
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTERPRETABLE GRAPH EMBEDDINGS: FEATURE-
LEVEL DECOMPOSITION FOR TRUSTWORTHY GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have achieved state-of-the-art performance on
tasks such as user-item interaction prediction in recommender systems, molec-
ular property classification, and credit risk scoring and fraud detection in finan-
cial risk modeling. However, their opaque embedding mechanisms raise criti-
cal concerns about transparency and trustworthiness. Existing explainability ap-
proaches largely focus on identifying the nodes, edges, or subgraphs that influence
the model’s prediction but fail to disentangle how individual node features shape
learned embeddings. In this work, we propose a novel decomposition framework
that systematically attributes each embedding to original node and/or edge fea-
tures. Our method inverts GNN layers into contribution pathways, enabling fine-
grained attribution across heterogeneous feature streams. We demonstrate our
framework on Graph Convolutional Networks (GCN) and Heterogeneous Graph-
SAGE (HinSAGE), evaluating on Cora and MovieLens datasets. Results show
that our approach enhances interpretability by tracing predictive embeddings to
semantically meaningful features. This work bridges structural explainability and
feature-level attribution, providing a principled foundation for trustworthy and ac-
tionable GNN explanations.1

1 INTRODUCTION

Graph Neural Networks (GNNs) have established themselves as powerful models for relational and
structured data, achieving state-of-the-art performance in fields ranging from molecular property
prediction to recommender systems to financial risk analysis. Such models leverage both the fea-
tures of the entities represented by nodes and the connections between them, as well as the structure
of the graph created by these relationships. However, their black-box nature has raised concerns
about transparency and accountability, spurring a growing literature on explainability of GNNs. Re-
cent surveys (Yuan et al., 2023; Kakkad et al., 2023) provide comprehensive taxonomies of this
work, categorizing methods into post-hoc attribution techniques, model-specific explainers, and in-
herently interpretable architectures. Despite this progress, transparently explaining the node feature
information captured in GNN embeddings remains an open question.

Much of the early work focused on structural explanations, identifying which nodes, edges, or sub-
graphs are most influential for a given prediction. Methods such as GNNExplainer (Ying et al., 2019)
and PGExplainer (Luo et al., 2020) learn masks to highlight critical subgraphs, while approaches
like SubgraphX (Yuan et al., 2021) employ Monte Carlo search to locate and extract task-relevant
structures. Perturbation-based methods extend this idea by quantifying the importance of nodes or
edges through controlled modifications of the graph. These approaches have proven valuable in
identifying important structures, but do not provide insight into the node features captured by the
GNNs.

In parallel, researchers have adapted gradient- and propagation-based methods from computer vi-
sion, such as Integrated Gradients (IG), Layer-wise Relevance Propagation, and GraphLRP, to trace
attribution signals back through GNN layers(Pope et al., 2019; Baldassarre & Azizpour, 2019;

1The views expressed in this paper are solely those of the authors and do not necessarily reflect the views
of their affiliated institutions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Schnake et al., 2021). These methods provide finer-grained insights into node features, yet they of-
ten conflate structural and feature importance due to message passing. Moreover, their dependence
on local gradient signals makes them highly sensitive to noise, unstable under small perturbations,
and prone to correlation bias. More principled frameworks, including counterfactual and causal ex-
planations, have emerged to assess how hypothetical perturbations affect predictions. For instance,
CF-GNNExplainer (Lucic et al., 2022) perturbs adjacency matrices to find the minimal perturbation
to the input graph such that the prediction changes. However, these approaches also remain primarily
concerned with structural or instance-level contributions rather than the feature-level decomposition
of embeddings.

More recent work has expanded the landscape. For example, DEGREE (Feng et al., 2023) decom-
poses GNN mechanisms to attribute predictions to subgraph components, and D4Explainer (Chen
et al., 2023) introduces in-distribution explanations through diffusion-based counterfactuals. DyEx-
plainer (Wang et al., 2023) extends interpretability to dynamic GNNs by capturing temporal depen-
dencies, while GraphOracle (Du et al., 2025) provides self-explainable class-level subgraphs without
requiring post-hoc search. Other advances include FIGNN (Raut et al., 2025), which emphasizes
feature-specific interpretability. At the same time, evaluation frameworks like GraphXAI (Agarwal
et al., 2023) have benchmarked existing explainers, while robustness studies have highlighted their
fragility to adversarial perturbations.

Despite these advancements, there remains a lack of methods that systematically decompose a tar-
get node’s final embedding into contributions from individual features of the nodes, edges, and their
neighbors. In applications where speed or infrastructure concerns are critical, learned graph embed-
dings may be used to capture the information learned by a GNN and fed into downstream predictive
systems, where they act as engineered features to boost performance. These embeddings capture the
underlying structural relationships and feature interactions within the graph, summarizing multi-hop
dependencies and relational patterns into a compact representation and providing insight into how
the target node and its neighbors influence predictive outcomes. While this practice produces clear
performance gains, it also raises accountability challenges: if embeddings drive decisions in sensi-
tive contexts such as credit risk assessments, fraud detection, or medical diagnosis, then stakeholders
should be able to trace which node and edge features shaped these embeddings and to what degree.
For instance, in a fraud detection scenario, graph embeddings may increase a model’s ability to de-
tect fraud, but it is critical to understand with properties of the consumer, transaction, and merchant
were captured by the GNN in order to understand evolving fraud patterns and develop mitigation
strategies.

