge to be a one-size-fits-all alternative.
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Table 6: UBody. † denotes the methods that are
finetuned on the UBody training set. ∗ denotes
the methods that are trained on UBody training
set only.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

PIXIE [13] 61.7 12.2 4.2 168.4 55.6 45.2
Hand4Whole [44] 44.8 8.9 2.8 104.1 45.7 27.0
OSX [37] 42.4 10.8 2.4 92.4 47.7 24.9
OSX [37]† 42.2 8.6 2.0 81.9 41.5 21.2
SMPLer-X-B1∗ 38.5 10.8 3.0 64.8 45.4 22.3
SMPLer-X-L20 33.2 10.6 2.8 61.5 43.3 23.1
SMPLer-X-L32 30.9 10.2 2.7 57.3 39.2 21.6
SMPLer-X-L-20† 31.9 10.3 2.8 57.4 40.2 21.6

Table 7: EgoBody-EgoSet. † denotes the meth-
ods that are finetuned on the EgoBody-EgoSet
training set. ∗ denotes the methods that are
trained on EgoBody-EgoSet training set only.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [44] 58.8 9.7 3.7 121.9 50.0 42.5
OSX [37] 54.6 11.6 3.7 115.7 50.6 41.1
OSX [37]† 45.3 10.0 3.0 82.3 46.8 35.2
SMPLer-X-B1∗ 56.1 10.7 3.5 87.2 49.4 34.9
SMPLer-X-L20 38.9 9.9 3.0 66.6 42.7 31.8
SMPLer-X-L32 36.3 9.8 2.9 62.2 41.4 30.7
SMPLer-X-L20† 37.8 9.9 2.9 63.6 42.5 30.8

Table 8: ARCTIC. † and ∗ denote the methods
that are finetuned on the ARCTIC training set
and trained on the ARCTIC training set only,
respectively.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [44] 63.4 18.1 4.0 136.8 54.8 59.2
OSX [37] 56.9 17.5 3.9 102.6 56.5 44.6
OSX [37]† 33.0 18.8 3.3 58.4 39.4 30.4
SMPLer-X-B1∗ 45.2 18.9 3.4 66.6 42.5 34.0
SMPLer-X-L10 46.9 18.1 2.3 76.9 50.8 33.2
SMPLer-X-L32 29.4 18.9 2.7 48.6 38.8 26.8
SMPLer-X-L10† 33.1 19.0 2.7 54.9 40.1 27.3

Table 9: DNA-Rendering-HiRes. † and ∗ are
finetuned on the DNA-Rendering-HiRes training
set and trained on the DNA-Rendering-HiRes
training set only, respectively.

PA-PVE↓ (mm) PVE↓ (mm)

Method All Hands Face All Hands Face

Hand4Whole [44] 62.8 11.0 4.2 111.4 56.4 52.6
OSX [37] 59.9 10.6 4.3 105.7 55.0 52.5
OSX [37]† 43.5 7.5 3.5 67.1 43.3 38.2
SMPLer-X-B1∗ 45.6 7.5 3.4 63.2 40.7 34.2
SMPLer-X-L20 44.4 11.1 4.5 77.7 47.5 43.2
SMPLer-X-L32 35.8 7.2 3.2 54.4 36.7 34.0
SMPLer-X-L20† 37.9 7.3 3.4 56.5 38.4 34.9

Besides the errors on key benchmarks, we also report the inference speed (in terms of FPS, or frames
per second) of the SMPLer-X model family in Table 2. The testing is conducted on a single V100
GPU with batch size 1, excluding data loading. SMPLer-X family is faster than OSX (12.2 FPS
on a single V100 GPU) using the same test setting, and the smaller versions such as SMPLer-X-S
and SMPLer-X-B can achieve real-time performance, with SMPLer-X-L on the verge of achieving
real-time speeds. The high inference speed is attributed to the minimalistic architecture of SMPLer-X,
which only retains the most essential components for EHPS.

Moreover, we show detailed by-part results of body, hands, and face on main benchmarks such as
AGORA test set (Table 3), AGORA validation set (Table 4), UBody (Table 6), EgoBody-EgoSet
(Table 7) and EHF (Table 5). We also compare our results with whole-body methods on 3DPW
(Table 10). We highlight that the foundation models show strong and balanced performances on all
benchmarks.

Furthermore, we evaluate the transferability of our foundation models on two more benchmarks:
ARCTIC (Table 8) and DNA-Rendering (Table 8). ARCTIC features complicated hand-object
interaction with whole-body annotations, and DNA-Rendering includes diverse subjects, motions,
and garments. Note that ARCTIC is not seen by foundation models trained on Top 10 datasets, and
DNA-Rendering is not seen by foundation models trained on Top 20 datasets. The foundation models,
however, achieve much better performance than SOTAs with conventional data sampling strategies.

In addition, we compare our foundation model with SOTA methods, such as Hand4Whole [44]
and OSX [37] in various scenarios in Fig. 5. These scenarios feature challenging aspects such as
heavy truncation (from only half of the body visible to only the arms visible), difficult body poses in
diverse backgrounds, and rare camera angles (extremely high or low elevation angles). SMPLer-X
demonstrates the strength of massive training data and consistently produces robust estimations.

4.3 Finetuning the Specialists

Training the foundation model with a large number of data is expensive. For example, SMPLer-X-
H20 takes more than 400 GPU hours to train. Hence, it is critical to investigate finetuning strategies
that allow for low-cost adaptation of the foundation model to specific scenarios. We reiterate that in
real-life applications, the test set is inaccessible. Hence, we use our benchmarking strategy and select
five high-ranking datasets on the target training set to finetune the model for 5 epochs. We perform
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GT Hand4Whole OSX SMPLer-X-L32 GT Hand4Whole OSX SMPLer-X-L32

Figure 5: Visualization. We compare SMPLer-X-L32 with OSX [37] and Hand4Whole [44] (trained
with the MSCOCO, MPII, and Human3.6M) in various scenarios such as those with heavy truncation,
hard poses, and rare camera angles.

finetune experiments on ViT-L to match the backbone of current SOTA [37]. The results are shown
in the same tables as the foundation models (Table 3, 4, 5, 6, 7, and 10), where finetuning always lead
to substantial performance enhancement on the foundation models.

5 Conclusion

In this work, we benchmark datasets for EHPS that provide us insights for training and finetuning
a foundation model. Our work is useful in three ways. First, our pretrained model (especially
the backbone) can be a plug-and-play component of a larger system for EHPS and beyond. Sec-
ond, our benchmark serves to gauge the performances of future generalization studies. Third, our
benchmarking-finetuning paradigm can be useful for the rapid adaptation of any foundation model to
specific scenarios. Specifically, users may collect a training set, evaluate pretrained models of various
other datasets on it, and select the most relevant datasets to finetune a foundation model.

Limitations. First, although we use five comprehensive benchmark datasets to gauge the general-
ization capability, they may still be insufficient to represent the real-world distribution. Second, our
experiments do not fully investigate the impact of various model architectures due to the prohibitive
cost of training the foundation model.

Potential negative societal impact. As we study training strong EHPS models and release the
pretrained models, they may be used for unwarranted surveillance or privacy violation.
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