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Abstract

Reinforcement learning from human feedback001
(RLHF) has been widely adopted to align lan-002
guage models (LMs) with human preference.003
Previous RLHF works typically take a bandit004
formulation, which, though intuitive, ignores005
the sequential nature of LM generation and can006
suffer from the sparse reward issue. While re-007
cent works propose dense token-level RLHF,008
treating each token as an action may be oversub-009
tle to proper reward assignment. In this paper,010
we seek to get the best of both by training and011
utilizing a segment-level reward model, which012
assigns a reward to each semantically complete013
text segment that spans over a short sequence014
of tokens. For reward learning, our method015
allows dynamic text segmentation and com-016
patibility with standard sequence-preference017
datasets. For effective RL-based LM train-018
ing against segment reward, we generalize the019
classical scalar bandit reward normalizers into020
location-aware normalizer functions and inter-021
polate the segment reward for further densi-022
fication. Our method performs competitively023
on three popular RLHF benchmarks for LM024
policy: AlpacaEval 2.0, Arena-Hard, and MT-025
Bench. Ablation studies are conducted to fur-026
ther demonstrate our method.027

1 Introduction028

To align language models (LMs, e.g., OpenAI,029

2023; Reid et al., 2024) with human values, re-030

inforcement learning (RL, Sutton and Barto, 2018)031

methods have been widely adopted to optimize the032

non-differentiable human preference, leading to the033

paradigm of reinforcement learning from human034

feedback (RLHF, Ouyang et al., 2022; Bai et al.,035

2022b). A prevailing approach in RLHF is to op-036

timize the LMs by proximal policy optimization037

(PPO, Schulman et al., 2017) against a bandit re-038

ward model learned from human preference data,039

with KL regularization towards a pre-specified tar-040

get distribution to avoid over-optimization on the041

reward model (Ziegler et al., 2019; Stiennon et al., 042

2020; Castricato et al., 2022). While this bandit 043

approach is easier for reward modeling and has 044

achieved remarkable success, language generation 045

is intrinsically sequential, rather than simultane- 046

ous. Thus, from the view of optimizing human 047

preference, assigning a bandit reward to entire text 048

sequence induces the sparse reward (delayed feed- 049

back) issue (Andrychowicz et al., 2017; Marbach 050

and Tsitsiklis, 2003), that often hurts RL-based LM 051

training by increasing gradient variance and lower- 052

ing sample efficiency (Takanobu et al., 2019; Wang 053

et al., 2020; Guo et al., 2022; Snell et al., 2022). 054

As efforts to mitigate this sparse reward issue, 055

prior works have developed methods to “ground” 056

the sequence-level preference label into a dense 057

token-level reward model (Yang et al., 2023; Zhong 058

et al., 2024). While a dense per-token reward signal 059

reduces the optimization complexity (Laidlaw et al., 060

2023), each action, however, is then defined as a 061

single token, i.e., a sub-word that is finer-grained 062

than a word, especially with the BPE-style tok- 063

enizers (Gage, 1994; Sennrich et al., 2016). For 064

instance, Llama 3.1’s tokenizer (Dubey et al., 2024) 065

has tokens as {Brit, ce, cod, neo, redd,...} 066

that have less clear semantic meaning per se in any 067

given context. The contribution of those tokens to 068

the text sequence will inevitably depend on later 069

tokens, making reward/credit assignment harder, 070

especially under the prevailing RLHF paradigm 071

of implementing the reward model as an off-the- 072

shelf decoder-only transformer (e.g., Ouyang et al., 073

2022; Bai et al., 2022b; Menick et al., 2022). Fur- 074

ther, token-level reward implicitly assumes that the 075

basic unit of a text sequence is token, which may 076

not follow linguistics, where a more meaningful 077

decomposition of text may be phrase (including 078

word) that can be more semantically complete and 079

generally consists of a short sequence of tokens. 080

To retain the optimization benefit of dense re- 081

ward for RLHF, while mitigating its reward assign- 082
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ment issue and linguistic counter-intuition, in this083

paper, we seek to train and utilize a segment-level084

reward model, which assigns reward to each seman-085

tically meaningful text segment that constitutes a086

small number of (or just one) tokens. With this de-087

sign, we define the action space in RLHF as “text088

segment,” interpolating between the finest “per to-089

ken” and the coarsest “full sequence” and poten-090

tially getting the benefit of both worlds: easier RL-091

based LM training owing to denser feedback and092

more accurate training guidance from the semantic093

completeness of each action.094

Technically, we are motivated by prior works095

(Malinin and Gales, 2018; Li et al., 2024a) to dy-096

namically segment a text sequence by thresholding097

the entropy of LM’s predictive distributions, under098

the assumption that tokens within a semantically099

complete text segment can be more certainly pre-100

dicted by prior tokens, while the beginning of a new101

segment is not (Wang et al., 2024b). To allow train-102

ing the segment-level reward model by the standard103

sequence-preference labels via Bradley-Terry (BT,104

Bradley and Terry, 1952) loss, we differentiably105

aggregate segment rewards in a text sequence into106

a parametrized sequence evaluation. The learned107

segment-level reward model is then utilized in PPO-108

based policy learning, where we observe the un-109

suitability of classical reward normalizers, i.e., the110

mean and standard deviation (std) of full sequence111

rewards. We address this issue by generalizing the112

classical bandit normalizers of scalar mean and std113

into a mean and a std function that output the re-114

ward normalizers at arbitrary locations of the text115

sequence. In addition, we enhance PPO training by116

within-segment reward interpolation, which further117

densifies training signal and improves results.118

We test our method on the performance of PPO-119

trained LM policy. On three popular RLHF bench-120

marks for LM policy: AlpacaEval 2.0, Arena-Hard,121

and MT-Bench, our method achieves competitive122

performance gain against both the classical bandit123

design and the recent token-level design. We con-124

duct extensive ablation studies to verify our design125

choices and further probe into our method.126

2 Main Method127

2.1 Notations and Background128

In this section, we will define generic notations,129

provide background on the classical bandit RLHF,130

and then discuss RL formulation of LM generation131

underlying recent efforts on dense-reward RLHF.132

Generic Notations. Both reward modeling and 133

LM policy learning require text prompt x and the 134

corresponding response y. Reward model train- 135

ing turns the supervised fine-tuned (SFT) model 136

πSFT(· | ·) (without the final unembedding layer) 137

into a parametrized scalar-output model rϕ(·, ·) 138

with parameter ϕ that scores its input. The LM 139

policy πθ is then optimized against rϕ . 140

Bandit Reward Model Training. Reward 141

model training assumes a dataset Dpref = 142

{(x, yw, yl)} of prompt x and the corresponding 143

winning/chosen response yw and losing/rejected 144

response yl, where the label comes from human 145

evaluation on the entire text sequence yw and yl. 146

In the classical bandit RLHF, reward model rϕ is 147

trained by the binary classification BT loss 148

Lbandit(ϕ) = −E(x,yw,yl)∼Dpref

[
log σ

(
rϕ(x, y

w)− rϕ(x, y
l)
)]

,

(1) 149

where σ(u) = 1/(1 + exp (−u)) denotes the sig- 150

moid function. 151

PPO-based Bandit Policy Learning. In policy 152

learning, a set Dpol = {x} of text prompts x is 153

given. The LM policy πθ is trained to generate out- 154

puts onDpol optimizing the bandit reward from rϕ , 155

with a KL penalty towards πSFT to avoid reward 156

over-optimization. Collectively, the objective is 157

maxθ E x∼Dpol

y∼πθ(· |x)

[
rϕ(x, y)− β × log

(
πθ(y |x)

πSFT(y |x)

)]
, (2) 158

where β is the KL coefficient. In practice, for 159

PPO’s training stability, the value of rϕ(x, y) is 160

de-mean and de-std normalized based on statistics 161

calculated on a calibration dataset, e.g., Dpref . 162

RL Formulation of LM Generation. By its 163

sequential nature, LM generation is formulated 164

as a Markov Decision Process (MDP) M = 165

(S,A, P,R, γ) (Sutton and Barto, 2018). Con- 166

cretely, for state space S, the state at timestep t, 167

st, consists of the prompt x and all generated to- 168

kens so far a<t =: [a0, . . . , at−1] with a<0 =: ∅, 169

i.e., st =: [x, a<t]. A is the action space, where the 170

action at at step t is a short-sequence/segment of 171

tokens from the vocabulary in our segment-level 172

design, whereas at is a single token in the token- 173

level design. Transition function P determinis- 174

tically appends the newly sampled tokens after 175

the previous ones, i.e., st+1 = [st, at] = [x, a≤t]. 176

r(s, a) : S× A→ R scores the action choice (seg- 177

ment/token selection) a at state/context s and is typ- 178

ically substituted by the learned reward model rϕ . 179

γ ∈ [0, 1] is the discount factor. In what follows, 180
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Figure 1: Overview of training and utilizing our segment-level reward model. Numerics in this plot are artificial. In the figure,
each text segment has a different color, and its starting word is underscored.