Motivated by this gap, this paper introduces a novel method for feature-wise decomposition of em-
beddings, enabling fine-grained attribution that complements structural explanations. By explicitly
accounting for correlations among features, our method provides a faithful mechanism to trace how
information is transformed through GNN layers into the target embedding representation. This re-
veals what node information is captured by the graph embeddings, thereby aligning predictive power
with the demands of accountability and interpretability in high-stakes domains. Table 1 summarizes
the capabilities of representative GNN explanation methods. While prior approaches can attribute
predictions to node features or edges, they generally do not explain embeddings, and most rely
on optimization, sampling, or architecture-specific constraints. Our decomposition framework is
unique in directly tracing embeddings back to raw features, supporting aggregation across embed-
dings, and producing deterministic, efficient attributions through simple matrix multiplications.

The remainder of this work is structured as follows. In Section 2, we present our decompostion
framework for inverting embedding generation in GNNs and demonstrate its application on two
representative architectures: Graph Convolutional Network (GCN) and Heterogeneous GraphSAGE
(HinSAGE). Section 3 illustrates the approach empirically using the Cora citation network (Sen
et al., 2008) for node classification to demonstrate feature-wise decomposition for GCN embeddings,
and the MovieLens dataset (Harper & Konstan, 2015) for link regression to highlight type-aware and
edge-level explanations in HinSAGE. Section 4 discusses implications, limitations, and potential
extensions of our method. Finally, Section 5 concludes the paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Capability GNNExplainer IG LIME/GraphLIME PGExplainer GraphSVX GOAt FIGNN Ours
Explain node features ✓ ✓ ✓ × ✓ ✓ ✓ ✓
Explain embeddings directly × × × × × × × ✓
Aggregate across embedding dims. × × × × × × × ✓
Post-hoc on trained models ✓ ✓ ✓ ✓ ✓ ✓ × ✓
Deterministic (no sampling) × × × × × ✓ ✓ ✓
Handles high-dim features × ✓ × ✓ (edges) × △ △ ✓
Domain flexibility ✓ ✓ ✓ ✓ ✓ △ △ ✓

Table 1: Capability comparison of representative GNN explanation methods. Symbols: ✓ = sup-
ported; × = not supported; △ = partially supported.

2 METHOD

We propose a framework for decomposing graph neural network (GNN) embeddings into feature-
wise contributions. The central observation is that, once the nonlinearity from the architecture is
fixed (e.g., ReLU with a given input), each GNN layer becomes a linear operator. This allows us
to propagate contributions of node and edge features through successive layers and exactly recon-
struct each output embedding as a sum over these features. We illustrate the framework with two
widely used architectures: the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) for
node classification and Heterogeneous GraphSAGE (HinSAGE) (Hamilton et al., 2017; Ying et al.,
2018; Zhang et al., 2019) for heterogeneous link prediction. For clarity, we summarize the notation
used in Table 2.

2.1 GENERAL FRAMEWORK

A generic GNN layer can be written as

h(ℓ)
v = σ

(
W

(ℓ)
selfh

(ℓ−1)
v +

∑
r∈R

W (ℓ)
r Ar({h(ℓ−1)

u : u ∈ Nr(v)}) + b(ℓ)
)
,

where Ar is a linear aggregator (e.g., normalized sum, mean, or sampled mean) and R indexes edge
types or relations.

To invert this process, we propagate contribution matrices in parallel to the forward pass. Initializa-
tion is C(0)

w→v = x⊤w if w = v, and 0 otherwise. Propagation is then

C
(ℓ+1)
·→v = D(ℓ)

v

(
W

(ℓ)
selfC

(ℓ)
·→v +

∑
r∈R

W (ℓ)
r Ar({C(ℓ)

·→u : u ∈ Nr(v)}) + b(ℓ)
)
.

After L layers, h(L)
v can be exactly decomposed as a sum over {C(L)

w→v}, with each term correspond-
ing to a source node w and input feature dimension p. Contribution vectors can be summarized into
scalar importance scores using norms, or adjusted for embedding correlations using a Principal
Component Analysis (PCA)-based method as described in the Appendix.

2.2 GRAPH CONVOLUTIONAL NETWORKS (GCN)

The Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is an adjacency-based GNN
widely used for semi-supervised node classification. For two-layer GCN, each layer applies normal-

ized adjacency Ã = D−
1
2 (A+ I)D−

1
2 to mix neighbor features:

H(1) = σ
(
ÃXW (0) + b(0)

)
, H(2) = σ

(
ÃH(1)W (1) + b(1)

)
.

For a target node v, the contribution from feature p of node w to the embedding h
(2)
v is[

C(2)
w→v

]
p,:

= D(1)
v

(∑
u∈V

ÃvuD
(0)
u

(
Ãuw xw[p] e

⊤
p W

(0) + b(0)
)
W (1)

)
. (1)

This expansion shows that signals propagate along paths w → u → v. Self-contributions arise
when w = v, first-hop contributions when w ∈ N(v), and two-hop contributions when w con-
nects via some u. Grouping terms provides hop-level or self/neighbor breakdowns of the learned
representation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 HETEROGENEOUS GRAPHSAGE (HINSAGE)

GraphSAGE (Hamilton et al., 2017) is an widely used inductive GNN framework that learns node
embeddings by sampling and aggregating information from node’s neighborhood. HinSAGE (Ying
et al., 2018; Zhang et al., 2019) generalizes GraphSAGE to heterogeneous graphs with multiple node
and edge types. Instead of operating with a full adjacency matrix, it samples fixed-size neighbor-
hoods per hop, stratified by type. Each neighbor type has its own projection matrix. For node v of
type t0 at layer ℓ:

h(ℓ)
v = σ

(
W

(ℓ)
t0,self

h(ℓ−1)
v +

∑
t∈T

W
(ℓ)
t→t0

1

|Nt(v)|
∑

u∈Nt(v)

h(ℓ−1)
u + b

(ℓ)
t0

)
.

