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ABSTRACT

Neural networks can be fragile to input noise and adversarial attacks. In this
work, we consider Neural Ordinary Differential Equations (NODEs) – a family
of continuous-depth neural networks represented by dynamical systems - and pro-
pose to use contraction theory to improve their robustness. A dynamical system
is contractive if two trajectories starting from different initial conditions converge
to each other exponentially fast. Contractive NODEs can enjoy increased robust-
ness as slight perturbations of the features do not cause a significant change in
the output. Contractivity can be induced during training by using a regularization
term involving the Jacobian of the system dynamics. To reduce the computational
burden, we show that it can also be promoted using carefully selected weight reg-
ularization terms for a class of NODEs with slope-restricted activation functions,
including convolutional networks commonly used in image classification. The
performance of the proposed regularizers is illustrated through benchmark im-
age classification tasks on MNIST and FashionMNIST datasets, where images are
corrupted by different kinds of noise and attacks.

1 INTRODUCTION

Neural networks (NNs) have demonstrated outstanding performance in image classification, natural
language processing, and speech recognition tasks. However, they can be sensitive to input noise
or meticulously crafted adversarial attacks (Xu et al., 2020; Carlini & Wagner, 2017; Athalye et al.,
2018; Szegedy et al., 2013). The customary remedies are either heuristic, such as feature obfusca-
tion (Miller et al., 2020), adversarial training (Goodfellow et al., 2014; Allen-Zhu & Li, 2022), and
defensive distillation (Papernot et al., 2016), or certificate-based such as Lipschitz regularization
(Xu et al., 2020; Fazlyab et al., 2019; Pauli et al., 2021; Aquino et al., 2022; Virmaux & Scaman,
2018; Combettes & Pesquet, 2020). The overall intent of certificate-based approaches is to penalize
the input-to-output sensitivity of NNs to improve robustness.

Recently, the connections between NNs and dynamical systems have been extensively explored.
Representative results include classes of NNs stemming from the discretization of dynamical sys-
tems (Haber & Ruthotto, 2017) and NODEs (Chen et al., 2018), which transform the input through
a continuous-time ODE embedding training parameters. The continuous-time nature of NODEs
makes them particularly suitable for learning complex dynamical systems (Rubanova et al., 2019;
Greydanus et al., 2019) and allows borrowing tools from dynamical system theory to analyze their
properties (Fazlyab et al., 2022; Galimberti et al., 2021).

In this paper, we employ contraction theory to improve the robustness of NODEs. A dynamical
system is contractive if all trajectories converge exponentially fast to each other (Lohmiller & Slo-
tine, 1998; Tsukamoto et al., 2021). Through the lens of contraction, slight perturbations of initial
conditions have a diminishing impact over time on the NODE state. With the above considerations,
we propose a class of regularizers that promote contractivity of NODEs during the training. In the
most general case, the regularizers require the Jacobian matrix of the NODE, which might be com-
putationally challenging to obtain for deep networks. Nevertheless, for a wide class of NODEs with
slope-restricted activation functions, we show that contractivity can be promoted by directly penaliz-
ing the weights during the training. Moreover, by leveraging the linearity of convolution operations,
we demonstrate that contractivity can be promoted for convolutional NODEs by regularizing the
convolution filters only.
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1.1 RELATED WORK

Several works have focused on improving the robustness of general NNs against input noise and ad-
versarial attacks using dynamical system theory. For example, the notion of incremental dissipativity
is used to provide robustness certificates for NNs in the form of a linear matrix inequality (Aquino
et al., 2022). The works Chen et al. (2021; 2022) address the robustness issue of NNs by using a
closed-loop control method from the perspective of dynamical systems. A control process is added
to a trained NN to generate control signals to mitigate the perturbations in input data. Nevertheless,
the method requires to solve an optimal control problem for the inference of an input sample, which
increases the computational burden.

A detailed study on the robustness of NODEs has been done by Hanshu et al. (2019), where the
authors show that NODEs can be more robust against random perturbations than common convolu-
tional NNs. Moreover, they study time-invariant NODEs, and propose to regularize their flows to
further enhance the robustness. To bolster the defense against adversarial attacks, NODEs equipped
with Lyapunov-stable equilibrium points have been proposed (Kang et al., 2021). Likewise, Ro-
driguez et al. (2022) introduced a loss function to promote robustness based on a control-theoretic
Lyapunov condition. Both methods have shown promising performance against adversarial attacks.
Finally, Massaroli et al. (2020) design provably stable NODEs and argue that stability can reduce
the sensitivity to small perturbations of the input data. Nevertheless, this claim is not supported
by theoretical analysis or numerical validation. In comparison to all the aforementioned works,
in this paper, we employ contraction theory to regularize the trajectories of NODEs and improve
robustness.

