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Abstract

Beam search and exhaustive search are two ex-
treme ends of text decoding algorithms with
respect to the search depth. Beam search is lim-
ited in both search width and depth, whereas
exhaustive search is a global search that has
no such limitations. Surprisingly, beam search
is not only computationally cheaper but also
performs better than exhaustive search despite
its higher search error. Plenty of studies have
reported that moderate search widths work the
best, but little has been investigated regarding
the search depth. Based on the success of the
moderate beam width, we examine a range of
search depths to see its effect on performance.
To this end, we introduce Lookahead Beam
Search (LBS), a multi-step lookahead search
that optimizes the objective considering a fixed
number of future steps. Beam search and ex-
haustive search are special cases of LBS where
the lookahead depth is set to 0 and oo, respec-
tively. We empirically evaluate LBS with the
lookahead depth of up to 3 and show that it im-
proves upon beam search. Although LBS is not
a practical algorithm on its own because of its
computational complexity, the results indicate
that beam search with moderate widths still has
room for improvement by searching deeper.

1 Introduction

The goal of natural language generation is to gen-
erate text representing structured information that
is both fluent and contains the appropriate infor-
mation. One of the key design decisions in text
generation is the choice of decoding strategy. The
decoding strategy is the decision rule used to gener-
ate strings from a probabilistic model (e.g., Trans-
former; Vaswani et al., 2017).

A straightforward solution is to exhaustively
search for the strings with the highest probabil-
ity with respect to the model. This is known as
maximum a posteriori (MAP) decoding. Not
only exhaustive search is computationally infeasi-
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Figure 1: Results on machine translation by beam search
and lookahead beam search (LBS) with lookahead depth
1, 2, and 3. The bold line represents the mean and the
shaded area shows the standard error. Evaluated on the
first 100 sentences of WMT’ 14 En-Fr dataset.

ble, but surprisingly, it is known to produce low-
quality text (Murray and Chiang, 2018; Cohen and
Beck, 2019). For example, Stahlberg and Byrne
(2019) reports that in machine translation tasks, the
highest-probability string is often the empty string.

Beam search has been the go-to strategy in se-
quence generation. Beam search is a local search
that greedily optimizes the local objective at each
step with constraints on search depth and beam
width. It is used in many state-of-the-art NLP ap-
plications, including machine translation (Wu et al.,
2016; Ott et al., 2019; Wolf et al., 2020), text sum-
marization (Rush et al., 2015; Narayan et al., 2018),
and image captioning (Anderson et al., 2017). How-
ever, beam search is known to have high search
error (Stahlberg and Byrne, 2019) due to the nature
of local search. For example, Welleck et al. (2020)
reports that beam search can yield infinite-length
outputs that the model assigns zero probability to.

Prior work has studied the two extreme ends of
the search in terms of search depth. Beam search



is a one-step local search without any consider-
ation of the future step. Exhaustive search opti-
mizes the global objective without regard to local
optimality at each step. Plenty of studies have in-
vestigated the effect of beam width on the search
procedure and reported that a beam width that is
neither too large nor too small is effective (Koehn
and Knowles, 2017; Stahlberg and Byrne, 2019;
Meister et al., 2020a). However, in terms of search
depth, little has been investigated between the two
extreme ends. The research question we investigate
is whether there is a better trade-off between the
two ends in terms of search depth.

To analyze the effect of the search depth on
the quality of the generated sequences, we intro-
duce Lookahead Beam Search (LBS), a variant
of beam search with multiple steps lookahead to
improve the estimate of the next step. Beam search
and exhaustive search is a special case of LBS with
lookahead depth of 0 and oo, respectively. We
empirically evaluate the performance of LBS in
machine translation tasks. The results show that
LBS with up to 3-step lookaheads outperforms the
performance of beam search and exhaustive search
overall using Transformer-based models (Figure

D).
2 Neural Text Generation

Sequence-to-sequence generation is the task of
generating an output sequence y given an input
sequence X. Probabilistic text generators define
a probability distribution py(y|x) over an output
space of hypotheses ) conditioned on an input x.
The set of complete hypotheses ) is:

Y :={BOSovoEOS|v eV} (1)

where o is a string concatenation and V* is the
Kleene closure of a set of vocabulary V. In practice,
we set the maximum sequence length to npyax to
limit the hypothesis space to V™==x. The goal of
decoding is to find the highest-scoring hypothesis
for a given input.

