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Figure 1: We present UniMo, an innovative autoregressive model for joint modeling 2D human
videos and 3D human motions within a unified framework. Left: Unlike existing methods that map
3D motions to 2D maps for video-motion alignment, we directly use 3D motions as inputs and out-
puts. Right: We unify the I2VM (Image-to-Video-and-Motion) and V2M (Video-to-Motion) tasks
within a single transformer framework, demonstrating the effectiveness of the proposed method.

ABSTRACT

We propose UniMo, an innovative autoregressive model for joint modeling of
2D human videos and 3D human motions within a unified framework, enabling
simultaneous generation and understanding of these two modalities for the first
time. Current methods predominantly focus on generating one modality given an-
other as the condition or integrating either of them with other modalities such as
text and audio. Unifying 2D videos and 3D motions for simultaneous optimiza-
tion and generation remains largely unexplored, presenting significant challenges
due to their substantial structural and distributional differences. Inspired by the
LLM’s ability to unify different modalities, our method models videos and 3D
motions as a unified tokens sequence, utilizing separate embedding layers to miti-
gate distribution gaps. Additionally, we devise a sequence modeling strategy that
integrates two distinct tasks within a single framework, proving the effectiveness
of unified modeling. Moreover, to efficiently align with visual tokens and preserve
3D spatial information, we design a novel 3D motion tokenizer with a temporal
expansion strategy, using a single VQ-VAE to produce quantized motion tokens.
It features multiple expert decoders that handle body shapes, translation, global
orientation, and body poses for reliable 3D motion reconstruction. Extensive ex-
periments demonstrate that our method simultaneously generates corresponding
videos and motions while performing accurate motion capture. This work taps
into the capacity of LLMs to fuse diverse data types, paving the way for inte-
grating human-centric information into existing models and potentially enabling
multimodal, controllable joint modeling of humans, objects, and scenes.
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1 INTRODUCTION

Digital human modeling is a fundamental task in computer vision, where generating consistent hu-
man videos and motions is crucial for downstream applications such as virtual reality. Additionally,
integrating 3D motions and 2D videos plays a pivotal role in extensive tasks, including human video
synthesis and motion capture. For human video synthesis, most methods [Shao et al.| (2024); Zhu
et al.| (2024); |Lin et al.| (2025); |Hu et al.|(2023)) focus on producing human videos that are consistent
with input motions. In the realm of motion capture Goel et al.|(2023)); \Shen et al.|(2024); [Khirodkar
et al.[(2024), they aim to capture the corresponding 3D motions from input videos. However, the
aforementioned methods primarily use one modality as the condition to generate another, without
engaging in joint modeling and optimization of both modalities.

This paper focuses on unifying 2D human videos and 3D human motions to achieve joint optimiza-
tion and generation. Recently, large language models (LLMs) Brown et al|(2020) have been widely
applied in various large vision-language models Liu et al.|(2023)); Bai et al.|(2025);\Guo et al.|(2025));
Agarwal et al.|(2025)), effectively capturing the relationships among different modalities such as au-
dio, text, and vision. Building on this, numerous approaches leverage LLM frameworks to integrate
motions with different modalities, including vision |[Li et al.| (2025a)); (Chen et al.| (2024); [Li et al.
(2025c¢), text|Zhu et al.| (2025)), and audio Luo et al. (2024)). Among these tasks, unifying 2D videos
and 3D motions for simultaneous optimization and generation remains unexplored. Inspired by the
LLM’s ability to unify different modalities, we explore the possibility of transferring this capability
to our specific task. This endeavor taps into the capacity of LLMs to fuse diverse data types, paving
the way for integrating human-centric information into existing models and potentially enabling
multimodal, controllable joint modeling of humans, objects, and scenes.

The primary challenge with 3D motions lies in the lack of explicit spatial correspondence with 2D
videos, which inhibits integration via straightforward operations like addition or concatenation [Hu
et al.[(2023)). In this paper, we introduce a novel autoregressive (AR) framework for joint modeling
of 2D human videos and 3D human motions, achieving simultaneous optimization and generation
of these two modalities for the first time. Unlike existing single-task methods, our unified frame-
work efficiently performs both generation and understanding tasks, as illustrated in Fig. [I] further
advancing the ability of LLMs to integrate various data types. For the generation task, the model
simultaneously produces videos and corresponding 3D motions from a single image. For the under-
standing task, it captures corresponding 3D motions from video inputs. To unify these two tasks,
we design a novel sequence modeling strategy that assigns corresponding tasks based on the input
tokens. Moreover, motion tokens differ from visual tokens with respect to token distribution, and
the model simultaneously outputs tokens from two modalities, which can easily lead to confusion.
Therefore, we design independent embedding layers for each modality to alleviate the distribution
gaps, including learnable vocabulary embeddings and positional embeddings.

Another challenge lies in constructing 3D motion representations for seamless integration with vi-
sual information within our AR framework. A straightforward approach is to represent 3D motions
similarly to visual tokens. Recently, MotionGPT [Jiang et al.| (2023)), SOLAMI Jiang et al.|(2025),
and Duolando [Siyao et al.| (2024)) have explored 3D motion tokenizers, based on 3D keypoints
or SMPL(X) parameters. 3D keypoints are relatively simple but insufficient to represent complex
human motions. Therefore, we use SMPL-X [Pavlakos et al.| (2019) to model human motions, in-
corporating 3D parameters like body shapes, translation, global orientation, and body poses. How-
ever, applying current tokenizers directly to our task introduces two main challenges. Firstly, most
methods employ temporal compression to reduce resource usage, which is effective for motion-text
alignment but results in a token quantity imbalance in video-motion modeling. Secondly, many
approaches segment the human body into multiple parts, processing each separately with several
VQ-VAEs. Although this improves reconstruction accuracy, it results in multiple sets of motion to-
kens, thus increasing complexity for our unified model. To overcome these challenges, we propose
a novel 3D motion tokenizer that models all SMPL-X parameters using a single VQ-VAE, comple-
mented by a novel temporal expansion strategy to enhance reconstruction accuracy and balance the
quantity of vision tokens. The proposed tokenizer generates motion tokens while ensuring accurate
reconstruction, laying the foundation for effective multimodal fusion through AR.

