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ABSTRACT

Graph Neural Networks (GNNs) have achieved state-of-the-art performance on
tasks such as user-item interaction prediction in recommender systems, molec-
ular property classification, and credit risk scoring and fraud detection in finan-
cial risk modeling. However, their opaque embedding mechanisms raise criti-
cal concerns about transparency and trustworthiness. Existing explainability ap-
proaches largely focus on identifying the nodes, edges, or subgraphs that in-
fluence the model’s prediction but fail to disentangle how individual node fea-
tures shape learned embeddings. In this work, we propose a novel decompo-
sition framework that systematically attributes each embedding to original node
and/or edge features. We qualitatively demonstrate the framework on Graph Con-
volutional Networks (GCN) and Heterogeneous GraphSAGE (HinSAGE) using
Cora and MovieLens, and quantitatively benchmark against widely adopted base-
lines across multiple datasets. Results indicate that our approach improves in-
terpretability by revealing how node features contribute to individual graph em-
beddings and clarifying the role of neighborhood aggregation in shaping predic-
tions.This work connects structural explainability and feature-level attribution,
providing a principled foundation for trustworthy and actionable GNN explana-
tions.1

1 INTRODUCTION

Graph Neural Networks (GNNs) have established themselves as powerful models for relational and
structured data, achieving state-of-the-art performance in fields ranging from molecular property
prediction to recommender systems to financial risk analysis. Such models leverage both the fea-
tures of the entities represented by nodes and the connections between them, as well as the structure
of the graph created by these relationships. However, their black-box nature has raised concerns
about transparency and accountability, spurring a growing literature on explainability of GNNs. Re-
cent surveys (Yuan et al., 2023; Kakkad et al., 2023) provide comprehensive taxonomies of this
work, categorizing methods into post-hoc attribution techniques, model-specific explainers, and in-
herently interpretable architectures. Despite this progress, transparently explaining the node feature
information captured in GNN embeddings remains an open question.

Much of the early work focused on structural explanations, identifying which nodes, edges, or sub-
graphs are most influential for a given prediction. Methods such as GNNExplainer (Ying et al., 2019)
and PGExplainer (Luo et al., 2020) learn masks to highlight critical subgraphs, while approaches
like SubgraphX (Yuan et al., 2021) employ Monte Carlo search to locate and extract task-relevant
structures. Perturbation-based methods extend this idea by quantifying the importance of nodes or
edges through controlled modifications of the graph. These approaches have proven valuable in
identifying important structures, but do not provide insight into the node features captured by the
GNNs.

In parallel, researchers have adapted gradient- and propagation-based methods from computer vi-
sion, such as Integrated Gradients (IG), Layer-wise Relevance Propagation, and GraphLRP, to trace

1The views expressed in this paper are solely those of the authors and do not necessarily reflect the views
of their affiliated institutions.
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attribution signals back through GNN layers(Pope et al., 2019; Baldassarre & Azizpour, 2019;
Schnake et al., 2021). These methods provide finer-grained insights into node features, yet they of-
ten conflate structural and feature importance due to message passing. Moreover, their dependence
on local gradient signals makes them highly sensitive to noise, unstable under small perturbations,
and prone to correlation bias. More principled frameworks, including counterfactual and causal ex-
planations, have emerged to assess how hypothetical perturbations affect predictions. For instance,
CF-GNNExplainer (Lucic et al., 2022) perturbs adjacency matrices to find the minimal perturbation
to the input graph such that the prediction changes. However, these approaches also remain primarily
concerned with structural or instance-level contributions rather than the feature-level decomposition
of embeddings.

More recent work has expanded the landscape. For example, DEGREE (Feng et al., 2023) decom-
poses GNN mechanisms to attribute predictions to subgraph components, and D4Explainer (Chen
et al., 2023) introduces in-distribution explanations through diffusion-based counterfactuals. DyEx-
plainer (Wang et al., 2023) extends interpretability to dynamic GNNs by capturing temporal depen-
dencies, while GraphOracle (Du et al., 2025) provides self-explainable class-level subgraphs without
requiring post-hoc search. Other advances include FIGNN (Raut et al., 2025), which emphasizes
feature-specific interpretability. At the same time, evaluation frameworks like GraphXAI (Agar-
wal et al., 2023) have benchmarked existing explainers, while robustness studies have highlighted
their fragility to adversarial perturbations. In terms of interpretability of node embeddings, Dalmia
& Gupta (2018) first analyzed how embedding dimensions correlate with basic graph properties,
revealing implicit structural signals. Piaggesi et al. (2024) introduced DINE, which restructures
embeddings for dimensional interpretability, ensuring each dimension reflects meaningful substruc-
tures. Extending this idea, Piaggesi et al. (2025) developed a disentangled, self-explainable repre-
sentation learning approach that enforces semantic separation across dimensions.

Despite these advancements, there remains a lack of methods that systematically decompose a tar-
get node’s final embedding into contributions from individual features of the nodes, edges, and
their neighbors. In applications where speed or infrastructure concerns are critical, learned graph
embeddings may be used to capture the information learned by a GNN and fed into downstream
predictive systems. There, they act as engineered features to boost performance over models with
only observed features. These embeddings capture the underlying structural relationships and fea-
ture interactions within the graph, summarizing multi-hop dependencies and relational patterns into
compact representations, incorporating the influence of neighbors on outcomes. While this practice
produces clear performance gains, it also raises accountability challenges: if embeddings drive de-
cisions in sensitive contexts such as credit risk assessments, fraud detection, or medical diagnosis,
then stakeholders should be able to trace which node and edge features shaped these embeddings
and to what degree. For instance, in a fraud detection scenario, graph embeddings may increase
a model’s ability to detect fraud, but it is critical to understand which properties of the consumer,
transaction, and merchant were captured by the GNN in order to understand evolving fraud patterns
and develop mitigation strategies.