2.1 Exhaustive Search

One of the most important objectives is the maxi-
mum a posterior (MAP) objective to find the most
probable hypothesis among all:

y" := arg max log pg(y|x). 2)
yEY

We consider standard left-to-right autoregressive
models for the model py:

]

pa(ylx) = [ [ po(welx, y<t). 3)
t=1

where each pg(y;|x,y<;) is a distribution with
support over a set of vocabulary and the EOS:
VY =V U{EOS}.

A straightforward solution to this problem is to
maximize the MAP objective by exhaustively enu-
merating all possible hypotheses in V. Although
it seems intuitive to use exhaustive search, prior
work has pointed out several problems with this
strategy. First, since the size of hypotheses set ||
is extremely large, exhaustive search over ) is com-
putationally infeasible. In fact, solving Eq. 2 is
shown to be NP-hard (Chen et al., 2018). Second,
even if we solve it optimally, the MAP objective
often leads to low-quality results (Stahlberg and
Byrne, 2019; Holtzman et al., 2020; Meister et al.,
2020a).

2.2 Beam Search

A common heuristic to solve the decoding problem
is greedy search, a local search with a greedy proce-
dure. Greedy search sequentially chooses the token
Y at each time step ¢ that maximizes p(y¢|y <¢, X)
until the EOS token is generated or the maximum
sequence length n,,x is reached. Beam search is a
generalization of greedy search where it selects the
top k tokens at each step.

Let Y; be the set of hypotheses at ¢-th step. Beam
search is expressed as the following recursion:

Yy = {BOS},
Y, = arg topk(log py(y|x)) )
yeB:

where the candidate set B; is defined as:

Bi={y<toylyt EVAy<«t €Yiq}, (5

for each t > 0. Beam search runs the recursion
for a fixed number of iterations n,,,x and returns
the set of hypotheses Y;, ... The most probable
hypothesis (Eq. 2) in Y,,___ is the output of the
decoding.

Many of the decoding strategies used in statisti-
cal machine learning systems are variants of beam
search (Vijayakumar et al., 2018; Meister et al.,
2021a; Anderson et al., 2017; Hokamp and Liu,
2017; King et al., 2022; Wan et al., 2023). Al-
though beam search does not solve Eq. 2 exactly,

max



it is a surprisingly useful strategy for NLP mod-
els. In many settings, beam search outperforms
exhaustive search in terms of downstream evalua-
tion (Stahlberg and Byrne, 2019; Holtzman et al.,
2020; Meister et al., 2020a).

The drawback of beam search is that it is known
to have high search errors due to the nature of local
search (Stahlberg and Byrne, 2019). For example,
previous work has reported degenerations such as
repetitions and infinite-length outputs (Holtzman
et al., 2020; Welleck et al., 2020).

2.3 Uniform Information Density

Meister et al. (2020a) explains the effectiveness
of beam search by introducing the Uniform Infor-
mation Density (UID) hypothesis. The UID hy-
pothesis claims that communicative efficiency is
maximized when information is distributed as uni-
formly as possible throughout the sequence (Levy,
2005; Levy and Jaeger, 2006). They study the in-
formation density of sentences generated by NMT
systems quantitatively by measuring the amount of
information conveyed by a word as surprisal (Hale,
2001). The surprisal v using a statistical language
model is defined as follows:

uo(BOS) = O,
ui(y) = —log pa(y|x, y<t).

Meister et al. (2020a) shows that the variance of sur-
prisals and BLEU have a strong relationship in their
empirical evaluation of NMT models. They hypoth-
esize that while restricting beam search leads to
high search error in beam search, it also induces an
inductive bias that may be related to promoting uni-
form information density, leading to the generation
of higher quality sequences.

3 Lookahead Beam Search

To study the effect of search depth, we first intro-
duce Lookahead Beam Search (LBS). LBS is a
simple extension of beam search that deploys a
lookahead strategy to optimize the multi-step score
instead of the immediate score (Figure 2). In addi-
tion to the score given by the current partial hypoth-
esis, LBS-d incorporates the maximum possible
score achievable in the d-step future. We replace
Eq. 4 with the following:

Yy = {BOS},
Y; = arg topk(log pg(y|x) + ha(y)), (6)
yeB:
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Figure 2: Comparison of Lookahead Beam Search and
beam search. While beam search chooses the next hy-
potheses according to the current score of the hypothesis,
lookahead beam search chooses them according to the
current score plus the highest possible score achievable
within d-step future.

where hg(y) is the highest score achievable of d-
step future starting from y. hy(y) is defined as:

hq(y1:+) = max d10gp0(}’1:t+d’X7Y)7
Yi:+d€EBY

Bl = {y1.t 0 yt+10 ... 0 Yl
Yit1s o Yrd € V. (T)

The lookahead depth d is the hyperparameter of
the algorithm to control the locality of the search.
The search becomes more local and shallow as d
becomes smaller. In particular, if d = 0, it recovers
beam search. The search becomes more exhaustive
with larger d, and d > np.x recovers exhaustive
search.