we will focus on our segment-level design where181

each action at ∈ A is a semantically complete text182

segment, consisting of a non-deterministic number183

of consecutive tokens. The response y for prompt184

x then contains a variable number of segments/ac-185

tions, generically denoted as y = [a0, . . . , aT−1]186

where T is the number of segments in y and varies187

across responses. We denote a single token in y as188

yi whose generation context is [x, y<i].189

Fig. 1 overviews key components in our method.190

A detailed algorithm box is in Appendix A.191

2.2 Reward Model Training192

Overview. In training our segment-level re-193

ward model, we follow the data assumption set194

forth in Section 2.1, where the dataset Dpref =195

{(x, yw, yl)} contains only binary sequence-level196

preference labels, without any process supervision197

(Uesato et al., 2022). The reward model rϕ(st, at)198

is configured to output a scalar reward for each text199

segment choice at at the generation context st. rϕ200

is trained such that its induced parameterized text201

sequence evaluations, aggregated from all segment-202

level rewards in the respective sequence, align with203

the preference labels in Dpref . This is inspired by204

the imitation learning literature (e.g., Christiano205

et al., 2017; Brown et al., 2019, 2020) and prior206

token-level reward modeling in RLHF (Yang et al.,207

2023). Collectively, the BT loss for training our208

segment-level reward function rϕ is209

Lseg(ϕ) = −E(x,yw,yl)∼Dpref

[
log σ

(
eϕ(x, y

w)− eϕ(x, y
l)
) ]

,

∀ y ∈ {yw, yl}, eϕ(x, y) = f
(
{rϕ(st, at)}at∈y

)
.

(3)210

where eϕ is the parameterized sequence evalua- 211

tion induced by rϕ, constructed by aggregating all 212

segment-level rewards {rϕ(st, at)}at∈y in the text 213

sequence y by a selected aggregation function f(·). 214

Entropy-based Segmentation. As discussed in 215

Section 1, we intend to split the given text sequence 216

y ∈ {yw, yl} into semantically complete segments, 217

so that the reward assignment to each action (seg- 218

ment) can be easier, especially under the common 219

implementation of the reward model as a casual 220

LM. Recent works on LMs (e.g., Li et al., 2024a; 221

Wang et al., 2024b) have noticed that tokens within 222

a semantically complete text segment can be more 223

predictable by the corresponding generation con- 224

text, since they are continuation of the designated 225

semantics; whereas the starting token of a new seg- 226

ment is comparably less predictable, as its semantic 227

binding with prior words is relatively weaker. For 228

casual LMs, the predictability of each token can be 229

conveniently measured by the entropy of the next- 230

token-prediction distribution from which the token 231

is sampled (Malinin and Gales, 2018). To make 232

text sequence segmentation a one-time data pre- 233

processing in the reward model training stage, we 234

choose to use the prediction distribution from the 235

supervised fine-tuned model πSFT, from which the 236

reward model is initialized before training. With a 237

selected entropy cutoff cent, token yi starts a new 238

segment if the Shannon entropyH(·) of πSFT’s pre- 239

dictive distribution of the i-th token surpasses cent, 240

i.e.,H(πSFT(· |x, y<i)) > cent, in which case yi−1 241

ends the previous segment. 242

Choice of the Aggregation Function f(·). Ag- 243

3



gregation function f(·) provides inductive bias on244

the relation between the quality of each segment/ac-245

tion and the preferability of entire text sequence.246

While several designs have been proposed in litera-247

ture (Christiano et al., 2017; Kim et al., 2023; Yang248

et al., 2023), after looking into the dataset, in our249

experiments, we select Average to differentiably250

highlight the better average quality of the chosen re-251

sponses over the rejected ones. With this choice of252

f(·), the parametrized sequence evaluation eϕ(x, y)253

in Eq. (3) is constructed as254

eϕ(x, y) = f({rϕ(st, at)}at∈y) =
1

T

T−1∑
t=0

rϕ(st, at). (4)255

256
An Alternative Interpretation. Comparing our257

segment-level reward training loss Eq. (3) with258

the classical bandit loss Eq. (1), one may alter-259

natively interpret eϕ and f({rϕ}) in Eq. (3) as a260

re-parametrization of the learned sequence-level261

feedback that differentiably aggregates the quali-262

ty/contribution of each text segment, and thereby263

connects a denser evaluation rϕ of each semanti-264

cally complete text segment with the information265

in ground-truth sequence-level preference label.266

2.3 PPO-based Policy Learning267

Overview. In policy learning, we again follow268

the classical bandit setting in Section 2.1 to op-269

timize the LM policy πθ on a given prompt set270

Dpol = {x}. But unlike the bandit objective in271

Eq. (2), we adopt the full RL setting (Sutton and272

Barto, 2018) to maximize πθ’s expected sum of per-273

segment/step rewards. This enables directly plug-274

ging our segment-level reward model rϕ into most275

off-the-shelf RLHF PPO implementation. With this276

design, the policy learning objective for πθ is277

max
θ

E x∼Dpol

y∼
∏T−1

t=0 πθ(at | st)

[
T−1∑
t=0

rϕ(st, at)− β log

(
πθ(y |x)

πSFT(y |x)

)]
,

(5)278

where again, each at is a segment of tokens279

(chopped by πSFT), st = [x, a0, . . . at−1] is280

the generation context at step t, and y =281

[a0, . . . , aT−1] is the response to prompt x sam-282

pled from the learning LM policy πθ.283

Recall from Section 2.1 that the output values284

from the reward model rϕ need to be normalized285

for the stability of PPO training. With our segment-286

level design, it is no longer suitable to normalize287

each per-step reward rϕ(st, at) by the mean and std288

of entire sequences’ rewards as in the bandit setting,289

since the latter may not be on a proper scale. Fur-290

ther, the on-policy nature of PPO induces an extra291

complexity: each step of PPO samples new text se- 292

quences, whose total length, segment lengths, and 293

segment locations are all stochastic and can dif- 294

fer from the reward calibration dataset, e.g., Dpref . 295

Appendix H provides an extended discussion on 296

reward normalization in PPO-based LM training. 297

Below, we discuss our approach to construct the re- 298

ward value normalizers, followed by interpolating 299

the segment-level reward into per-token signal to 300

helpfully provide an even denser training guidance. 301

Location-aware Reward Normalizers via Re- 302

gression. While the length of the sampled response 303

y and the lengths and locations of segments {at} in 304

y are all stochastic, we know that each at is some- 305

where in y. Correspondingly, each input (st, at) 306

to rϕ is linked to a normalized location p ∈ (0, 1] 307

of y, and p can be simply defined as t/T , where 308

t is the index of the segment at in y, since PPO 309

routine has fully sampled y before calculating re- 310

wards. On each datapoint in the calibration set, nor- 311

malized location p ∈ (0, 1] again, with the linked 312

segment-level reward available. Across all data 313

points in the calibration set, we construct a new 314

dataset Dnorm = {(p, µp, σp)}, where p runs over 315

all values of normalized location in the calibration 316

set, µp and σp respectively denote sample mean 317

and std of all segment-level rewards corresponding 318

to p in the calibration set. With Dnorm, we run 319

simple linear regressions to estimate the relation 320

between the log-transformed normalized location 321

log(p) and the mean/std of segment-level rewards 322

at p. The regression formula is given by: 323

Mean(p) = wµ log(p) + bµ, Std(p) = wσ log(p) + bσ,

(6) 324

where the independent variable is log(p), and the 325

regression coefficients (wµ, bµ) and (wσ, bσ) can 326

be calculated in closed form. 327

Note that the classical bandit normalizers of the 328

mean and std of full sequences’ rewards correspond 329

to evaluate Mean(p) and Std(p) at p = 1.0. In this 330

regard, our mean and std functions in Eq. (7) gener- 331

alize the classical scalar normalizers into location- 332

aware functions able to output proper reward nor- 333

malizers at an arbitrary (normalized) location p of 334

the text sequence. With Mean(·) and Std(·) and 335

the corresponding p, rϕ(st, at) is normalized by 336

rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p). 337

Within-segment Reward Interpolation. De- 338

pending on the specific tokenizer in use, we ob- 339

served that semantically complete text segments 340

may contain around twenty tokens. The cor- 341
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responding action space A might still be large342