Motivated by this gap, this paper introduces a novel method for feature-wise decomposition of em-
beddings, enabling fine-grained attribution that complements structural explanations. By explicitly
accounting for correlations among features, our method provides a faithful mechanism to trace how
information is transformed through GNN layers into the target embedding representation. This re-
veals what node information is captured by the graph embeddings, thereby aligning predictive power
with the demands of accountability and interpretability in high-stakes domains. Table 1 summarizes
the capabilities of representative GNN explanation methods. While prior approaches can attribute
predictions to node features or edges, they generally do not explain embeddings, and most rely
on optimization, sampling, or architecture-specific constraints. Our decomposition framework is
unique in directly tracing embeddings back to raw features, supporting aggregation across embed-
dings, and producing deterministic, efficient attributions through simple matrix multiplications.

The remainder of this work is structured as follows. In Section 2, we present our decomposition
framework for inverting embedding generation in GNNs and demonstrate its application on two
representative architectures: Graph Convolutional Network (GCN) and Heterogeneous GraphSAGE
(HinSAGE). Section 3 illustrates the approach empirically using the Cora citation network (Sen
et al., 2008) for node classification to demonstrate feature-wise decomposition for GCN embeddings,
and the MovieLens dataset (Harper & Konstan, 2015) for link regression to highlight type-aware and
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Capability GNNExplainer IG LIME/GraphLIME PGExplainer GraphSVX GOAt FIGNN Ours
Explain node features ✓ ✓ ✓ × ✓ ✓ ✓ ✓
Explain embeddings directly × × × × × × × ✓
Aggregate across embedding dims. × × × × × × × ✓
Post-hoc on trained models ✓ ✓ ✓ ✓ ✓ ✓ × ✓
Deterministic (no sampling) × × × × × ✓ ✓ ✓
Handles high-dim features × ✓ × ✓ (edges) × △ △ ✓
Domain flexibility ✓ ✓ ✓ ✓ ✓ △ △ ✓

Table 1: Capability comparison of representative GNN explanation methods. Symbols: ✓ = sup-
ported; × = not supported; △ = partially supported.

edge-level explanations in HinSAGE. Section 5 discusses implications, limitations, and potential
extensions of our method. Finally, Section 6 concludes the paper.

2 METHOD

We propose a framework for decomposing graph neural network (GNN) embeddings into feature-
wise contributions. The central observation is that, once the nonlinearity from the architecture is
fixed (e.g., ReLU with a given input), each GNN layer becomes a linear operator for that input. This
allows us to propagate contributions of node and edge features through successive layers and exactly
reconstruct each output embedding as a sum over these features. We illustrate the framework with
two widely used architectures: the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) for
node classification and Heterogeneous GraphSAGE (HinSAGE) (Hamilton et al., 2017; Ying et al.,
2018; Zhang et al., 2019) for heterogeneous link prediction. For clarity, we summarize the notation
used in Table 3.

2.1 GENERAL FRAMEWORK

A message-passing GNN layer that uses the relational graph convolutional operator (Schlichtkrull
et al., 2018) can be expressed as follows:

h(ℓ)
v = σ

(
W

(ℓ)
selfh

(ℓ−1)
v +

∑
r∈R

W (ℓ)
r Ar({h(ℓ−1)

u : u ∈ Nr(v)}) + b(ℓ)
)
,

where Ar is a linear aggregator (e.g., normalized sum, mean, or sampled mean) and R indexes edge
types or relations.

To invert this process, we propagate contribution matrices in parallel to the forward pass. Initializa-
tion is C(0)

w→v = x⊤w if w = v, and 0 otherwise. Propagation is then

C
(ℓ+1)
·→v = D(ℓ)

v

(
W

(ℓ)
selfC

(ℓ)
·→v +

∑
r∈R

W (ℓ)
r Ar({C(ℓ)

·→u : u ∈ Nr(v)}) + b(ℓ)
)
,

where D(ℓ)
v is a diagonal matrix that encodes the activation pattern for the given input for node v

at layer ℓ. After L layers, h(L)
v can be exactly decomposed as a sum over {C(L)

w→v}, with each
term corresponding to a source node w and input feature dimension p. Contribution vectors can be
summarized into scalar importance scores using norms, and can also be projected for visualization
using a PCA-based method (see Appendix for details).

2.2 GRAPH CONVOLUTIONAL NETWORKS (GCN)

The Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is an adjacency-based GNN
widely used for semi-supervised node classification. For two-layer GCN, each layer applies normal-

ized adjacency Ã = D−
1
2 (A+ I)D−

1
2 to mix neighbor features:

H(1) = σ
(
ÃXW (0) + b(0)

)
, H(2) = σ

(
ÃH(1)W (1) + b(1)

)
.
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For a target node v, the contribution from feature p of node w to the embedding h
(2)
v is

[
C(2)

w→v

]
p,:

= D(1)
v

(∑
u∈V

ÃvuD
(0)
u

(
Ãuw xw[p] e

⊤
p W

(0) + b(0)
)
W (1)

)
. (1)

This expansion shows that signals propagate along paths w → u → v. Self-contributions arise
when w = v, first-hop contributions when w ∈ N(v), and two-hop contributions when w con-
nects via some u. Grouping terms provides hop-level or self/neighbor breakdowns of the learned
representation.

2.3 HETEROGENEOUS GRAPHSAGE (HINSAGE)

GraphSAGE (Hamilton et al., 2017) is a widely used inductive GNN framework that learns node
embeddings by sampling and aggregating information from each node’s neighborhood. Hin-
SAGE (Ying et al., 2018; Zhang et al., 2019) generalizes GraphSAGE to heterogeneous graphs
with multiple node and edge types. Instead of operating with a full adjacency matrix, it samples
fixed-size neighborhoods per hop, stratified by type. Each neighbor type has its own projection
matrix. For node v of type t0 at layer ℓ:

h(ℓ)
v = σ

(
W

(ℓ)
t0,self

h(ℓ−1)
v +

∑
t∈T

W
(ℓ)
t→t0

1

|Nt(v)|
∑

u∈Nt(v)

h(ℓ−1)
u + b

(ℓ)
t0

)
.

