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Underexposed, low-light, images are acquired when scene illumination is insufficient for a given camera. 
Camera limitation originates in the high chance of producing motion blurred images due to shaky 
hands. In this paper we suggest to actively use underexposing as a measure to prevent motion blurred 
images to appear and propose a novel color transfer as a method for low light image amplification. 
The proposed solution envisages a dual acquisition, containing a normally exposed, possibly blurred 
image and an underexposed/low-light, but sharp one. Good colors are learned from the normal exposed 
image and transferred to the low light one using a framework matching solution. To ensure that the 
transfer is spatially consistent, the images are divided into luminance perceptual consistent patches 
called frameworks and the optimal mapping is piece-wise approximated. The two image may differ by 
colors and subject to improve the robustness of the spatial matching, we added supplementary extreme 
channels. The proposed method shows robust results from both an objective and a subjective point of 
view.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

The development of mobile phones and the wide spread use 
of integrated camera devices require miniaturization of the camera 
module. This further leads to design changes such as diminishing 
the optic size or shrinking the photo-sensible area of the image 
sensor. In the image sensor, the decrease of photo-sensible area, 
indirectly, reduces the correlation between the incident light and 
the reported image intensity, thus forcing increased exposure time.

In many situations the device containing a camera module is 
held directly in hand by the photographer. One characteristic of 
the human beings is the existence of the hand tremor. The reduced 
photo-sensible area of the image sensor decreases the picture an-
gle, while the human hand jitter is always present. The combina-
tion of these two factors together with the resulting large exposure 
time gives rise to increased chances that the relative hand tremor 
induces motion blur. This phenomenon is, probably, the most an-
noying degradation of the photographs visual quality, so that cam-
era manufactures and photographers are frequently searching for 
methods to contain its effects.

Various solutions have been proposed over the years for the 
problem of image degradation due to motion blur. In-camera so-
lutions are based on Optical Image Stabilization which can be de-
livered in many embodiments; usually a prismatic block of glass 
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or the sensor itself is moved in opposition with camera movement 
which is recorded by motion sensors. Such a solution acts simul-
taneous with the image acquisition and its main disadvantage is 
related to cost and size of panning block, which, in many cases, 
does not fit into small camera modules.

Alternatives are related to post-processing: the blurry acquisi-
tion is allowed and afterwards measures to compensate and re-
store are envisaged. Such an alternative is to estimate the degra-
dation kernel (known as Point Spread Function – PSF) and com-
pensate it. If the estimation is done directly from the degraded 
image, the whole solution is called “blind deconvolution” (and we 
refer to the works of Levin et al. [1] and Ruiz et al. [2] for reviews 
on the topic). The dominant idea in this case is to use the image 
edginess to re-construct the PSF [3] and further use the found PSF 
in a non-blind deconvolution.

In another class of solutions, one may estimate the movement 
by motion sensors and follow by non-blind deconvolution, as in 
the work of Joshi et al. [4].

Methods that build a PSF have the main disadvantage that, 
usually, they assume the motion kernel to be spatially invari-
ant (or uniform). Yet, this assumption, according to the measure-
ments reported by Singhy and Riviere [5], is not realistic. Hu-
man tremor contains significant components on the Z axis and 
translational components (that lead to different trajectories for 
pixels corresponding to different depths [4]) resulting to heavily 
non-stationary PSFs. In the later years, proposals to address non-
uniform blur appeared. Such examples that use non-stationary PSF 
models are, for instance, in the works of Whyte et al. [6], Pan et 
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al. [7] or Sun et al. [8]; however, in these cases the non-uniformity 
assumed fails to realistically model the natural variation of the hu-
man tremor.

An alternative to PSF estimation and deconvolution is to avoid 
the circumstances that generate the unwanted motion blur by re-
ducing the exposure time below the “motion limit”. The “motion 
limit” is found in the world of photographers by the empirical “1 
over f35” rule: a hand held 35 mm camera should have an ex-
posure in seconds that is not longer than the inverse of the focal 
length in millimeters; an arbitrary camera optics and image sen-
sors may be referenced to a 35 mm camera. The “motion limit” 
was more thoroughly determined by Xiao et al. [9] as “q over f35” 
(with q > 1) and depending on the camera weight and photogra-
pher experience. In our work we set the exposure time based on 
the rules proposed in later mentioned work.

Our proposal draws inspiration by the previous works [10,11], 
as it assumes the acquisition of two input images: one is nor-
mally exposed, but potentially blurred and one is underexposed 
but sharp and still. The issue of enhancing the underexposed im-
age is treated as a problem of transferring color from the normally 
exposed image (that in the remainder of the paper will be named 
the reference image) to the underexposed one (also named subject 
image).

This paper is a continuation over our previous work on low 
light enhancement via color transfer [12]. Our previous solution 
suffered, in some specific cases, from poor matching between the 
two input images. As they have different exposure values, the im-
ages should be different with respect to pixel intensity and in this 
work we introduce extreme channels as a measure to alleviate such 
effects. The use of the extreme channels is also theoretically moti-
vated.

Overall, the main contribution of this paper is the introduction 
of a perceptually inspired color transfer method adapted to the fol-
lowing dual-image input scenario: (1) the underexposed image has 
sharp edges but it lacks good colors; (2) the normally exposed im-
age is potentially blurred due to hand tremor, but has good colors; 
(3) the two images contain almost the same scene. This claim will 
be validated by intensive experimentation. A secondary contribu-
tion of the current work is a thorough discussion of the reasons 
why underexposing and amplification is more practical than de-
convolution.