Our decomposition naturally extends:

C
(ℓ+1)
·→v = D(ℓ)

v

(
W

(ℓ)
t0,self

C
(ℓ)
·→v +

∑
t∈T

W
(ℓ)
t→t0

1
|Nt(v)|

∑
u∈Nt(v)

C
(ℓ)
·→u + b

(ℓ)
t0

)
. (2)

Because contributions are partitioned by node type, we obtain explanations such as ”merchant fea-
tures” vs. ”account features,” directly reflecting heterogeneous semantics. For link prediction, Hin-
SAGE produces edge embeddings ψ(h(L)

u ,h
(L)
v), commonly via Hadamard product or concatena-

tion, followed by a linear classifier. Since these operators are linear in h
(L)
u and h

(L)
v , contributions

extend seamlessly. For example, with Hadamard product:

ℓuv = w⊤(h(L)
u ⊙ h(L)

v) + c,

the contribution of feature p of node w is obtained by combining node-level contributions with
diag(w)h

(L)
v or diag(w)h

(L)
u , depending on whether w lies in the neighborhood of u or v. This

yields edge-level decompositions that directly attribute predicted links to original features of source
and destination neighborhoods. Because HinSAGE uses random neighborhood sampling, expla-
nations are conditional on the computation graph. Averaging across samples produces expected
contributions, while a single sample yields instance-specific explanations.

By expressing GNN layers as masked linear operators and propagating contributions in parallel to
the forward pass, our framework provides exact, activation-conditioned decompositions of embed-
dings into original features. The GCN case highlights hop- and neighbor-wise propagation, while
HinSAGE showcases type-aware, edge-level sampling in heterogeneous graphs. Together, these ex-
amples demonstrate our method’s generalizability across major GNN architectures, enabling princi-
pled, feature-level interpretability of embeddings and predictions.

3 EXPERIMENTS

3.1 DATASETS AND EXPERIMENTAL SETUP

To illustrate the proposed decomposition framework, we consider two datasets using two GNN
architectures: the Cora citation network (Sen et al., 2008) using GCN and the MovieLens dataset
(Harper & Konstan, 2015) using HinSAGE. Further details are provided in the Appendix. All models
are implemented using the StellarGraph library (Data61, 2018).

3.2 RESULTS

Cora (GCN case study). We compare an XGBoost model (Chen & Guestrin, 2016) trained on raw
1,433 BoW features against an XGBoost model trained on only the 16 GCN embeddings from the
last hidden GCN layer. Using embeddings yields a performance lift, improving accuracy from 0.57
to 0.76 and weighted F1 score from 0.56 to 0.75. Since the embeddings are predictive features for
downstream tasks, explaining the embeddings is necessary to understand the information captured
by the GCN.

We decompose each embedding back to the original features by expanding the actual passing with
the trained weights and ReLU gates. For a target node v, source node w, and feature index p, the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

contribution vector
[
C

(2)
w→v

]
p,:

can be calculated using the equation 1, where D(0) and D(1) denote
the diagonal ReLU gating at layer 1 and 2. This makes the two-hop paths explicit and preserves
the exact trained computation (e.g., bias flow and ReLU gates). In all feature-attribution summaries
below, we exclude the bias term so that values reflect word contributions only. To separate whether
a embedding’s influence originates from the node itself or from neighbors, we decompose the renor-
malized adjacency into diagonal and off-diagonal parts,

Ã = Ãself + Ãnbr, (Ãself)uw =

{
Ãuu, u = w,

0, u ̸= w,
.

Let
[
C

(2)
w→v

]
p,:

denote the layer-2 contribution vector from feature p of source node w to the em-
bedding of target node v. We obtain self-origin and neighbor-origin contributions by replacing
the factor Ãuw in that expansion with (Ãself)uw and (Ãnbr)uw, respectively:

[
C

(2)
self, w→v

]
p,:

:=[
C

(2)
w→v

]
p,:

∣∣∣
Ãuw← (Ãself)uw

, and
[
C

(2)
nbr, w→v

]
p,:

:=
[
C

(2)
w→v

]
p,:

∣∣∣
Ãuw← (Ãnbr)uw

. Since the gen-

erated embeddings are correlated, we a used PCA-based approach to aggregate attributions in an
orthogonal basis (See Section A.2). Let V ∈ Rd×r be the top r PCA loadings (columns orthonor-
mal) fit once on H(2). We rotate each contribution vector over the embedding axis and sum the first
r principal components:

C̃
(2)
⋆, w→v[p, 1:r] = C

(2)
⋆, w→v[p, :] V,

[
sPCA
⋆ (v)

]
p

=
∑
w∈V

r∑
c=1

C̃
(2)
⋆, w→v[p, c], ⋆ ∈ {self, nbr},

where d = 16 and r = 5 in this example. Stacking rows over v yields matrices

Sself, Snbr ∈ RN×F ,

whose v-th rows are the correlation-adjusted word attributions sPCA
self (v)

⊤ and sPCA
nbr (v)⊤.

To visualize contributions, we apply t-SNE (Maaten & Hinton, 2008) to reduce Sself and Snbr (1,433
words) to two dimensions. Figure 1 shows contributions obtained by decomposing GCN embed-
dings, comparing self-node and neighbor-node representations. Incorporating neighborhood infor-
mation leads to more distinct and well-separated class clusters, suggesting improved discriminative
capability in the learned embeddings. Notably, categories such as Reinforcement Learning (green),
Theory (purple), and Rule Learning (orange) exhibit clear separation trends in the neighbor-based
representation, which is consistent with the observed gains in recall performance, which increased
from 0.44 to 0.72 for Reinforcement Learning, 0.18 to 0.56 for Theory, and 0.37 to 0.64 for Rule
Learning. Figure 4 in the appendix provides the full model performance results across all categories.
Because this analysis is conducted at the feature-contribution level, it provides greater transparency
into what each embedding learns individually by grouping features with similar contribution behav-
iors, which can help interpret the role of neighborhood aggregation in shaping model predictions.