and the resulting segment-level design might343

not sufficiently address the sample inefficiency344

issue in the classical bandit RLHF and could345

again lead to inferior PPO-based RL training.346

To further densify the RL training signal, we347

evenly split the segment-level reward rϕ(st, at)348

for a segment at to each token yi ∈ at.349

This induces a token-level credit assignment that350

∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|, where351

[x, y<i] is the generation context of token yi and352

|at| is the length of segment at. r̃ϕ can then directly353

substitute rϕ in Eq. (5), since
∑T−1

t=0 rϕ(st, at) =354 ∑T−1
t=0 (

∑
yi∈at rϕ(st, at)/|at|).355

Note that r̃ϕ is still intrinsically segment level,356

since all token selections yi within segment at357

receive the same feedback, i.e., the average of358

segment-level reward rϕ(st, at)/|at|. This is in359

contrast to prior works on token-level reward mod-360

els (Yang et al., 2023; Zhong et al., 2024), where361

each token selection is evaluated separately and362

thus their token-level feedback vary for each token.363

Summary. With the learned segment-level re-364

ward model rϕ, in PPO training of the LM policy365

πθ, we first normalize each rϕ(st, at) in the sam-366

pled sequence by the corresponding normalizers367

Mean(p) and Std(p). Normalized segment-level368

rewards are then interpolated into the per-token369

feedback signal r̃ϕ . Finally, we plug r̃ϕ directly370

into an off-the-shelf RLHF PPO routine.371

3 Related Work372

Reward Models in RLHF. Classical RLHF trains373

a policy LM against bandit reward and KL penalty374

(Ouyang et al., 2022). The sparse (bandit) reward375

in this approach is known to challenge the effi-376

ciency and efficacy of RL-based LM training (e.g.,377

Takanobu et al., 2019; Guo et al., 2022). Recent378

methods (e.g., Yang et al., 2023; Chan et al., 2024)379

thus seek to densify rewards by assigning them to380

each token, whose accuracy may suffer from the381

semantic incompleteness of individual token. In382

contrast, our segment-level reward could provide383

more accurate guidance for RL-based LM training,384

while not losing the benefit of denser feedback.385

Close to our segment-level reward, process re-386

ward models (PRMs, e.g., Uesato et al., 2022;387

Lightman et al., 2023) in reasoning-alike tasks also388

assign reward to each step, defined as a short se-389

quence of tokens. However, PRMs typically require390

per-step human annotations – impractical for gen-391

eral text generation tasks like summarization or di- 392

alogue where only full text sequences can be prop- 393

erly evaluated. In contrast, our method (Section 2) 394

is developed for the most basic yet general RLHF 395

setting, where (human) preference is only provided 396

in a dataset of binary sequence-level preference 397

with diverse prompt-response forms. We discuss a 398

broader set of related works in Appendix G. 399

4 Experiments 400

4.1 Experimental Setups and Implementation 401

Datasets. For reward model training, we use the 402

preference-700K dataset1. which is a diverse col- 403

lection of open-source preference datasets, such 404

as HH-RLHF (Bai et al., 2022a), Stanford Human 405

Preferences Dataset (SHP) (Ethayarajh et al., 2022), 406

and HelpSteer (Wang et al., 2023). PPO-based 407

LM policy training is conducted on Ultrafeedback 408

dataset (Cui et al., 2023), from which we only use 409

prompts to sample responses during PPO training. 410

Evaluation Benchmarks. The (PPO-trained) 411

LM policy is evaluated on three popular open- 412

ended instruction-following benchmarks: AlpacaE- 413

val 2.0 (Li et al., 2023), Arena-Hard (Li et al., 414

2024c), and MT-Bench (Zheng et al., 2023), where 415

GPT-4o is used as the judge. Further evaluation 416

details are deferred to Appendix D. 417

Implementation. We implement our method 418

onto the open-sourced 3.8B Phi3-mini Instruct (Ab- 419

din et al., 2024), the SFT checkpoint of Phi3.1-mini 420

Instruct, and the popular SFT checkpoint of Llama- 421

3-8B (Dubey et al., 2024) released by RLHFlow 422

(Dong et al., 2024)2. The backbone model is used 423

as the starting points of both reward model training 424

and PPO-based LM policy learning, in the latter 425

initializing the models for value function, learning 426

policy, and reference policy. Our implementation is 427

built upon the open-source RLHF framework Open- 428

RLHF (Hu et al., 2024). We maximally follow 429

the default hyperparameters in OpenRLHF. Due to 430

space limit, we defer further implementation details 431

to Appendix D. 432

4.2 Main Experimental Comparisons 433

Baselines. To demonstrate our unique considera- 434

tion of RLHF’s action space, in the main experi- 435

ment, we compare our design of segment-level ac- 436

tion space with the coarsest bandit/sequence-level 437

1https://huggingface.co/datasets/hendrydong/
preference_700K

2https://huggingface.co/RLHFlow/LLaMA3-SFT-v2
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Action
Definition

AlpacaEval 2.0 Arena-Hard MT-Bench

LC(%) WR(%) # char WR% # token GPT-4o

Phi3-mini Instruct 18.89 14.41 1473 25.1 490 7.33

Bandit (Sequence) 27.05 29.07 2164 31.3 623 7.46
Sentence 25.56 32.92 2626 32.8 671 7.51
Token 27.82 26.46 1940 27.2 533 7.58

Segment (Ours) 31.05 34.53 2257 34.0 593 7.65

Bandit as Segment 14.39 6.46 691 11.1 308 6.61
Segment as Bandit 27.15 28.20 2079 30.9 620 7.38

Table 1: Performance comparison among different action definitions on PPO-trained LM policy, with the backbone model being
Phi3-mini Instruct. # {char, token} measures the average response length in the benchmark tests. Highest value of each column
is in bold.

