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Abstract

Beam search and exhaustive search are two ex-001
treme ends of text decoding algorithms with002
respect to the search depth. Beam search is lim-003
ited in both search width and depth, whereas004
exhaustive search is a global search that has005
no such limitations. Surprisingly, beam search006
is not only computationally cheaper but also007
performs better than exhaustive search despite008
its higher search error. Plenty of studies have009
reported that moderate search widths work the010
best, but little has been investigated regarding011
the search depth. Based on the success of the012
moderate beam width, we examine a range of013
search depths to see its effect on performance.014
To this end, we introduce Lookahead Beam015
Search (LBS), a multi-step lookahead search016
that optimizes the objective considering a fixed017
number of future steps. Beam search and ex-018
haustive search are special cases of LBS where019
the lookahead depth is set to 0 and∞, respec-020
tively. We empirically evaluate LBS with the021
lookahead depth of up to 3 and show that it im-022
proves upon beam search. Although LBS is not023
a practical algorithm on its own because of its024
computational complexity, the results indicate025
that beam search with moderate widths still has026
room for improvement by searching deeper.027

1 Introduction028

The goal of natural language generation is to gen-029

erate text representing structured information that030

is both fluent and contains the appropriate infor-031

mation. One of the key design decisions in text032

generation is the choice of decoding strategy. The033

decoding strategy is the decision rule used to gener-034

ate strings from a probabilistic model (e.g., Trans-035

former; Vaswani et al., 2017).036

A straightforward solution is to exhaustively037

search for the strings with the highest probabil-038

ity with respect to the model. This is known as039

maximum a posteriori (MAP) decoding. Not040

only exhaustive search is computationally infeasi-041
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Figure 1: Results on machine translation by beam search
and lookahead beam search (LBS) with lookahead depth
1, 2, and 3. The bold line represents the mean and the
shaded area shows the standard error. Evaluated on the
first 100 sentences of WMT’14 En-Fr dataset.

ble, but surprisingly, it is known to produce low- 042

quality text (Murray and Chiang, 2018; Cohen and 043

Beck, 2019). For example, Stahlberg and Byrne 044

(2019) reports that in machine translation tasks, the 045

highest-probability string is often the empty string. 046

Beam search has been the go-to strategy in se- 047

quence generation. Beam search is a local search 048

that greedily optimizes the local objective at each 049

step with constraints on search depth and beam 050

width. It is used in many state-of-the-art NLP ap- 051

plications, including machine translation (Wu et al., 052

2016; Ott et al., 2019; Wolf et al., 2020), text sum- 053

marization (Rush et al., 2015; Narayan et al., 2018), 054

and image captioning (Anderson et al., 2017). How- 055

ever, beam search is known to have high search 056

error (Stahlberg and Byrne, 2019) due to the nature 057

of local search. For example, Welleck et al. (2020) 058

reports that beam search can yield infinite-length 059

outputs that the model assigns zero probability to. 060

Prior work has studied the two extreme ends of 061

the search in terms of search depth. Beam search 062
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is a one-step local search without any consider-063