The remainder of the paper is organized as follows: prior works 
related to color transfer and low-light enhancement is reviewed 
in section 2. The discussion of practical impact in contrast to de-
convolution based methods follows in section 3. The proposed 
algorithm is described in section 4 at both intuitive and theoreti-
cal levels, with an emphasis on the effectiveness of using extreme 
channels. Implementation details and achieved results are detailed 
in the next sections. The paper ends with conclusions.

2. Related work

The main contribution of this paper is a color transfer method 
designed for enhancing low-light images. Thus the current section 
will briefly survey color transfer and low light enhancement meth-
ods.

Color transfer (or color mapping) algorithms aim to recolor a 
subject image by computing a transfer function (mapping) be-
tween that image and another one (called the reference image). 
Following the recent reviews on the topic by Faridul et al. [13]
and, respectively, Finalyson et al. [14], color transfer methods may 
be divided on point-based or region based. In the point based cat-
egory, one should note the very influential work of Reinhard et 
al. [15] which matches the first two statistical moments of the 
two images in the lαβ uncorrelated color space introduced earlier, 
[16]. Yet the work while being simple and intuitive is general and 
many further enhancement have been proposed to address vari-
ous scenarios. Also in this category fall the methods proposed by 
Pitie et al. [17] which maps the N-dimensional color distribution of 
the reference image onto subject image, or the one introduced by 
Pouli and Reinhard [18] which performs the mapping pixel-wise 
but do stage it sequentially by considering pyramidal resolutions. 
These solutions lead to good quality results, but we consider that 
they are general transformations which do not adapt well to cer-
tain situations such as the one described here. Mechrez et al. [19]
proposed a more complex framework that is able to address style 
transfer; in the color transfer part the method relies on deep-net 
based semantic segmentation followed by a mapping computed 
based on solving a set of Poisson equations.

In the category of region based methods falls the region con-
sistent method [20]; yet its application is restricted by the as-
sumption that region pairs preserve their monotonicity in the two 
images, which may not be necessarily fulfilled in our scenario 
due to different acquisition time. Also Olivera et al. coarsely reg-
ister two images, segment images into regions (by Expectation-
Maximization [21] or mean-shift [22]) and perform transfer from 
one to the other based on region impairment. Conceptually we dif-
fer by the fact that our solutions does not assume any registration 
step, thus it does not encode rigid spatial correspondences be-
tween the two images, but only color intensities correspondences. 
Furthermore, we introduce a general mathematical model out of 
which, given a probabilistic approach and specific choices, these 
previously proposed methods may be retrieved.

Another similar sets of methods are based on optimal trans-
port [23,24]. In either case, for color transfer, the image is first 
split into segments. In the first work, the split is coarse and based 
on K-means [23], while the second is fine-grained with superpixel 
algorithm. Next, the mapping is computed via optimal transport 
with some adaptations to the problem: the optimization is regular-
ized and relaxed (approximate), as bijective matching may overfit 
and cause artifacts. The segments used are further refined [24]
by smoothing based on the spatial distance. The here-proposed 
method differs by the transfer mapping (which in our case is 
piecewise linear), the fuzzy segments and the use of the extreme 
channels as better references for spatial matching.

Low-light image enhancement is another area that captured a 
lot of interest. In the later years, Fotiadou et al. [25] proposed 
to enhance low-light image by constructing day and respectively 
night dictionaries based on sparse representations. Lore et al. [26]
showed that low-light enhancement is achievable by the same 
auto-encoder based deep-net topology that was previously shown 
to perform denoising. Ko et al. [27] derived their method on vari-
ational framework where L2 norm is minimized for pixel smooth-
ness and L1 for noise control. Zhang et al. [28] also use a vari-
ational model, this time in conjunction with Retinex theory to 
enhance low-light images. Ren et al. [29] used the camera response 
function to select an adapted amplification factor for each pixel 
within a single image framework. However all methods are based 
on single image enhancement and it is reasonable to assume that 
a reference image should improve the resulting image quality.

Multiple images were used by Fu et al. [30]; yet the images 
used originates in the single low-light image and are derived on 
different paths for consistency with human intuition and for better 
control over denoising, illumination and contrast. The same idea of 
dual path development for low light enhancement is found in the 
work of Jung et al. [31], which relied on wavelet decomposition 
for separation of data into luminance and contrast. We differ from 
these works by the fact that in our case two images are acquired, 
while they extract the pair from a single acquired one, and the 
nature of the images: in our case one is color reference, while the 
other is content (object) reference.
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HDR imaging is an area that bears similarities with the proposed 
method. To acquire HDR scenes, consecutive frames with different 
exposures are typically acquired and combined into a HDR image 
that is viewable on regular displays. Mainly two approaches are 
identifiable in the prior art: irradiance fusion [32] which acknowl-
edges that the camera recorded frames are non-linearly related 
to (1) the scene reflectance, thus, it does fusion in the radiance 
space and follows with a tone mapping to return in to display 
space; (2) exposure fusion [33] which directly combines the ac-
quired frames into the final image. While many solutions have 
been proposed, our approach differs by the fact that the fusion is 
directed with respect to a reference (normally exposed image for 
colors and underexposed image for texture/content), while in HDR 
the fusion is uniform, without reference. Furthermore, while most 
HDR methods assume identical scenes in the acquired images, in 
our case the scene is never identical due to hand motion between 
and during the acquisition process.

3. Hand tremor and deconvolution

In still image acquisition, the motion blur may appear due to 
the involuntary hand tremor. A formal definition of the tremor 
is provided by Crawford and Zimmerman: “Tremor is a common 
disturbance of movement, and it is defined as a rhythmic and 
oscillatory movement of a body part, caused by involuntary repeti-
tive muscle contractions” [34]. From a statistical point of view, the 
tremor is a random signal. No matter the exposure time, there is 
a non-zero probability to have either motion blur degraded image 
(i.e. the tremor cumulative motion is larger than a pixel), or a per-
fectly sharp image (i.e. cumulative motion is smaller than the size 
of a pixel). With the increase of the exposure time, the probability 
of blur increases, while the probability of sharp decreases.