action space, the coarser sentence-level space, and438

the finest token-level space, in terms of perfor-439

mance of the PPO-trained LM policy. For PPO440

training, a reward model is first trained under the441

specified action definition. The sentence-level mod-442

els are implemented by splitting the text sequences443

using sentence splitters {".", "!", "?", "\n",444

";", ". . . ", ",", ":"} and/or their foreign445

language equivalents. To further illustrate our446

segment-level reward model and denser segment-447

level reward assignment, we additionally compare448

with two hybrid approaches: (A) using the ban-449

dit reward model for segment-level reward assign-450

ment in the PPO training (“Bandit as Segment”);451

and (B) using the segment-level reward model only452

for bandit reward assignment in the PPO training453

(“Segment as Bandit”), where the bandit reward is454

implemented by the parametrized sequence eval-455

uation eϕ in Eq. (4). For all baselines, we follow456

the standard training receipts and tune them to the457

extent of ensuring a fair comparison.458

Results. Table 1 compares our PPO-trained LM459

policy with alternative RLHF action spaces and460

two hybrid approaches using the Phi3-mini Instruct461

backbone. Key findings are as follows.462

(1) Our segment-level approach improves RLHF463

training while not suffering from length hack-464

ing. As seen in Table 1, our LM policy per-465

forms better than the baselines across all three466

benchmarks: AlpacaEval 2.0, Arena-Hard, and467

MT-Bench. Notably, our model’s average response468

length on AlpacaEval 2.0 and Arena-Hard is not469

significantly larger than the baseline models’, in470

contrast to the LM policy from the sentence-level471

action space. Together, these results manifest the472

merit of our segment-level approach in truly im-473

proving the quality of the generated responses474

while not cheating the benchmark evaluations by475

response-length hacking (Dubois et al., 2024). 476

(2) Not all finer action spaces can help 477

RLHF training over the classical bandit formu- 478

lation. Apart from our denser segment-level ap- 479

proach, in Table 1, we see that the other two finer 480

action space specifications: per-sentence and per- 481

token, both fail to generally improve over the clas- 482

sical bandit/sequence-level design, especially on 483

AlpacaEval 2.0 and Arena-Hard. This validates 484

our design of segment-level reward assignment for 485

RLHF PPO training, that offers more granular feed- 486

back than sentence-level and can be more accurate 487

than the semantically incomplete token-level. 488

(3) A segment-level reward model is necessary 489

for segment-level reward assignment, and vice 490

versa. One may wonder if we can use the clas- 491

sical bandit reward model to assign segment-level 492

reward in the PPO training. As shown by the re- 493

sults of “Bandit as Segment” in Table 1, this ap- 494

proach performs significantly worse than the origi- 495

nal pure bandit, which in turn under-performs our 496

segment-level design. These comparisons justify 497

the necessity to train a segment-level reward model 498

for segment-level reward assignment. Conversely, 499

using our segment-level reward model to provide 500

only bandit feedback in PPO training (“Segment 501

as Bandit”) leads to slight performance degrada- 502

tion over pure bandit design. Compared with our 503

main results, we see that “Segment as Bandit” does 504

not fully benefit from our proposal of a (consistent) 505

segment-level action space. Its weaker results again 506

highlight the gain of denser reward assignment in 507

PPO-based RLHF training. 508

(4) The benefit of segment-level design extends to 509

SFT model and the larger 8B model. We swap the 510

backbone model to the SFT checkpoint of Phi3.1- 511

mini Instruct and the larger 8B SFT checkpoint of 512

Llama-3, as shown in Table 2. It is clear the gain 513
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Backbone Model Action Definition
AlpacaEval 2.0 Arena-Hard MT-Bench

LC (%) WR (%) # char WR (%) # token GPT-4o

Phi3.1-mini-SFT

Raw Backbone 14.93 10.19 1271 14.5 476 7.00
Bandit (Sequence) 19.39 14.78 1542 19.5 524 7.26
Token 22.48 19.25 1687 23.2 525 7.43
Segment (Ours) 26.19 23.85 1795 28.5 585 7.49

Llama-3-8B-SFT

Raw Backbone 16.31 9.50 1221 10.4 469 6.82
Bandit (Sequence) 21.20 20.99 2218 18.7 513 7.11
Token 23.84 20.87 1744 26.0 622 7.13
Segment (Ours) 25.11 28.57 2264 30.4 616 7.15

Table 2: Performance comparison among different action definitions on PPO-trained LM policies. The top four rows correspond
to the 3.8B SFT checkpoint of Phi3.1-mini Instruct, and the bottom four rows correspond to the 8B SFT checkpoint of Llama-3
released by RLHFlow. Table format follows Table 1.

Fixed n-gram AlpacaEval 2.0 MT-Bench

LC (%) # char GPT-4o

n = 2 26.00 2805 7.57
n = 5 27.88 2224 7.51
n = 10 28.55 2968 7.61
n = 20 24.32 3369 7.58

Ours 31.05 2257 7.65

Table 3: Comparison of fixed n-gram and entropy-based seg-
mentation on the performance of PPO-trained LM policy.

of our segment-level design over the prior bandit514

and token-level design is not scoped within the515

already DPO’ed Phi3-mini Instruct. Rather, our516

advantage extends to both the SFT checkpoint of517

Phi3.1-mini Instruct and the larger Llama-3-8B-518

SFT, which verifies the value and versatility of our519

method in the practical post-training pipeline.520

Appendix E provides generation examples from521

our main LM policy. Table 5 in ?? compares the522

LM policies in Table 1 on OpenLLM Leaderboard.523

Both show that our method, while achieving strong524

RLHF training, does not suffer from the “alignment525

tax” (Askell et al., 2021).526

4.3 Ablation Study527

This section considers the following research ques-528

tions to better understand our method. To save529

compute, all ablation studies are conducted on the530

3.8B Phi3-mini Instruct used in Table 1.531

(a): What will the performance be if we segment532

text by the “simpler” fixed n-gram?533

Motivated by the recent work (Chai et al., 2025),534

we swap our entropy-based text segmentation for535

the “simpler” heuristic of fixed n-gram, where ev-536

ery non-overlapping n tokens in the text constitute537

a text segment, without considering semantics. Ta-538

ble 3 compares the performance of PPO-trained539

LM policy from our entropy-based segmentation540

against fixed n-gram with n ∈ {2, 5, 10, 20}. 541

It is clear in Table 3 that while fixed n- 542

gram yields reasonable results, all of them under- 543

performs our entropy-based segmentation, in terms 544

of lower benchmark scores and higher response 545

lengths. As will be discussed in the following part 546

(b) and Fig. 2, our entropy-based approach seg- 547

ments text sequence based on semantic complete- 548

ness rather than the rigid token count, which should 549

benefit reward assignment and thus policy learning. 550

(b): Can our method reasonably segment text 551

and assign rewards? 552

In Fig. 2 (Top), we compare dense reward as- 553

signments from our segment-level reward model 554

with the token-level and fixed n-gram model on 555

normal text. We choose n-gram with n = 5 as the 556

resulted LM policy in Table 3 does not exhibit the 557

response-length hacking issue, and so the reward 558

model should have higher quality. The color blocks 559

in Fig. 2 (Top) demonstrate that our entropy-based 560

approach segments text into meaningful semantic 561

units. In contrast, in the token-level design, a to- 562

ken often represents only part of a word, and thus 563

the reward model often inconsistently highlights 564

only parts of words (e.g., “Truths,” “meditation,” 565

“compassion”). The fixed n-gram approach rigidly 566

segments text without considering semantics, and 567

thus can lead to unnatural breaks, such as splitting 568

“a guide to ethical living” into two segments: “a 569

guide to eth” and “ical living”. 570

In Fig. 2 (Bottom), we compare our segment- 571

level reward model with the token-level model on 572

text with verbosity/repetition. We see that our 573

model oassigns consistent low rewards to the re- 574

peated sentences, effectively refraining the LM 575

from verbosity. In contrast, the token-level model 576

still assigns high rewards to tokens in the repeti- 577
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Prompt: Explain what is Buddhism?

Entrop-based Segment Reward Model (Ours):

Fixed 5-Gram Reward Model:

Prompt: What causes earthquakes?

Entrop-based Segment Reward Model (Ours):

Token-level Reward Model:

Token-level Reward Model:

Figure 2: Examples of dense reward assignment for text sequences encountered in PPO training. In the Top half, we compare our
segment-level reward model with the token-level and fixed n-gram models with n = 5 on normal text. In the Bottom half, we
compare our segment-level reward model with the token-level model on text with verbosity/repetition, where repeated sentences
are

:::::::
underlined. Darker color indicates higher reward.

Reward
Normalizer

AlpacaEval 2.0 MT-Bench

LC (%) # char GPT-4o

No Reward Normalization 19.64 2446 7.25
Global Statistics of All 17.34 2420 7.14
Statistics of the Last Rewards 20.30 2551 7.10

Regression-based (Section 2.3) 31.05 2257 7.65

Table 4: Comparison of different constructions of segment-
level reward normalizers, on performance of the resulted PPO-
trained LM policies.

tions, even in the second repeat, which is undoubt-578

edly undesirable. This comparison further shows579

the benefit of our design of a semantically complete580

action space for more accurate reward assignment.581

(c): How will PPO training perform if we use582

different constructions of reward normalizers?583

Recall that in our PPO training (Section 2.3), we584

use simple linear regression to fit location-aware585

mean and std functions that provide reward normal-586

izers at arbitrary locations of the text sequence. To587

study if this design is over-engineering, we com-588

pare our main method with three simpler construc-589

tions of segment-level reward normalizers: (A) no590

reward normalization; (B) using the scalar global591

mean and std over all segment-level rewards in the592

reward calibration dataset; and (C) using the scalar593

mean and std over the last segment-level rewards594

in each response of the calibration set, mimicking595

the normalizers in the classical bandit approach.596

Table 4 compares the resulted LM policies.597

In Table 4, we clearly see that normalizing598

(dense) reward by improper reward statistics is akin599

to no reward normalization, as all three baselines600

have significantly lower benchmark scores than our601

regression-based approach and undesirable longer 602

response lengths. As discussed in details in Ap- 603

pendix H, the linguistic structure of the response 604

leads to certain correlation between the mean and 605

std of segment-level reward values and the normal- 606

ized location of segment in the response, e.g., in 607

the early or middle or later part. This necessitates 608

our design of location-aware reward normalizers 609

that are able to capture the reward statistics at each 610

arbitrary location of the sampled text sequence, 611

since constant normalization statistics can be in- 612

sufficient to properly normalize the rewards of text 613

segments at different parts of the text sequence, 614

as verified in Table 4. Future work may extend 615

our linear regression-based normalizer functions in 616

Section 2.3 with non-linearity and/or more features. 617

Due to space limit, further ablation studies are 618

deferred to Appendix C, where we study different 619

strategies for within-segment reward interpolation 620

and the impact of entropy cutoff cent for text seg- 621

mentation on the resulted PPO-trained LM policy. 622

5 Conclusion 623

In this paper, we propose to train and utilize a 624

segment-level reward model for improved RLHF in 625

LMs, motivated by both a denser reward signal in 626

RL-based LM training and semantic completeness 627

of each action for accurate reward assignment. Our 628

method and insight are validated through extensive 629

experiments, ablation studies, and backbone mod- 630

els of different sizes, offering a promising research 631

direction for further exploration of fine-grained ac- 632

tion spaces in RLHF. 633
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Limitations634