Proposition 1. Lookahead Beam Search (LBS) is
a generalization of beam search and exhaustive
search. That is,

1. LBS-0 recovers beam search.

2. LBS-d with d > nuya.x recovers exhaustive
search.

The proof is immediate from the definition of
LBS.

3.1 Implementation

A straightforward implementation to compute
hq(y) is by a breadth-first search which needs to
call the scoring function for k|V|¢ times per step.
This is prohibitively expensive because the vocabu-
lary size |V| is large in many tasks (e.g. >30000).
To reduce the computation time, we implement the
evaluation of hy by best-first branch-and-bound
search. Algorithm 1 describes the procedure of
lookahead beam search. Since the scoring function



Algorithm 1: Lookahead Beam Search-d

Input: a set of hypotheses Y;_; of length ¢ — 1
Output: a set of hypotheses Y; of length ¢
1. B={yi-10yly €V}
2 {y},y2, ...y} = sort(B) in a descending or-
der of p(yi[x)

Y 0

4: b %—*|i)

s5: fori e {1,...,b} do

6: if logpg(yi[x) < mintopkycy/(f(y))
then

7: return Y; = arg tOPker/(f(Y))

8 end if

f(y%) — Eval(yf;, dv min tOpkyEY’ (f(y)))

10: if f(y}) > mintopkycy/(f(y)) then

11: Y« YU {yi}
12:  endif
13: end for

14: return Y; = arg topkycy (f(y))

is monotonically decreasing (Meister et al., 2020b),
we can prune a partial hypothesis that is lower than
the current k-th largest score before expanding the
hypothesis further. The min topk returns the k-th
largest score among Y if |Y’| > k and negative
infinity otherwise. We explore the candidates in
best-first order — the hypothesis with the highest
score is explored first. In this way, we have a higher
chance of pruning the less promising hypothesis,
thus reducing computation. Because it only prunes
paths which has no chance of getting into the top-k,
it is guaranteed to find the same h, as breadth-first
search.

4 Experiments

To study the effect of search depth, we evalu-
ate LBS on decoding neural machine translation
(NMT) models. Experiments are performed on
WMT’ 14 En-Fr and En-De datasets (Bojar et al.,
2014). We evaluate the text quality by BLEU
(Papineni et al., 2002) using the SacreBLEU sys-
tem (Post, 2018).! For reproducibility, we use the
Transformer-based pretrained models provided by
fairseq (Ott et al., 2019).2 We build the decoding
framework in SGNMT (Stahlberg et al., 2017).3
Due to the long duration (Table 6) and computa-

"https://github.com/mjpost/sacrebleu

Zhttps://github.com/facebookresearch/fairseq/
tree/main/examples/translation

3https://github.com/ucam—smt/sgnmt

Algorithm 2: Eval(y, d, fmax)

Input: a hypothesis y;, a depth d, and a threshold
fmax

Output: a score of the hypothesis hy(y)

1: if d = 0 then

2:  return log py(y:|x)
3: end if
4
5

: B={yioyly eV}
AV YR Yo} = sort(B) in a de-
scending order of log py(y;, |x)
6: fori e {1,...,b} do
7. iflogpp(yii1) < fmax then
8: return fi .y
9:  endif
10 fi <= Eval(y},(,d — 1, fmax)
11:  if f; > finax then

12: fmax — f’L
13:  end if
14: end for

15: return fiax

tional constraints, we present the evaluation on the
first 100 sentences. We evaluate with a beam width
of k € {5,10,15,20}. To reduce the computa-
tional load of the experiment, we prune lookahead
branches except for the top-k; scoring branches.
Although it no longer guarantees to find the hg,
we observe that the BLEU score of LBS-1 with
k; = 3k is the same as the LBS-1 with k; = oo for
k = 1,5 using the first 10 sentences of WMT’ 14
En-Fr, so we expect it to be a valid approximation
of the exact LBS-1.

4.1 Analysis of Search Depth

The summary of the analysis is as follows.

* BLEU scores are slightly improved with d =
1,2, and 3 lookaheads (Figure 1). However,
a lookahead depth of 3 has diminished return
compared to d = 2.