ation of the future step. Exhaustive search opti-064

mizes the global objective without regard to local065

optimality at each step. Plenty of studies have in-066

vestigated the effect of beam width on the search067

procedure and reported that a beam width that is068

neither too large nor too small is effective (Koehn069

and Knowles, 2017; Stahlberg and Byrne, 2019;070

Meister et al., 2020a). However, in terms of search071

depth, little has been investigated between the two072

extreme ends. The research question we investigate073

is whether there is a better trade-off between the074

two ends in terms of search depth.075

To analyze the effect of the search depth on076

the quality of the generated sequences, we intro-077

duce Lookahead Beam Search (LBS), a variant078

of beam search with multiple steps lookahead to079

improve the estimate of the next step. Beam search080

and exhaustive search is a special case of LBS with081

lookahead depth of 0 and ∞, respectively. We082

empirically evaluate the performance of LBS in083

machine translation tasks. The results show that084

LBS with up to 3-step lookaheads outperforms the085

performance of beam search and exhaustive search086

overall using Transformer-based models (Figure087

1).088

2 Neural Text Generation089

Sequence-to-sequence generation is the task of090

generating an output sequence y given an input091

sequence x. Probabilistic text generators define092

a probability distribution pθ(y|x) over an output093

space of hypotheses Y conditioned on an input x.094

The set of complete hypotheses Y is:095

Y := {BOS ◦ v ◦ EOS|v ∈ V∗}, (1)096

where ◦ is a string concatenation and V∗ is the097

Kleene closure of a set of vocabulary V . In practice,098

we set the maximum sequence length to nmax to099

limit the hypothesis space to Vnmax . The goal of100

decoding is to find the highest-scoring hypothesis101

for a given input.102

2.1 Exhaustive Search103

One of the most important objectives is the maxi-104

mum a posterior (MAP) objective to find the most105

probable hypothesis among all:106

y∗ := argmax
y∈Y

log pθ(y|x). (2)107

We consider standard left-to-right autoregressive 108

models for the model pθ: 109

pθ(y|x) =
|y|∏
t=1

pθ(yt|x,y<t). (3) 110

where each pθ(yt|x,y<t) is a distribution with 111

support over a set of vocabulary and the EOS: 112

V̄ = V ∪ {EOS}. 113

A straightforward solution to this problem is to 114

maximize the MAP objective by exhaustively enu- 115

merating all possible hypotheses in Y . Although 116

it seems intuitive to use exhaustive search, prior 117

work has pointed out several problems with this 118

strategy. First, since the size of hypotheses set |Y| 119

is extremely large, exhaustive search over Y is com- 120

putationally infeasible. In fact, solving Eq. 2 is 121

shown to be NP-hard (Chen et al., 2018). Second, 122

even if we solve it optimally, the MAP objective 123

often leads to low-quality results (Stahlberg and 124

Byrne, 2019; Holtzman et al., 2020; Meister et al., 125

2020a). 126

2.2 Beam Search 127

A common heuristic to solve the decoding problem 128

is greedy search, a local search with a greedy proce- 129

dure. Greedy search sequentially chooses the token 130

yt at each time step t that maximizes p(yt|y<t,x) 131

until the EOS token is generated or the maximum 132

sequence length nmax is reached. Beam search is a 133

generalization of greedy search where it selects the 134

top k tokens at each step. 135

Let Yt be the set of hypotheses at t-th step. Beam 136

search is expressed as the following recursion: 137

Y0 = {BOS}, 138

Yt = arg topk
y∈Bt

(log pθ(y|x)) (4) 139

where the candidate set Bt is defined as: 140

Bt = {y<t ◦ yt|yt ∈ V̄ ∧ y<t ∈ Yt−1}, (5) 141

for each t > 0. Beam search runs the recursion 142

for a fixed number of iterations nmax and returns 143

the set of hypotheses Ynmax . The most probable 144

hypothesis (Eq. 2) in Ynmax is the output of the 145

decoding. 146

Many of the decoding strategies used in statisti- 147

cal machine learning systems are variants of beam 148

search (Vijayakumar et al., 2018; Meister et al., 149

2021a; Anderson et al., 2017; Hokamp and Liu, 150

2017; King et al., 2022; Wan et al., 2023). Al- 151

though beam search does not solve Eq. 2 exactly, 152
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it is a surprisingly useful strategy for NLP mod-153