MovieLens (HinSAGE case study). We then interprete the embeddings generated by the Hin-
SAGE model. Following the approach used for the GCN example, we treat these embeddings as
additional features and compare two XGBoost models: one using only user and movie attributes,
and another incorporating both raw attributes and embeddings. Incorporating embeddings improves
predictive performance across key metrics: MSE decreases from 1.12 to 0.95, MAE from 0.86 to
0.78, and R2 nearly doubles from 0.11 to 0.24. Feature importance from the XGBoost regressor
(total gain) highlights the predictive value of embeddings, with only one raw user attribute (scaled
age) appearing among the top 20 feature. These results underscore the necessity of explaining em-
beddings, as they encode highly informative signals. Figure 5 in the appendix provides the full
comparisons between two XGB models across different rating levels.

To this end, we decompose the learned embeddings using the equation 2. Figure 2A illustrates this
process for a single user–movie pair.Then, we leverage learned weights to map each embedding back
to its contributing features. The decomposition yields four contribution matrices corresponding to:
(a) user self-node (dimensions 1–8), (b) user’s neighboring movie nodes (9–16), (c) movie self-node
(17–24), and (d) movie’s neighboring user nodes (25–32). For example, the unnormalized value of
the 17th embedding dimension is −0.18, with the movie attributes drama and horror contributing
−0.06 and −0.12, respectively, while other attributes have negligible impact. Beyond single-pair

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: t-SNE visualization of feature contributions from decomposed GCN embeddings. The left
panel shows contributions from self nodes, while the right panel shows contributions from neigh-
bor nodes. Notably, the neighbor node contributions exhibit clearer separation across categories,
indicating their stronger role in capturing class-discriminative information.

analysis, we examine the most influential embedding (25th, with an importance score of 0.18 using
the “total gain” metric) by aggregating contributions across multiple pairs. As shown in Figure 2A,
this embedding primarily captures information from neighboring users of the target movie, reflecting
collaborative signals. Figure 2B compares aggregated contributions across user groups and movie
genres, revealing systematic differences in representation structure (e.g., −0.21 for animation vs.
0.09 for documentary). Finally, we analyze the role of a specific user attribute—scaled age—across
rating levels and genres. Figure 2C shows that war and drama genres exhibit trends aligned with the
overall population (increasing with rating), whereas sci-fi and horror display the opposite pattern,
with younger users tending to assign higher ratings. Contribution values amplify these differences:
war and drama show near-zero contributions, while sci-fi and horror exhibit strongly negative con-
tributions, indicating their distinct influence on embedding formation.

Appendix A.4 provides additional results. Figure 6 shows average scaled-age contributions to
the 25th embedding; Figure 7 examines the job=artist subpopulation across rating levels.
High-contribution genres trend upward with rating, whereas low-contribution genres are essentially
flat. In addition, we analyze the 11thembedding—constructed from users’ movie-neighbor sig-
nals—with a focus on the War genre (Figure 8); compared to contribution results from 25th embed-
ding dimension, the contribution curves for the 11thembedding cluster more tightly, indicating that
differences among features are subtle and not strongly discriminative for this genre. These findings
demonstrate that our proposed attribution-based decomposition not only provides interpretability for
graph-based embeddings but also uncovers actionable insights into how heterogeneous relational
signals shape predictive performance, thereby bridging the gap between representation learning and
model explainability.

3.3 COMPARATIVE EVALUATION ON NOISY CORA

We compare our decomposition based approach with established baselines: GOAt (Lu et al., 2024),
GNNExplainer (Ying et al., 2019),Integrated Gradients (Sundararajan et al., 2017),LIME (Ribeiro
et al., 2016), GraphLIME (Huang et al., 2022), and a Random explainer. Our method inverts lay-
erwise embeddings back to raw features and aggregates contributions either by simple averaging
across embedding dimensions or via a PCA based decorrelation. We evaluate how effectively com-
peting explanation methods suppress uninformative (noise) node features on the Cora dataset. Fol-
lowing prior work(Huang et al., 2022; Duval & Malliaros, 2021), we augment the original 1,433
bag of words features with 287 additional Bernoulli (p=0.013) noise columns, which have a similar
distribution as existing features. We train a 2 layer GCN with the same settings as in Section 3.1.
We sample 100 test nodes; each explainer produces a feature importance vector, and we count how

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: A. Decomposition of user–movie HinSAGE embeddings into self-contributions and
neighbor-contributions for both users and movies, illustrating how individual components construct
the learned representation. B. Analysis of the 25th embedding dimension by aggregating contribu-
tions across user groups and comparing them across different movie genres, highlighting systematic
differences in representation structure. C. Contributions of the user attribute scaled age across dif-
ferent rating levels, aggregated by movie genres.

Figure 3: A. Frequency distributions of noisy features across different explanation methods using
a GCN model on the Cora dataset. B. Computational time (mean ± std in ms) over 100 nodes for
various explanation methods

many of the Top 10 ranked features are the added nosiy features. We report the mean and standard
deviation of the per-node runtime across these 100 nodes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3 shows that, across the sampled nodes, our method selects the fewest noisy features in
general, indicating higher attribution precision. For the PCA-based aggregation, using more princi-
pal components (e.g., 10 PCs) seem to achieve a small but consistent gain over fewer PCs (e.g., 2
PCs) and over simple averaging—suggesting that PCA-based aggregation helps to improve stabil-
ity and signal recovery. In terms of efficiency, our approach seems the fastest among the methods
considered, as it reduces to lightweight matrix multiplications. This efficiency tends to hold even
when scaling to deeper GNN architectures or higher-dimensional data, since the core operations
remain simple matrix multiplications. Overall, the decomposition framework attains a favorable
fidelity–efficiency trade off compared to existing baselines.