By leveraging the proposed motion tokenizer and AR model, our approach consistently generates
both videos and motions across two tasks, illustrating the potential of modeling 3D motions and
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2D videos within a unified AR framework. This work not only explores the capacity of LLMs to
fuse diverse data types but also establishes a foundation for embedding human-centric information
into existing architectures, potentially enabling multimodal, controllable joint modeling of humans,
objects, and scenes. We summarize our contributions as follows,

* A novel LLM-based framework jointly models 3D human motions and 2D human videos,
enabling simultaneous generation and optimization of both modalities for the first time.

* A novel 3D motion tokenizer employs a temporal expansion strategy to effectively quan-
tize and reconstruct SMPL-X parameters, laying the foundation for modal integration and
motion generation.

* A unified autoregressive model, featuring a novel sequence modeling and independent em-
bedding strategy, integrates two distinct tasks within a single transformer model, effectively
alleviating distribution gaps and merging both modalities.

* Demonstration of the simultaneous generation and understanding of both videos and mo-
tions.

2 RELATED WORKS

Human Video Synthesis. The objective is to generate a corresponding video given a single human
image and a sequence of driving motion. Current approaches predominantly utilize diffusion-based
methods to tackle this task, often employing UNet Hu et al.| (2023); |[Zhu et al.| (2024)); | Xu et al.
(2024);|Wang et al.| (2024a)); (Chang et al.| (2025)); Kim et al.[(2024); [Zhang et al.|(2024) or DiT |Shao
et al.| (2024); Lin et al.| (2025); Shao et al.| (2025); [Ding et al.| (2025) structures. To incorporate the
driving motions, they typically utilize 2D maps such as skeleton maps, normal maps, and densepose
maps Karras et al.| (2023). Although these methods can produce vivid and consistent human videos,
they only align 2D motions with visual latents at the input stage and lack optimization of 3D motions.

Human Motion Capture. Motion capture |Shen et al.| (2024); |Goel et al.|(2023); Kanazawa et al.
(2018)); Rajasegaran et al.| (2022); [Kanazawa et al.| (2019); Kocabas et al.[(2020); Luo et al.| (2020);
Khirodkar et al.| (2024) is a classic task aiming at extracting corresponding human motions from
video inputs. For instance, HMR |[Kanazawa et al.| (2018)) utilizes a CNN to regress SMPL param-
eters, while 4DHumans |Goel et al.| (2023) introduces a fully transformer-based model based on an
enhanced HMR and 3D tracking system. Besides, GVHMR |Shen et al.| (2024) estimates human
poses in a novel gravity-view coordinate to reduce ambiguity in image-pose mapping. Typically,
they commence video preprocessing by tracking humans, detecting keypoints, and extracting fea-
tures, followed by regressing motion parameters from these features. Besides, they primarily focus
on the transfer from videos to motions, lacking emphasis on the joint modeling of the two modalities.

Human Video-Motion Joint Tasks. Some methods [Li et al.| (2025a); |Chen et al.| (2024); L1 et al.
(2025c) employ joint modeling of videos and motions to enhance the understanding of human be-
havior. However, these approaches merely integrate the two modalities into a unified representation
at the input stage, lacking the capability to simultaneously generate both. VideoJAM [Chefer et al.
(2025)), AnimaX Huang et al.| (2025), and OmniVDiff Xi et al| (2025) introduce an appearance-
motion aligning framework based on diffusion models, which represent motion information using
2D motion maps. While 2D motion maps are flexible and can be easily represented as RGB videos,
they inevitably suffer from the loss of crucial 3D spatial information. SViMo Dang et al.| (2025)
combines visual priors with dynamic constraints to simultaneously generate hand-object videos and
motions. However, they adopt diffusion frameworks and focus on the point cloud generation.

Human 3D Motion Tokenizer. The human motion tokenizer Ding et al.|(2025)) is designed to com-
press and convert raw motion data, such as keypoints and SMPL-X parameters, into motion tokens.
MotionGPT [Jiang et al.|(2023) and SOLAMI Jiang et al.| (2025)) pre-train the 3D human motion to-
kenizers using the VQ-VAE architecture. However, their tokenizers require complex and extensive
data processing, including orientation adjustments, foot contact modifications, and the application
of forward/inverse kinematics, which demands predefined human kinematic chains tailored to spe-
cific datasets. Recently, Duolando |Siyao et al.| (2024) introduces a simplified motion tokenizer that
uses raw 3D joint coordinates as inputs. Nevertheless, they independently process body poses and
translation, and 3D joints remain insufficient to fully capture complex human motions.
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Figure 2: Overview of UniMo. Left: We introduce a 3D motion tokenizer that is responsible for
quantizing raw 3D motions M into motion tokens corresponding to visual tokens and accurately
reconstructing back to M from these tokens. The 3D motion tokenizer comprises a motion encoder,
a learnable codebook B, and multiple expert decoders. Right: Given visual tokens and motion
tokens, we propose an AR transformer framework with new sequence modeling strategies to unify
the two modalities, enabling the execution of two distinct tasks (only the I2VM task is illustrated
in the figure). To better integrate the two types of tokens, we propose independent vocabulary
embedding layers and positional embedding layers.

LLM-based Video and Motion Models. Recently, autoregressive models [Wu et al.| (2025); Wang
et al.| (2024Db); |Chen et al.| (2025)); Wu et al.| (2024) based on transformer architectures have demon-
strated impressive results in multimodal modeling. Cosmos|Agarwal et al.| (2025) approaches world
simulation generation as a next-token prediction task, akin to language modeling, and incorporates
text embeddings using cross-attention. Additionally, many methods Jiang et al.| (2023} 2025); Chen
et al.[(2024); L1 et al.| (2025b) leverage LLMs to achieve unified generation and understanding of
motions alongside multiple modalities such as text and audio.

3 METHOD

The overall pipeline of UniMo is illustrated in Fig. 2} Our goal is to model 3D motions and 2D
videos without relying on 2D motion maps, achieving simultaneous generation and optimization of
them. Specifically, UniMo employs a unified AR framework to integrate the two modalities and
implement two distinct tasks for validating the generation and understanding capabilities. In the
image-to-video-and-motion task (I2VM), given a single reference image I, the goal is to generate
subsequent T-frame videos along with corresponding 3D motions M;_,. In the video-to-motion
task (V2M), given a video sequence Vszl, the objective is to capture the corresponding 3D motions.