els. In many settings, beam search outperforms154

exhaustive search in terms of downstream evalua-155

tion (Stahlberg and Byrne, 2019; Holtzman et al.,156

2020; Meister et al., 2020a).157

The drawback of beam search is that it is known158

to have high search errors due to the nature of local159

search (Stahlberg and Byrne, 2019). For example,160

previous work has reported degenerations such as161

repetitions and infinite-length outputs (Holtzman162

et al., 2020; Welleck et al., 2020).163

2.3 Uniform Information Density164

Meister et al. (2020a) explains the effectiveness165

of beam search by introducing the Uniform Infor-166

mation Density (UID) hypothesis. The UID hy-167

pothesis claims that communicative efficiency is168

maximized when information is distributed as uni-169

formly as possible throughout the sequence (Levy,170

2005; Levy and Jaeger, 2006). They study the in-171

formation density of sentences generated by NMT172

systems quantitatively by measuring the amount of173

information conveyed by a word as surprisal (Hale,174

2001). The surprisal u using a statistical language175

model is defined as follows:176

u0(BOS) = 0,177

ut(y) = − log pθ(y|x,y<t).178

Meister et al. (2020a) shows that the variance of sur-179

prisals and BLEU have a strong relationship in their180

empirical evaluation of NMT models. They hypoth-181

esize that while restricting beam search leads to182

high search error in beam search, it also induces an183

inductive bias that may be related to promoting uni-184

form information density, leading to the generation185

of higher quality sequences.186

3 Lookahead Beam Search187

To study the effect of search depth, we first intro-188

duce Lookahead Beam Search (LBS). LBS is a189

simple extension of beam search that deploys a190

lookahead strategy to optimize the multi-step score191

instead of the immediate score (Figure 2). In addi-192

tion to the score given by the current partial hypoth-193

esis, LBS-d incorporates the maximum possible194

score achievable in the d-step future. We replace195

Eq. 4 with the following:196

Y0 = {BOS},197

Yt = arg topk
y∈Bt

(log pθ(y|x) + hd(y)), (6)198

Figure 2: Comparison of Lookahead Beam Search and
beam search. While beam search chooses the next hy-
potheses according to the current score of the hypothesis,
lookahead beam search chooses them according to the
current score plus the highest possible score achievable
within d-step future.

where hd(y) is the highest score achievable of d- 199

step future starting from y. hd(y) is defined as: 200

hd(y1:t) = max
y1:t+d∈Bd

t

log pθ(y1:t+d|x,y), 201

Bdt = {y1:t ◦ yt+1 ◦ ... ◦ yt+d| 202

yt+1, ..., yt+d ∈ V̄}. (7) 203

The lookahead depth d is the hyperparameter of 204

the algorithm to control the locality of the search. 205

The search becomes more local and shallow as d 206

becomes smaller. In particular, if d = 0, it recovers 207

beam search. The search becomes more exhaustive 208

with larger d, and d ≥ nmax recovers exhaustive 209

search. 210

Proposition 1. Lookahead Beam Search (LBS) is 211

a generalization of beam search and exhaustive 212

search. That is, 213

1. LBS-0 recovers beam search. 214

2. LBS-d with d ≥ nmax recovers exhaustive 215

search. 216

The proof is immediate from the definition of 217

LBS. 218

3.1 Implementation 219

A straightforward implementation to compute 220

hd(y) is by a breadth-first search which needs to 221

call the scoring function for k|V̄|d times per step. 222

This is prohibitively expensive because the vocabu- 223

lary size |V| is large in many tasks (e.g. >30000). 224

To reduce the computation time, we implement the 225

evaluation of hd by best-first branch-and-bound 226

search. Algorithm 1 describes the procedure of 227

lookahead beam search. Since the scoring function 228
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Algorithm 1: Lookahead Beam Search-d

Input: a set of hypotheses Yt−1 of length t− 1
Output: a set of hypotheses Yt of length t

1: B = {yt−1 ◦ y|y ∈ V̄}
2: {y1

t ,y
2
t , ...,y

b
t} = sort(B) in a descending or-

der of p(yi
t|x)

3: Y ′ ← ∅
4: b← |V̄|
5: for i ∈ {1, ..., b} do
6: if log pθ(y

i
t|x) < min topky∈Y ′(f(y))

then
7: return Yt = arg topky∈Y ′(f(y))
8: end if
9: f(yi

t)← Eval(yi
t, d,min topky∈Y ′(f(y)))

10: if f(yi
t) > min topky∈Y ′(f(y)) then

11: Y ′ ← Y ′ ∪ {yi
t}

12: end if
13: end for
14: return Yt = arg topky∈Y ′(f(y))

is monotonically decreasing (Meister et al., 2020b),229

we can prune a partial hypothesis that is lower than230

the current k-th largest score before expanding the231

hypothesis further. The min topk returns the k-th232

largest score among Y ′ if |Y ′| ≥ k and negative233

infinity otherwise. We explore the candidates in234

best-first order – the hypothesis with the highest235

score is explored first. In this way, we have a higher236

chance of pruning the less promising hypothesis,237

thus reducing computation. Because it only prunes238

paths which has no chance of getting into the top-k,239

it is guaranteed to find the same hd as breadth-first240

search.241

4 Experiments242

To study the effect of search depth, we evalu-243

ate LBS on decoding neural machine translation244

(NMT) models. Experiments are performed on245

WMT’14 En-Fr and En-De datasets (Bojar et al.,246

2014). We evaluate the text quality by BLEU247

(Papineni et al., 2002) using the SacreBLEU sys-248

tem (Post, 2018).1 For reproducibility, we use the249

Transformer-based pretrained models provided by250

fairseq (Ott et al., 2019).2 We build the decoding251

framework in SGNMT (Stahlberg et al., 2017).3252

Due to the long duration (Table 6) and computa-253

1https://github.com/mjpost/sacrebleu
2https://github.com/facebookresearch/fairseq/

tree/main/examples/translation
3https://github.com/ucam-smt/sgnmt

Algorithm 2: Eval(yt, d, fmax)