* We observe a trade-off between search error
and UID error with varying lookahead depth
(Figure 4). Although search error is decreased
with larger lookahead depth, UID error is in-
creased at the same time. This is analogous
to the observation of beam width by Meister
et al. (2020a).

* Lookahead depths of up to 3 have little effect
on sequence length, while beam width has a
strong negative correlation with it (Figure 7).


https://github.com/mjpost/sacrebleu
https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/ucam-smt/sgnmt
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Figure 3: Difference in perplexity (search error) and average standard deviation of surprisals per sequence (UID
error) of lookahead beam search (LBS) compared to beam search. The bold line represents the mean over the beam
widths (k € {5,10,15,20}). The shaded area shows the standard error. Evaluated on the first 100 sentences of

WMT’ 14 En-Fr and En-De.
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Figure 4: Difference in negative log-likelihood (search
error) and average standard deviation of surprisals per
sequence (UID error) of lookahead beam search (LBS)
compared to beam search. The bold line represents the
mean over the beam widths (k € {5,10,15,20}). The
shaded area shows the standard error. Evaluated on the
first 100 sentences of WMT’ 14 En-Fr.

4.1.1 BLEU Score

Figure 1 demonstrates how the lookahead strat-
egy affects the quality of the results as the looka-
head depth varies on WMT’ 14 En-Fr. In particular,
LBS-2 achieves the best overall BLEU score. We
observe a reduced improvement with a lookahead
depth of 3 (LBS-3) compared to LBS-2. The BLEU
score of the En-De dataset is present in Table 1. For
En-De, the highest BLEU score is achieved with
a beam width of 5 and a lookahead depth of 1 or
2. In both datasets, LBS achieves a better BLEU
score than beam search in all widths. Interestingly,
the advantage of LBS over beam search is reduced
with d = 3. We also evaluate an exhaustive search
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Figure 5: Negative log-likelihood (search error) and the
average standard deviation of surprisals per sequence
(UID error) by lookahead beam search (LBS). The bold
line represents the mean over lookahead depth of d €
{0,1,2,3}. The shaded area shows the standard error.
Evaluated on the first 100 sentences of WMT’ 14 En-Fr.

(MAP decoding) which corresponds to LBS with
d = oo (Table 2). As observed in previous work
(Stahlberg and Byrne, 2019), the BLEU score drops
significantly with an exhaustive search.

4.1.2 Why is there a “sweet spot” for
lookahead depth?

We observe that a lookahead depth of d = 2 out-
performs d = 0, 1, and 3 (Figure 1). The question
is why there is a “sweet spot” for lookahead depth.
Our hypothesis is that this phenomenon can be ex-
plained by the trade-off between the search error
and the UID error. We measure the search error
per token and per sentence using two metrics, the
loss of perplexity (Figure 3) and the negative log-



WMT’ 14 En-Fr

Decoder | k=5 k=10 k=15 k=20
beam 353 35.5 354 35.2
LBS-1 35.8 35.7 35.6 35.5
LBS-2 36.1 36.1 35.7 35.7
LBS-3 35.7 359 35.6 354

WMT’ 14 En-De

Decoder | k=5 k=10 k=15 k=20
beam 22.7 21.9 22.0 21.8
LBS-1 23.2 22.6 22.2 21.5
LBS-2 23.2 22.7 22.6 22.6
LBS-3 23.0 22.7 23.0 23.0

Table 1: Evaluation of lookahead beam search on

the first 100 sentences of WMT’ 14 En-Fr and En-De
datasets. The best for each beam width is bolded. The
best for each dataset is underlined.

Dataset En-Fr En-De

BLEU 2.2 6.0
sequence length 9.169 16.217
negative log-likelihood | 8.195  8.246
stddev of surprisals 0.291 0.486

Table 2: Results of exhaustive search (i.e. LBS-00) on
the first 100 sentences of WMT’ 14 En-Fr and En-De
datasets.

likelihood compared to beam search (4). We ob-
serve that increasing the lookahead depth reduces
the search error measured by both the perplexity
and the negative log-likelihood on both datasets.
A prior study reports that the deviation from uni-
form information density measured by the standard
deviation of surprisals has a negative correlation
with the BLEU score (Meister et al., 2020a). We
report the standard deviation of surprisals as UID
error in Figure 3 and 4 (right axis). We observe a
negative correlation between lookahead depth and
the standard deviation of surprisals.