While our proposed segment-level reward model635

demonstrates promising improvements in RLHF,636

certain aspects warrant further investigation. As an637

initial exploration into refining the action space in638

RLHF, our experiments have so far been limited639

to PPO training on free-form dialog-style datasets640

and instruction-following benchmark evaluations.641

Future work will focus on scaling our approach642

to even larger LMs, extending its applicability to643

diverse tasks such as mathematical reasoning and644

code generation, and exploring its integration with645

alternative RL algorithms, such as GRPO (Shao646

et al., 2024), and REINFORCE++ (Hu, 2025).647

Impact Statement648

Segment-PPO advances RLHF by introducing649

segment-level reward modeling, improving lan-650

guage model alignment while addressing sparse651

reward issues. This refinement enhances response652

quality, benefiting applications like conversational653

AI and automated content generation. However,654

segment-level optimization requires careful cali-655

bration to mitigate potential biases and unintended656

generation patterns. Additionally, as RLHF influ-657

ences AI decision-making, responsible deployment658

is crucial to prevent misuse in misinformation prop-659

agation or biased outputs. By refining reward learn-660

ing at a more semantically meaningful level, our661

work underscores the importance of balancing AI662

advancements with ethical considerations.663

Reproducibility Statement664

To facilitate reproducibility, we elaborate our665

method in Section 2 and provide a comprehensive666

algorithm box in Appendix A. We provide details667

in method implementation and experimental se-668

tups in Section 4 and Appendix D. Furthermore,669

our source code and model checkpoints are anony-670

mously released at https://anonymous.4open.671

science/r/segment_ppo-ED19/README.md and672

https://huggingface.co/hao12345678.673
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A Algorithm Box1214

Algorithm 1 summarizes our method in Section 21215

on training the segment-level reward model and1216

utilizing it in PPO-based RLHF LM training. Note1217

that all operations in Algorithm 1 can be efficiently1218

conducted in batch mode, parallel for multiple sam-1219

ple points at once.1220

B Additional Results1221

Table 5 presents the evaluation results of differ-1222

ent LM policies from Table 1 on the HuggingFace1223

OpenLLM Leaderboard (Beeching et al., 2023).1224

C Further Ablation Study1225

In this section, we continue the ablation study in1226

Section 4.3 to further validate our design choices.1227

(d): What will happen if we use different strate-1228

gies for within-segment reward interpolation?1229

Recall from Section 2.3 that, to further densify1230

the learning signal in RLHF for enhancing training,1231

we interpolate the segment-level rewards by evenly1232

splitting the reward of a segment to each of its1233

constituting token. We now compare this even-1234

split interpolation strategy with two other intuitive1235

alternatives: (A) no interpolation on the segment-1236

level rewards, use 0 for technical padding in PPO1237

(“No Interpolation”); (B) repeat the segment-level1238

reward of a segment to each token in it (“Repeat1239

Segment Reward”). Table 6 shows the performance1240

of the resulted PPO-trained LM policies.1241

In conjunction with our main result Table 1, in1242

Table 6, we see that these two alternatives still pro-1243

vide (relatively) effective RLHF training on Phi3.1-1244

mini Instruct, in reference to the results of the clas-1245

sical bandit approach in Table 1. Nevertheless, we1246

see that the generation length from “No Interpo-1247

lation” is significantly longer, while “Repeat Seg-1248

ment Reward” is too short. Probing into those long1249

text sequences encountered in PPO training, we1250

found that they typically contain some very nega-1251

tive segment-level rewards that refrains the behav-1252

ior of long generation from being learned by the1253

policy LM. Such very negative reward signals may1254

be diluted by the technical zero-padding in “No In-1255

terpolation”, leading to overly long text generation;1256

whereas they are overly amplified in “Repeat Seg-1257

ment Reward”, resulting in too-strong punishment1258

for long texts and hence too-short generations. By1259

contrast, the even-split interpolation strategy in our1260

main method provides densified learning signal of1261

a proper scale, which we attribute to the implicit1262

(segment-) length normalization inherited from the 1263

operation of dividing by segment length in an even 1264

split. Future work may design a proper non-even 1265

split of segment-level reward over each token in 1266

the text segment. 1267

(e): With a different entropy cutoff cent for text 1268

segmentation, how will our method perform? 1269

As discussed in Section 4.1, for main results, 1270

we use entropy cutoff cent = 1.75 for entropy- 1271

based text segmentation. To investigate the im- 1272

pact of cent, in Fig. 3, we vary the value of 1273

cent ∈ {1.5, 1.75, 2.0, 2.25}, and compare the per- 1274

formance of the resulted PPO-trained LM policies 1275

as well as the average segment length of the PPO- 1276

trained LM policy. 1277

As seen in Fig. 3, similar to the discussion of 1278

token-level approach in Section 1, a smaller cent = 1279

1.5, which chops text sequence into finer pieces 1280

with smaller average segment length, may result 1281

in semantically less complete segments, leading to 1282

less accurate reward modeling and the subsequent 1283

weaker LM policy. A reasonably larger entropy 1284

cutoff, such as cent ∈ [1.75, 2.25] that corresponds 1285

to an average segment length of 10 to 22 in Fig. 3a 1286

(or about 3 to 7 words), leads to much better PPO- 1287

trained LMs. This coincides with the advantage of 1288

our segment-level design over the prior token-level 1289

design in Tables 1-2 and verifies our goal of a more 1290

semantically complete action space. 1291

D More Implementation Details 1292

Implementation Details. We tabulate detailed pa- 1293

rameter settings in Table 7 and Table 8. Most of 1294

them are the same as the default setting in Open- 1295

RLHF. Both the reward model and PPO train- 1296

ing employ the Adam optimizer (Kingma and Ba, 1297

2014), with β1 = 0.9 and β2 = 0.95. To save GPU 1298

memory, we use gradient checkpointing (Chen 1299

et al., 2016) and flash attention (Dao et al., 2022). 1300

For reward model training, we set the maximum 1301

prompt sequence length as 1792 tokens, with the 1302

total sequence length (including both prompt and 1303

response) capped at 2048 tokens. During data pre- 1304

processing, we apply left truncation to the prompt 1305

and right truncation to the response. If the EOS 1306

token in the response is truncated, we manually 1307

change the last token in the truncated response to 1308

the EOS token. The global mini batch size for re- 1309

ward model training is set to 128, with each GPU 1310

processing a micro batch size of 8. To facilitate 1311

distributed training, we utilize DeepSpeed ZeRO-3. 1312
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Algorithm 1 Training and Utilizing Our Segment-level Reward.
Input: Binary preference dataset Dpref = {(x, yw, yl)} for reward model training, prompt set Dpol =
{x} for policy learning, supervised fine-tuned model πSFT, reward model training steps Mrew, LM
policy training steps Mpol, entropy cutoff cent, KL coefficient β for RLHF PPO training.

Initialization: Initialize the segment-level reward model rϕ and LM policy πθ from πSFT, fix the
aggregation function f(·) as the Average in Eq. (4), initialize other components in the off-the-shelf
RLHF PPO routine as specified.

// Training the segment-level reward model
Use πSFT and cent to split the responses {(yw, yl)} in Dpref = {(x, yw, yl)} into segments.
for iter ∈ {1, . . . ,Mrew} do

Sample a minibatch B = {(xi, ywi , yli)}i ∼ Dpref .
With f(·) and τ , calculate eϕ(xi, y

w
i ) and eϕ(xi, y

l
i) by Eq. (4) for (xi, ywi , y

l
i) ∈ B.