4 DISCUSSION

4.1 LIMITATIONS AND SCOPE

Our decomposition framework attributes embedding values to input features by propagating contri-
butions through the network’s computational graph, assuming access to model internals (parame-
ters, intermediate activations, and stored normalization statistics) and achieving exactness only for
specific activation and normalization classes. For linear transformations and piecewise-linear ac-
tivations such as ReLU (Nair & Hinton, 2010) and LeakyReLU (Maas et al., 2013), contributions
admit closed-form propagation via sign/magnitude masks or slope-based scaling. Monotone acti-
vations with tractable inverses (e.g., ELU (Clevert et al., 2016), SELU (Klambauer et al., 2017),
Softplus (Nair & Hinton, 2010)) are handled by exact inversion when numerically stable, or by local
linearization using their derivatives for saturating nonlinearities such as Sigmoid and Tanh, which
are invertible in principle, we employ clamping or derivative-weighted masks to mitigate numeri-
cal instability near saturation. Modern smooth activations (GELU (Hendrycks & Gimpel, 2016),
Swish/SiLU (Ramachandran et al., 2017), Mish (Misra, 2019)) lack simple closed-form inverses
and can be non-monotonic. However, Hendrycks & Gimpel (2016) provides the approximated form
of GELU with f(x) = 0.5x

(
1 + tanh

[√
2

π (x+ 0.044715x3)
])

, which can be inverted using a
branch-aware Newton–Raphson method on g(x) = f(x) − y with close-form f ′(x). Alternatively,
DeepLIFT (Shrikumar et al., 2017) or LRP (Bach et al., 2015) provide principled propagation with-
out explicit inversion for non-monotonic cases. Normalization layers exhibit analogous behavior:
BatchNorm (Ioffe & Szegedy, 2015) is invertible at inference given stored statistics as discussed
in Lu et al. (2024), while LayerNorm (Ba et al., 2016) depends on per-sample moments and is
treated via local linearization. Pooling and attention are decomposed by distributing relevance pro-
portionally to aggregation weights or attention scores, preserving interpretability in graph-based
architectures.

The proposed approach assumes access to model internals—such as weights, activations, and nor-
malization statistics. In black-box settings (e.g., API-based inference), these details are unavailable,
making exact decomposition infeasible. This is not unique to our approach: widely used popula-
tion/global explainers require access to model internals (Ying et al., 2019; Baldassarre & Azizpour,
2019; Luo et al., 2020; Lu et al., 2024). If internal access is restricted, alternative approaches like
model-agnostic methods, perturbation-based sensitivity analysis, or surrogate modeling can approx-
imate interpretability, albeit with reduced faithfulness.

4.2 FUTURE WORK

Graph Attention Networks (GAT). As a future direction, we aim to extend our path-based de-
composition framework to attention-based architectures such as GAT, which often outperform non-
attention GNNs (Veličković et al., 2018). While we provide a detailed decomposition for a simplified
two-layer GAT in Appendix A.5, this is only a preliminary step. Generalizing to deeper GATs, het-
erogeneous attention mechanisms, and residual connections remains an open challenge that we plan
to explore in future work.

Graph Transformer (GT). Beyond GAT, recent work explores GT (Yun et al., 2019), which gen-
eralize attention to a fully-connected or sparsified graph structure and often incorporate positional
or structural encodings to capture global context. Unlike GATs, GTs allow each node to attend
to all others (or a learned subset), enabling long-range dependencies and richer expressivity. For-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mally, a Graph Transformer layer replaces the fixed neighborhood aggregation with a multi-head
self-attention mechanism:

Attention(Q,K, V) = softmax
(QK⊤√

d

)
V,

where Q,K, V are linear projections of node features augmented with positional encodings. Ex-
tending our decomposition framework to GTs would require accounting for global attention weights
and positional terms, but the principle remains: attention, linearize activations, and propagate con-
tributions along attention-weighted paths.

5 CONCLUSION

This paper introduced a feature-wise decomposition framework for interpreting graph neural net-
work embeddings. By reformulating GNN layers as linear contribution operators, our approach
provides explicit attributions across both self and neighbor pathways, while a PCA-based aggre-
gation strategy mitigates correlation bias among embedding dimensions. Experiments on homo-
geneous (Cora) and heterogeneous (MovieLens) benchmarks demonstrate that our method delivers
fine-grained, semantically aligned explanations of predictive embeddings. These results underscore
the value of embedding decomposition for revealing how relational signals shape learned representa-
tions, thereby advancing transparency and accountability in GNN-driven decision-making. Looking
ahead, this work opens promising directions for extending the framework to deeper architectures,
temporal or dynamic graphs, and high-stakes domains where interpretability is critical.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
for graph neural networks. Scientific Data, 10(383), 2023. doi: 10.1038/s41597-023-01974-x.
URL https://www.nature.com/articles/s41597-023-01974-x.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLOS ONE, 10(7):e0130140, 2015. doi: 10.1371/journal.pone.0130140.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional net-
works. In ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Representa-
tions, 2019. URL https://arxiv.org/abs/1905.13686.

Jialin Chen, Shirley Wu, Abhijit Gupta, and Rex Ying. D4explainer: In-distribution gnn explana-
tions via discrete denoising diffusion. In Advances in Neural Information Processing Systems
(NeurIPS 2023), 2023. URL https://arxiv.org/abs/2310.19321.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In International Conference on Learning Representa-
tions (ICLR), 2016.