Our decomposition naturally extends:

C
(ℓ+1)
·→v = D(ℓ)

v

(
W

(ℓ)
t0,self

C
(ℓ)
·→v +

∑
t∈T

W
(ℓ)
t→t0

1
|Nt(v)|

∑
u∈Nt(v)

C
(ℓ)
·→u + b

(ℓ)
t0

)
. (2)

Because contributions are partitioned by node type, we obtain explanations such as “merchant fea-
tures” vs. “account features,” reflecting the heterogeneous semantics. For link prediction, HinSAGE
produces edge embeddings ψ(h(L)

u ,h
(L)
v ), commonly via Hadamard product or concatenation, fol-

lowed by a linear classifier. Since these operators are linear in h
(L)
u and h

(L)
v , contributions extend

seamlessly. For example, with Hadamard product:

ℓuv = w⊤(h(L)
u ⊙ h(L)

v ) + c,

the contribution of feature p of node w is obtained by combining node-level contributions with
diag(w)h

(L)
v or diag(w)h

(L)
u , depending on whether w lies in the neighborhood of u or v. This

yields edge-level decompositions that directly attribute predicted links to original features of source
and destination neighborhoods. Because HinSAGE uses random neighborhood sampling, expla-
nations are conditional on the computation graph. Averaging across samples produces expected
contributions, while a single sample yields instance-specific explanations.

By expressing GNN layers as masked linear operators and propagating contributions in parallel to
the forward pass, our framework provides exact, activation-conditioned decompositions of embed-
dings into original features. The GCN case highlights hop- and neighbor-wise propagation, while
HinSAGE showcases type-aware, edge-level sampling in heterogeneous graphs. Together, these ex-
amples demonstrate our method’s generalizability across major GNN architectures, enabling princi-
pled, feature-level interpretability of embeddings and predictions.

3 QUALITATIVE EXPERIMENTS

3.1 DATASETS AND EXPERIMENTAL SETUP

To illustrate the proposed decomposition framework, we consider two datasets using two GNN
architectures: the Cora citation network (Sen et al., 2008) using GCN and the MovieLens dataset
(Harper & Konstan, 2015) using HinSAGE. Further details are provided in the Appendix. All models
are implemented using the StellarGraph library (Data61, 2018).
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3.2 RESULTS

Cora (GCN case study). We compare an XGBoost model (Chen & Guestrin, 2016) trained on raw
1,433 BoW features against an XGBoost model trained on only the 16 GCN embeddings from the
last hidden GCN layer. Using embeddings yields a performance lift, improving accuracy from 0.57
to 0.76 and weighted F1 score from 0.56 to 0.75. Since the embeddings are predictive features for
downstream tasks, explaining the embeddings is necessary to understand the information captured
by the GCN.

We decompose each embedding back to the original features by expanding the actual passing with
the trained weights and ReLU gates. For a target node v, source node w, and feature index p, the
contribution vector

[
C

(2)
w→v

]
p,:

can be calculated using the equation 1, where D(0) and D(1) denote
the diagonal ReLU gating at layer 1 and 2. This makes the two-hop paths explicit and preserves
the exact trained computation (e.g., bias flow and ReLU gates). In all feature-attribution summaries
below, we exclude the bias term so that values reflect word contributions only. To separate whether
an embedding’s influence originates from the node itself or from neighbors, we decompose the
renormalized adjacency into diagonal and off-diagonal parts,

Ã = Ãself + Ãnbr, (Ãself)uw =

{
Ãuu, u = w,

0, u ̸= w,
.

Let
[
C

(2)
w→v

]
p,:

denote the layer-2 contribution vector from feature p of source node w to the em-
bedding of target node v. We obtain self-origin and neighbor-origin contributions by replacing
the factor Ãuw in that expansion with (Ãself)uw and (Ãnbr)uw, respectively:

[
C

(2)
self, w→v

]
p,:

:=[
C

(2)
w→v

]
p,:

∣∣∣
Ãuw← (Ãself)uw

, and
[
C

(2)
nbr, w→v

]
p,:

:=
[
C

(2)
w→v

]
p,:

∣∣∣
Ãuw← (Ãnbr)uw

. Since embed-

dings can exhibit correlation, we optionally apply a PCA-based projection to visualize attribution
patterns in an orthogonal basis (see Section A.2). This step is intended for interpretability and visu-
alization. Let V ∈ Rd×r be the top r PCA loadings (columns orthonormal) fit once on H(2). We
rotate each contribution vector over the embedding axis and sum the first r principal components:

C̃
(2)
⋆, w→v[p, 1:r] = C

(2)
⋆, w→v[p, :] V,

[
sPCA
⋆ (v)

]
p

=
∑
w∈V

r∑
c=1

C̃
(2)
⋆, w→v[p, c], ⋆ ∈ {self, nbr},

where d = 16 and r = 5 in this example. Stacking rows over v yields matrices

Sself, Snbr ∈ RN×F ,

whose v-th rows are the correlation-adjusted word attributions sPCA
self (v)

⊤ and sPCA
nbr (v)⊤.

To visualize contributions, we apply t-SNE (Maaten & Hinton, 2008) to reduce Sself and Snbr (1,433
words) to two dimensions. Figure 1 shows contributions obtained by decomposing GCN embed-
dings, comparing self-node and neighbor-node representations. Our intention is not to claim strong
separation based solely on t-SNE, but rather to provide an intuitive illustration of contribution pat-
terns. Incorporating neighborhood information appears to influence embedding structure, which
aligns with observed gains in recall performance (e.g., Reinforcement Learning: 0.44 to 0.72, The-
ory: 0.18 to 0.56, Rule Learning: 0.37to 0.64). Figure 3 in the appendix reports full performance
results across all categories. Because this analysis is conducted at the feature-contribution level, it
offers transparency into what each embedding learns individually by grouping features with simi-
lar contribution behaviors, helping interpret the role of neighborhood aggregation in shaping model
predictions.