Recently, contraction theory has been employed in the framework of NNs for various purposes. For
instance, contractivity is exploited to improve the well-posedness and robustness of implicit NNs
(Jafarpour et al., 2021), the trainability of recurrent NNs (Revay & Manchester, 2020; Jafarpour
et al., 2022), and the analysis of Hopfield NNs with Hebbian learning (Centorrino et al., 2022).
In Zakwan et al. (2022), the authors propose a Hamiltonian NODE that is contractive by design
to improve robustness. However, the extension to different classes of NODEs, including convolu-
tional NODEs, is not straightforward. Besides the robustification of NNs and NODEs, contractivity
has also been exploited for learning NN-based dynamical models from data. For instance, Singh
et al. (2021) and Revay et al. (2021a;b) utilize contraction theory to learn stabilizable nonlinear NN
models from available data.

1.2 CONTRIBUTIONS

The contribution of this paper is fourfold.

• We show that contractivity can be used to improve the robustness of NODEs, and demon-
strate how to promote contractivity for general NODEs during training by including regu-
larization terms in the cost function.

• The regularization terms involve optimizing the Jacobian matrix in NODEs, which might be
computationally expensive. Interestingly, for a wide class of NODEs with slope-restricted
activation functions, we prove that contractivity can be promoted by carefully penalizing
weight matrices and without optimizing the Jacobian matrix.

• By exploiting the linearity of convolution operations and the above results for NODEs with
slope-restricted activation functions, we show that contractivity for convolutional NODEs
can be induced by suitably penalizing the convolutional filters.

• We conduct experiments on MNIST and FashionMNIST datasets with test images per-
turbed by different kinds of noise and adversarial attacks. Compared to vanilla NODEs,
by using contractivity-promoting regularization terms the average test accuracy can be im-
proved up to 34% in the presence of input noise and up to 30% in the case of adversarial
attacks.
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1.3 ORGANIZATION AND NOTATION

The paper is organized as follows: Section 2 provides preliminaries on NODEs and contraction the-
ory. In Section 3, we propose several regularization approaches for NODEs to promote contractivity.
Numerical experiments are described in Section 4, and Section 5 concludes the paper.

The set of real numbers is R. ∂f(x)
∂x represents the Jacobian matrix of a continuously differentiable

function f(·). The minimal eigenvalue of a symmetric matrix A is denoted as λmin(A). diag(x)
represents a diagonal matrix with the entries of the vector x on the diagonal. For symmetric matrices
A and B, A ≻ (⪰)B means that A−B is positive (semi)definite. I denotes the identity matrix. The
2-norm is denoted as || · ||.

2 PRELIMINARIES

2.1 NEURAL ORDINARY DIFFERENTIAL EQUATION

A NODE is represented by the dynamical system

ẋt = f(xt, θt, t), t ∈ [0, T ] , (1)

where xt ∈ Rn is the state of the NODE and f(xt, θt, t) is a generic smooth function with param-
eters θt ∈ Rm. When used in machine learning tasks, the NODE is usually pre- and post- pended
with additional layers, e.g., x0 = hα(z) and y = gβ(xT ), where hα, gβ are NNs with parameters
α ∈ Rnα , β ∈ Rnβ , respectively, z ∈ Rnz is the input feature, y ∈ Rp represents the output, and
x0, xT are the state of the NODE (1) at time t = 0, and t = T , respectively.

Several methods have been proposed for training NODEs, such as the adjoint sensitivity method
(Chen et al., 2018), and the auto-differentiation technique (Paszke et al., 2017). In this paper, we use
the most straightforward approach, that is, the time-discretization of (1) (Haber & Ruthotto, 2017).
Consider a classification task, and suppose the training dataset is {zi, ci}si=1, where zi are the input
features (e.g. images), ci are the corresponding labels, and s is the number of training samples.
Before training, the NODE (1) is discretized and the resulting discrete-time equations define each of
the network layers. For instance, by using Forward Euler (FE) method one obtains1

xk+1 = xk + hf(xk, θk, k), k = 0, . . . ,
T

h
− 1 , (2)

where h > 0 is the sampling period. Then, the NODE is trained by solving the optimization problem

min
α,{θk}T/h−1

k=0 ,β

s∑
i=1

l(yi, ci) + γreg(α, {θk}T/h−1
k=0 , β) (3)

s.t. xi
0 = hα(zi), i = 1, . . . , s ,

xi
k+1 = xi

k + hf(xi
k, θk, k), k = 0, . . . ,

T

h
− 1,

yi = gβ(x
i
T/h) ,

(4)

where l(·, ·) denotes the loss function, and reg(·) is a regularization term suitably scaled by the
regularization parameter γ > 0. For brevity, throughout the paper, we omit the pre- and post-pended
layers hα(·) and gβ(·), which usually depend on the specific learning task (Chen et al., 2018).