Input: a hypothesis yt, a depth d, and a threshold
fmax

Output: a score of the hypothesis hd(y)
1: if d = 0 then
2: return log pθ(yt|x)
3: end if
4: B = {yt ◦ y|y ∈ V̄}
5: {y1

t+1,y
2
t+1, ...,y

b
t+1} = sort(B) in a de-

scending order of log pθ(yi
t+1|x)

6: for i ∈ {1, ..., b} do
7: if log pθ(yi

t+1) < fmax then
8: return fmax

9: end if
10: fi ← Eval(yi

t+1, d− 1, fmax)
11: if fi > fmax then
12: fmax ← fi
13: end if
14: end for
15: return fmax

tional constraints, we present the evaluation on the 254

first 100 sentences. We evaluate with a beam width 255

of k ∈ {5, 10, 15, 20}. To reduce the computa- 256

tional load of the experiment, we prune lookahead 257

branches except for the top-kl scoring branches. 258

Although it no longer guarantees to find the hd, 259

we observe that the BLEU score of LBS-1 with 260

kl = 3k is the same as the LBS-1 with kl =∞ for 261

k = 1, 5 using the first 10 sentences of WMT’14 262

En-Fr, so we expect it to be a valid approximation 263

of the exact LBS-1. 264

4.1 Analysis of Search Depth 265

The summary of the analysis is as follows. 266

• BLEU scores are slightly improved with d = 267

1, 2, and 3 lookaheads (Figure 1). However, 268

a lookahead depth of 3 has diminished return 269

compared to d = 2. 270

• We observe a trade-off between search error 271

and UID error with varying lookahead depth 272

(Figure 4). Although search error is decreased 273

with larger lookahead depth, UID error is in- 274

creased at the same time. This is analogous 275

to the observation of beam width by Meister 276

et al. (2020a). 277

• Lookahead depths of up to 3 have little effect 278

on sequence length, while beam width has a 279

strong negative correlation with it (Figure 7). 280
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Figure 3: Difference in perplexity (search error) and average standard deviation of surprisals per sequence (UID
error) of lookahead beam search (LBS) compared to beam search. The bold line represents the mean over the beam
widths (k ∈ {5, 10, 15, 20}). The shaded area shows the standard error. Evaluated on the first 100 sentences of
WMT’14 En-Fr and En-De.
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Figure 4: Difference in negative log-likelihood (search
error) and average standard deviation of surprisals per
sequence (UID error) of lookahead beam search (LBS)
compared to beam search. The bold line represents the
mean over the beam widths (k ∈ {5, 10, 15, 20}). The
shaded area shows the standard error. Evaluated on the
first 100 sentences of WMT’14 En-Fr.

4.1.1 BLEU Score281

Figure 1 demonstrates how the lookahead strat-282

egy affects the quality of the results as the looka-283

head depth varies on WMT’14 En-Fr. In particular,284

LBS-2 achieves the best overall BLEU score. We285

observe a reduced improvement with a lookahead286

depth of 3 (LBS-3) compared to LBS-2. The BLEU287

score of the En-De dataset is present in Table 1. For288

En-De, the highest BLEU score is achieved with289

a beam width of 5 and a lookahead depth of 1 or290

2. In both datasets, LBS achieves a better BLEU291

score than beam search in all widths. Interestingly,292

the advantage of LBS over beam search is reduced293

with d = 3. We also evaluate an exhaustive search294
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Figure 5: Negative log-likelihood (search error) and the
average standard deviation of surprisals per sequence
(UID error) by lookahead beam search (LBS). The bold
line represents the mean over lookahead depth of d ∈
{0, 1, 2, 3}. The shaded area shows the standard error.
Evaluated on the first 100 sentences of WMT’14 En-Fr.