We first introduce a 3D motion tokenizer tailored for our task in Sec. [3.1] which is responsible for
quantizing raw 3D motions M into motion tokens corresponding to visual tokens. Additionally,
this tokenizer can accurately reconstruct M from the quantized tokens, establishing a foundation
for joint modeling. Then, we detail how autoregressive modeling can unify visual and motion to-
kens within a transformer architecture in Sec. [3.2] encompassing task-specific sequence modeling
strategies and independent embeddings adapted to various modalities. By simultaneously optimiz-
ing two modalities and tasks, the model enhances their correspondence and improves generative and
understanding capabilities. After that, we discuss the training and inference strategies utilized for
multi-task unification in Sec.[3.3}
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3.1 3D MOTION TOKENIZER

To integrate 3D motions M with visual tokens and enable their generation, it is necessary to develop
a tokenizer that accepts M as input, quantifying them into discrete tokens akin to visual tokens,
while also being capable of reconstructing the original M. MotionGPT Jiang et al.| (2023), SO-
LAMI Jiang et al.| (2025), and Duolando [Siyao et al.| (2024) have explored 3D motion tokenizers
for this target, based on 3D keypoints or SMPL(X) parameters. 3D keypoints are relatively sim-
ple but insufficient to fully represent complex 3D human motion information. Moreover, obtaining
SMPL/(X) parameters offers greater value in motion generation tasks. MotionGPT and SOLAMI
are SMPL(X)-based methods that require complex processing of motions, including orientation ad-
justments, foot contact modifications, and the application of forward/inverse kinematics, making it
difficult to generalize across diverse datasets. Additionally, SOLAMI divides the human body into
multiple parts and designs several VQVAEs to independently learn different segments and trans-
lations. This configuration generates multiple sets of tokens, increasing complexity in our unified
model.

To address this, as shown in the left box in Fig. @], we use SMPL-X models [Pavlakos et al.| (2019)
to comprehensively represent 3D human motions and propose a novel 3D motion tokenizer tailored
to our task. Specifically, SMPL-X is built to represent human motions through parameterized body
poses (6 € RT*63) shape coefficients (3 € RT*10), global orientation (¢ € R *3), and translation
(r € RT*3). The proposed tokenizer is capable of taking the entire set of M = (0, 3,¢,7) as
inputs, quantizing them into discrete tokens, and accurately reconstructing the SMPL-X parameters
from motion tokens. Inspired by Duolando |Siyao et al.| (2024), we employ a VQ-VAE structure
comprising an encoder, a learnable codebook, and multiple expert decoders. We first cascade M
along the last dimension channel, then the encoder uses 1D convolutions transforming them into
high-dimensional semantic features F' € R” *C where T’ = T'/s and C is the number of channels.
In data processing, the absolute position of the first frame is preserved, while subsequent frames
are transformed into velocity representations by subtracting the position of the preceding frame,
thereby reinforcing temporal continuity. During reconstruction, the original positions can be restored
using prefix sum techniques. Subsequently, the sequence Fszll = {f1, f2, ..., fr} is quantized
by replacing each f; with the nearest element in the codebook B, transforming it into a discrete
sequence of tokens. Finally, we employ four expert decoders consisting of 1D convolutions to
individually reconstruct parameters 6, 3, 7, and ¢ from tokens.

Notably, most methods employ temporal compression to reduce resource usage, which is effective
for motion-text alignment but results in a token quantity imbalance in our task. Besides, SMPL-X
parameters are more complex than 3D keypoints, resulting in greater learning difficulty and poorer
performance on motion metrics compared to keypoints Jiang et al.|(2025)). To address this issue, we
adopt an expansion strategy for temporal processing. By setting s = 1/36, we represent the SMPL-
X parameters for one frame with 36 discrete tokens. This serves three purposes: (1) Visual tokens
significantly outnumber motion tokens, thus expanding motion tokens helps balance the disparity in
their quantities to some extent; (2) One of our objectives is the accurate reconstruction of SMPL-
X parameters, and expanding tokens can improve accuracy; (3) With a relatively small number of
parameters for the motion tokenizer, expanding the tokens only imposes a small burden (about 30M).

3.2 UNIFIED AUTOREGRESSIVE FRAMEWORK

Unified Motion-Visual Representation. Building on the impressive performance of Cosmos |Agar-
wal et al.|(20235) in autoregressive (AR) video modeling, we adopt the Cosmos AR framework as our
backbone model. We utilize the Cosmos tokenizer to quantize and compress the videos into visual
tokens with a compression rate of 8x16x16. However, in Cosmos, multimodal sequence modeling
is accomplished through cross-attention, which prevents simultaneous generation and optimization
of another modality. Inspired by LLMs [Xie et al.| (2025)); [Wang et al.[(2024b)), we structure 3D mo-
tion tokens and visual tokens into a unified sequence following an interleaved motion-video format.
Given that our framework involves I2VM and V2M tasks, we introduce special tokens to identify
different tasks. For V2M task, we format the sequence as:

[T1] [Vt, Vity .. Viy] [STG] [Mty Mty ... Mty] (1)

where T'1 means V2M task. V't and Mt represent the visual and motion tokens, respectively. STG
marks the beginning of generation, with the conditional sequence placed before it and the target se-
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Figure 3: Comparison with the baseline on I2VM tasks. We present results in temporal order from
left to right, sampling one frame every 10 generated frames. In our results, the simultaneously
generated 3D motions are rendered and visualized in the top-left corner, while the baseline model
lacks motion generation capabilities. Given a single image as input, the baseline tends to generate
results with minimal motion amplitude, often bordering on stillness.

quence positioned after it. N and M represent the number of visual and motion tokens, respectively.
For I2VM task, we format the sequence as:

(T2] [It] [STG] [Vt [Mt] [Vio] [Mts] ... [Vin] [Mtuy] (2)

where T2 means I12VM task. It is the single reference image tokens. The sequence formats above
are flexible by using a task-specific token at the beginning to distinguish two tasks, and employing
the ST'G special token to separate the conditions from the targets within different tasks. Notably,
in Eq. [2| we define the target sequence as interleaved visual tokens and motion tokens. This de-
sign strengthens the model’s capability to integrate both modalities simultaneously, enabling the
generation process to leverage all previously incorporated modalities.