2.2 CONTRACTIVITY

Contractivity is a property of dynamical systems, and it implies that the trajectories of the dynamical
system converge to each other asymptotically. The formal definition is given below.
Definition 1. The dynamics (1) is contractive with a contraction rate ρ > 0 if

∥x̂t − xt∥ ≤ e−ρt∥x̂0 − x0∥, ∀t ∈ [0, T ] , (5)

for all x0, x̂0 ∈ Rn, where x̂t and xt are the solutions of (1) with initial conditions x̂0 and x0,
respectively.

1For simplicity, we assume that T
h

is an integer.
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Therefore, if a NODE is contractive, the Lipschitz constant between the input and the output is
smaller than 1, that is, ∥x̂T−xT ∥

∥x̂0−x0∥ < 1 for any x̂0, x0. As a result, contractive NODEs are robust in
the sense that a slight perturbation in the input features x0 would not result in a large deviation in
the output xT . Moreover, we have that the NODE (1) is contractive with a contraction rate ρ, if and
only if (Tsukamoto et al., 2021)

−ρI −
(
∂f

∂x
+

∂f

∂x

⊤
)

≻ 0, ∀t ∈ [0, T ], x ∈ Rn , (6)

where ∂f
∂x is the Jacobian matrix of f .

Remark 1. The notion of asymptotic stability used in Massaroli et al. (2020) might not be ap-
propriate for promoting robustness of NNs. Indeed, as shown in Rüffer et al. (2013), although for
convergent dynamics the perturbed states eventually converge to a unique trajectory, after a finite
time, the distance between trajectories can be arbitrarily large, which can result in poor robustness
of the NODE (1). In contrast, contractive dynamics does not suffer from this problem, and we will
show in Section 4 that contractivity can considerably improve the robustness of NODEs.
Remark 2. Contractivity implies all the state trajectories of (1) converge exponentially fast to an
equilibrium (Tsukamoto et al., 2021), which may limit the representation power of NODEs. How-
ever, a loss of expressivity might be unavoidable for increasing robustness, as discussed in Tsipras
et al. (2019).
Remark 3. When training NODEs with global contractivity requirement, the training time T is fi-
nite, and we can also tune the contraction rate ρ, which is a hyper-parameter. As a result, the NODE
trajectory would neither diverge nor converge to the same point during training, which ensures good
learning and robustness performance. The readers can also refer to Figure 1 in Zakwan et al. (2022)
as an illustration showing that global contraction can still ensure good learning result.

3 CONTRACTIVITY-PROMOTING REGULARIZATION

To promote the robustness of the NODE (1), one can leverage a regularization term penalizing the
violation of (6). Contractivity requires the inequality (6) to hold for all t ∈ [0, T ], x ∈ Rn. However,
during the training, we only have access to discretized states xi

k and hence, we can promote the
fulfillment of the condition (6) by using the following regularization term in (3)

reg({θk}T/h−1
k=0 ) =

s∑
i=1

T/h∑
k=0

ReLU

(
−λmin

(
−ρI −

(
∂f

∂x
+

∂f

∂x

⊤
)
|xi

k,k

))
, (7)

where ReLU(·) denotes the ReLU activation function.
Remark 4. Although the regularizer (7) stems from (6), there are some differences. The condi-
tion (6) implies that all the trajectories converge to each other exponentially fast. In contrast, the
regularizer (7) only penalizes the violation of contractivity locally on the sampled state xi

k, which is
weaker than (6) and therefore imposes fewer constraints on NODEs. Due to the smoothness property
of NODEs, one can show that the learned trajectories {xi

0, x
i
1, . . . , x

i
T/h} are locally contractive in

the sense that the relation (5) holds only in the neighborhood of xk, k = 0, . . . , T/h. We defer the
reader to Section 4.1 for an illustration showing the benefits of using (7).