An intuition about the probable size of a motion blur kernel 
(PSF) can be found by briefing studies of human tremor. The hand 
tremor was substantially studied in the bioengineering domain as 
it interferes with microsurgeons ability to keep hands still. Velu-
volu and Ang [35] performed a comparative study of microsur-
geons and normal people and found that amplitude of movement 
for microsurgeons is at half of the normal people. More recently 
Papini et al. [36] performed extensive studies of the hand tremor 
while aiming to build haptic interface; they have found the major-
ity of the spectrum between 3.1 and 6.1 Hz.

Using inertial sensors, Singhy and Riviere [5] measured the ab-
solute deviation of the human tremor in microsurgeons and found 
comparable amplitudes for all three axes. In terms of image pro-
cessing, this finding means that the amplitude of rotational compo-
nents generating a certain size of motion blur during an acquisition 
also exists on the Z axis and thus it contributes to the deep non-
stationarity nature of the PSF. Assuming that the spatially variable 
PSF is completely retrieved (which was not yet achieved in works 
related to deconvolution), typically the non-stationary deconvolu-
tion is highly computationally intensive [8]. For instance Gupta et 
al. [37] report one hour on CPU to solve 1 Mpixel image, while 
Hirsch et al. [38] report 440 secs with GPU acceleration for the 
same image size. More recent methods reports small time for PSF 
estimation such as below 2 seconds in [39]. However the preferred 
method for deconvolution with spatially variant kernel is by min-
imization of the expected log likelihood (EPLL) [40], which being 
computationally intensive takes around 100 sec for 1 Mpixel image

In parallel, taking into account that Singhy and Riviere [5] re-
port an average displacement for the hand tremor of 22 μm, while 
the dominant frequency of 4–5 Hz [35], [36], and noting that a 
high end smartphone has a camera with the pixel size of 1.12 μm 
for an exposure of 1/4 sec = 4 Hz, a PSF size of 19 pixels may be 
produced. Also for the same exposure the PSF may be completely 
non-uniform across the image: the PSF in top left corner may get 
to be near-perpendicular from the one in bottom right corner.

This paper argues that it is computationally more efficient and 
the results are more robust if, instead of deconvolution, an under-
exposing followed by a color transfer oriented method for com-
pensation of the low light is used. The results further presented, 
show that up to 2 exposure stops may be compensated by such a 
solution.

4. Framework oriented color transfer

In summary, the proposed method assumes two images as in-
puts: one normally exposed (with E V = 01) and an underexposed 
one (having E V < 0). For each of the two images, the two extreme, 
dark and bright, channels are computed. Each 5 (R, G, B + dark +
bright) dimensional image is decomposed in intensity consistent 
frameworks using a clustering algorithm. Next, the frameworks are 
matched in pairs: given a framework of the low-light image, its 
pair is found as most similar framework, in terms of color range, 
from the normally exposed one. The colors are transferred from 
the normally exposed image to the underexposed one; the trans-
fer is performed per each pair framework. The proposed schematic 
is presented in Fig. 1. In the following subsections, we discuss in-
sights of the method.

4.1. Color transfer model

The first strong solution to the color transfer problem was pro-
posed by Reinhard et al. [15]. In this method, the tones, u, from 
the source image, Is , are adjusted based on the ones from the 
reference image, Ir , on each chosen color plane independently, ac-
cording to:

g(u) = au + b (1)

The specificity of this mapping is given by the choice of the 
color planes (taken as uncorrelated planes) and of the constants a
and b. These are computed as the ratio of the standard deviations 
a = σr

σS
and respectively as difference of statistical means of the 

two images b = a ·μr −μs . This approach, while being simple thus 
general, was amended by various consecutive improvements [13].

One may observe that for the proposed solution, the content of 
the two images is highly similar as being consecutive acquisitions. 
Thus we may choose to add more adaptability by implementing 
the transfer as:

g(u) =
N∑

i=1

ciνi(u)(aiu + bi) (2)

where ci are algorithm depending weights, while νi(u) are pixel 
dependent weights that in or solution will determine the branch 
of the transfer.

While vectorial transfer is possible, due to the too large space, 
it is custom to restrict u from eq. (2) to be scalars (i.e. intensi-
ties from a color plane). Intuitively the transfer is implemented 
as linear on pieces. From an intensity perspective the function is 
piecewise linear, where “pieces“, i are compact ranges of values. 
From a spatial point of view, the mapping is a convex combina-
tion, where the weights ci are membership degrees of a location 

1 EV refers to the relative exposure value. The exposure value results as a com-
bination of the terms from the APEX systems where shutter speed, diaphragm 
opening and amplification aims to balance the scene illumination. Normal expo-
sure is reached when the APEX equation is balanced. For more detail kindly see 
[41].
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Fig. 1. The schematic of the proposed algorithm. Two input images containing differently exposed views of the same scene are given. They first are segmented into frame-
works; following a framework matching, the low-light image receives the colors of the normally exposed one, thus being enhanced. The consistency of the frameworks 
between the two input images is based on the use of the extreme channel images, obtained from the two inputs. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)
to a specific range and act to prevent the appearance of artifacts 
in the middle of objects.

By selecting νi(u) =
{

u, u ∈ [u(m)
i , u(M)

i ]
0, otherwise

and u(m)
i = u(M)

i−1 +
1, the eq. (2) retrieves the piecewise-consistent color mappings 
method [20]. Instead of the boxcar function with very steep transi-
tion, in this work we opted for smoother transition typical of fuzzy 
logic; this aspect will be detailed later in this section.