Vocabulary Embedding Layers. In the Cosmos AR model, sequence modeling involves only
visual modality, and thus uses a single embedding layer to process all discrete tokens. However, due
to the inherent gaps between motion and visual tokens, using a single embedding layer may lead
to distribution entanglement. Additionally, simultaneous generation of two modalities within one
framework raises the possibility of output modality confusion. To address these issues, as shown in
the right box in Fig. |2} we employ two separated learnable embedding layers, one for visual tokens
and the other for motion tokens.

Positional Embedding Layers. The Cosmos AR model employs two complementary positional
embedding mechanisms to convey spatial and temporal information across the network: 3D factor-
ized absolute positional embedding (APE) captures absolute coordinates, while 3D factorized Rotary
Position Embedding (RoPE) addresses relative positions. In our work, we retain APE to simulta-
neously establish the absolute positional relationship between two modalities. For RoPE, similar to
the separated vocabulary embedding layers, we implement two distinct ROPE mechanisms to inde-
pendently process each modality, thereby establishing positional relationships within each modality
at different positions (right box in Fig. 2). Specifically, for queries (Q) and keys (K) in attention
operations, we select the corresponding RoPE based on the modality of the current position:

Q = (RoPE,(Qm) ® RoPE,(Q,)) + APE(Q.) 3)
K = (RoPE,,(K,,) ® RoPE,(K,)) + APE(K,) 4)

where (). represents the entire sequence, Q represents the results after applying positional embed-
ding. RoPFE,, and RoPFE, represent motion RoPE and visual RoPE respectively. @,, and Q,
represent motion tokens and visual tokens respectively, and @ represents concatenate operations.
(K likewise)

3.3 TRAINING AND INFERENCE STRATEGY

Training. UniMo is trained with a two-stage training approach. In the first stage, we train the 3D
motion tokenizer in an end-to-end way using 3D motion data, and the training loss is:

LVAE = Erec(M/7Mgt) + AHF - Sg<B)|| + HSQ(F) - BH (5)
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Table 1: Evaluation of the 3D motion tokenizer on Human4DiT-Video dataset.
Methods MPJPE | PA-MPJPE| PVE] Accel|

SOLAMI | 24.3354 14.7212 29.6462 7.7384
Our 8.6344 5.3876 10.7010 2.4632
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Input 4DHuman Ours GVHMR(GT) Input 4DHuman Ours GVHMR(GT)

Figure 4: Comparison with different methods on the V2M task. It demonstrates that our approach
achieves results comparable to current state-of-the-art methods.

where L, is [1 loss between the predicted value M’ and the real value My,. sg means stop gradient
operation and A is the trade-off parameter. Similar to Duolando, we add velocity and acceleration to
perform L,... Notably, the motion encoder is used only during the training phase.

In the second stage, the parameters of tokenizer are frozen to serve as a quantizer, supplying discrete
motion tokens for training the AR model. Attention masks are crucial for AR models training, with
most methods utilizing causal masks to ensure that the current token can only attend to preceding
tokens. In our task, we apply causal masks to the target sequence, while employing full masks on
the conditional sequence to enhance bidirectional context awareness. In addition, we combine the
data from the two tasks in equal proportions to unify the multimodal and multi-task, and train the
AR model in an end-to-end way. The loss is the cross-entropy:

L
Lar=—Y logp(gilgei,c) 6)

i=1
where L is target sequence length. g; is the i-th token in the sequence and ¢ means the conditions.

Inference. During the inference phase, we employ the AR model, the diffusion decoder from Cos-
mos, the continuous tokenizer decoder in Cosmos, and the multiple expert decoders from our 3D
motion tokenizer. For both tasks, we use the conditional sequence as input, first filling the KV
cache during the prefill phase and subsequently utilizing the cached representations for next-token
prediction. The diffusion decoder enhances visual quality by converting discrete representations
into continuous ones within the diffusion latent space. Continuous representations are then fed into
the continuous tokenizer decoder to generate the final video outputs. Additionally, the multiple ex-
pert decoders reconstruct the generated motion tokens into SMPL-X parameters, ensuring accurate
motion representation.

4 EXPERIMENT

4.1 SETTINGS

Metrics. We employ distinct metrics to evaluate the generated videos and motions. For video
evaluation, similar to VideoJAM [Chefer et al.| (2025), we utilize VBench Zheng et al.| (2025) to
analyze various disentangled features, including appearance and visual motion attributes. Please
refer to our supplementary paper for more results. We evaluate the generated 3D motions in two
ways. For I2VM tasks, we use FID and diversity (DIV) metrics to compare the distribution of
generated motions with ground-truth motions. In line with Duolando [Siyao et al.| (2024), we derive
FID and diversity from motion features in AIST++ [Li et al| (2021). For V2M tasks, following
WHAM |Shin et al.| (2024), we report metrics such as MPJPE, PA-MPJPE, PVE, and Accel.

We train our model on Human4DiT-Video |Shao et al.|(2024), a dataset comprising 10k in-the-wild
monocular video clips with corresponding motion sequences. Besides, we observe temporal jitter
in the motion dataset within Human4DiT-Video, prompting us to use GVHMR |Shen et al.| (2024) to
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Table 2: Comparison of I2VM tasks. For motion-video consistency, GVHMR is used to extract
motions as pseudo ground truth. Motion diversity is assessed using the metrics from Duolando.
The generated videos are evaluated with VBench, focusing on appearance (App.) and visual motion
(Mot.). The baseline (Cosmos) lacks the ability to generate motion and doesn’t involve consistency.
Video-Motion Consistency Motion Diversity Video Quality

Method | \ipjpE | PA-MPIPE, PVE|  Accell | FID, DIV | App.t Mott
Bascline | - - - - 573624 57160 | 0.8071 08126
Ours | 413058 309548 473111 39984 | 27.3984 122522 | 0.8516 0.9441

Input s=1 Ours GT Input s=1 Ours GT

Figure 5: Ablation experiments of the number of tokens in 3D motion tokenizer. It is difficult for
s=1 to represent the body shapes, body poses, global orientation, and translation simultaneously.

re-extract the 3D motion data. For evaluation, we select 300 single-human clips from Human4DiT-
Video [Shao et al.| (2024), DNA-Rendering |Cheng et al.| (2023)), 3DPW |von Marcard et al.| (2018),
RICH Huang et al.| (2022), and BEDLAM |[Black et al.| (2023) as the testset. It is important to
note that our model actually uses 3D motions (SMPL-X) as both inputs and outputs. For intuitive
visualization, we render the generated 3D motions into 2D maps in all visual results. In addition, due
to the poor visual effect of video tokenizer in Cosmos, we use Seed VR [Wang et al.|(2025) to enhance
the visual quality of generated videos, which does not disrupt our core goal of joint modeling the
two modalities. Please refer to our supplementary paper for more implementation details.