(MAP decoding) which corresponds to LBS with 295

d = ∞ (Table 2). As observed in previous work 296

(Stahlberg and Byrne, 2019), the BLEU score drops 297

significantly with an exhaustive search. 298

4.1.2 Why is there a “sweet spot” for 299

lookahead depth? 300

We observe that a lookahead depth of d = 2 out- 301

performs d = 0, 1, and 3 (Figure 1). The question 302

is why there is a “sweet spot” for lookahead depth. 303

Our hypothesis is that this phenomenon can be ex- 304

plained by the trade-off between the search error 305

and the UID error. We measure the search error 306

per token and per sentence using two metrics, the 307

loss of perplexity (Figure 3) and the negative log- 308
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WMT’14 En-Fr

Decoder k = 5 k = 10 k = 15 k = 20

beam 35.3 35.5 35.4 35.2
LBS-1 35.8 35.7 35.6 35.5
LBS-2 36.1 36.1 35.7 35.7
LBS-3 35.7 35.9 35.6 35.4

WMT’14 En-De

Decoder k = 5 k = 10 k = 15 k = 20

beam 22.7 21.9 22.0 21.8
LBS-1 23.2 22.6 22.2 21.5
LBS-2 23.2 22.7 22.6 22.6
LBS-3 23.0 22.7 23.0 23.0

Table 1: Evaluation of lookahead beam search on
the first 100 sentences of WMT’14 En-Fr and En-De
datasets. The best for each beam width is bolded. The
best for each dataset is underlined.

Dataset En-Fr En-De

BLEU 2.2 6.0
sequence length 9.169 16.217

negative log-likelihood 8.195 8.246
stddev of surprisals 0.291 0.486

Table 2: Results of exhaustive search (i.e. LBS-∞) on
the first 100 sentences of WMT’14 En-Fr and En-De
datasets.

likelihood compared to beam search (4). We ob-309

serve that increasing the lookahead depth reduces310

the search error measured by both the perplexity311

and the negative log-likelihood on both datasets.312

A prior study reports that the deviation from uni-313

form information density measured by the standard314

deviation of surprisals has a negative correlation315

with the BLEU score (Meister et al., 2020a). We316

report the standard deviation of surprisals as UID317

error in Figure 3 and 4 (right axis). We observe a318

negative correlation between lookahead depth and319

the standard deviation of surprisals.320

Overall, the result shows that deeper lookaheads321

improve the search error, but at the cost of higher322

UID error at the same time. We speculate that a323

lookahead depth of 2 happens to be a better trade-324

off between search error and UID error in our ex-325

perimental setting. We also observe a similar trend326

for beam width (Figure 5), as indicated by Meister327

et al. (2020a).328

Does Search error alone explain the results? We329
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Figure 6: Average standard deviation of surprisals per
sequence (UID error) and BLEU with lookahead beam
search (LBS) for different beam widths and lookahead
depths (WMT’14 En-Fr).

observe that increasing the lookahead depth tends 330

to improve both the perplexity and negative log- 331

likelihood (Figure 3 and 4). Therefore, search er- 332

ror, measured as both negative log-likelihood and 333

perplexity, decreases with increasing lookahead 334

depth. Thus, search error alone does not explain 335

why d = 2 has the highest BLEU score. 336

Does UID error alone explain the results? Figure 337

6 shows the standard deviation of surprisals and 338

BLEU for different numbers of lookahead depths 339

and beam widths. Although LBS has higher BLEU 340

scores than beam search, it also has a higher aver- 341

age standard deviation of surprisals per sentence. 342

Therefore, the UID error alone cannot account for 343

the effect of lookahead depth on the BLEU scores. 344

4.1.3 Does searching deeper result in shorter 345

output? 346

Previous studies reported that beam search with 347

larger widths is likely to result in shorter sequences 348

(Koehn and Knowles, 2017; Stahlberg and Byrne, 349

2019; Holtzman et al., 2020). To see the effect of 350

search depth on length, we show the average length 351

of the output sequences in Figure 7. We observe 352

that while widening the beam reduces the output 353

sequence length, deepening the lookahead by up to 354

3 steps does not. The correlation of beam width and 355

lookahead depth with sequence length is−0.92 and 356

0.12, respectively. While beam width has a clear 357

negative correlation with output sequence length, 358

lookahead depth has little effect on sequence length. 359

Thus, the length bias is unlikely to be the reason 360

why BLEU score decreases with d = 3. 361
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Figure 7: Average sequence length for varying lookahead depth and beam width (WMT’14 En-Fr). The correlation
of lookahead depth and beam width with the average sequence length is 0.12 and −0.92, respectively.