MovieLens (HinSAGE case study). We then interpret the embeddings generated by the Hin-
SAGE model. Following the approach used for the GCN example, we treat these embeddings as
additional features and compare two XGBoost models: one using only user and movie attributes,
and another incorporating both raw attributes and embeddings. Incorporating embeddings improves
predictive performance across key metrics: MSE decreases from 1.12 to 0.95, MAE from 0.86 to
0.78, and R2 nearly doubles from 0.11 to 0.24. Feature importance from the XGBoost regressor
(total gain) highlights the predictive value of embeddings, with only one raw user attribute (scaled
age) appearing among the top 20 features. These results underscore the necessity of explaining
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Figure 1: t-SNE visualization of feature contributions from decomposed GCN embeddings. The left
panel shows contributions from self nodes, while the right panel shows contributions from neigh-
bor nodes. Notably, the neighbor node contributions exhibit clearer separation across categories,
indicating their stronger role in capturing class-discriminative information.

Figure 2: A. Decomposition of user–movie HinSAGE embeddings into self-contributions and
neighbor-contributions for both users and movies, illustrating how individual components construct
the learned representation. B. Analysis of the 25th embedding dimension by aggregating contribu-
tions across user groups and comparing them across different movie genres, highlighting systematic
differences in representation structure. C. Contributions of the user attribute scaled age across dif-
ferent rating levels, aggregated by movie genres.

embeddings, as they encode highly informative signals. Figure 4 in the appendix provides the full
comparisons between two XGB models across different rating levels.
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To this end, we decompose the learned embeddings using the equation 2. Figure 2A illustrates this
process for a single user–movie pair.Then, we leverage learned weights to map each embedding back
to its contributing features. The decomposition yields four contribution matrices corresponding to:
(a) user self-node (dimensions 1–8), (b) user’s neighboring movie nodes (9–16), (c) movie self-node
(17–24), and (d) movie’s neighboring user nodes (25–32). For example, the unnormalized value of
the 17th embedding dimension is −0.18, with the movie attributes drama and horror contributing
−0.06 and −0.12, respectively, while other attributes have negligible impact. Beyond single-pair
analysis, we examine the most influential embedding (25th, with an importance score of 0.18 using
the “total gain” metric) by aggregating contributions across multiple pairs. As shown in Figure 2A,
this embedding primarily captures information from neighboring users of the target movie, reflecting
collaborative signals. Figure 2B compares aggregated contributions across user groups and movie
genres, revealing systematic differences in representation structure (e.g., −0.21 for animation vs.
0.09 for documentary). Finally, we analyze the role of a specific user attribute—scaled age—across
rating levels and genres. Figure 2C shows that war and drama genres exhibit trends aligned with the
overall population (increasing with rating), whereas sci-fi and horror display the opposite pattern,
with younger users tending to assign higher ratings. Contribution values amplify these differences:
war and drama show near-zero contributions, while sci-fi and horror exhibit strongly negative con-
tributions, indicating their distinct influence on embedding formation.

Appendix A.4 provides additional results. Figure 5 shows average scaled-age contributions to
the 25th embedding; Figure 6 examines the job=artist subpopulation across rating levels.
High-contribution genres trend upward with rating, whereas low-contribution genres are essentially
flat. In addition, we analyze the 11thembedding—constructed from users’ movie-neighbor sig-
nals—with a focus on the War genre (Figure 7); compared to contribution results from 25th embed-
ding dimension, the contribution curves for the 11thembedding cluster more tightly, indicating that
differences among features are subtle and not strongly discriminative for this genre. These findings
demonstrate that our proposed attribution-based decomposition provides a step toward improving
interpretability of graph-based embeddings and offers insights into how heterogeneous relational
signals influence predictive performance.

4 QUANTITATIVE EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

We conducted quantitative experiments to compare our explanation method against a suite of base-
lines, including GOAt (Lu et al., 2024), GNN-LRP (Schnake et al., 2021), Integrated Gradients
(IG) (Sundararajan et al., 2017b), GradCAM (Pope et al., 2019), LIME (Ribeiro et al., 2016), and
a Random baseline. All methods operate on the same GCN backbone under identical training con-
figurations to ensure fairness. Specifically, the backbone consists of 2 graph convolutional layers
with ReLU activation, followed by a linear output layer. Each hidden layer has 64 dimensions, and
training is performed for 500 epochs using the Adam optimizer with a learning rate of 0.05 and
weight decay of 5× 10−4. A dropout rate of 0.5 is applied to mitigate overfitting.

Evaluation Metrics. We adopt faithfulness-based metrics widely used in interpretability research
and adapted for graph settings (Yuan et al., 2023). Let f(·) denote the GNN classifier that outputs
the predicted probability for the ground-truth class, x the original input feature vector, and ϕ(x) its
feature-attribution vector. We define x+k as the input where only the top-k% most important features
(according to ϕ(x)) are retained, and x−k as the input where these top-k% features are masked.
Fidelity− measures signal preservation when retaining top-k% features, computed as E[f(x+k ) −
f(x)], while Fidelity+ captures the effect of removing these features, computed as E[f(x−k )−f(x)].
To assess stability, we employ Robustness to Feature Noise, where Gaussian noise ϵ ∼ N (0, 1) is
added to obtain x′ = x+ 0.05 ∗ σ ∗ ϵ, and robustness is quantified as 1− ∥ϕ(x)− ϕ(x′)∥/∥ϕ(x)∥,
where σ denotes the standard deviation of the original features. Higher values indicate explanations
that are both faithful and stable under perturbations.

Datasets. We evaluate on five widely used benchmark datasets for node classification: Amazon-
Computers (D1) and Amazon-Photo (D2) from Shchur et al. (2018), CiteSeer (D3), PubMed (D4)
and Cora (D5) from Yang et al. (2016). These datasets span diverse graph structures and feature
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Table 2: Comparison of Fidelity+ and Fidelity− scores for GNN-LRP, GOAT, IG, GradCAM,
LIME, Random, and our self+2hop method across Amazon-Computers (D1), Amazon-Photo (D2),
Citeseer (D3), PubMed (D4), and Cora (D5). Values are averaged over 100 random nodes, using
k = 5% of features masked.