4.2 EVALUATIONS AND COMPARISONS

3D Motion Tokenizer. Unlike existing methods such as SOLAMI, which processes the human
body into parts with multiple VQ-VAEs, we utilize a single VQ-VAE to process the entire SMPL-
X parameters. To ensure the reconstruction accuracy, we propose a temporal expansion strategy.
Specifically, we compare our approach with SOLAMI after fine-tuning on the Human4DiT-Video
dataset. As shown in Tab. [T} our tokenizer exhibits superior performance in reconstruction accuracy.
For additional visual results, please refer to the supplementary paper.

Image-to-Video-Motion Task. To verify the effectiveness of the proposed method, we conduct
comparisons with the baseline Cosmos AR model [Agarwal et al] (2025). As illustrated in Fig. 3]
when provided with a single image input, the baseline tends to generate results with minimal motion
amplitude, often approaching stillness, whereas our method yields dynamic results. From the figure,
our method generates results with concurrent changes in translation and body poses. In the quantita-
tive comparisons, we use VBench |Zheng et al. (2025)) to evaluate the generated videos, focusing on
appearance (App.) and visual motion (Mot.) aspects. Besides, the generated motions are evaluated
from two dimensions: consistency with the generated videos and motion diversity. For motion-video
consistency, we use GVHMR to extract motions from the generated videos as pseudo ground truth.
As the baseline model, Cosmos lacks motion generation capabilities, preventing us from evaluating
consistency. For motion diversity, we extract motions from generated videos from Cosmos using
GVHMR to represent its motion outputs. The quantitative results, shown in Tab. 2} are consistent
with the visual results. Our predicted motions align well with the generated video, and are more
realistic and diverse. Additionally, our generated videos outperform the baseline. Detailed video
quality metrics are provided in the supplementary material.

Video-to-Motion Task. To demonstrate the potential of joint modeling, we validate the effective-
ness of the V2M task across three datasets: 3DPW, RICH, and Human4DiT-Video. Notably, as our
primary focus is on exploring the possibility of joint modeling 3D motion and visual information,
our experiments are conducted on single-person cases. As illustrated in Fig.[and Tab. 3] our method
achieves results comparable to current state-of-the-art methods. For more quantitative comparisons
and results, please refer to the supplementary paper.
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Figure 6: The ablation experiment on the V2M task. We compare our method against single-task
training (Only V2M) and the approach without independent embedding (Uni-Embed.).

Table 3: Evaluation of the V2M task on Human4DiT-Video dataset. Since we use SMPL-X extracted
by GVHMR as pseudo ground truth, GVHMR is excluded from metric calculation.

Methods MPJPE| PA-MPJPE| PVE] Accel]
GVHMR | - - - -

4DHuman | 56.0701 35.4769 67.7157 15.7393
Our 43.2689 28.1528 52.0143 4.5647

4.3 ABLATION STUDIES

3D Motion Tokenizer. To improve reconstruction accuracy and balance the number of video to-
kens, we propose expanding the motion token representation by using 36 tokens for each frame’s
SMPL-X parameters M. Specifically, our experiments utilize GVHMR to extract the motions as
pseudo ground truth. As shown in Fig. [5] we compare our configuration with the one where one
token corresponds to a single frame (s = 1). Evidently, s = 1 is inadequate for modeling all SMPL-
X parameters simultaneously, resulting in errors in translation, global orientation, and body pose
representation. Through quantitative and qualitative comparisons, we demonstrate that our 3D mo-
tion tokenizer effectively quantizes and reconstructs M, thereby establishing a solid foundation for
AR training. We provide more detailed quantitative comparisons and analyses in the supplementary

paper.

Independent Embeddings. We employ independent embeddings for discrete tokens and positions
to mitigate distribution disparities between the two modalities, thereby avoiding confusion when si-
multaneously outputting video and motion tokens within the same transformer model. As illustrated
in Fig.[6] we attempt to utilize a single embedding layer for both visual and motion tokens, alongside
a unified RoPE embedding for the entire sequence. It is evident that for complex motions, unified
embedding is less effective in capturing local details, such as those involved in squats. Please refer
to our supplementary paper for more qualitative and quantitative results.

Single Task. We integrate two tasks, 2VM and V2M, within the same transformer framework to
achieve two objectives. First, the two tasks are used to validate the effectiveness of the proposed
method. Second, we observe that training two tasks together yields better results than training each
one individually, indicating a synergistic effect between the two tasks. As illustrated in Fig. [6]
independent training of the V2M task fails to attain enhanced precision. Please refer to our supple-
mentary paper for more qualitative and quantitative results, including the I2VM task.

5 CONCLUSION

In this work, we introduce an innovative autoregressive model for the joint modeling of 2D human
videos and 3D human motions within a unified framework. We propose a novel 3D motion tokenizer
to establish a direct connection between 3D motions and visual information, thereby avoiding the
use of 2D motion maps as the proxy. By designing task-specific sequence modeling strategies and
independent embedding methods, the proposed approach effectively integrates the two modalities
and tasks. Our extensive experiments show that the model generates corresponding videos and
motions while capturing accurate motions. In addition, both quantitative and qualitative comparisons
demonstrate that our method achieves performance comparable to state-of-the-art methods. This
work taps into the capacity of LLMs to fuse diverse data types, paving the way for integrating
human-centric information into existing models and potentially enabling multimodal, controllable
joint modeling of humans, objects, and scenes.
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Ethics Statement. Our work focus on generating human videos and motions purely from a technical
standpoint, with no intent for malicious use. Nevertheless, we acknowledge the potential for misuse,
such as the creation of fake videos. To mitigate this, it is imperative that synthetic motions and videos
are clearly labeled to reflect their artificial origin.