Optimize reward model rϕ by Eq. (3).
end for

// Utilizing the segment-level reward model in PPO-based LM policy learning
Estimate the reward normalizer functions Mean(p) and Std(p) as described in Section 2.3.
for iter ∈ {1, . . . ,Mpol} do

Sample a minibatch B = {xi}i ∼ Dpol.
Sample a response yi ∼ πθ(· |xi) for each xi ∈ B
Use πSFT and cent to segment each yi; record the completion portion p of each segment.
Use rϕ to assign a segment-level reward to each segment at in each yi
Normalize each segment reward rϕ(st, at) as rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).
Interpolate rϕ(st, at) to each token yi, as ∀ at ∈ y,∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|
With KL coefficient β, optimize policy LM πθ against r̃ϕ by the PPO routine.

end for

For our segment-level reward model, the entropy1313

threshold is set to cent = 1.75 for training with the1314

Phi-series models and cent = 2 for the Llama-3-8B1315

model. The baseline bandit reward model is techni-1316

cally implemented as setting the entropy threshold1317

cent = 1000, restricting reward computation to the1318

EOS token only, while the baseline token-level re-1319

ward model is implemented as setting the entropy1320

threshold cent = 0, ensuring that a reward is com-1321

puted for each token in the text sequence.1322

For PPO training, the replay buffer size1323

(rollout_batch_size) is set to 1024, while1324

the batch size per GPU for generation1325

(micro_rollout_batch_size) is configured1326

as 16 for Phi-mini and 4 for Llama-3-8B. The1327

maximum prompt sequence length is set as 10241328

tokens, and the maximum generated sequence1329

length is also set to 1024 tokens. In PPO’s1330

on-policy sampling, for each prompt in the1331

mini-batch, a single response is sampled via top-p1332

sampling with p = 1.0 and sampling temperature1333

1.0. We use DeepSpeed ZeRO-2 for distributed1334

training. The actor learning rate is set to the 1335

default value of 5 × 10−7, and the critic learning 1336

rate is also the default value of 9 × 10−6. The 1337

clipping coefficient for value loss (value clip) is set 1338

to 0.25 for PPO training based on segment- and 1339

token-level reward model, and as default to 0.2 for 1340

bandit-reward-based PPO training. The clipping 1341

coefficient for policy loss (eps clip) is set to 0.2. 1342

The KL coefficient is kept to the default value of 1343

β = 0.01. 1344

16



Action Definition ARC TruthfulQA Winograd HellaSwag MMLU GSM8K Average

Phi-Instruct 64.76 54.44 74.51 79.03 70.41 81.6 70.79

Bandit (Sequence) 64.76 55.11 74.35 79.32 70.42 77.8 70.29
Sentence 63.40 53.99 72.93 79.34 70.42 84.1 70.70
Token 62.71 53.94 71.43 79.46 70.55 87.3 70.90

Segment (Ours) 62.71 54.74 72.06 79.23 70.42 86.7 70.98

Bandit as Segment 64.16 54.62 74.66 78.95 70.55 81.0 70.66
Segment as Bandit 64.33 54.81 74.74 79.23 70.39 78.6 70.35

Table 5: Evaluation results of downstream tasks on the HuggingFace OpenLLM Leaderboard (Beeching et al., 2023), comparing
LM policies in Table 1.
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Figure 3: Performance comparison among different entropy cutoffs cent for entropy-based text segmentation, comparing
PPO-trained LM policy’s benchmark scores and average segment length (“Avg. Seg. Len”) in terms of number of tokens.

Interpolation
Strategy

AlpacaEval 2.0 MT-Bench

LC (%) # char GPT-4o

No Interpolation 25.98 2666 7.45
Repeat Segment Reward 26.34 1795 7.42

Even Split (Section 2.3) 31.05 2257 7.65

Table 6: Comparison of different within-segment reward in-
terpolation strategies. Shown are the results of the resulted
PPO-trained LM policies.

Hyperparameter Value

Batch Size 128
Training Epochs 1
Max prompt length 1728
Max total length 2048
DeepSpeed ZeRO stage 3
Optimizer Adam
Learning Rate 1e-6
Gradient clipping norm 1.0
Entropy threshold cent 1.75

Table 7: Hyperparameters used in reward model training.

Evaluation Benchmarks. AlpacaEval 2.0 con-1345

sists of 805 test cases, on which we report the1346

length control win rate (LC), raw win rate (WR),1347

and the average response length in number of char-1348

acters (# char). The LC metric is specifically de-1349

signed to be robust against model verbosity. We1350

follow the convention (e.g., Dong et al., 2024) to1351

employ alpaca_eval_gpt4_turbo_fn as the an- 1352

notator for AlpacaEval 2.0. Arena-Hard consists of 1353

500 challenging user queries, and we report both 1354

the win rate (WR) against the reference model GPT- 1355

4-0314 and the average number of tokens in the 1356

responses (# token). MT-Bench is a multi-turn 1357

dialogue dataset that includes 80 test cases. We re- 1358

port the average MT-Bench scores for two dialogue 1359

turns, using GPT-4o as the judge model. 1360

Hyperparameter Phi-mini Llama-3-8B

Batch Size 128 128
Rollout batch size 1024 1024
Micro rollout batch size 16 4
Training Epochs 2 1
Max prompt length 1024 1024
Max generation length 1024 1024
DeepSpeed ZeRO stage 2 2
Actor learning rate 5e-7 5e-7
Critic learning rate 9e-6 9e-6
Gradient clipping norm 1.0 1.0
Entropy threshold cent 1.75 2.0
Value clipping 0.25 0.25
KL coefficient β 0.01 0.01

Table 8: Hyperparameters used in PPO-based LM training.
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E Examples of Generated Responses1361

Below, we provide examples of generated responses from our LM policy in the main results (Table 1) on1362

the benchmarks AlpacaEval 2.0 (first two examples) and Arena-Hard (last two examples).1363

Prompt: When are hops added to the brewing process?
Response: Hops, the flowers of the hop plant Humulus lupulus, are a crucial ingredient in brewing

beer, primarily used for their bittering, flavoring, and aromatic properties. They are typically added to
the brewing process at various stages, depending on the desired outcome in terms of bitterness, flavor,
and aroma. The timing of hop addition is a critical aspect of brewing that significantly influences the
final beer’s character.

1. Boiling Stage (Early Boil): This is the most common stage for adding hops. Adding hops
early in the boil (usually within the first 15 minutes) primarily contributes to the beer’s bitterness.
The longer the hops are boiled, the more bitterness is extracted due to the breakdown of alpha acids,
which are responsible for this bitterness. This process is known as isomerization. Early boil hops
can also contribute some flavor, but the impact on aroma is minimal because the volatile compounds
responsible for aroma are largely evaporated during this long boil.

2. Middle of the Boil: Adding hops in the middle of the boil (around 15 to 30 minutes) can strike
a balance between flavor and aroma. The bitterness level is moderate, and the hop flavors and some
aromatic compounds are preserved better than in the early boil, thanks to the shorter exposure time.

3. Late Boil (Last 10-15 minutes): Hops added late in the boil contribute significantly to the beer’s
aroma and flavor, with minimal to no contribution to bitterness. This is because the shorter boiling
time allows the volatile aromatic compounds to remain intact, while the alpha acids responsible for
bitterness are less extracted. This technique is often used in styles that emphasize hop aroma and
flavor, such as India Pale Ales (IPAs) and New England IPAs (NEIPAs).

4. Fermentation Stage: Some brewers also add hops during the fermentation process, a technique
known as dry hopping. This is done after the primary fermentation has completed, and the beer is
transferred to a secondary fermenter or directly to the bottle/keg. Dry hopping enhances the beer’s
aroma without significantly affecting its bitterness. The extended contact time allows the hop oils to
infuse the beer, imparting a fresh, fruity, and floral aroma.

5. Post-Fermentation (Aging): In some cases, especially with barrel-aged beers, hops may be
added during the aging process to impart additional flavor and aroma characteristics. This can be a
more experimental approach, as the interaction between the hops and the aging environment (e.g.,
oak barrels, different beer styles) can lead to unique and complex profiles.

The choice of when to add hops is a critical decision that brewers make based on the style of
beer they are aiming to produce and the specific flavor, aroma, and bitterness profiles they desire.
Experimentation and experience play significant roles in fine-tuning this aspect of the brewing process
to achieve the perfect balance for each batch.
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Prompt: Introduce the “financial markets and institutions“ by Frederic S. Mishkin.
Response: In his comprehensive work, The Economics of Money, Banking, and Financial Markets,

Frederic S. Mishkin delves into the intricate world of financial markets and institutions, providing a
thorough examination of their roles, functions, and significance in the global economy. The book,
published in 2000, is a well-regarded resource for students, professionals, and policymakers alike, as
it explores the complexities of financial systems and their impact on economic growth, stability, and
development.