3.1 WEIGHT REGULARIZATION FOR IMPROVING TRAINING COMPLEXITY

Since the regularization term (7) involves the Jacobian matrices ∂f
∂x |xi

k,k
for all i, k, it might be

computationally expensive to obtain. In this section, we focus on a family of NODEs with slope-
restricted activation functions and show that one can directly regularize their trainable parameters to
promote contractivity. Consider the following NODE

ẋt = σ(Wtxt + bt), t ∈ [0, T ] , (8)

where xt ∈ Rn is the state, Wt ∈ Rn×n, bt ∈ Rn are NN parameters, and σ(·) is the activation
function. The following theorem provides a sufficient condition on the weights Wt guaranteeing
that (8) is contractive.
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Theorem 1. Assume σ′(·) ∈ [κ, κ̄], where σ′(·) denotes any sub-derivative of σ, and κ̄ > κ > 0.
Moreover, for ρ > 0, let the following condition hold

−ρ− 2κWt,ii − κ̄

n∑
j=1,j ̸=i

(|Wt,ij |+ |Wt,ji|) > 0, i = 1, . . . , n (9)

for t ∈ [0, T ], where Wt,ij is the ij-th element of Wt. Then, the NODE (8) is contractive with a
contraction rate ρ.

Proof. From (6), the NODE (8) is contractive with a contraction rate ρ if

−ρI − JtWt −W⊤
t Jt ≻ 0, ∀x ∈ Rn, t ∈ [0, T ] , (10)

where Jt is the Jacobian matrix of σ(Wtxt + bt) with respect to the input Wtxt + bt. It follows that
Jt is a diagonal matrix with the i-th diagonal entry equal to σ′([Wtxt + bt]i), where [Wtxt + bt]i
denotes the i-th element of Wtxt + bt. According to the Gersgorin disk theorem (Horn & Johnson,
1985), any matrix S ∈ Rn×n that satisfies the following conditions

Sii >

n∑
j=1,j ̸=i

|Sij |, i = 1, . . . , n

is positive definite (i.e. S ≻ 0). The diagonal elements of the matrix −ρI − JW −W⊤J (where
the subscript t is dropped for simplicity) are

−ρ− 2JiiWii ,

where Jii,Wii are the ii-th elements of the matrices J and W , respectively. Moreover, the ij-th
(i ̸= j) elements of the matrix −ρI − JW −W⊤J are

−JiiWij − JjjWji .

Therefore, in view of Gersgorin disk theorem, the matrix −ρI − JW −W⊤J is positive definite if

−ρ− 2JiiWii >

n∑
j=1,j ̸=i

|JiiWij + JjjWji|, i = 1, . . . , n . (11)

A sufficient condition for the feasibility of (11) is that the lower bound of the LHS is greater than
the upper bound of the RHS. Consequently, it is necessary that Wii ≤ 0. Since κ̄ ≥ σ′(·) ≥ κ, a
lower bound of the LHS of (11) is

−ρ− 2κWii ,

and an upper bound of the RHS of (11) is

κ̄

 n∑
j=1,j ̸=i

|Wij |+ |Wji|

 .

Hence, if the condition (9) holds for all i and t ∈ [0, T ], the inequality (10) is verified, and the
NODE (8) is contractive with the contraction rate ρ.

Inspired by the above result, we can use the following regularization term in (3) during the training
to promote contractivity of the NODE (8)

reg
(
{Wk}T/h−1

k=0

)
=

T/h−1∑
k=0

n∑
i=1

ReLU

ρ+ 2(κ+ κ̄)Wk,ii + κ̄

n∑
j=1

(|Wk,ij |+ |Wk,ji|)

 ,

(12)
where Wk is the discretized counterpart of Wt during the training.
Remark 5. Similar to the Hamiltonian NODEs in Zakwan et al. (2022) ensuring contractivity by
design, in view of Theorem 1, one can parameterize a subset of the weight matrices of NODE (8)
that satisfy the condition (9) by design. The main idea is to modify the diagonal elements of Wt such
that the resulting weight matrices W̃t satisfy (9) automatically. These matrices can be written as

W̃t = Wt +Ht ,

where Ht = diag(Ht,1, . . . ,Ht,n) with 2κHt,i = −ρ−2κWt,ii−κ̄
∑n

j=1,j ̸=i(|Wt,ij |+|Wt,ji|)−τ
for any τ > 0.
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3.2 EFFICIENT IMPLEMENTATION OF REGULARIZERS FOR CONVOLUTIONAL LAYERS

NNs are widely employed to perform image classification tasks, and convolutional layers have
proved to be effective for image processing. However, convolution operations on inputs xt are
usually not given in the form of Wtxt + bt appearing in (8), which hampers the direct use of the
regularizers described in Section 3.1. Although the convolution operation can be represented as
Wtxt + bt due to its linearity property, it might be burdensome to obtain Wt. Hence, we propose a
new regularizer directly defined on the convolution filters to avoid computing Wt.