Reproducibility Statement. The datasets we used, which include Human4DiT-Video, 3DPW, and
RICH, as well as the network baselines, specifically Duolando for tokenizer and Cosmos for AR, are
publicly available. Comprehensive descriptions of dataset processing, network structure improve-
ment, and training parameters are provided in the methods section and supplementary paper.
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A MORE DETAILS

Implementation Details. We use Cosmos-AR-4B |Agarwal et al.| (2025) model as the backbone,
and train our model on Human4DiT-Video Shao et al.|(2024), a dataset comprising 10k in-the-wild
monocular video clips with corresponding motion sequences. Notably, we observe temporal jitter
in the motion dataset within Human4DiT-Video, prompting us to use GVHMR |Shen et al.| (2024)
to re-extract the 3D motion data. Additionally, all videos are processed to a resolution of 512x512
using pad-resize operations. For the 3D motion tokenizer, the model is trained on data segmented
into clips of 32 frames each, utilizing a single NVIDIA A100 GPU with the AdamW optimizer at
a learning rate of 4e-5 and a batch size of 128. For AR framework, the data is divided into clips of
65 frames serving as inputs. The AR training utilizes 8 NVIDIA A100 GPUs, each employing the
AdamW optimizer with a learning rate of 1e-4 and a batch size of 1 per GPU.

Network details. The 3D motion tokenizer is built using 1D convolutional layers. The encoder is
composed of four blocks, each featuring a transposed convolution and a ResNet block with con-
sistent channel dimensions. The transposed convolution is responsible for expanding the temporal
dimension, while the ResNet blocks enhance the network’s depth. We find that a codebook size
of 512 effectively balances high utilization and reconstruction accuracy. Each multi-expert decoder
also contains four blocks, consisting of a convolution layer and a ResNet block with unchanged
channels. The convolution restores the temporal sequence, and the ResNet blocks provide addi-
tional depth to the network. Input tensors M, are structured with the temporal dimension placed
last, formatted as bs x C' x T. After processing through the encoder, M, are transformed into fea-
tures of size bs x 512 x (T x 36) and subsequently quantized into bs x (T x 36) discrete motion
tokens. The decoders then reconstruct these tokens back to bs x C' x T" where C' signifies specific
channels, such as C = 3 for the translation decoder.

We build AR model based on Cosmos-AR-4B |Agarwal et al.|(2025)), and the configuration is shown
in Tab

Inference Performance. During inference, to increase the diversity of the results, we set the top-p
parameter to 0.8 and the temperature to 1. In diffusion decoder, we use 15 DDIM steps [Song et al.
(2020) with a classifier-free guidance (CFG) scale of 2. For the V2M task, capturing a 3-second
video consisting of 65 frames takes approximately 30 seconds. In the I2VM task, generating a
3-second video with corresponding motions at a resolution of 512x512 takes around 100 seconds.

13



Under review as a conference paper at ICLR 2026

Table 4: The configuration of AR model.

Number of Transformer Layers 16
Number of Tokens 11558
Model Dimension 4096

Vocabulary Size 64000
FFN Hidden Dimension 14336
Number of Attention Heads 32
Base Learning Rate le-4
Number of Key / Value Heads 8

VBench Metrics. Inspired by VideoJAM |Chefer et al| (2025), we employ VBench [Zheng et al.
(2025) to evaluate the quality of generated videos across two dimensions: appearance and visual
motion. Appearance metrics include subject consistency, background consistency, and aesthetic
quality. Visual motion metrics comprise motion smoothness, temporal flickering, and dynamic de-
gree. It is important to note that visual motion pertains to motion exhibited in 2D RGB videos,
distinct from the 3D motions we generate.

Subject consistency is crucial for evaluating whether human identity remains consistent in the gen-
erated video, especially amid complex motion dynamics. Background consistency assesses whether
non-human content remains stable as the human subject moves, also indicating the AR model’s
effectiveness in focusing on human regions while maintaining stability in surrounding content. Aes-
thetic quality measures the overall artistic appeal and perceived beauty of the video.

Motion smoothness evaluates inter-frame continuity in the generated videos. Temporal flickering
examines the consistency of temporal sequences by considering local and high-frequency details.
Dynamic degree is essential for gauging the amplitude of human movements in the video, preventing
the production of static videos that could result in high scores in motion smoothness and temporal
flickering.

B MORE ABLATIONS

3D Motion Tokenizer. We propose a novel 3D motion tokenizer that takes M = (0,3, ¢, 7) as
input for quantization and accurate reconstruction. In our experiments, we configure the codebook
size B to 512 and set the temporal compression rate s to 1/36, meaning that each frame of SMPL-X
parameters is represented by 36 tokens. We conduct additional experiments to thoroughly explore
the effects of varying B and s. As illustrated in Tab. [5] increasing the codebook size results in
decreased utilization, accompanied by a decline in reconstruction accuracy. Additionally, when s is
large (such as 1/1), the representation becomes inadequate for capturing complex motions. Besides,
we evaluate the model parameters for both configurations and find that increasing the number of
tokens does not lead to a significant computational burden. Through quantitative and qualitative
comparisons, we demonstrate that our 3D motion tokenizer effectively quantizes and reconstructs
M , thereby establishing a solid foundation for AR training.

Table 5: Evaluation of our 3D motion tokenizer on different network settings. For codebook uti-
lization, we randomly select 100 samples from the testset and calculate the proportion of different
tokens, represented as n/ B, where n represents the number of different tokens.