Financial markets and institutions are integral components of the broader economic system, serving
as the backbone for the efficient allocation of resources, risk management, and the facilitation of
transactions between various participants. Mishkin’s book offers a deep dive into the various types of
financial markets, such as capital markets, money markets, and foreign exchange markets, as well
as the institutions that operate within these environments, including banks, investment firms, and
regulatory bodies.

The book begins by establishing a solid foundation in the basic concepts and principles of money,
banking, and financial markets, ensuring that readers have a clear understanding of the fundamental
ideas that underpin the entire field. Mishkin then progresses to explore the role of financial intermedi-
aries, such as banks and other institutions, in connecting savers and borrowers, and how these entities
contribute to the overall efficiency and stability of the financial system.

One of the key themes in Mishkin’s work is the importance of financial markets and institutions
in promoting economic growth and development. He examines the ways in which these entities
facilitate the flow of funds from savers to productive investments, thereby supporting innovation,
entrepreneurship, and job creation. Furthermore, Mishkin discusses the role of financial markets in
providing risk management tools, such as derivatives and insurance products, which help individuals
and businesses protect themselves against potential losses.

Another crucial aspect of Mishkin’s exploration is the examination of the regulatory framework
that governs financial markets and institutions. The author emphasizes the need for effective oversight
and regulation to ensure the stability of the financial system, protect consumers, and prevent financial
crises. Throughout the book, Mishkin provides real-world examples and case studies to illustrate
the consequences of both well-functioning and poorly regulated financial markets, highlighting the
importance of maintaining a balanced and robust regulatory environment.

In addition to discussing the theoretical aspects of financial markets and institutions, Mishkin also
addresses practical considerations, such as the impact of technology on the financial industry, the
role of central banks in monetary policy, and the challenges posed by globalization and financial
integration. By offering a comprehensive and well-rounded perspective on the subject, Mishkin’s
work serves as an invaluable resource for anyone seeking to understand the complexities and nuances
of financial markets and institutions in the modern economic landscape.

Prompt: Provide me with a breakfast recipe that is quick to make and is high in protein (at least 30 1364
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grams) and has a variety of ingredients.
Response: Certainly! Here’s a quick and delicious high-protein breakfast recipe called "Spinach

and Feta Egg Muffins." This recipe is not only packed with protein but also incorporates a variety of
ingredients, including spinach, feta cheese, and eggs. It’s perfect for a healthy, on-the-go breakfast or
a satisfying meal prep option.

Ingredients:

• 6 large eggs

• 1 cup fresh spinach, chopped

• 1/2 cup feta cheese, crumbled

• 1/4 cup red onion, finely chopped

• 1/4 cup cherry tomatoes, halved

• 1/4 cup green bell pepper, finely chopped

• 1/4 cup mushrooms, finely chopped

• 1/4 cup fresh parsley, chopped

• Salt and pepper, to taste

• 1/4 teaspoon garlic powder (optional)

• 1/4 teaspoon paprika (optional)

• 1/4 teaspoon dried oregano (optional)

Instructions:

1. Preheat your oven to 375°F (190°C) and lightly grease a muffin tin with cooking spray or a
small amount of oil.

2. In a large mixing bowl, whisk the eggs until well combined.

3. Add the chopped spinach, feta cheese, red onion, cherry tomatoes, green bell pepper, mushrooms,
and parsley to the egg mixture. Stir until all the ingredients are evenly distributed.

4. Season the mixture with salt, pepper, garlic powder, paprika, and dried oregano (if using) to
taste.

5. Pour the egg mixture into the prepared muffin tin, filling each cup about 3/4 full.

6. Place the muffin tin in the preheated oven and bake for 20-25 minutes, or until the egg muffins
are set and the tops are lightly golden.

7. Remove the muffin tin from the oven and let the egg muffins cool for a few minutes before
transferring them to a wire rack to cool completely.

8. Once cooled, you can store the egg muffins in an airtight container in the refrigerator for up to
3-4 days or freeze them for up to 3 months.

9. To reheat, simply place the egg muffins in a microwave-safe dish and heat for 15-20 seconds, or
until warmed through.

Enjoy your high-protein, delicious, and nutritious Spinach and Feta Egg Muffins!1365
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Prompt: Write a python function that solves a quadratic equation.
Response: To solve a quadratic equation of the form ax2 + bx+ c = 0, we can use the quadratic

formula:

x =
−b±

√
b2 − 4ac

2a

This formula gives us the roots of the quadratic equation, where a, b, and c are coefficients of the
equation, and x represents the variable. The term under the square root, b2 − 4ac, is known as the
discriminant. The discriminant determines the nature of the roots:

- If the discriminant is positive, there are two distinct real roots. - If the discriminant is zero, there
is exactly one real root (also known as a repeated or double root). - If the discriminant is negative,
there are no real roots, but two complex roots.

Here’s a Python function that calculates the roots of a quadratic equation, handling all three cases:
import cmath

def solve_quadratic(a, b, c):
"""
Solves a quadratic equation of the form ax^2 + bx + c = 0.

Parameters:
- a: Coefficient of x^2
- b: Coefficient of x
- c: Constant term

Returns:
- A tuple containing the roots of the equation. If the roots are complex,
they are returned as complex numbers.

"""
# Calculate the discriminant
discriminant = cmath.sqrt(b**2 - 4*a*c)

# Calculate the two roots using the quadratic formula
root1 = (-b + discriminant) / (2*a)
root2 = (-b - discriminant) / (2*a)

return (root1, root2)

# Example usage
a, b, c = 1, 5, 6 # Coefficients for the equation x^2 + 5x + 6 = 0
roots = solve_quadratic(a, b, c)
print(f"The roots of the equation are: {roots[0]} and {roots[1]}")

# For a complex discriminant
a, b, c = 1, 2, 5 # Coefficients for the equation x^2 + 2x + 5 = 0
roots = solve_quadratic(a, b, c)
print(f"The roots of the equation are: {roots[0]} and {roots[1]}")

This function uses the ‘cmath‘ module to handle complex square roots, ensuring that it can return
complex roots when necessary. The function calculates and returns both roots, which can be real or
complex numbers, depending on the discriminant.

21



Chat Template. Below is the chat template used1366

for PPO training, reward model training, and evalu-1367

ation sampling with Phi-3. The original Phi-3-Mini1368

chat template includes an additional EOS token,1369

which we removed in experiments due to incom-1370

patibility, leaving only the <|end|> token.1371

<|user|>
{the user query} <|end|>
<|assistant|>
{Assistant Response} <|end|>
For Llama-3, the chat template is as follows:1372

<|begin_of_text|><|start_header_id|>user
<|end_header_id|>
{the user query}<|eot_id|><|start_header_id|>assistant
<|end_header_id|>
{Assistant Response}<|eot_id|>

F Computation of Location-Aware1373

Reward Normalizers via Regression1374

First, 60,000 data points are randomly sampled1375

from the Preference-700K dataset, which in-1376

cludes pairs of prompts, chosen responses, and1377

rejected responses. Each response is processed1378

by a segment reward model, where the segments1379

within the response are indexed by their respective1380

normalized location. Specifically, the normalized1381

location p ∈ (0, 1] is computed for each segment1382

at as p = t
T , where t is the index of the segment1383

within the response and T represents the total num-1384

ber of segments in the response. The model then1385

provides the reward for each segment, producing1386

a set of data points that consist of the segment’s1387

normalized location and its corresponding reward.1388

To estimate the relationship between the nor-1389

malized location and the reward statistics, we1390

employ a linear regression approach using the1391

HuberRegressor from the sklearn library, which1392

is robust to outliers. We perform the regression on1393

the log-transformed normalized locations, log(p),1394

to model the dependence of the mean reward µp1395

and the standard deviation σp of rewards at each1396

normalized location. The regression formulas are1397

given by:1398

Mean(p) = wµ log(p) + bµ, Std(p) = wσ log(p) + bσ,

(7)1399

Here, wµ and bµ are the regression coefficients1400

for the mean reward, and wσ and bσ are those for1401

the standard deviation.1402

Once the regression coefficients are obtained, we1403

use them to compute the normalized rewards for1404

each segment-level reward during the PPO train- 1405

ing. The normalized reward rϕ(st, at) is computed 1406

according to the location-aware normalizers: 1407

rϕ(st, at)←
rϕ(st, at)−Mean(p)