Data GOAT Ours GNN-LRP IG GradCAM LIME Random

Fidelity+ D1 0.0352 0.0353 0.0288 0.0164 0.0201 0.0070 0.0013
D2 0.0340 0.0342 0.0227 0.0164 0.0024 0.0114 0.0009
D3 0.1523 0.1514 0.1513 0.1239 0.1114 0.0281 0.0055
D4 0.0389 0.0384 0.0313 0.0196 0.0215 0.0010 0.0010
D5 0.1808 0.1789 0.1787 0.1229 0.1073 0.0267 0.0054

Fidelity− D1 -0.0001 0.0000 0.0000 -0.0002 0.0002 0.0004 0.0013
D2 -0.0001 0.0000 0.0000 0.0003 0.0046 0.0001 0.0010
D3 0.0000 0.0000 0.0000 0 0.0002 0.0063 0.0063
D4 0.0000 0.0000 0.0000 -0.0003 0.0005 0.0011 0.0021
D5 0.0000 0.0000 0.0000 -0.0001 0.0006 0.0046 0.0033

distributions, making them standard for GNN explainability research. Dataset statistics (nodes,
edges, feature dimensions, and class distributions) are summarized in Table 4.

4.2 RESULTS

Table 2 reports Fidelity+ and Fidelity− scores across all datasets. Fidelity+ measures the differ-
ence in prediction when the top-5% important features are removed compared to the original input.
Larger values indicate that the retained features capture most of the predictive signal, while Fidelity−
measures the difference when only the top-5% important features are kept. Here, smaller values are
better, as they indicate that masking less relevant features does not significantly distort predictions.
In summary, our method achieves state-of-the-art Fidelity+, closely matching or surpassing GOAt
on most of benchmarks and outperforming gradient-based and perturbation-based methods, demon-
strating that the proposed decomposition effectively identifies features critical for preserving model
confidence. Moreover, our method achieved near-zero Fidelity− values, confirming that the decom-
position produces clean and stable feature rankings.

Robustness results, summarized in Table 5 (Appendix), show that our method outperforms IG, GNN-
LRP, and LIME. The slightly lower robustness is expected because the proposed method operates
directly in the input feature space, where additive noise proportionally perturbs the importance mag-
nitudes. Nevertheless, robustness values remain high (0.78–0.98), demonstrating that the method
is relatively stable. Finally, Table 6 (Appendix) compares computational efficiency. Our method
achieves a favorable trade-off between efficiency and faithfulness.

We also investigate feature signal recovery under feature noise by augmenting Cora’s 1,433 features
with 287 Bernoulli noise columns (p=0.013), comparing our method against established baselines. A
2-layer GCN (details in Section A.5) is trained, and 100 test nodes are sampled. Each explainer ranks
features; we measure the number of noisy features among the Top-10 and report runtime statistics.
Results (Appendix 8) show our method consistently selects fewer noisy features, with PCA-based
aggregation offering slight gains over averaging—indicating improved stability and signal recovery.

5 DISCUSSION

5.1 LIMITATIONS AND SCOPE

Our decomposition framework attributes embedding values to input features by propagating contri-
butions through the network’s computational graph, assuming access to model internals (parame-
ters, intermediate activations, and stored normalization statistics) and achieving exactness only for
specific activation and normalization classes. For linear transformations and piecewise-linear ac-
tivations such as ReLU (Nair & Hinton, 2010) and LeakyReLU (Maas et al., 2013), contributions
admit closed-form propagation via sign/magnitude masks or slope-based scaling. Monotone acti-
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vations with tractable inverses (e.g., ELU (Clevert et al., 2016), SELU (Klambauer et al., 2017),
Softplus (Nair & Hinton, 2010)) are handled by exact inversion when numerically stable, or by local
linearization using their derivatives for saturating nonlinearities such as Sigmoid and Tanh, which
are invertible in principle, we employ clamping or derivative-weighted masks to mitigate numeri-
cal instability near saturation. Modern smooth activations (GELU (Hendrycks & Gimpel, 2017),
Swish/SiLU (Ramachandran et al., 2017), Mish (Misra, 2019)) lack simple closed-form inverses
and can be non-monotonic. However, Hendrycks & Gimpel (2017) provides the approximated form
of GELU with f(x) = 0.5x

(
1 + tanh

[√
2

π (x+ 0.044715x3)
])

, which can be inverted using a
branch-aware Newton–Raphson method on g(x) = f(x) − y with close-form f ′(x). Alternatively,
DeepLIFT (Shrikumar et al., 2017) or LRP (Bach et al., 2015) provide principled propagation with-
out explicit inversion for non-monotonic cases. Normalization layers exhibit analogous behavior:
BatchNorm (Ioffe & Szegedy, 2015) is invertible at inference given stored statistics as discussed
in Lu et al. (2024), while LayerNorm (Ba et al., 2016) depends on per-sample moments and is
treated via local linearization. Pooling and attention are decomposed by distributing relevance pro-
portionally to aggregation weights or attention scores, preserving interpretability in graph-based
architectures.

The proposed approach assumes access to model internals—such as weights, activations, and nor-
malization statistics. In black-box settings (e.g., API-based inference), these details are unavailable,
making exact decomposition infeasible. This is not unique to our approach: widely used popula-
tion/global explainers require access to model internals (Ying et al., 2019; Baldassarre & Azizpour,
2019; Luo et al., 2020; Lu et al., 2024). If internal access is restricted, alternative approaches like
model-agnostic methods, perturbation-based sensitivity analysis, or surrogate modeling can approx-
imate interpretability, albeit with reduced faithfulness.

Above, we used PCAas a post-hoc visualization tool to aggregate the contribution matrix in order
to show overall patterns across interpretations. While PCA can be effective for summarizing high-
dimensional data, it introduces an additional layer of abstraction. However, we note that PCA is not
part of the explanation mechanism itself—the raw contribution matrix remains available for direct
analysis. Alternative aggregation strategies that preserve interpretability are important future work,
such as TCAV introduced by Kim et al. (2018), which aligns latent directions with human-defined
concepts, or disentangled representation learning (Piaggesi et al., 2025), which aims to produce
dimensions with clearer semantic meaning.