Methods MPIJPE| PA-MPJPE| PVE| Accell Model Param. Codebook Util.
s=1/1 B=512 136.6638  81.7294 155.1556 6.4386 90.49 M 80.08%
s=1/8 B=512 69.1781 52.2387 97.2101 53642 9531 M 91.99%
s=1/24 B=256 | 52.9926 45.4241 85.0266  4.5206 86.75M 97.66%
s=1/24 B=512 10.4653 6.7306 12.7147  2.7336 101.63 M 96.09%
s=1/24 B=1024 | 47.4062 28.9208 53.6114 45009 121.51 M 78.52%
s=1/36 B=256 | 26.8738 13.3755 35.1941  3.1909 108.25M 99.61%
s=1/36 B=512 | 8.6344 5.3876 10.7010  2.4632 123.13M 98.83%
s=1/36 B=1024 | 30.8471 23.0493 442118 37807 138.01M 86.13%
s=1/54 B=512 11.8932 7.7327 17.878 29688 15571 M 99.80%
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When modeling SMPL-X parameters, selecting an appropriate rotation representation is crucial to
ensuring stability and efficiency. The rotation matrix offers a complete and algebraic representation
but suffers from constraints like orthogonality and consumes more memory with its nine parame-
ters, potentially leading to numerical instabilities. On the other hand, the axis-angle representation
intuitively combines a rotation axis with an angle, providing a more compact form with only three
parameters. However, challenges arise with axis-angle when handling rotations near zero angles or
interpolating accurately across rotations. To address these limitations, the 6D representation stands
out as a balanced choice. It avoids the orthogonality requirements of rotation matrices, allowing
smoother interpolation and maintaining numerical stability. Although less intuitive, the 6D repre-
sentation effectively supports learning-based approaches. After evaluating these methodologies, the
6D representation is selected for its compactness and robustness—qualities essential to the complex-
ity of SMPL-X parameter modeling.

Table 6: Evaluation of our 3D motion tokenizer on different SMPL-X inputs.

Methods MPJPE | PA-MPJPE| PVE] Accel|
Rotation Matrix 12.3837 6.2096 11.4083  2.5396
Axis-Angle 13.4334 6.0989 16.2724  3.0279
6D Representation | 8.6344 5.3876 10.7010 2.4632

As shown in Tab. 6] although the differences among the three representations are minimal, the 6D
representation presents superior reconstruction performance overall.

Effectiveness of Multi-Task Training. We integrate the I2VM and V2M tasks into mixed training
within a single transformer model, enabling simultaneous execution of both tasks. This approach
serves two key purposes: first, it demonstrates the effectiveness of integrating 3D motions and 2D
videos; second, multi-task learning enhances training stability and convergence. As illustrated in
Fig.[7} multi-task learning results in lower loss compared to single-task training. Furthermore, Fig.[§
and Fig.[9]show that multi-task learning also achieves superior visual performance. Tab.[8|and Tab.
align with the visual results, demonstrating the effectiveness of multi-task training.

Loss Curve

— [2VM+V2M
— 12VM
— V2M

0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

Figure 7: Comparison of losses between single-task and multi-task training.
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Table 7: Ablation comparison about the V2M task on Human4DiT-Video datset.

Methods MPJPE| PA-MPJPE| PVE| Accel|
Only V2M 53.8356 45.9847 71.8492  6.1748
Uni-Embed. | 50.1287 41.3925 68.3533  5.1539
Our 43.2689 28.1528 52.0143 4.5647

| \
z I

Input Only V2M Uni-Embed.

Figure 8: The ablation experiment on the V2M task. We compare our method against single-task
training (Only V2M) and the approach without independent embedding (Uni-Embed.).

Only I2VM

Uni-Embed.

Ours

time

Figure 9: The ablation experiment on the I2VM task. We compare our method against single-task
training (Only I2VM) and the approach without independent embedding (Uni-Embed.).
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Table 8: Ablation comparison on the I2VM task. For motion-video consistency, GVHMR is used
to extract motions as pseudo ground truth. Motion diversity is assessed using the metrics from
Duolando. The generated videos are evaluated with VBench, focusing on appearance (App.) and
visual motion (Mot.) aspects.

Method Video-Motion Consistency Motion Diversity Video Quality
MPIJPE | PA-MPIJPE| PVE| Accel] | FID| DIVt App.t Mot.T
Only 2VM | 56.78 46.11 68.03 59609 | 51.6599 7.3109 | 0.8220 0.8577
Uni-Embed. | 53.98 38.37 59.55  4.8837 | 40.7963 10.2315 | 0.8387 0.8926
Ours 41.30 30.95 47.31 3.9984 | 27.3984 12.2522 | 0.8516 0.9441
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Figure 10: We validate our method at a resolution of 512x512 with 121 frames on I2VM task. The
results preliminarily demonstrate our method’s potential to handle long sequences.

Effectiveness of Independent Embedding. We employ independent embeddings for discrete to-
kens and positions to mitigate distribution disparities between the two modalities, thereby avoiding
confusion when simultaneously outputting video and motion tokens within the same transformer
model. The results are shown to achieve superior visual performance in Fig. [§ and Fig.[9] The
conclusions drawn from Tab. [§] and Tab. [7] are consistent with the visual results, underscoring the
effectiveness of independent embedding.
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Figure 11: Comparison of tokenizers.

Table 9: Comparison of I2VM tasks. Breakdown of VBench metrics on generated videos.

Method Appearance Visual Motion

Subj. T Back. 1 Aest.{ Overallf | Mot.Sm. T Tem.Fl.t Dyn.Deg.t Overallf
Baseline | 0.9535 0.9512  0.5166 0.8071 0.9951 0.9928 0.45 0.8126
Ours 0.9646  0.9621 0.6281 0.8516 0.9939 0.9884 0.85 0.9441

Longer Videos. As a pioneering work in joint modeling 3D motions and 2D videos, our main
experiments are conducted at a resolution of 512x512 with 65 frames. To validate the model’s
potential, we also perform experiments at a resolution of 512x512 with 121 frames. As shown
in Fig. [I0] our method can handle longer sequences, laying the foundation for extending to more
modalities and enabling fine-grained control (see Sec. D).

C MORE RESULTS

3D Motion Tokenizer. As illustrated in Fig. |11} we present a comparison with SOLAMI. SOLAMI
is also a SMPLX-based method that divides the human body into multiple parts, handling trans-
lations independently. Our approach achieves more consistent reconstruction results, proving the
effectiveness of the temporal expansion strategy.