By construction, the input x0 and the output xT of the NODE (1) have the same size. Therefore, we
consider convolution operations (Goodfellow et al., 2016) that preserve the dimension of the input.
Suppose the size of the input X and the output Y of the convolution operation is D×P ×H , where
P and H are the width and height, respectively, of the image, and D is the number of channels. Let
Xi be the i-th channel of the input X , and Yj be the j-th channel of the output Y . Both channels
have size P ×H . Furthermore, let the filters of the convolution operations be Cj

i , i, j = 1, . . . , D,
where Cj

i represents the filter map from the i-th input channel to the j-th output channel. Since
inputs and outputs of NODEs have the same size, the convolution operations must satisfy additional
conditions. For example, if the filter Cj

i is of size 3× 3, the input size can be preserved by adding a
zero-padding of 1 to the input and by applying a stride of 1 (Ciccone et al., 2018). The convolution
operation can be written as

Yj =

D∑
i=1

Cj
i ∗Xi, ∀j ∈ {1, . . . , D} , (13)

where ∗ denotes the convolution operator. Let Vec(X) be the column vector concatenating the
transpose of all the rows of Xi for all i. Then, (13) can be written as

Vec(Y ) = W ×Vec(X) ,

for some weight matrix W ∈ Rn×n, where n = D × P × H . From (13), we can see that every
element of W is a linear function of Cj

i . However, computing W from Cj
i can be time-consuming.

The following lemma reveals important connections between the matrix W and the filters Cj
i , that

can be leveraged to directly regularize the filters Cj
i for imposing contractivity.

Lemma 1 (Ciccone et al. (2018)). Suppose the size of Cj
i is 3× 3, and the convolution operation is

applied with a zero-padding of 1 and a stride of 1. Then the following results hold.

(1) Let {Cd
d}center denote the center element of Cd

d , d = 1, . . . , D. Then

Wii = {Cd
d}center, i = P ×H × (d− 1) + 1, . . . , P ×H × d ,

(2) Let {Cd
j }kl denote the kl-th elements of Cd

j . Then,
n∑

j=1

|Wij | ≤
D∑

j=1

∑
k,l

|{Cd
j }kl|, i = P ×H × (d− 1) + 1, . . . , P ×H × d ,

n∑
j=1

|Wji| ≤
D∑

j=1

∑
k,l

|{Cj
d}kl|, i = P ×H × (d− 1) + 1, . . . , P ×H × d .

Remark 6. Although Lemma 1 only considers convolution operations with a filter size 3 × 3, a
zero-padding of 1 and a stride of 1, the result can also be extended to other convolution operations
that preserve the size of the input, for example, the convolution operation with a filter size 5 × 5, a
zero-padding of 2 and a stride of 1. For more details, please refer to Ciccone et al. (2018).

In view of Lemma 1, for i = P ×H × (d− 1) + 1, . . . , P ×H × d, we have
n∑

j=1,j ̸=i

(|Wij |+ |Wji|) =
n∑

j=1

(|Wij |+ |Wji|)− 2|Wii|

≤
D∑

j=1

∑
k,l

|{Cd
j }kl|+

∑
k,l

|{Cj
d}kl|

− 2|{Cd
d}center| . (14)
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Therefore, if the NN in (8) contains a convolutional layer with filters Cj
i , one can use the following

regularization term

reg
(
{Cj

i }Di,j=1

)
=

D∑
d=1

P ×H × ReLU

ρ+ 2(κ+ κ̄){Cd
d}center + κ̄

D∑
j=1

∑
k,l

|{Cd
j }kl|+

∑
k,l

|{Cj
d}kl|

 ,

(15)

which is based on the expression of Wii in Lemma 1, the upper bound (14), the contractivity re-
quirement (9), and the constraint Wii < 0.
Remark 7. The regularizer (15) includes the coefficient P × H , which usually is very large for
image classification tasks. In experiments of Section 4, we omit the term P ×H in (15), and embed
it into the regularization parameter γ.

4 EXPERIMENTS

In this section, first, we compare the pros and cons of the proposed regularizers, and second, we
empirically validate the improvement in the robustness of convolutional NODEs against different
forms of input noise and adversarial attacks by using the contractivity-promoting regularizers on
MNIST and FashionMNIST classification tasks.