5.2 FUTURE WORK

Graph Attention Networks (GAT). As a future direction, we aim to extend our path-based de-
composition framework to attention-based architectures such as GAT, which often outperform non-
attention GNNs (Veličković et al., 2018). While we provide a detailed decomposition for a simplified
two-layer GAT in Appendix A.6, this is only a preliminary step. Generalizing to deeper GATs, het-
erogeneous attention mechanisms, and residual connections remains an open challenge that we plan
to explore in future work.

Graph Transformer (GT). Recent advances in Graph Transformers (Yun et al., 2019) pose a
challenge to our path-based formulation. By replacing sparse neighborhoods with fully-connected
attention, GTs allow each node to attend to all others, which eliminates the locality-based prop-
agation structure that our method exploits. To address this challenge, we need to determine how
to define paths through a dense attention mechanism without facing combinatorial explosion. One
promising direction is to track only the most influential connections, potentially through iterative
pruning or hierarchical clustering of attention patterns. Second, GTs commonly use positional en-
codings like Laplacian eigenvectors or shortest path distances capture structure, but these encodings
are processed jointly with node features through the same attention mechanism. Separating the po-
sitional and node-feature contributions is an open problem, but necessary to capture the impact of
the node features on the network’s decision process.

Uncertainty Quantification. Beyond extending the framework to other convolutional architec-
tures, an important research direction is to incorporate confidence measures into explanations. Cur-
rent attribution methods—including ours—assume deterministic faithfulness within activation re-
gions, but do not quantify uncertainty under distribution shifts or adversarial perturbations. Fu-
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ture work could explore probabilistic decomposition techniques to estimate explanation reliability,
enabling practitioners to assess whether an attribution remains trustworthy when the input graph
deviates from training distribution.

6 CONCLUSION

This paper introduced a feature-wise decomposition framework for interpreting graph neural net-
work embeddings. By reformulating GNN layers as linear contribution operators, our approach
provides explicit attributions across both self and neighbor pathways, while a PCA-based aggre-
gation strategy mitigates correlation bias among embedding dimensions. Experiments on homo-
geneous (Cora) and heterogeneous (MovieLens) benchmarks demonstrate that our method delivers
fine-grained, semantically aligned explanations of predictive embeddings. These results underscore
the value of embedding decomposition for revealing how relational signals shape learned representa-
tions, thereby advancing transparency and accountability in GNN-driven decision-making. Looking
ahead, this work opens promising directions for extending the framework to deeper architectures,
temporal or dynamic graphs, and high-stakes domains where interpretability is critical.
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of graph neural network evaluation. In NeurIPS Workshop on Graph Representation Learning,
2018.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Proceedings of the 34th International Conference on Ma-
chine Learning (ICML), volume 70 of Proceedings of Machine Learning Research, pp. 3145–
3153, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017a.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning (ICML), volume 70 of
Proceedings of Machine Learning Research, pp. 3319–3328, 2017b.
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A APPENDIX

A.1 NOTATION

Symbol Definition

G = (V, E) Input graph with node set V and edge set E
xv ∈ RF0 Input feature vector of node v
X ∈ R|V|×F0 Matrix of all input features
h
(ℓ)
v ∈ RFℓ Embedding of node v at layer ℓ
W (ℓ) Learnable weight matrix at layer ℓ
W

(ℓ)
r Relation/type-specific weight matrix

b(ℓ) Bias vector at layer ℓ
σ Nonlinear activation (e.g., ReLU)
D

(ℓ)
v Diagonal mask from activation of node v at layer ℓ

Nr(v) Neighbors of v under relation/type r
Ã Normalized adjacency matrix used in GCN
ep p-th standard basis vector in RF0 ,

i.e., a column vector with 1 in position p and 0 elsewhere
C

(ℓ)
w→v Contribution matrix from features of node w to embedding of node v at layer ℓ

Table 3: Notation used in the Methods section.

A.2 PCA-BASED CONTRIBUTION AGGREGATION

A central difficulty in aggregating feature contributions across embeddings is that the learned em-
beddings are often correlated. Directly summing raw contribution vectors may therefore over-count
redundant information. One possible remedy is whitening, which rescales contributions by the in-
verse square root of the embedding covariance matrix (Zuber & Strimmer, 2011). However, in prac-
tice the covariance matrix Σh may be ill-conditioned, and computing Σ

−1/2
h can lead to numerical

instability due to very small eigenvalues.

We instead adopt a principal component analysis (PCA) approach (Jolliffe & Cadima, 2016). Let
Σh = UΛU⊤ denote the eigen decomposition of the embedding covariance, with eigenvectors U
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and eigenvalues Λ = diag(λ1, . . . , λFL
). We transform each contribution vector cw,p→v ∈ RFL

into the orthogonal PCA basis such that ĉw,p,→v = cw,p,→v U. The coordinates of ĉw,p,→v now
represent the effect of feature p of node w on independent directions of variation in the embedding
space. A simple PCA-based importance score is then

sPCA
w,p→v = ∥ĉw,p,→v∥2,

which measures the overall magnitude of influence across decorrelated components.

Alternatively, one can weight contributions by the fraction of variance explained by its principal
component:

sPCA-var
w,p→v =

(
FL∑
k=1

λk∑
j λj

(ĉw,p→v[k])
2

)1/2

.

This PCA-based approach avoids the instability of inverting Σh while still capturing feature con-
tributions along independent directions of variation in the embedding space. In practice, we often
truncate to the top K principal components, which both reduces noise and highlights contributions
to dominant modes of variation.

A.3 DATASET DESCRIPTIONS AND EXPERIMENTAL SETUP

Cora (GCN case study). The Cora citation network (Sen et al., 2008) consists of 2,708 scientific
publications categorized into seven research areas, connected by 5,429 citation links. Each node
represents a paper, and its feature vector is a bag-of-words (BoW) representation over 1,433 unique
terms from the papers. The prediction task is node classification: given the citation graph and node
features, predict the research category of each paper. We adopt the standard train/validation split
from Kipf & Welling (2017), with the remaining nodes reserved for testing. This dataset provides
a benchmark for evaluating our method in a transductive, homogeneous, single-type graph setting,
where GCN serves as a natural baseline. For the experimental setup, we train a two-layer GCN,
where each layer outputs 16 hidden dimensions, followed by ReLU activation and dropout with a
rate of 0.5. The final layer is a softmax classifier over seven publication categories. Training is
performed using the Adam optimizer with a learning rate of 0.01, minimizing the cross-entropy loss
on labeled nodes. We use 140 nodes for training, 500 for validation, and 2,068 for testing. Early
stopping is applied based on validation accuracy with a patience of 10 epochs.