Decoder k = 1 k = 2 k = 5 k = 10

beam 33.6 34.5 34.6 34.9
LBS-1 34.6 34.8 34.1 35.3
LBS-2 33.9 35.0 34.6 35.0
LBS-3 33.4 34.0 34.4 34.5

Table 3: BLEU on the first 100 sentences of WMT’14
En-Fr using a fully convolutional decoder. The best for
each beam width is bolded. The best score over all the
conditions is underlined.

4.1.4 Is the result specific to the Transformer362

model?363

To test the effect of the lookahead strategy on non-364

Transformer models, we evaluate the performance365

of LBS on a fully convolutional decoder proposed366

by Gehring et al. (2017). For reproducibility, we367

use the pretrained model provided by fairseq.4 Ta-368

ble 3 reports the BLEU score. We observe that369

LBS-1 with k = 10 achieves the best score. Similar370

to the results of Transformer models, LBS achieves371

the same or higher BLEU scores in all widths of372

beam search.373

4.1.5 Extended Evaluation of LBS-1374

To evaluate the lookahead strategy more precisely,375

we evaluate LBS-1 on the entire WMT’14 En-Fr376

and En-De dataset. Due to computational con-377

straints, we present only the evaluation of LBS-1.378

Table 4 reports the BLEU score. We observe that379

LBS-1 achieves slightly higher BLEU compared to380

beam search except for En-Fr with k = 15. In both381

4https://github.com/facebookresearch/fairseq/
tree/main/examples/translation

WMT’14 En-Fr

Decoder k = 1 k = 5 k = 10 k = 15

beam 34.8 35.8 36.0 36.0
LBS-1 35.2 35.9 36.1 35.9

WMT’14 En-De

Decoder k = 1 k = 5 k = 10 k = 15

beam 28.6 29.3 29.0 28.9
LBS-1 28.8 29.4 29.2 29.0

Table 4: BLEU on the entire dataset on WMT’14 En-Fr
and En-De. The best for each beam width is bolded.
The best for each dataset is underlined.

datasets, LBS-1 achieves the highest BLEU score. 382

4.2 Running Time 383

Table 5 reports the number of calls to the scor- 384

ing function (e.g. probabilistic model) by looka- 385

head beam search. We observe that the number 386

of calls grows rapidly with increasing lookahead 387

depth. The wall-clock time of LBS is also signif- 388

icantly larger than beam search especially when 389

the lookahead depth is large. As the evaluation is 390

the most time-consuming operation of the decod- 391

ing, the wall-clock time is roughly proportional to 392

the number of calls (Figure 8). Note that the wall- 393

clock time is heavily dependent on the hardware, 394

so the values should be taken as a reference point 395

rather than an absolute measure. As a reference, all 396

the experiments are performed on g4dn.xlarge 397

instances on AWS EC2 (4 vCPU cores, 16 GB 398

memory, and an NVIDIA T4 GPU). 399
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Decoder k = 5 k = 10 k = 15 k = 20

beam 145.86 291.38 436.07 580.99
LBS-1 718.02 1841.83 3142.28 4590.62
LBS-2 2103.73 6270.25 11630.90 17946.10
LBS-3 4656.60 14471.00 27364.80 42597.90

Table 5: Average number of calls to the scoring function
(probabilistic model) per sentence (WMT’14 En-Fr).

Decoder k = 5 k = 10 k = 15 k = 20

beam 2.04 3.98 5.44 7.59
LBS-1 22.93 58.55 90.45 138.31
LBS-2 53.91 165.13 302.62 482.58
LBS-3 102.71 329.69 640.80 999.73

Table 6: Average running time (sec) per sentence
(WMT’14 En-Fr). Note that the wall-clock time is heav-
ily dependent on the hardware.