4.1 COMPARISONS OF DIFFERENT REGULARIZATION TERMS

In Section 3, we proposed two different approaches for promoting contraction through regulariza-
tion. The first one exploits the regularization term (7), whereas, the second one focuses on the
NODEs (8), and utilizes the regularization term (12). Both methods have pros and cons. (12)
is more computationally efficient, but might affect the representation power of the NODEs. In-
deed (12) aims to make (9) and further (6) hold for all x ∈ Rn. In contrast, the regularizer (7) only
promotes contractivity constraints on the sampled states xi

k. As a result, the trained NODE is ex-
pected to be contractive only in the neighborhood of the points xi

k. This property may be beneficial
for some learning problems as illustrated in the following example.

Consider the learning task shown in Figure 1a, where the goal is to train a NODE to learn a map
associating x1

0 to x1
T and x2

0 to x2
T . Since the distance between x1

0 and x2
0 is smaller than the

distance between x1
T and x2

T , we cannot obtain a satisfactory globally contractive NODE, that is, a
NODE satisfying the contractivity condition (6). Instead, good performance can be achieved by a
NODE, which fulfills the contractivity condition (7) involving only the sampled states. The learned
trajectory and the flow of the NODE trained with the regularization term (7) are shown in Fig. 1b.
To demonstrate the contractivity properties of the trained NODE, we sample the blue circles around
x1
0 and x2

0 (see Fig. 1b), and plot the sets corresponding to the NODE outputs in red. We can observe
that the area of the red regions is smaller than the area of the input circles, which is expected from
local contractivity.

4.2 MNIST AND FASHIONMNIST CLASSIFICATION TASKS

We evaluate the performance of the proposed regularization schemes on image classification tasks
for the MNIST and FashionMNIST datasets, which are based on images of size 28 × 28. In both
cases, we use the NODE (8) with convolutional layers. We train both a vanilla NODE (i.e., using
γ = 0 in (3)) and the NODE with the regularization term (15), which we refer to as contractive
NODE (CNODE), for ten different seeds so obtaining 10 versions of each model.

The NODE structure is described as follows, where unless otherwise specified, the same parameters
are used for both the MNIST and the FashionMNIST datasets. First, the image is processed by hα(·),
which is a convolution operation with a filter size 3× 3, a stride of 1, and a channel number of 8 and
16 for MNIST and FashionMNIST dataset, respectively. Second, it is processed by the NODE (8)
for T = 0.1, where the NN is also a convolution operation with a filter size 3 × 3, a zero-padding
of 1, and a stride of 1. We use FE discretization with step size h = 0.01 for training the NODEs.
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(b) Learned NODE trajectory and its flow.

Figure 1: Example of a simple NODE trained with the contractivity-promoting regularizer (7).

Finally, the output of the NODE is followed by a fully connected layer gβ(·) with output dimension
10. Due to the smoothness requirement of f in (1) and the slope restrictions, we select the activation
function in (8) to be the smooth leaky ReLU function, given by σ(x) = 0.1x + 0.9 log(1 + ex),
which satisfies 0.1 ≤ σ′(·) ≤ 1. We use the Adam optimizer to minimize the cross-entropy loss. The
initial learning rate for the Adam optimizer is 0.05, and the learning rate is reduced by a factor of 0.7
after every training epoch. The maximal number of training epochs is 20. For the regularizer (15),
we use ρ = 2. The weight γ for the regularization term (15) is set to 1. The contraction rate ρ
and the regularization parameter γ are selected using grid search. We show in Appendix A.2 and
Appendix A.3 that the average test accuracy is quite insensitive to the choice of ρ and γ. Moreover,
we change the convolution parameters in the NODE and repeat the experiment. The results are
shown in Appendix A.4, which implies that with different convolution parameters, we can still
achieve improved robustness performance with contractivity regularization.

We test the performance of the vanilla NODE and CNODE against noisy test datasets, where the
images are perturbed by zero mean Gaussian noise, and salt&pepper noise (Schott et al., 2019). For
each kind of noise, we generate several noisy test datasets with different noise strengths. More-
over, we test the adversarial robustness of the NODEs with respect to fast-gradient-sign-method
(FGSM) (Goodfellow et al., 2014) and projected gradient descent (PGD) attacks (Madry et al.,
2017). Tables 3 and 4 summarize the mean and standard deviations of the classification accuracy
over all test sets. In Table 3, σ is the standard deviation of the Gaussian noise and ϵ denotes the pro-
portion of image pixels corrupted by the impulse noise. The results of robustness against adversarial
attacks are reported in Table 4, where δ represents the l∞ amplitude of perturbations in FGSM and
PGD attacks. The best performance in each column appears in bold. To give an idea of the intensity
of perturbations, we provide samples of test images in Appendix A.1.