CSIRO’s Data61. Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph, 2018.

Enjun Du, Siyi Liu, and Yongqi Zhang. Graphoracle: A foundation model for knowledge graph
reasoning. arXiv preprint arXiv:2505.11125, 2025.

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
neural networks. In Joint European conference on machine learning and knowledge discovery in
databases, pp. 302–318. Springer, 2021.

Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and Xia Hu. Degree: Decom-
position based explanation for graph neural networks. 2023. URL https://arxiv.org/
abs/2305.12895.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local inter-
pretable model explanations for graph neural networks. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6968–6972, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), volume 37 of Proceedings of Machine Learning Research, pp. 448–456, Lille,
France, 2015.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016.

10

https://www.nature.com/articles/s41597-023-01974-x
https://arxiv.org/abs/1905.13686
https://arxiv.org/abs/2310.19321
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph
https://arxiv.org/abs/2305.12895
https://arxiv.org/abs/2305.12895

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey
on explainability of graph neural networks. 2023. URL https://arxiv.org/abs/2306.
01958.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the 5th International Conference on Learning Representations (ICLR),
2017. URL https://openreview.net/forum?id=SJU4ayYgl.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems, volume 30, 2017.

Shengyao Lu, Keith G Mills, Jiao He, Bang Liu, and Di Niu. Goat: Explaining graph neural net-
works via graph output attribution. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio Silvestri. Cf-
gnnexplainer: Counterfactual explanations for graph neural networks. In Proceedings of the 25th
International Conference on Artificial Intelligence and Statistics (AISTATS 2022), volume 151
of Proceedings of Machine Learning Research, pp. 4499–4511. PMLR, 2022. URL https:
//arxiv.org/abs/2102.03322.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. In Advances in Neural Informa-
tion Processing Systems (NeurIPS 2020), 2020. URL https://arxiv.org/abs/2011.
04573.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In Proc. ICML Workshop on Deep Learning for Audio, Speech and
Language Processing, Atlanta, GA, 2013.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019. Accepted to BMVC 2020.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko Hoff-
mann. Explainability methods for graph convolutional neural networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
URL https://openaccess.thecvf.com/content_CVPR_2019/papers/Pope_
Explainability_Methods_for_Graph_Convolutional_Neural_Networks_
CVPR_2019_paper.pdf.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017. Introduces Swish/SiLU: f(x) = xσ(βx).

Riddhiman Raut, Romit Maulik, and Shivam Barwey. Fignn: Feature-specific interpretability for
graph neural network surrogate models. 2025. URL https://arxiv.org/abs/2506.
11398.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of ma-
chine learning. arXiv preprint arXiv:1606.05386, 2016.

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert
Müller, and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant
walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. doi: 10.1109/
TPAMI.2021.3115452. TPAMI version of the earlier arXiv:2006.03589.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

11

https://arxiv.org/abs/2306.01958
https://arxiv.org/abs/2306.01958
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2011.04573
https://openaccess.thecvf.com/content_CVPR_2019/papers/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.pdf
https://arxiv.org/abs/2506.11398
https://arxiv.org/abs/2506.11398

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Proceedings of the 34th International Conference on Ma-
chine Learning (ICML), volume 70 of Proceedings of Machine Learning Research, pp. 3145–
3153, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Tianchun Wang, Dongsheng Luo, Wei Cheng, Haifeng Chen, and Xiang Zhang. Dyexplainer: Ex-
plainable dynamic graph neural networks. 2023. URL https://arxiv.org/abs/2310.
16375.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Gen-
erating explanations for graph neural networks. In Advances in Neural Information Processing
Systems (NeurIPS 2019), 2019. URL https://arxiv.org/abs/1903.03894.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In Proceedings of the 38th International Conference on
Machine Learning (ICML 2021), volume 139 of Proceedings of Machine Learning Research.
PMLR, 2021. URL https://proceedings.mlr.press/v139/yuan21c.html.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):
5782–5799, 2023. doi: 10.1109/TPAMI.2022.3204236.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heteroge-
neous graph neural network. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 793–803, 2019.

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks.
In International Conference on Learning Representations (ICLR), 2020. URL https://
openreview.net/forum?id=ByxxgCEYDS.

Verena Zuber and Korbinian Strimmer. High-dimensional regression and variable selection using
car scores. Statistical Applications in Genetics and Molecular Biology, 10(1), 2011.

A APPENDIX

A.1 NOTATION

A.2 PCA-BASED CONTRIBUTION AGGREGATION

A central difficulty in aggregating feature contributions across embeddings is that the learned em-
beddings are often correlated. Directly summing raw contribution vectors may therefore over-count
redundant information. One possible remedy is whitening, which rescales contributions by the in-
verse square root of the embedding covariance matrix (Zuber & Strimmer, 2011). However, in prac-
tice the covariance matrix Σh may be ill-conditioned, and computing Σ

−1/2
h can lead to numerical

instability due to very small eigenvalues.