Given the histogram of the reference image, h(Ir) and the his-
togram of the reconstructed image, h(g(Is)) the solution of map-
ping depicted in eq. (2) is retrievable by solving the minimization 
problem:

argmina,b,c,ν(u)(h(Ir) − h(g(Is))
2 s.t.

N∑
i=1

ci = 1 (3)

where a = [a1, . . .aN ], b = [b1, . . .bN ], c = [c1, . . . cN ], ν(u) =
[ν1(u), . . . νN (u)]. First, one has to choose a parametric form for 
the function ν to have the minimization possible. Opting for a 
boxcar function and solving directly eq. (3), the solution retrieved 
has u(m)

i + 1 = u(M)
i−1 and c as one of the N-dimensional unit vec-

tors; thus it implements the piecewise linear approximation of 
the eq. (1), that was previously proposed [20]. Modeling with a 
Gaussian Mixture Model using a maximum posterior probability 
inference, the mosaicing preprocessing solution [21] is found. Al-
ternatively one may model the histogram as multivariate kernel 
density and retrieve the mean-shift oriented method [22].

Additional boundary constraints often lead to results that are 
not necessarily perceptually pleasant. Thus, we consider a different 
approach inspired from the human perception: the functions ν are 
taken so to select the color frameworks of the scene, the weights 
ci allow even more overlapping between frameworks, while the 
linear parameters, a, b are still inspired from the original approach 
of Reinhard et al. [15].
4.2. Color frameworks

Although many studies attempted to explain the human percep-
tion of complex scenes, no definite model exists. Yet, the reformu-
lation by Gilchrist et al. [42] of the anchoring theory for complex 
scenes proved to pass many perceptual tests and explained many 
phenomena. This anchoring theory focuses on luminance interpre-
tation and states that when depicting a scene, the relation between 
the representation luminance and the scene lightness can be cor-
rectly perceived only through a mapping between the luminance 
value and the value on the scale of perceived level, process called 
anchoring.

For increasingly complex scenes, the anchoring theory asserts 
that scenes are perceived by the humans in terms of consistent 
areas, named frameworks. A framework is defined as a region of 
common illumination [42]. For image perception, the human brain 
estimates the lightness within each framework through the an-
choring to the luminance perceived as white, followed by the 
computation of the global lightness. While the framework theory 
was developed for luminance images, we assume the same strat-
egy for color images. Intuitively color quantization assumes image 
organization in frameworks and the perception of quantized scene 
is appropriate. We consider that scene decomposition in frame-
works and performing the transfer between matching frameworks 
to solve eq. (3) could lead to an interesting color transfer method.

The first computational model of the anchoring theory for com-
plex images was provided by Krawczyk et al. [43] for rendering 
high dynamic range images. This paper follows the same guide-
lines, with the major difference that for extraction of frameworks 
instead of the mean-shift, we rely on a thresholded version of 
Fuzzy C-Means as they allow some image data to be in more than 
one framework.

We recall that for Fuzzy C-Means (FCM) [44], [45], the following 
objective function has to be minimized:
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J F C M =
P∑

k=1

N∑
i=1

νik||xk − vi||2, s.t.
N∑

i=1

νik = 1,∀k (4)

where xk are the n-dimensional image pixels (here n = 5), P is 
the total number of pixels, N is the total number of clusters and 
vi are the centroids/means of the clusters. In the interpretation of 
the anchoring theory [42], vi act as anchors. ‖ · ‖2 is the L2 norm.

The solution (νik, vi ) is found iteratively once the number of 
clusters, N is chosen.

Yet, to increase the practical robustness of the standard FCM, 
two adaptations are used. First FCM has the known drawback 
of converging into local optima which leads to non-overlapping 
frameworks and to the visual failure of the color transfer method. 
In order to solve this aspect we used the previously proposed 
method based on simulated annealing [46]. Secondly, sometimes 
the FCM converges (truthfully) in unsatisfactory clusters. More pre-
cisely cases with large near-saturated areas (in the normally ex-
posed image) or near-black ones (in the underexposed image) are 
separated on different clusters, while the rest of the pixels are in 
pushed in wide range clusters. Such cases are detected and clus-
ter are merged back. An illustrative example of the last situation is 
presented in Fig. 3.

Intuitively, instead of direct minimization of eq. (2) the opti-
mization is done sequentially, first determining νi(u) = ν via FCM. 
In other words, the images are clustered on sets with compact 
color levels, which may be perceived as a color extension of the 
frameworks from the anchoring theory.

If only the images (represented in a tri-dimensional color space, 
such as RGB or CieLab) are considered, the two resulting frame-
works from the segmented images are similar, but not identical, 
due to the differences between the initial images. An example can 
be seen in Fig. 1.

Let us denote the frameworks of the reference image by Ri

and those of subject image by Si . Let us assume that given N
frameworks in both images, after the matching, the indexes are 
in increasing order such that Si is paired with Ri , i = 1 . . . , N . The 
mean square error (MSE) is given as:

di = 1

Nsi Nri

Nsi∑
k=1

Nri∑
p=1

‖sk − rp‖2 (5)

where Nsi is the number of locations described by vectorial values 
sk in the i-th framework from the source image, while Nri and rp

are their counterparts in the reference image. This can be devel-
oped using each cluster centroid (mean) as follows:

M S E = di = 1

Nsi Nri

Nsi∑
k=1

NR Si∑
p=1

‖sk − vSi − rp + vRi + vSi − vRi‖2 (6)

Based on the observation that L2 norm follows the triangle in-
equality, the MSE has as upper bound di ≤ di

sup
:

di
sup = 1

Nsi Nri

( Nsi∑
k=1

Nri∑
p=1

(‖sk − vSi‖2 + ‖rp − vri‖2

+ ‖vSi − vri‖2
))