Overall, the result shows that deeper lookaheads
improve the search error, but at the cost of higher
UID error at the same time. We speculate that a
lookahead depth of 2 happens to be a better trade-
off between search error and UID error in our ex-
perimental setting. We also observe a similar trend
for beam width (Figure 5), as indicated by Meister
et al. (2020a).

Does Search error alone explain the results? We
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Figure 6: Average standard deviation of surprisals per
sequence (UID error) and BLEU with lookahead beam
search (LBS) for different beam widths and lookahead
depths (WMT’ 14 En-Fr).

observe that increasing the lookahead depth tends
to improve both the perplexity and negative log-
likelihood (Figure 3 and 4). Therefore, search er-
ror, measured as both negative log-likelihood and
perplexity, decreases with increasing lookahead
depth. Thus, search error alone does not explain
why d = 2 has the highest BLEU score.

Does UID error alone explain the results? Figure
6 shows the standard deviation of surprisals and
BLEU for different numbers of lookahead depths
and beam widths. Although LBS has higher BLEU
scores than beam search, it also has a higher aver-
age standard deviation of surprisals per sentence.
Therefore, the UID error alone cannot account for
the effect of lookahead depth on the BLEU scores.

4.1.3 Does searching deeper result in shorter
output?

Previous studies reported that beam search with
larger widths is likely to result in shorter sequences
(Koehn and Knowles, 2017; Stahlberg and Byrne,
2019; Holtzman et al., 2020). To see the effect of
search depth on length, we show the average length
of the output sequences in Figure 7. We observe
that while widening the beam reduces the output
sequence length, deepening the lookahead by up to
3 steps does not. The correlation of beam width and
lookahead depth with sequence length is —0.92 and
0.12, respectively. While beam width has a clear
negative correlation with output sequence length,
lookahead depth has little effect on sequence length.
Thus, the length bias is unlikely to be the reason
why BLEU score decreases with d = 3.
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Decoder | k=1 k=2 k=5 k=10 WMT’ 14 En-Fr
beam 33.6 34.5 34.6 34.9 Decoder ‘ k=1 k=5 k=10 k=15
gg‘; ‘;’;"g g;"ﬁ ;i-é % beam | 348 358 360  36.
) ) : ‘ ’ LBS-1 35.2 359 36.1 359
LBS-3 334 34.0 344 34.5
WMT’ 14 En-De
Table 3: BLEU on the first 100 sentences of WMT’ 14
En-Fr using a fully convolutional decoder. The best for Decoder ‘ k=1 k=5 k=10 k=15
each beam width is bolded. The best score over all the beam 28.6 293 290 28.9
conditions is underlined. LBS-l 28.8 29.4 29.2 29.0

4.1.4 Is the result specific to the Transformer
model?

To test the effect of the lookahead strategy on non-
Transformer models, we evaluate the performance
of LBS on a fully convolutional decoder proposed
by Gehring et al. (2017). For reproducibility, we
use the pretrained model provided by fairseq.* Ta-
ble 3 reports the BLEU score. We observe that
LBS-1 with £ = 10 achieves the best score. Similar
to the results of Transformer models, LBS achieves
the same or higher BLEU scores in all widths of
beam search.

4.1.5 Extended Evaluation of LBS-1

To evaluate the lookahead strategy more precisely,
we evaluate LBS-1 on the entire WMT’ 14 En-Fr
and En-De dataset. Due to computational con-
straints, we present only the evaluation of LBS-1.
Table 4 reports the BLEU score. We observe that
LBS-1 achieves slightly higher BLEU compared to
beam search except for En-Fr with £ = 15. In both

4https ://github.com/facebookresearch/fairseq/
tree/main/examples/translation

Table 4: BLEU on the entire dataset on WMT’ 14 En-Fr
and En-De. The best for each beam width is bolded.
The best for each dataset is underlined.

datasets, LBS-1 achieves the highest BLEU score.

4.2 Running Time

Table 5 reports the number of calls to the scor-
ing function (e.g. probabilistic model) by looka-
head beam search. We observe that the number
of calls grows rapidly with increasing lookahead
depth. The wall-clock time of LBS is also signif-
icantly larger than beam search especially when
the lookahead depth is large. As the evaluation is
the most time-consuming operation of the decod-
ing, the wall-clock time is roughly proportional to
the number of calls (Figure 8). Note that the wall-
clock time is heavily dependent on the hardware,
so the values should be taken as a reference point
rather than an absolute measure. As a reference, all
the experiments are performed on g4dn.xlarge
instances on AWS EC2 (4 vCPU cores, 16 GB
memory, and an NVIDIA T4 GPU).


https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://github.com/facebookresearch/fairseq/tree/main/examples/translation

Decoder k=5 k=10 k=15 k=20
beam 145.86 291.38 436.07 580.99
LBS-1 718.02  1841.83  3142.28  4590.62
LBS-2 | 2103.73  6270.25 11630.90 17946.10
LBS-3 | 4656.60 14471.00 27364.80 42597.90

Table 5: Average number of calls to the scoring function
(probabilistic model) per sentence (WMT’ 14 En-Fr).