12

https://arxiv.org/abs/2310.16375
https://arxiv.org/abs/2310.16375
https://arxiv.org/abs/1903.03894
https://proceedings.mlr.press/v139/yuan21c.html
https://openreview.net/forum?id=ByxxgCEYDS
https://openreview.net/forum?id=ByxxgCEYDS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Symbol Definition

G = (V, E) Input graph with node set V and edge set E
xv ∈ RF0 Input feature vector of node v
X ∈ R|V|×F0 Matrix of all input features
h
(ℓ)
v ∈ RFℓ Embedding of node v at layer ℓ
W (ℓ) Learnable weight matrix at layer ℓ
W

(ℓ)
r Relation/type-specific weight matrix

b(ℓ) Bias vector at layer ℓ
σ Nonlinear activation (e.g., ReLU)
D

(ℓ)
v Diagonal mask from activation of node v at layer ℓ

Nr(v) Neighbors of v under relation/type r
Ã Normalized adjacency matrix used in GCN
ep p-th standard basis vector in RF0 ,

i.e., a column vector with 1 in position p and 0 elsewhere
C

(ℓ)
w→v Contribution matrix from features of node w to embedding of node v at layer ℓ

Table 2: Notation used in the Methods section.

We instead adopt a principal component analysis (PCA) approach (Jolliffe & Cadima, 2016). Let
Σh = UΛU⊤ denote the eigen decomposition of the embedding covariance, with eigenvectors U
and eigenvalues Λ = diag(λ1, . . . , λFL

). We transform each contribution vector cw,p→v ∈ RFL

into the orthogonal PCA basis such that ĉw,p,→v = cw,p,→v U. The coordinates of ĉw,p,→v now
represent the effect of feature p of node w on independent directions of variation in the embedding
space. A simple PCA-based importance score is then

sPCA
w,p→v = ∥ĉw,p,→v∥2,

which measures the overall magnitude of influence across decorrelated components.

Alternatively, one can weight contributions by the fraction of variance explained by its principal
component:

sPCA-var
w,p→v =

(
FL∑
k=1

λk∑
j λj

(ĉw,p→v[k])
2

)1/2

.

This PCA-based approach avoids the instability of inverting Σh while still capturing feature con-
tributions along independent directions of variation in the embedding space. In practice, we often
truncate to the top K principal components, which both reduces noise and highlights contributions
to dominant modes of variation.

A.3 DATASET DESCRIPTIONS AND EXPERIMENTAL SETUP

Cora (GCN case study). The Cora citation network (Sen et al., 2008) consists of 2,708 scientific
publications categorized into seven research areas, connected by 5,429 citation links. Each node
represents a paper, and its feature vector is a bag-of-words (BoW) representation over 1,433 unique
terms from the papers. The prediction task is node classification: given the citation graph and node
features, predict the research category of each paper. We adopt the standard train/validation split
from Kipf & Welling (2017), with the remaining nodes reserved for testing. This dataset provides
a benchmark for evaluating our method in a transductive, homogeneous, single-type graph setting,
where GCN serves as a natural baseline. For the experimental setup, we train a two-layer GCN,
where each layer outputs 16 hidden dimensions, followed by ReLU activation and dropout with a
rate of 0.5. The final layer is a softmax classifier over seven publication categories. Training is
performed using the Adam optimizer with a learning rate of 0.01, minimizing the cross-entropy loss
on labeled nodes. We use 140 nodes for training, 500 for validation, and 2,068 for testing. Early
stopping is applied based on validation accuracy with a patience of 10 epochs.

MovieLens (HinSAGE case study). The MovieLens dataset (Harper & Konstan, 2015) comprises
user–movie interactions represented as a bipartite heterogeneous graph. We use the 100K subset,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

which contains 100,000 ratings from 943 users on 1,682 movies. Nodes correspond to users and
movies, while edges denote rating interactions. Node features include auxiliary attributes such as
movie genres and user profiles. Each edge is associated with an integer rating in the range [1,5].
We formulate the task as supervised link-attribute regression: given a user node, a movie node, and
their attributes, the model predicts the rating on the corresponding edge. This setting evaluates our
framework under an inductive, heterogeneous, edge-level prediction scenario. Our model adopts a
one-layer HinSAGE architecture as suggested in Zhang & Chen (2020) with a hidden dimension of
16 and a mean aggregator. For each target node, the model samples neighborhoods of size 200 to
compute node embeddings. Edge embeddings are constructed by concatenating the embeddings of
user–movie pairs and passing them through a dense layer of size 16 with a linear activation, followed
by a single linear output unit to produce a continuous rating prediction. The model is optimized using
Adam with a learning rate of 0.01 and trained with mean squared error (MSE) as the objective. We
allocate 60,000 edges for training, 10,000 for validation, and 30,000 for testing. Early stopping is
applied based on validation mean absolute error (MAE) with a patience of 5 epochs.

A.4 ADDITIONAL RESULTS

Figure 4: Confusion matrices of XGBoost trained with (a) raw bag-of-words features and (b)
GCN-derived embeddings. The GCN embeddings produce a more diagonally dominant pattern and
suppress structured off-diagonal blocks, indicating improved class separability and reduced system-
atic confusion among semantically related classes. Labels are ordered consistently across panels.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: A. Model performance comparison for XGBoost regression on the MovieLens dataset
using either raw features or raw + HinSAGE embeddings. Boxplots show predicted rating distribu-
tions (y-axis) grouped by true rating levels (x-axis). Quantitatively, adding embeddings decreases
mean squared error (MSE) and mean absolute error (MAE) while increasing R2, demonstrating
that learned representations capture latent structure beyond raw features. B. Feature importance
(measured by total gain) from the XGBoost regression model. Embedding dimensions dominate
the top-ranked features (e.g., edge emb 25, edge emb 29, edge emb 07), indicating that learned
graph-based representations contribute more to predictive performance than raw user attributes.