= 1

Nsi Nri

( Nsi∑
k=1

Nri∑
p=1

‖sk − vsi‖2 +
Nsi∑

k=1

Nri∑
p=1

‖rp − vri‖2

+
Nsi∑ Nri∑

‖vsi − vRi‖2

)

k=1 p=1
= 1

Nsi Nri

(
Nri

Nsi∑
k=1

‖sk − vsi‖2 + Nsi

Nri∑
p=1

‖rp − vri‖2

+ Nsi Nri‖vsi − vRi‖2

)

= 1

Nsi

Nsi∑
k=1

‖sk − vsi‖2 + 1

Nri

Nri∑
p=1

‖rp − vri‖2

+ ‖vsi − vRi‖2 (7)

This can be summarized as:

di
sup = �si + �ri + ‖vsi − vRi‖2 (8)

where �si = 1
Nsi

∑Nsi
k=1 ‖sk − vsi‖2 and �ri = 1

Nri

∑Nri
p=1 ‖rp − vri‖2

are the variances over each axis for values in the i-th clus-
ter/framework from the source image and the reference image.

The first comment with respect to eq. (8) is that the result is 
also intuitive. Given the linear nature of the transfer between pair-
ing frameworks, as described by eq. (2), the highest stress/error is 
at the boundaries of each interval. Statistically, the amount of pix-
els at the boundaries is given by the variance inside the cluster. At 
the limit, if all the pixels have the same values and are equal with 
the mean, the transfer is perfect or errorless.

The second point of discussion is with respect to the methods 
for reducing such error. The two images have differently exposure 
values, thus the same object should be described by pixels having 
different values in the two images. The problem is to bring the 
values closer, in order to reduce errors.

One may assume a scenario where the centroids are close to 
each other, yet this means that one should have smaller difference 
between the exposure values. Since the normally exposed image 
is fixed at E V = 0, the change may be only to the low-light one. 
Reducing the negative amplitude of the EV for the low light image, 
it does contradicts the main idea of the solution, which is to use 
the lowest exposure value possible, so to ensure the smallest hand 
shake and thus the smallest motion blur.

The alternative is to use a scenario where the variances inside 
clusters are smaller. A choice is to increase the number of clusters, 
yet this makes the matching harder, as more alternatives can exist 
for each pair. The proposed solution and the major improvement 
with respect our previous work [12] is to use channels (descrip-
tion) that have smaller variance.

A topological interpretation of eq. (8) may be retrieved stating 
from the observation of Domingos [47]: “most of the volume of a 
high-dimensional orange is in the skin, not the pulp”; a rigorous 
discussion on the topic may be found in the work of Aggarwal 
et al. [48]. Eq. (8) contains three “oranges”: one with fixed/given 
size, ‖vsi − vRi‖2 and two adjustable, �si and �ri . The proposed 
approach is to reduce the volume of the two adjustable “oranges” 
by bringing their “skin” closer to the center.

4.3. Extreme channels

Beside the theoretical formulation from eq. (8) there is another 
intuitive approach to the proposed development. In our previous 
work [12], we noted that one main reason for failure was the occa-
sional imperfect matching between the frameworks of the subject 
image and the ones of the reference image. This is related to their 
different nature: the low-light image is degraded by noise, while 
the normally exposed may be degraded by motion blur. The effects 
of the degradations appear more evident on object with a slowly 
varying color, as, for instance, the small motion blur may lead to 
creating false boundaries. In such cases, the segmentation may, in-
correctly, broke an object into multiple segments. In the current 
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proposal, it is important to use channels that offer more stability 
with respect to the degradations.

One such solution draws inspiration from the concept of dark 
channel introduces by He et al. [49]. Instead of a single dark chan-
nel, two are utilized: a dark and a bright channel. We recall that 
for an image I , these are defined as follows:

Idark(x) = min
c∈{r,g,b}

(
min

y∈�(x)
Ic(y)

)

Ibright(x) = max
c∈{r,g,b}

(
max

y∈�(x)
Ic(y)

) (9)

where Ic is a color channel of I and �(x) is a local patch centered 
in current pixel x. In this work the small patch contains 3 × 3
neighbors.

The expected effect is to have a reduced variance, which is 
achieved given the use of min or max, and to provide more sta-
ble values for pixels inside a framework. Statistically, the extreme 
channels have a variance reduced with at least 1

3 over any original 
color channel given any large enough image patch.

5. Implementation

We consider the two input images (normally exposed and un-
derexposed). The color transfer implementation follows the proce-
dure:

• Extreme channels: Given the two input images in the RGB color 
space compute the additional 2 extreme channels for each im-
age.

• Color space: The input images are transformed from RGB space 
into the CieLab color space.

• Pixel description: Given the two extreme channels, the pixel at 
one location will be described by a 5-dimensional tuple: L, a, b
triple followed by the dark and the bright resulting values.

• Frameworking: Determine the frameworks on each of the two 
images by applying FCM, separately, on both of them. Taking 
into account that the images contain almost the same scene, 
for speed-up purposes, we compute the clustering on one im-
age and we use its result to initiate the FCM algorithm on 
the second image (by using the positions of the pixels on the 
image, not the colors itself). This way we also diminish the 
probability that the FCM clustering converges in different local 
minima. Hard threshold the membership weights, ν so that to 
select only one framework for each location.

• Matching: Match the frameworks of the low-light image with 
the frameworks of the normally exposed one. The reference 
image framework, Rk matching Si is found as:

k = arg max
j

Si ∩ R j . (10)

The eq. (10) comes from the fact that the two images contain 
almost the same scene (i.e. mis-alignment is small), thus we 
search for maximal spatial overlapping. The match is found by 
comparing all possible combinations.