MovieLens (HinSAGE case study). The MovieLens dataset (Harper & Konstan, 2015) comprises
user–movie interactions represented as a bipartite heterogeneous graph. We use the 100K subset,
which contains 100,000 ratings from 943 users on 1,682 movies. Nodes correspond to users and
movies, while edges denote rating interactions. Node features include auxiliary attributes such as
movie genres and user profiles. Each edge is associated with an integer rating in the range [1,5].
We formulate the task as supervised link-attribute regression: given a user node, a movie node, and
their attributes, the model predicts the rating on the corresponding edge. This setting evaluates our
framework under an inductive, heterogeneous, edge-level prediction scenario. Our model adopts a
one-layer HinSAGE architecture as suggested in Zhang & Chen (2020) with a hidden dimension of
16 and a mean aggregator. For each target node, the model samples neighborhoods of size 200 to
compute node embeddings. Edge embeddings are constructed by concatenating the embeddings of
user–movie pairs and passing them through a dense layer of size 16 with a linear activation, followed
by a single linear output unit to produce a continuous rating prediction. The model is optimized using
Adam with a learning rate of 0.01 and trained with mean squared error (MSE) as the objective. We
allocate 60,000 edges for training, 10,000 for validation, and 30,000 for testing. Early stopping is
applied based on validation mean absolute error (MAE) with a patience of 5 epochs.

A.4 ADDITIONAL RESULTS
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Figure 3: Confusion matrices of XGBoost trained with (a) raw bag-of-words features and (b)
GCN-derived embeddings. The GCN embeddings produce a more diagonally dominant pattern and
suppress structured off-diagonal blocks, indicating improved class separability and reduced system-
atic confusion among semantically related classes. Labels are ordered consistently across panels.

Figure 4: A. Model performance comparison for XGBoost regression on the MovieLens dataset
using either raw features or raw + HinSAGE embeddings. Boxplots show predicted rating distribu-
tions (y-axis) grouped by true rating levels (x-axis). Quantitatively, adding embeddings decreases
mean squared error (MSE) and mean absolute error (MAE) while increasing R2, demonstrating
that learned representations capture latent structure beyond raw features. B. Feature importance
(measured by total gain) from the XGBoost regression model. Embedding dimensions dominate
the top-ranked features (e.g., edge emb 25, edge emb 29, edge emb 07), indicating that learned
graph-based representations contribute more to predictive performance than raw user attributes.
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Figure 5: Average contributions of the scaled age attribute to the 25th graph embedding across
rating levels (x-axis) and aggregated by movie genres. The left panel shows genres where age
exhibits positive contributions (e.g., documentary, drama, film noir, mystery, war), while the right
panel shows genres with negative contributions (e.g., action, animation, comedy, horror). Each curve
represents the marginal effect of scaled age on the model’s output for a given genre, averaged over
users and items. Positive-contribution genres generally show an increasing trend with rating level,
indicating that older users are associated with higher ratings for these genres. Conversely, negative-
contribution genres seem to exhibit decreasing or flat trends, suggesting that younger users tend to
give higher ratings in these categories. The overall trend (black dashed line) summarizes the global
effect across all genres.

Figure 6: Average contributions of the Artist job feature to the 25th graph embedding across rating
levels (x-axis), aggregated by movie genres. The left panel shows genres with high contribution
(≥ 0.2), including animation, children’s, crime, documentary, film noir, musical, and mystery. The
right panel shows genres with low contribution (< 0.2), such as action, adventure, comedy, drama,
horror, and others. High-contribution genres tend to exhibit stronger positive sensitivity to higher
ratings, whereas low-contribution genres remain relatively flat, indicating limited influence of the
Artist feature in those categories. The black dashed line denotes the overall trend across all genres.
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Figure 7: A. Analysis of the 11th embedding dimension, showing aggregated contributions across
movie genres (rows) and user attributes (columns). Each cell represents the marginal effect of a
user feature on this embedding dimension for a given genre, with darker shades indicating stronger
negative contributions. user attributes include gender, occupation categories, and scaled age, which
is treated as a binary feature here (results correspond to cases where scaled age> 0). Analysis of the
11th embedding dimension, showing aggregated contributions across movie genres (rows) and user
attributes (columns). Each cell represents the marginal effect of a user feature on this embedding
dimension for a given genre, with darker shades indicating stronger negative contributions. User
attributes include gender, occupation categories, and scaled age, which is treated as a binary feature
here (results correspond to cases where scaled age > 0). B. Visualization of average user feature
contributions for the war genre across rating levels (x-axis). The left panel shows features with
high aggregate contribution (≥ 0.2), primarily occupational attributes (e.g., administrator, educator,
engineer, scientist) and scaled age (binary, > 0). The right panel shows features with low aggregate
contribution (< 0.2), including gender and less influential occupations. Each curve represents the
marginal effect of a user feature on predicted ratings for war movies, averaged across users and
items. The curves cluster closely, indicating that differences among these features are subtle and not
strongly discriminative for this genre.
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A.5 COMPARATIVE EVALUATION ON NOISY CORA

Figure 8: Frequency distributions of noisy features across different explanation methods using a
GCN model on the Cora dataset.