I2VM Task. As shown in Tab.[9] we present the breakdown of VBench metrics for the generated
videos. In terms of appearance, our method consistently outperforms the baseline across all metrics.
However, in the realm of visual motion, while the baseline performs better in motion smoothness and
temporal flickering, the dynamic degree metric reveals that the baseline tends to generate videos with
static motion, which accounts for its higher scores in motion smoothness and temporal flickering.
Additionally, we present further comparisons with the baseline in Fig. demonstrating that our
method can produce more vivid results. From the figure, our approach successfully handles complex
motions such as turning around, and provides plausible frontal results.

V2M task. We conduct comparisons with 4DHuman and GVHMR on the V2M task. As shown in
Tab. [I0] our method achieves results comparable to state-of-the-art approaches, even for relatively
complex motions, demonstrating the potential of the proposed method. Since we use SMPL-X
extracted by GVHMR as pseudo ground truth, GVHMR is excluded from metric calculation.

In addition, we also perform comparisons on classic public datasets, such as 3DPW |von Marcard
et al.[ (2018) and RICH |[Huang et al.| (2022) dataset. For fair comparison, we select single-person
videos outside the testset as the training set for fine-tuning. Notably, to maintain a unified setting,
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Figure 12: Comparison with the baseline on I2VM tasks. We present results in temporal order
from left to right, sampling one frame every 10 generated frames. In our results, the simultaneously
generated 3D motions are visualized and presented in the left; the baseline model lacks motion
generation capabilities. Given a single image as input, the baseline tends to generate results with

minimal motion amplitude, often bordering on stillness.
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Table 10: Evaluation of the V2M task on Human4DiT-Video dataset. Since we use SMPL-X ex-
tracted by GVHMR as pseudo ground truth, GVHMR is excluded from metric calculation.

Methods MPJPE | PA-MPJPE| PVE] Accel|
GVHMR | - - - -
4DHuman | 56.0701 35.4769 67.7157 10.7393
Our 43.2689 28.1528 52.0143 4.5647

Input 4DHuman GVHMR Ours GT

Figure 13: Comparison of V2M task with different methods on the 3DPW dataset|von Marcard et al.|
(2018)). It can be observed that our results are comparable to those of state-of-the-art methods.

the motions within the training set are extracted using GVHMR, but the official ground truth is still
used when calculating metrics. Fig.[I3]and Fig. [T4]reveal that our method achieves results similar
to state-of-the-art methods in cases involving occlusion, handheld objects, and lying down poses.
Tab. [[Tlillustrates the same conclusion.

D LIMITATIONS AND FUTURE WORK

Limitations. This exploratory work marks the initial attempt to jointly model 3D human motions
and 2D human videos using an AR model. It currently faces two limitations. Firstly, to leverage
large amounts of data available in the wild, we extract 3D motions using GVHMR (2024).
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Table 11: Evaluation of the V2M task on 3DPW and RICH dataset. It demonstrates that our ap-
proach achieves results comparable to current state-of-the-art methods. (3DPW/RICH)

Methods MPIJPE | PA-MPJPE| PVE] Accel|

4DHuman | 76.33/65.22 64.05/55.25  82.57/112.37 5.458/8.963

GVHMR | 58.97/53.65 41.82/46.53  73.03/65.36  4.190/4.218

Our 65.43/58.39  50.21/52.62  77.14/73.00  4.29/4.182

LI T |

Input 4DHuman GVHMR Ours

Input 4DHuman GVHMR Ours

Figure 14: Comparison of V2M task with different methods on the RICH dataset Huang et al.
(2022). It can be observed that our results are comparable to those of state-of-the-art methods.

However, the accuracy and consistency of these extracted motions are inherently inferior to those
captured with specialized hardware in controlled laboratory environments. For instance, MVHu-
manNet | Xiong et al.|(2024) utilizes multi-view cameras in laboratory settings for SMPL-X fitting.
As a result, our current work does not fully surpass the SOTA methods in all aspects. Nevertheless,
existing experiments have already demonstrated the potential of our proposed method, achieving
results comparable to existing methods. Secondly, since most large-scale in-the-wild datasets, in-
cluding Human4DiT-Video, consist only of single-person data, our current work is evaluated using
single-person cases.

Future Work. Our method pioneers the joint modeling, optimization, and generation of 3D human
motions and 2D human videos using an AR model. Existing experiments validate the effectiveness
of the proposed approach, with several potential avenues for future expansion.

 Input Modality: Currently, our task focuses only on the videos and 3D motions modalities.
Leveraging the strengths of large language models (LLMs), future directions could involve
integrating additional modalities such as text, audio, and camera parameters. This would
enable controlled generation and comprehension of videos that encompass human-object-
scene interactions or multi-person dialogues.

* High-Quality Data: The entire training process can be divided into multiple stages. For
example, given the limited availability of high-quality data, we can initially use large
amounts of low-quality datasets to help the model understand the correspondence between
videos and motions. Subsequently, high-quality data can be employed for further train-
ing to enhance performance. Also, akin to Sapiens Khirodkar et al. (2024)), task-specific
finetuning can be applied to further enhance the effectiveness of downstream sub-tasks.

* Better Representation: Currently, we utilize discrete representations for both videos and
3D motions. Experimental results indicate that discrete representations effectively convey
and reconstruct information for relatively simple motions. However, for videos, discrete to-
kens yield lower visual quality compared to continuous representations such as VAE Wan
et al.|(2025)). Therefore, inspired by Show-02|Xie et al.|(2025), we consider employing con-
tinuous flow-based optimization for visual information within a unified multimodal model.

* Fine-Grained Control: Our current work does not include specialized handling of faces
and hands. In the future, we could segment the human body into head, hands, and body
components, using a transformer to unify different driving conditions, thereby enabling
more granular modeling and control.

¢ Multi-Human Videos: Current experiments have demonstrated the capability to control
and capture human translation and poses. Thus, we can extend beyond single-human videos
by processing SMPL-X parameters of multiple people within one motion tokenizer, facili-
tating multi-human generation and understanding.
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LLM Usage. LLM tools are used for improving grammar. First, we manually complete the writing
of the entire paper, and then use LLM to adjust incorrect words and sentence structures.

E VIDEO DEMO

We provide generated results in the demo.
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