• Get statistics: For each framework, either in subject image, Si , 
or in the reference image, Ri , compute the mean (μs

i and 
respectively, μr

i ) and the standard deviations (σ s
i , σ r

i ). The 
computation is only on the three color axes, as they will be 
transferred.

• Framework transfer: For each pair of frameworks, compute 
a transfer function using eq. (1). If one denotes by θ =
{Si, Ri, νi}, i = 1 . . . N as the model of the frameworking pro-
cess, the conditional probabilities pij(R j/θ) of having pixels in 
the framework R j that originate in the framework Si are com-
puted.
Next, one computes the linear parameters, a j , b j , of a subject 
pixel considered to be in the framework Si by:

a j = σ r
j

σ s
i

; b j = μr
j − a j · μs

i (11)

• Global transfer: Compute the image transfer using eq. (2), 
where the ci are the framework confusion conditional prob-
abilities: ci = pij(R j/θ).

We note that while FCM considers 5-dimensional input data, 
the rest of algorithm is implemented on each color plane (L, a, b) 
separately. At the end of the transfer procedure, the resulting im-
age is converted back to the original color space (RGB) for storing.

The model of transfer implemented in Eq. (1) assumes that in 
a matching pair of frameworks, the color gamut can be reliable 
modeled with a single Gaussian and thus only the mean and the 
variance are needed. While the results reported in the next sec-
tion show the capabilities of this rather simple model, one might 
seek a more elaborated model. Into this direction, the methods 
based on optimal transport [23,24], are the complete and optimal 
model. However, in practical color transfer, as noted in the men-
tioned work [23,24], the optimal transfer needed to be relaxed, and 
a coarse model is preferred. The full model which uses a bijection 
is not expected to work due to different color gamuts. Yet, in cer-
tain scenarios, a more elaborate model than a Gaussian mode may 
lead to more pleasant images. Also one might seek improvement 
with respect to local vicinity, as it was used for instance in the 
LECARM algorithm [29].

Low and high resolution Noting that small content differences may 
exist due to camera motion between acquisitions, spatial match-
ing cannot be perfect. To accelerate the overall process and to 
reduce the impact of mis-alignment, the FCM runs on images with 
reduced resolution. We have chosen the width of 640 and the orig-
inal aspect ratio. On the small resolution images, the framework 
means and variances necessary for eqs. (1), (11) are found, while 
the weights νik are computed on the full resolution image to en-
sure smooth transitions.

6. Results and discussions

6.1. Database

To test the proposed algorithm we collected a specific database 
using three cameras: a professional one (digital SLR), a consumer 
one and a smartphone. We have considered two types of differ-
ences between the two images forming a set: while the reference 
image is normally (well) exposed, the low-light images are under-
exposed with either E V = −1 or E V = −2 (i.e. exposure time is 
half and respectively a quarter from normal). The images were ac-
quired with hand-held camera, thus they are not perfectly aligned 
and the normal exposed image is often blurred.

The photographed scene ranged from indoor, with and without 
people, to outdoor images. Outdoor cases contain both landscapes 
(during sunset, to have a lower light), where the focus is on far 
objects, and scenes where the focus is closer, also in dimmer light.

In total more than 100 pairs of underexposed images with 
E V = −1 and 100 pairs of underexposed images with E V = −2
have been gathered.2 For each of these pairs we also acquired a 
normal exposed image without blur by placing the camera on a 
tripod. We will use this image as a reference for the objective eval-
uation metrics. We note that this image is not perfectly aligned 
with the hand-held ones either.

2 Database is available at http://imag .pub .ro /steadycam /steadycam _download.

http://imag.pub.ro/steadycam/steadycam_download
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6.2. Evaluation metrics

As mentioned, the proposed color transfer algorithm takes as 
input two images: a blurred normally exposed one and a sharp un-
derexposed one. These two images are acquired with a hand-held 
camera and are not perfectly aligned. The result of the algorithm 
should be a normally exposed, sharp image.

To evaluate the correctness of the color transfer method, we 
compare its result with the reference, normally exposed image, ac-
quired with a tripod placed camera. We will call this image the 
evaluation reference image to distinguish it from the color reference 
image, which may be blurred.

For evaluation purposes, all the resulting corrected images are 
compared with the evaluation reference image and peak signal-to-
noise-ratio (PSNR) and structural similarity – SSIM [50] between 
the two images are computed. These two measures are typically 
used to assess the accuracy of reproduction for color transfer 
methods. We, again, note that the evaluation reference image is 
not perfectly aligned with the ones taken with the hand-held cam-
era, thus is not perfectly aligned with the image resulting from 
the color transfer method. Additionally as the resulting image ap-
peals to perceptual pleasantness under an exposure modification 
scenario we also use the “Statistical Naturalness” component from 
Tone Mapped Image Quality Index (TMQI) metric [51]. The other 
component, “Structural Fidelity” is a non-linear version of SSIM 

Fig. 2. Artifacts at transition may appear if one computes the weights for the FCM 
clustering at small resolution (a), compared to computing them at full resolution in 
figure (b).
constructed for comparing radiance maps (HDR images) with fi-
nal displayed images (LDR); the non-linearity is needed to cope 
with range compression (which is not present in the current sce-
nario). In contrast “Statistical Naturalness”, denoted by S N , is a 
non-reference metric that evaluates, based on perceptual experi-
ments, how pleasant a final image is.

Compared to our previous work [12], for a more accurate eval-
uation we manually aligned the evaluation reference image with 
the one resulted after the color transfer method was applied. Such 
a step is necessary as both quality measures report inconclusive 
values in cases of unregistered pairs.