No Noise Gaussian Salt&Pepper
MNIST σ = ϵ = 0 σ = 0.1 σ = 0.2 σ = 0.3 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

Vanilla NODE 98±0.3 65±23 45±21 37±16 76±9 54±11 42±8
CNODE 98±0.1 94±4 79±8 62±12 88±4 68±8 48±8

FashionMNIST σ = ϵ = 0 σ = 0.1 σ = 0.2 σ = 0.3 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3
Vanilla NODE 88±0.1 75±4 47±4 35±4 69±2 51±4 38±5

CNODE 88±0.2 85±1 72±2 55±4 75±2 57±5 42±5

Table 1: Classification accuracy over noisy test images (mean ± standard deviation).

From the tables, we can observe that the CNODEs achieve higher mean classification accuracy
than the vanilla NODEs in the presence of image perturbations. In some cases, the performance
improvements are very significant (up to 34% for the case of Gaussian noises). Moreover, the
standard deviations with CNODEs are either the same or less than those with vanilla NODEs in

8



Under review as a conference paper at ICLR 2023

FGSM PGD
MNIST δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.01 δ = 0.02 δ = 0.03

Vanilla NODE 92±2 67±8 42±9 91±3 63±12 36±11
CNODE 95±0.4 86±2 68±4 95±0.4 86±2 66±4

FashionMNIST δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.01 δ = 0.02 δ = 0.03
Vanilla NODE 63±1 31±1 13±1 62±1 29±1 11±1

CNODE 72±1 49±2 28±2 71±1 47±3 26±2

Table 2: Classification accuracy over adversarial attacks (mean ± standard deviation).

almost all the experiments, which means, CNODEs are less sensitive than vanilla NODEs to the
selection of initialization seeds.

5 CONCLUSIONS

In this paper, we use contraction from dynamical system theory to improve the robustness of
NODEs. We propose regularizers with different degrees of flexibility and different computational
requirements to promote contractivity. The good performance of the resulting NNs is illustrated on
image classification tasks. Future work will focus on the development of easy-to-compute regular-
izers for classes of NODEs stemming from specific choices of f in (1).
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A APPENDIX

A.1 CLASSIFICATION EXPERIMENTS: EXAMPLES OF PERTURBED IMAGES

In Figure 2, we provide samples of the perturbed MNIST and FashionMNIST datasets that have
been used for testing the performance of different NODEs in Section 4. For the meaning of the
parameters σ, ϵ and δ, capturing the perturbation magnitude, we defer the reader to Section 4.2.
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 =0.0  =0.1  =0.2  =0.3

(a) MNIST samples perturbed by Gaussian noise.

 =0.0  =0.1  =0.2  =0.3

(b) MNIST samples perturbed by salt&pepper noise.

 =0.0  =0.01  =0.02  =0.03  =0.5

(c) MNIST samples perturbed by FGSM attacks.

 =0.0  =0.01  =0.02  =0.03  =0.5

(d) MNIST samples perturbed by PGD attacks.

 =0.0  =0.1  =0.2  =0.3

(e) FashionMNIST samples perturbed by Gaussian
noise.

 =0.0  =0.1  =0.2  =0.3

(f) FashionMNIST samples perturbed by salt&pepper
noise.
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 =0.0  =0.01  =0.02  =0.03

(g) FashionMNIST samples perturbed by FGSM at-
tacks.

 =0.0  =0.01  =0.02  =0.03

(h) FashionMNIST samples perturbed by PGD attacks.