We compare our decomposition based approach with established baselines: GOAt (Lu et al., 2024),
GNNExplainer (Ying et al., 2019),Integrated Gradients (Sundararajan et al., 2017a),LIME (Ribeiro
et al., 2016), GraphLIME (Huang et al., 2022), and a Random explainer. Our method inverts lay-
erwise embeddings back to raw features and aggregates contributions either by simple averaging
across embedding dimensions or via a PCA based decorrelation. We evaluate how effectively com-
peting explanation methods suppress uninformative (noise) node features on the Cora dataset. Fol-
lowing prior work(Huang et al., 2022; Duval & Malliaros, 2021), we augment the original 1,433
bag of words features with 287 additional Bernoulli (p=0.013) noise columns, which have a similar
distribution as existing features. We train a 2 layer GCN with the same settings as in Section 3.1.
We sample 100 test nodes; each explainer produces a feature importance vector, and we count how
many of the Top 10 ranked features are the added noisy features. We report the mean and standard
deviation of the runtime per node across these 100 nodes.

Figure 8 shows that, across the sampled nodes, our method selects the fewest noisy features in gen-
eral, indicating higher attribution precision. For the PCA-based aggregation, using more principal
components (e.g., 10 PCs) seem to achieve a small but consistent gain over fewer PCs (e.g., 2 PCs)
and over simple averaging—suggesting that PCA-based aggregation helps to improve stability and
signal recovery. Overall, the decomposition framework attains a favorable fidelity–efficiency trade
off compared to existing baselines.
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Table 4: Statistics of datasets used in experiments. Each dataset is labeled as D1–D5 for reference.
ID Dataset Graphs Nodes Edges Features Classes
D1 Computers 1 13,752 491,722 767 10
D2 Photo 1 7,650 238,162 745 8
D3 CiteSeer 1 3,327 9,104 3,703 6
D4 PubMed 1 19,717 88,648 500 3
D5 Cora 1 2,708 10,556 1,433 7

Table 5: Robustnessfeat for GNN-LRP, GOAT, IG, GradCAM, LIME, Random, and our method
across Amazon-Computers (D1), Amazon-Photo (D2), Citeseer (D3), PubMed (D4), and Cora (D5).
Values are averaged over 100 random nodes, using the top 5% important features.

Method D1 D2 D3 D4 D5

GradCAM 0.9987 0.9949 0.9900 0.9908 0.9866
GOAT 0.9934 0.9927 0.8350 0.9852 0.9530
Ours 0.9774 0.9800 0.7820 0.9596 0.8576
IG 0.9627 0.9545 0.2728 0.9791 0.2493
GNN-LRP 0.6553 0.6588 0.1929 0.5810 0.1267
Random 0.5089 0.5087 0.5119 0.5229 0.5149
LIME 0.3879 0.3962 0 0.0270 0.0072

Table 6: Per-node explanation runtime (seconds) for all methods across Amazon-Computers (D1),
Amazon-Photo (D2), Citeseer (D3), PubMed (D4), and Cora (D5). Reported values are averaged
over 100 randomly selected target nodes.

Method D1 D2 D3 D4 D5

Random 0.040 0.023 0.047 0.038 0.017
GradCAM 0.132 0.071 0.058 0.065 0.021
GNN-LRP 0.327 0.535 0.308 0.535 0.269
Ours 45.782 13.857 0.193 0.749 0.486
GOAT 220.752 74.038 27.527 437.584 14.792
LIME 495.143 161.958 92.927 118.167 43.122
IG 611.970 252.356 194.829 224.865 56.606
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A.6 DECOMPOSITION FOR TWO-LAYER GAT

For layer ℓ and head k, with input features h(ℓ)
j ∈ RFℓ ,

z
(ℓ,k)
j = W(ℓ,k)h

(ℓ)
j ∈ RF ′

ℓ ,

e
(ℓ,k)
ij = LeakyReLU

(
a(ℓ,k)⊤

[
z
(ℓ,k)
i ∥ z(ℓ,k)j

])
,

α
(ℓ,k)
ij =

exp(e
(ℓ,k)
ij )∑

t∈N (i) exp(e
(ℓ,k)
it )

,

u
(ℓ,k)
i =

∑
j∈N (i)

α
(ℓ,k)
ij z

(ℓ,k)
j , h

(ℓ+1)
i = ϕℓ

(
AGGk(u

(ℓ,k)
i )

)
,

where W denote learnable weights, a(ℓ,k)⊤ is a single-layer feedforward neural network and AGGk

is concatenation in hidden layers and averaging/sum in the final layer. For node i, the contribution
from neighbor j’s feature f to output coordinate r in layer ℓ, head k, before the activation function
is C(ℓ,k)

i←j, f→r = α
(ℓ,k)
ij W

(ℓ,k)
r,f h

(ℓ)
j,f . Summing over j yields per-feature importances C(ℓ,k),feat

i ∈
RFℓ×F ′

ℓ ; summing over f yields per-neighbor importances C(ℓ,k),neigh
i ∈ RN×F ′

ℓ . We pass the pre-
activations through a local linear gate G(ℓ,k)

i = diag
(
ϕ′ℓ(u

(ℓ,k)
i )

)
to account for the nonlinearity at

the operating point, where ϕ′ℓ is the derivative of the activation function used in layer ℓ.

For example, for two-layer GAT, let layer 1 have K1 heads of width F ′1 (concatenated width K1F
′
1),

and layer 2 have a single head of width F ′2 (no concatenation). Denote W(1,k) ∈ RF ′
1×F0 , W(2) ∈

RF ′
2×(K1F

′
1), and the layer-1 local gate entries by G(1,k)

j,q = ϕ′1
(
u
(1,k)
j,q

)
. Then the contribution from

source node u’s input feature f to the layer-2 pre-activation coordinate r at target node i is

Ci[u, f → r] =
∑

j∈N (i)

α
(2)
ij

K1∑
k=1

F ′
1∑

q=1

W
(2)
r, (k−1)F ′

1+q G
(1,k)
j,q α

(1,k)
ju W

(1,k)
q,f h

(0)
u,f .

If the final embedding is defined post-activation for layer 2, multiply the right-hand side by the
layer-2 gate G(2)

i,r = ϕ′2
(
u
(2)
i,r

)
.

A.7 USE OF LARGE LANGUAGE MODELS

We adopt a large language model (Copilot, GPT-5) to help polish the writing of the manuscript such
as improving grammar and readability. All content was verified and revised by the authors.
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