Decoder | k=5 k=10 k=15 k=20
beam 204 398 544 759
LBS-1 | 2293 5855 9045 13831
LBS-2 | 5391 165.13 30262 482.58
LBS-3 | 10271 329.69 640.80 999.73

Table 6: Average running time (sec) per sentence
(WMT’ 14 En-Fr). Note that the wall-clock time is heav-
ily dependent on the hardware.

5 Related Work

The phenomenon that using a larger beam leads
to worse performance has been analyzed in a num-
ber of studies (Koehn and Knowles, 2017; Murray
and Chiang, 2018; Yang et al., 2018; Stahlberg
and Byrne, 2019; Cohen and Beck, 2019; Leblond
et al., 2021). Many of the authors observe that
widening the beam search degrades performance
due to a bias in sequence models to favor shorter se-
quences even with a length penalty. Other authors
have investigated why beam search successfully
generates high quality sequences. The uniform in-
formation density hypothesis (Levy, 2005; Levy
and Jaeger, 2006) is introduced to explain why
beam search outperforms exhaustive search (Meis-
ter et al., 2020a, 2021b). They hypothesize that
narrowing the width of beam search induces a bias
in the decoding that enforces uniform information
density, resulting in higher quality sequences. Al-
though many have studied the width of the beam
search, little is known about the depth of the search.
Our work extends the analysis to the search depth
and observes a similar trade-off between search
and UID error, which is balanced by the lookahead
depth parameter.

Some authors have studied lookahead strategies
for decoding. Hargreaves et al. (2021) investigates
the greedy roll-out strategy to apply reranking dur-
ing decoding instead of only at the end. Lu et al.
(2022) evaluated several lookahead strategies to es-
timate the future score of the given partial hypothe-
sis. Several works have investigated the lookahead
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Figure 8: Comparison of the average number of calls to
the scoring function to the wall-clock time (WMT’ 14
En-Fr).

strategy for constraint sentence generation tasks
using Monte Carlo sampling (Miao et al., 2019;
Zhang et al., 2020; Leblond et al., 2021). Our anal-
ysis provides a fundamental insight into why these
lookahead strategies can be effective.

This work focuses on the quality of the text evalu-
ated by its similarity to the reference text. Previous
work has investigated other factors such as diversity
(Vijayakumar et al., 2018; Meister et al., 2021a),
constraints (Anderson et al., 2017; Hokamp and
Liu, 2017), or faithfulness (King et al., 2022; Wan
et al., 2023). How the lookahead strategy affects
these factors is an open question.

6 Conclusion

To study the effect of search depth on the perfor-
mance of decoding strategies for text generation
models, we introduce Lookahead Beam Search
(LBS). LBS is a generalization of beam search and
exhaustive search that allows control of the looka-
head depth by its hyperparameter. We observe that
increasing lookahead depth reduces search error
but increases UID error, similar to the observation
reported by Meister et al. (2020a) for increasing
beam width. LBS with a lookahead depth of 1 to
3 slightly improves upon beam search in machine
translation tasks. This is analogous to the empiri-
cal observation that a beam width of a certain size
often improves upon beam width of 1 (i.e. greedy
search). The results indicate room for improvement
orthogonal to width by searching deeper.



7 Limitations and Risks

All the experiments are conducted on machine
translation tasks. Although we expect the effect
of the search depth is not specific to machine trans-
lation, it is not evaluated on other text generation
tasks.

The primary focus of the study is on analyzing
the effect of the lookahead strategy, not on propos-
ing a new practically useful decoding algorithm.
Because the inference of LBS is very slow com-
pared to the beam search, it is not a practical option
as is.

Due to limited computational resources, our ex-
periments use only part of the dataset instead of
the whole dataset. As a result, the scores are not
directly comparable with the existing literature.

While language generation can be used for ma-
licious purposes, we do not foresee any specific
ethical concerns with the analysis in this paper be-
yond those discussed by Bender et al. (2021).
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