Figure 2: Examples of perturbed images in MNIST and FashionMNIST classification tasks

A.2 CONTRACTION RATE VS CLASSIFICATION ACCURACY

In this appendix, we analyze how the contraction rate affects the classification accuracy. For this
purpose, we use the MNIST dataset and images perturbed by Gaussian noises or FGSM attacks.
We use contraction rates ρ in the set {0.1, 2, 5, 7, 10, 12, 15}, train the CNODEs, and obtain 10
models for each ρ by using different seeds. Then, we calculate the classification accuracy of these
models on the clean test dataset, the test dataset perturbed by Gaussian noises, and the test dataset
attacked by FGSM. The mean and the standard deviations of the classification accuracy are plotted
in Figure 3, Figure 4 and Figure 5, where the solid line represents the mean and the shaded region
spans one standard deviation on each side of the mean. We can observe that the average classification
accuracy does not vary significantly for different contraction rates. This suggests that the choice of
the contraction rate is not critical for the MNIST experiments discussed in Section 4.
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Figure 3: Classification accuracy on the clean test dataset with respect to different contraction rates
ρ.
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Figure 4: Classification accuracy on test dataset perturbed by Gaussian noise with respect to different
contraction rates ρ.
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Figure 5: Classification accuracy on test dataset perturbed by FGSM attacks with respect to different
contraction rates ρ.

A.3 REGULARIZER WEIGHT VS CLASSIFICATION ACCURACY

In this appendix, we analyze how the regularizer weight affects the classification accuracy. For this
purpose, we use the MNIST dataset and images perturbed by Gaussian noises or FGSM attacks.
We use regularization parameter γ in the set {0.1, 1, 5, 10, 20, 30, 40, 50}, train the CNODEs, and
obtain 10 models for each γ by using different seeds. Then, we calculate the classification accuracy
of these models on the clean test dataset, the test dataset perturbed by Gaussian noises, and the test
dataset attacked by FGSM. The mean and the standard deviations of the classification accuracy are
plotted in Figure 6, Figure 7, and Figure 8, where the solid line represents the mean and the shaded
region spans one standard deviation on each side of the mean. We can observe that the average
classification accuracy does not vary significantly with different values of γ. Therefore, the average
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robustness performance does not rely heavily on the selection of the regularization parameter γ in
the MNIST experiment in Section 4.
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Figure 6: Classification accuracy on the clean test dataset with respect to different regularization
parameters γ.
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Figure 7: Classification accuracy on test dataset perturbed by Gaussian noise with respect to different
regularization parameters γ.
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Figure 8: Classification accuracy on test dataset perturbed FGSM attacks with respect to different
regularization parameters γ.

A.4 CONVOLUTION PARAMETERS VS CLASSIFICATION ACCURACY

In this Appendix, we perform an ablation study by selecting different convolution parameters and
demonstrate that CNODEs can still achieve improved robustness performance. We set parameters
of the convolution operation in the NODE to the following two groups:

• Group 1: a filter size 5× 5, a zero-padding of 2, and a stride of 1.
• Group 2: a filter size 7× 7, a zero-padding of 3, and a stride of 1.

Then we re-conduct the experiment. The maximal number of training epochs is 30. The other train-
ing parameters are set to be the same with those in Section 4.2. The average test accuracy and the
standard deviation data are shown in the following table, where CNODE(5) and CNODE(7) repre-
sent the CNODE with convolution parameter Group 1 and Group 2, respectively. We can observe
that with different convolution parameters, the CNODE can still achieve improved performance.

No Noise Gaussian Salt&Pepper
MNIST σ = ϵ = 0 σ = 0.1 σ = 0.2 σ = 0.3 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

Vanilla NODE 98±0.3 65±23 45±21 37±16 76±9 54±11 42±8
CNODE(5) 98±0.2 95±2 81±7 65±8 87±3 66±4 45±4
CNODE(7) 98±0.1 95±2 81±7 65±11 88±3 67±6 46±6

FashionMNIST σ = ϵ = 0 σ = 0.1 σ = 0.2 σ = 0.3 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3
Vanilla NODE 88±0.1 75±4 47±4 35±4 69±2 51±4 38±5

CNODE(5) 88±0.1 83±1 65±4 48±6 75±3 58±6 44±7
CNODE(7) 88±0.1 83±1 61±5 42±5 75±2 55±5 40±5

Table 3: Classification accuracy over noisy test images (mean ± standard deviation).
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FGSM PGD
MNIST δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.01 δ = 0.02 δ = 0.03

Vanilla NODE 92±2 67±8 42±9 91±3 63±12 36±11
CNODE(5) 95±0.5 87±3 69±6 95±0.6 86±3 67±6
CNODE(7) 95±0.5 87±2 70±6 95±0.5 87±3 69±6

FashionMNIST δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.01 δ = 0.02 δ = 0.03
Vanilla NODE 63±1 31±1 13±1 62±1 29±1 11±1

CNODE(5) 71±1 46±3 25±3 71±1 44±3 23±3
CNODE(7) 73±1 48±2 27±2 72±1 47±2 25±2

Table 4: Classification accuracy over adversarial attacks (mean ± standard deviation).
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