6.3. Results

FCM resolution The first encountered problem was due to the time 
required by the clustering algorithm to run on a high resolution 
image. In order to make this time acceptable, one reduces the res-
olution of the images during clustering, which leads to another 
problem: it introduced visible artifacts at the transition between 
frameworks. For smaller images, the transitions from one frame-
work to others are more noticeable, thus producing disturbing 
artifacts. These transition artifacts appear mainly in the regions 
that are over-segmented by the FCM algorithm. However, comput-
ing the pixels weight at full resolution avoided this downside. An 
example can be seen in Fig. 2.

The usage of lower resolution allowed an average speed-up of 
4× on our database. We note that the speed-up depends on the 
content of the image, on the image resolution and on the choice 
of the initial centroids for the FCM. The database contains images 
with resolution varying from 18 MPixels (DSLR camera) to 5 MPix-
els (smartphone camera) and with very different contents (some 
very colorful, others with few colors), thus the speed-up for each 
image can vary.

Framework merging and extreme channels If only the CieLab color 
channels are used for clustering, the clustering algorithm may pro-
duce, at times, an over-segmentation, by artificially splitting near-
saturated areas or almost black ones. The initial proposed solution 
[12] inspects such frameworks and, at necessity (i.e. framework’s 
means are too close) merges them. However this solution is not 
always working. By using the extreme channels as additional data 
for the clustering algorithm, these kinds of problems appear less 
often. In this case, the clustering results are more similar between 
Fig. 3. An example where the use of extreme channels is beneficial. (b) Evaluation reference image (E v = 0) and (c) Underexposed image (E v = −1). (a)–(d) The frameworks 
from [12]. (e)–(h) The frameworks obtained using the additional information given by the extreme channels. (f) Result with the method from [12]. Note the artifacts on the 
sky and the color/texture of the tower. (f) Proposed method.
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Table 1
Achieved performance of the proposed method with respect to camera used. SN denotes “Statistical Naturalness” and larger values are better.

Camera PSNR SSIM SN

E V = −1 E V = −2 All E V = −1 E V = −2 All E V = −1 E V = −2 All

Smartphone 22.96 22.35 22.65 0.72 0.69 0.70 0.59 0.47 0.53
Consumer 21.73 21.22 21.47 0.75 0.71 0.72 0.57 0.46 0.52
DSLR 22.80 21.68 22.26 0.76 0.73 0.75 0.38 0.34 0.36

Table 2
Numerical comparison between the proposed method and prior related methods.

Method PSNR SSIM SN

E V = −1 E V = −2 All E V = −1 E V = −2 All E V = −1 E V = −2 All

Proposed 22.5 21.75 22.13 0.74 0.71 0.72 0.51 0.42 0.47
Florea et al. [12] 20.54 18.05 19.29 0.58 0.56 0.57 0.44 0.43 0.44
Reinhard et al. [15] 18.12 16.75 17.44 0.60 0.58 0.59 0.40 0.25 0.33
Pitie et al. [17] 19.23 18.34 18.79 0.62 0.60 0.61 0.50 0.30 0.40
Pouli et al. [18] 18.66 17.52 17.10 0.62 0.59 0.61 0.44 0.26 0.35
Mean Shift 19.65 18.35 19.00 0.61 0.60 0.60 0.44 0.30 0.37
Mechrez et al. [19] 22.99 22.05 22.6 0.69 0.65 0.66 0.46 0.41 0.44
Ren et al. [29] 17.57 15.49 16.53 0.64 0.58 0.61 0.44 0.27 0.36

Fig. 4. Comparison between proposed method and classical image transfer methods. One may note that the proposed method is closest to the evaluation reference image.
the underexposed and the normal exposed images. An illustrative 
example is presented in Fig. 3 (f), where the lack of merging causes 
visible artifacts in the center of the sky.

Camera related performance In Table 1, the achieved performance 
with respect to the camera used is reported. As discussed in sec-
tion 3, the PSF size (thus the amount of blur) and the pixel size 
are closely related. The quality of acquired images is increasing 
from the smartphone (which has 1.12 μm pixel size), to the con-
sumer camera (with 1.76 μm pixel size) and to the DSLR (with 
4.99 μm pixel size). SSIM numerical values indicate that the im-
age quality retrieved using the proposed color transfer method is 
in accordance with the input image quality. The Statistical Natu-
ralness says how pleasant an image is overall and it depends on 
camera color tuning. This metric, yet shows that the larger an am-
plification the least pleasant an image is.

Comparison with related work We extensively compare the pro-
posed method with related work on color transfer, [15], [18] and 
[17], as the authors provide code, and to our previous work [12]. 
We also compare with the recent work on photorealist style trans-
fer [19] and camera dependent low-light enhancement (LECARM) 
[29] using authors provided code. In the case of the latter, we 
sought, from the camera models provided, the one which lead to 
best results.

We have also replaced the FCM with mean-shift clustering since 
mean-shift is a method that usually performs well on natural im-
ages and does not require the user to specify the number of clus-
ters, but the results were not as good as using the FCM.

Numerical results are shown in Table 2, while visual, compar-
ative, results are presented in Figs. 4 and 5. We stress that the 
proposed method is tested on a significantly larger database than 
other similar solutions: in many cases, [17], [20], [22], etc. at most 
15 images are used; we test on over 200 image sets. Yet, although 
on particular examples other methods may produce results lead-
ing to higher numerical values, overall, and on each category, the 
proposed method reaches the top performance.