Figure 6: Average contributions of the scaled age attribute to the 25th graph embedding across
rating levels (x-axis) and aggregated by movie genres. The left panel shows genres where age
exhibits positive contributions (e.g., documentary, drama, film noir, mystery, war), while the right
panel shows genres with negative contributions (e.g., action, animation, comedy, horror). Each curve
represents the marginal effect of scaled age on the model’s output for a given genre, averaged over
users and items. Positive-contribution genres generally show an increasing trend with rating level,
indicating that older users are associated with higher ratings for these genres. Conversely, negative-
contribution genres seem to exhibit decreasing or flat trends, suggesting that younger users tend to
give higher ratings in these categories. The overall trend (black dashed line) summarizes the global
effect across all genres.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Average contributions of the Artist job feature to the 25th graph embedding across rating
levels (x-axis), aggregated by movie genres. The left panel shows genres with high contribution
(≥ 0.2), including animation, children’s, crime, documentary, film noir, musical, and mystery. The
right panel shows genres with low contribution (< 0.2), such as action, adventure, comedy, drama,
horror, and others. High-contribution genres tend to exhibit stronger positive sensitivity to higher
ratings, whereas low-contribution genres remain relatively flat, indicating limited influence of the
Artist feature in those categories. The black dashed line denotes the overall trend across all genres.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: A. Analysis of the 11th embedding dimension, showing aggregated contributions across
movie genres (rows) and user attributes (columns). Each cell represents the marginal effect of a
user feature on this embedding dimension for a given genre, with darker shades indicating stronger
negative contributions. user attributes include gender, occupation categories, and scaled age, which
is treated as a binary feature here (results correspond to cases where scaled age> 0). Analysis of the
11th embedding dimension, showing aggregated contributions across movie genres (rows) and user
attributes (columns). Each cell represents the marginal effect of a user feature on this embedding
dimension for a given genre, with darker shades indicating stronger negative contributions. User
attributes include gender, occupation categories, and scaled age, which is treated as a binary feature
here (results correspond to cases where scaled age > 0). B. Visualization of average user feature
contributions for the war genre across rating levels (x-axis). The left panel shows features with
high aggregate contribution (≥ 0.2), primarily occupational attributes (e.g., administrator, educator,
engineer, scientist) and scaled age (binary, > 0). The right panel shows features with low aggregate
contribution (< 0.2), including gender and less influential occupations. Each curve represents the
marginal effect of a user feature on predicted ratings for war movies, averaged across users and
items. The curves cluster closely, indicating that differences among these features are subtle and not
strongly discriminative for this genre.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 DECOMPOSITION FOR TWO-LAYER GAT

For layer ℓ and head k, with input features h(ℓ)
j ∈ RFℓ ,

z
(ℓ,k)
j = W(ℓ,k)h

(ℓ)
j ∈ RF ′

ℓ ,

e
(ℓ,k)
ij = LeakyReLU

(
a(ℓ,k)⊤

[
z
(ℓ,k)
i ∥ z(ℓ,k)j

])
,

α
(ℓ,k)
ij =

exp(e
(ℓ,k)
ij)∑

t∈N (i) exp(e
(ℓ,k)
it)

,

u
(ℓ,k)
i =

∑
j∈N (i)

α
(ℓ,k)
ij z

(ℓ,k)
j , h

(ℓ+1)
i = ϕℓ

(
AGGk(u

(ℓ,k)
i)

)
,

where W denote learnable weights, a(ℓ,k)⊤ is a single-layer feedforward neural network and AGGk

is concatenation in hidden layers and averaging/sum in the final layer. For node i, the contribution
from neighbor j’s feature f to output coordinate r in layer ℓ, head k, before the activation function
is C(ℓ,k)

i←j, f→r = α
(ℓ,k)
ij W

(ℓ,k)
r,f h

(ℓ)
j,f . Summing over j yields per-feature importances C(ℓ,k),feat

i ∈
RFℓ×F ′

ℓ ; summing over f yields per-neighbor importances C(ℓ,k),neigh
i ∈ RN×F ′

ℓ . We pass the pre-
activations through a local linear gate G(ℓ,k)

i = diag
(
ϕ′ℓ(u

(ℓ,k)
i)

)
to account for the nonlinearity at

the operating point, where ϕ′ℓ is the derivative of the activation function used in layer ℓ.

For example, for two-layer GAT, let layer 1 have K1 heads of width F ′1 (concatenated width K1F
′
1),

and layer 2 have a single head of width F ′2 (no concatenation). Denote W(1,k) ∈ RF ′
1×F0 , W(2) ∈

RF ′
2×(K1F

′
1), and the layer-1 local gate entries by G(1,k)

j,q = ϕ′1
(
u
(1,k)
j,q

)
. Then the contribution from

source node u’s input feature f to the layer-2 pre-activation coordinate r at target node i is

Ci[u, f → r] =
∑

j∈N (i)

α
(2)
ij

K1∑
k=1

F ′
1∑

q=1

W
(2)
r, (k−1)F ′

1+q G
(1,k)
j,q α

(1,k)
ju W

(1,k)
q,f h

(0)
u,f .

If the final embedding is defined post-activation for layer 2, multiply the right-hand side by the
layer-2 gate G(2)

i,r = ϕ′2
(
u
(2)
i,r

)
.

A.6 USE OF LARGE LANGUAGE MODELS

We adopt a large language model (Copilot, GPT-5) to help polish the writing of the manuscript such
as improving grammar and readability. All content was verified and revised by the authors.

18

	Introduction
	Method
	General Framework
	Graph Convolutional Networks (GCN)
	Heterogeneous GraphSAGE (HinSAGE)

	Experiments
	Datasets and Experimental Setup
	Results
	Comparative evaluation on noisy Cora

	Discussion
	Limitations and scope
	Future Work

	Conclusion
	Appendix
	Notation
	PCA-based Contribution Aggregation
	Dataset Descriptions and Experimental Setup
	Additional results
	Decomposition for Two-Layer GAT
	Use of Large Language Models