5 Related Work400

The phenomenon that using a larger beam leads401

to worse performance has been analyzed in a num-402

ber of studies (Koehn and Knowles, 2017; Murray403

and Chiang, 2018; Yang et al., 2018; Stahlberg404

and Byrne, 2019; Cohen and Beck, 2019; Leblond405

et al., 2021). Many of the authors observe that406

widening the beam search degrades performance407

due to a bias in sequence models to favor shorter se-408

quences even with a length penalty. Other authors409

have investigated why beam search successfully410

generates high quality sequences. The uniform in-411

formation density hypothesis (Levy, 2005; Levy412

and Jaeger, 2006) is introduced to explain why413

beam search outperforms exhaustive search (Meis-414

ter et al., 2020a, 2021b). They hypothesize that415

narrowing the width of beam search induces a bias416

in the decoding that enforces uniform information417

density, resulting in higher quality sequences. Al-418

though many have studied the width of the beam419

search, little is known about the depth of the search.420

Our work extends the analysis to the search depth421

and observes a similar trade-off between search422

and UID error, which is balanced by the lookahead423

depth parameter.424

Some authors have studied lookahead strategies425

for decoding. Hargreaves et al. (2021) investigates426

the greedy roll-out strategy to apply reranking dur-427

ing decoding instead of only at the end. Lu et al.428

(2022) evaluated several lookahead strategies to es-429

timate the future score of the given partial hypothe-430

sis. Several works have investigated the lookahead431
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Figure 8: Comparison of the average number of calls to
the scoring function to the wall-clock time (WMT’14
En-Fr).

strategy for constraint sentence generation tasks 432

using Monte Carlo sampling (Miao et al., 2019; 433

Zhang et al., 2020; Leblond et al., 2021). Our anal- 434

ysis provides a fundamental insight into why these 435

lookahead strategies can be effective. 436

This work focuses on the quality of the text evalu- 437

ated by its similarity to the reference text. Previous 438

work has investigated other factors such as diversity 439

(Vijayakumar et al., 2018; Meister et al., 2021a), 440

constraints (Anderson et al., 2017; Hokamp and 441

Liu, 2017), or faithfulness (King et al., 2022; Wan 442

et al., 2023). How the lookahead strategy affects 443

these factors is an open question. 444

6 Conclusion 445

To study the effect of search depth on the perfor- 446

mance of decoding strategies for text generation 447

models, we introduce Lookahead Beam Search 448

(LBS). LBS is a generalization of beam search and 449

exhaustive search that allows control of the looka- 450

head depth by its hyperparameter. We observe that 451

increasing lookahead depth reduces search error 452

but increases UID error, similar to the observation 453

reported by Meister et al. (2020a) for increasing 454

beam width. LBS with a lookahead depth of 1 to 455

3 slightly improves upon beam search in machine 456

translation tasks. This is analogous to the empiri- 457

cal observation that a beam width of a certain size 458

often improves upon beam width of 1 (i.e. greedy 459

search). The results indicate room for improvement 460

orthogonal to width by searching deeper. 461
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7 Limitations and Risks462

All the experiments are conducted on machine463

translation tasks. Although we expect the effect464

of the search depth is not specific to machine trans-465

lation, it is not evaluated on other text generation466

tasks.467

The primary focus of the study is on analyzing468

the effect of the lookahead strategy, not on propos-469

ing a new practically useful decoding algorithm.470

Because the inference of LBS is very slow com-471

pared to the beam search, it is not a practical option472

as is.473

Due to limited computational resources, our ex-474

periments use only part of the dataset instead of475

the whole dataset. As a result, the scores are not476

directly comparable with the existing literature.477

While language generation can be used for ma-478

licious purposes, we do not foresee any specific479

ethical concerns with the analysis in this paper be-480

yond those discussed by Bender et al. (2021).481

References482

Peter Anderson, Basura Fernando, Mark Johnson, and483
Stephen Gould. 2017. Guided open vocabulary im-484
age captioning with constrained beam search. In485
Proceedings of the 2017 Conference on Empirical486
Methods in Natural Language Processing, pages 936–487
945, Copenhagen, Denmark. Association for Compu-488
tational Linguistics.489

Emily M. Bender, Timnit Gebru, Angelina McMillan-490
Major, and Shmargaret Shmitchell. 2021. On the491
dangers of stochastic parrots: Can language mod-492
els be too big? In Proceedings of the 2021 ACM493
Conference on Fairness, Accountability, and Trans-494
parency, FAccT ’21, page 610–623, New York, NY,495
USA. Association for Computing Machinery.496
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