From a subjective point of view there are further observations 
to be made. Artifacts of the proposed method are rarer and usu-
ally less disturbing than those of other solutions. Typical artifacts 
are related to slightly incorrect colors due to under-segmentation



L. Florea, C. Florea / Digital Signal Processing 93 (2019) 1–12 9
Fig. 5. Comparison between the proposed method and other alternative solutions to the problem. Original images in odd rows and details in even ones. The images are best 
viewed when zooming in the electronic version of the paper. One may note that the proposed method is closest to the evaluation reference image. The images obtained with 
realistic style transfer suffer from artifacts due to mis-alignment. The images obtained with LECARM, while independently may look fine, are oversharpened (as showed in 
the zoom from the rows 2 and 8) and overcontrasted (as showed in rows 4 and 6).
and some visible transition due to large displacements between 
frames. By contrast, in the initial color transfer algorithm [15], 
there are not any transition artifacts since the image is considered 
as a whole. However global transfer leads to much poorer colors in 
smaller regions, thus explaining the lowest reported results from 
Table 2.

Fig. 4 contains an outdoor image where all discussed methods 
performed reasonably well. The current method gives the result 
which is closest to the evaluation reference image. The sky and the 
buildings are wrongly colored by the algorithm proposed by Pouli 
et al. [18], also. The method by Pitie et al. [17] exhibits some arti-
facts on the closest building. Our previous solution [12] incorrectly 
merged the clouds with the buildings at the clustering step, which 
lead to more yellow clouds and whiter buildings. For more subjec-
tive comparisons between our previous method and older ones we 
refer the reader to the results section from [12].
Fig. 5 contains a series of comparisons with more recent prior 
works [19], [29]. Overall the so-called photorealist style transfer 
[19] assumes that the two images are perfectly aligned, and if this 
condition is not met the results are less impressive and occasion-
ally with artifacts.

Since the currently proposed method is developed starting from 
our previously proposed one [12], in Fig. 6 comparative results can 
be seen. For a better view we selected a region from each image 
and we enlarged it in Figs. 6 (d), (e) and (f). One may notice that 
the current method seems to give sharper results. This is mostly 
due to the resolution used for the clustering and to the semi-
random initialization of the FCM. By ensuring that the weights are 
computed on full resolution we do not artificially blur the seg-
mented image. The better matching of the clusters due to the use 
of the extreme channels results in better overall colors for the re-
constructed image.
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Fig. 6. Comparison between proposed method and our initially proposed one [12]. (a) Evaluation reference image; (b) [12]; (c) Proposed method; (d), (e), (f) Cropped regions 
from above examples.
Comparison with blind deconvolution In the previous sections, we 
have claimed that the proposed method is a practical alternative 
to the blind deconvolution. To support this claim in Fig. 7 the 
proposed approach is illustrated on a case where the normally 
exposed image is visibly blurred. For deconvolution we show the 
results from two state of the art solutions: the blind patch recur-
rence solution [52] and the sparse blind regularization for blind 
deconvolution [53].
Blind deconvolution introduces visible artifacts by reducing the 
actual resolution. The blurring of the image means that some of 
the image high frequencies become zero (by multiplying them 
with the zeros of the PSF). In order to restore the image via decon-
volution, these frequencies need to be deducted from assumptions 
on the image. These assumptions usually lead to losing the image 
details, thus the result of deconvolution solutions looks patchy. In 
contrast, using color transfer, these details are preserved better as 
no frequency canceling takes place.
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Fig. 7. Comparison between proposed method and a blind deconvolution method [52]. The best view for comparison is when zooming in on the electronic version. One may 
note that the deconvolution introduces noticeable artifacts.

Table 3
Comparative duration (in minutes) of evaluated method. All times have been obtained using author release Matlab 
code on the same CPU (Intel i7 3.0 GHz), single thread while processing an image with 18 Mpixels.

Method Proposed Pitie et al. [17] Pouli et al. [18] Mechrez et al. [19] Ren et al. [29]

Duration [min] 1.5 1.9 8.12 145 0.25
Another argument for using color transfer as opposed to blind 
deconvolution is its higher computational efficiency. The time re-
quired for blind deconvolution algorithms is quite large. For the 
image in Fig. 7, with a resolution of 0.7 MPixels, the blind patch 
recurrence solution [52] needed 20 minutes (with 10% in PSF es-
timation and 90% in the actual deconvolution), while the sparse 
blind regularization [53] required 25 minutes. By comparison, for 
the same image, our method takes 6 seconds.

6.4. Duration

The proposed solution is implemented in Matlab. On an Intel 
i7 3.0 GHz, running on a single core, it requires 1.5 minutes to 
enhance an image of 18 Mpixels (the resolution of DSLR images). 
Comparative durations are presented in Table 3. Our method is av-
erage as duration given prior art, which has as extremes the recent 
methods [19] – 2.3 hours and [29] – 15 seconds for the same plat-
form and images. The conclusion is confirmed by the details of 
the algorithm too: the method of Ren et al. [29] does not per-
form adaptation with respect to the local scene (thus has reduced 
complexity), while the solution of Mechrez et al. [19] is concerned 
with local adaptation and, thus, yields intensive computation. The 
general transfer methods, including ours, perform only a coarse 
adaptation and consequently have an average complexity.

7. Conclusions

This paper proposes a method that addresses the potential mo-
tion blur arising in images acquired in low light by underexposing 
and color transfer. The method implements a piece-wise transfer 
based on decomposing the reference and source image on frame-
works. The frameworks consistency is increased by the use of ex-
treme channels as it has been proven that due to having smaller 
variance reduce the gap between the two images. Also we ar-
gue that, while facing potential motion blur is more efficient to 
underexpose images and perform color transfer for low-light com-
pensation than implement blur deconvolution.

On the theoretical side, we contributed by the introduction of 
a generative model for color transfer and we show that many pre-
viously introduced methods may be retrieved as particular cases 
of it. At last we have introduced a color transfer method that is 
shown to outperform related methods on a substantially large im-
age database.

Subjective evaluations show that images without visible quality 
degradation are computed while underexposing with 2 EV stops 
(i.e. taking a quarter from the exposure time required by the scene 
nominal illumination). The algorithm is subject to full optimization 
and may be implemented inside the camera.
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