Std(p)
. 1408

G More Related Work 1409

Reward Models in RLHF. In the classical RLHF 1410

paradigm, policy LM is optimized against a ban- 1411

dit reward model trained firstly by binary classi- 1412

fication loss on the preference dataset, with KL 1413

penalty to a specified prior distribution to avoid 1414

reward over-optimization (Ziegler et al., 2019; Sti- 1415

ennon et al., 2020; Jaques et al., 2020; Bai et al., 1416

2022a; Ouyang et al., 2022; Castricato et al., 2022). 1417

Under the same bandit formulation, recent works 1418

have enhanced the bandit reward model by directly 1419

modeling the probability of one response being 1420

preferred over the other (Jiang et al., 2023; Zhao 1421

et al., 2023; Liu et al., 2023; Dong et al., 2024) or 1422

factorizing human preference into multiple facets 1423

via multi-objective modeling (Touvron et al., 2023; 1424

Wang et al., 2023, 2024c,a). Despite its popularity, 1425

from the angle of RL-based optimization of human 1426

preference captured by the reward model, such a 1427

bandit reward may lead to inferior training, due to 1428

the sparse reward issue intrinsic to the bandit for- 1429

mulation of LM generation and credit assignment 1430

(e.g., Takanobu et al., 2019; Guo et al., 2022). 1431

Viewing the weakness of bandit RLHF, efforts 1432

have been making to densify the reward signal for 1433

RLHF LM training. Yang et al. (2023) and Chan 1434

et al. (2024) train token-level reward models by the 1435

binary preference classification loss. Zhong et al. 1436

(2024) and Rafailov et al. (2024) use an LM trained 1437

by DPO (Rafailov et al., 2023) firstly for token- 1438

level reward assignment, which is later used in 1439

PPO training or search-based algorithms. Guo et al. 1440

(2023), Cao et al. (2024), and Yoon et al. (2024) as- 1441

sign continuous or fixed fine-grained rewards (e.g., 1442

±1) by accessing an external powerful large LM 1443

or the oracle environmental reward; while Chen 1444

et al. (2024) require the extra task and datasets of 1445

erroneous solution rewriting. Apart from potential 1446

extra requirements, as discussed in Section 1, the 1447

semantic incompleteness of token in text may chal- 1448

lenge the efficacy of per-token credit assignment, 1449

especially with the prevailing implementation of 1450

reward model as a decoder-only transformer that 1451

cannot look ahead into later tokens. 1452
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Learning-from-preference. Learning-from-1453

preference classically takes a two-stage approach1454

where a reward model is first trained on a dataset1455

of binary or multiple ranking via maximizing the1456

choice model likelihood (Bradley and Terry, 1952;1457

Plackett, 1975; Luce, 2012), before optimizing1458

the RL/control policy against the learned reward1459

model by RL algorithms (Akrour et al., 2011, 2012;1460

Fürnkranz et al., 2012). Earlier application in1461

deep learning mainly focuses on relatively simple1462

neural-network policy for robotics/control tasks1463

(Christiano et al., 2017; Ibarz et al., 2018; Bıyık1464

et al., 2019; Brown et al., 2019, 2020; Lee et al.,1465

2021; Shin et al., 2021; Hejna and Sadigh, 2023a,b).1466

Implanting its success in robotics, in natural lan-1467

guage generation, this two-stage learning-from-1468

preference paradigm has been scaled up and popu-1469

larized in the post-training stage to align LMs with1470

specific human values, with applications ranging1471

from text summarization (Ziegler et al., 2019; Sti-1472

ennon et al., 2020), prompt generation (Yang et al.,1473

2023), to (task-oriented) conversational agent (e.g.,1474

Ouyang et al., 2022; Bai et al., 2022a; Menick et al.,1475

2022; Feng et al., 2023; OpenAI, 2023).1476

To alleviate the complexity in fitting an ex-1477

plicit reward model, motivated by the theory of1478

maximum-entropy control and RL (Ziebart et al.,1479

2008; Ziebart, 2010; Finn et al., 2016), direct pref-1480

erence optimization methods (DPO, e.g., Rafailov1481

et al., 2023; Tunstall et al., 2023; Azar et al., 2023;1482

Yuan et al., 2023; Zhao et al., 2023; Ethayarajh1483

et al., 2024; Yin et al., 2024) were recently pro-1484

posed to directly train LMs on a preference dataset1485

by using their log-density-ratio as the classifica-1486

tion logit, which have been adapted to train text-to-1487

image diffusion models (e.g., Wallace et al., 2023;1488

Yang et al., 2024; Li et al., 2024b; Gu et al., 2024).1489

In this paper, we contribute to the literature of1490

learning-from-preference by re-thinking a suitable1491

definition of action space in the RL formulation1492

of LM generation and preference alignment. Mo-1493

tivated by semantic completeness in linguistics,1494

we define each action as “text segment”, spanning1495

across a small amount of tokens and interpolating1496

between prior works’ action space of either the1497

finest “per token” or the coarsest “full sequence”.1498

With this design, our method may benefit from both1499

denser reward signal for easier RL-based LM train-1500

ing and the semantic completeness of each action1501

for more accurate training guidance, as experimen-1502

tally verified in Section 4.1503

Training Signals for RL-based Language1504

Model (LM) Training. In RL-based LM fine- 1505

tuning, a classical training signal for adapting 1506

LMs to the specific downstream task is the na- 1507

tive trajectory-level downstream test metrics (e.g., 1508

Ryang and Abekawa, 2012; Ranzato et al., 2015; 1509

Rennie et al., 2017; Paulus et al., 2017; Shu et al., 1510

2021; Lu et al., 2022). This approach intrinsically 1511

uses a bandit formulation of LM generation that 1512

treats the entire generated sequence as a single 1513

action. As discussed in Section 1, ignoring the se- 1514

quential nature of LM generation, this bandit train- 1515

ing signal delays the feedback to each token/phrase 1516

selection, and can thus incur optimization diffi- 1517

culty (Guo et al., 2022; Snell et al., 2022). With 1518

various forms of stronger data or compute require- 1519

ments, task-specific per-step training signals have 1520

been proposed to mitigate this sparse reward issue. 1521

Assuming abundant golden expert data for super- 1522

vised (pre-)training, Shi et al. (2018) construct per- 1523

step reward via inverse RL (Russell, 1998); Guo 1524

et al. (2018) use a hierarchical approach; Yang et al. 1525

(2018) learn LM discriminators; Lin et al. (2017) 1526

and Yu et al. (2017) use the expensive and high- 1527

variance Monte Carlo rollout to estimate per-step 1528

reward from a sequence-level adversarial reward 1529

function trained in the first place; while Le et al. 1530

(2022) use some rule-based intermediate training 1531

signal derived from the oracle sequence-level eval- 1532

uation, without explicitly learning per-step reward. 1533

Similarly, in RLHF, to move forward from the 1534

classical bandit formulation, methods have recently 1535

been proposed to ground sparse preference labels 1536

into dense per-step feedback, with applications in 1537

task-oriented dialog systems (e.g., Ramachandran 1538

et al., 2021; Feng et al., 2023) and variable-length 1539

text-sequence generation (Yang et al., 2023). Our 1540

paper seeks to reconcile dense v.s. sparse train- 1541

ing signal in RLHF by distributing feedback to the 1542

level of semantically complete “text segment”, in- 1543

terpolating between the densest “token level” and 1544

the sparsest “sequence level” and ideally getting 1545

the benefit of both worlds: easier RL training and 1546

accurate optimization signal. Fine-grained rewards 1547

were also explored in (Wu et al., 2023), which 1548

demonstrated their advantages over bandit rewards 1549

in detoxification and long-form QA tasks. How- 1550

ever, their approach relies on manual segment an- 1551

notation. In contrast, as shown in Section 2, our 1552

method overcomes this limitation through entropy- 1553

based automated segmentation and systematically 1554

explores the integration of segment rewards with 1555

PPO training. 1556
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Other LM Preference Alignment Methods.1557

Apart from RL methods, strategies have been de-1558

veloped to align LMs with preference by adding1559

external filters on top of the pretrained LMs, for1560

safety checking the generations or the training texts1561

(e.g., Xu et al., 2020). Vanilla maximum likeli-1562

hood estimation has also been adopted for training1563

LMs on curated datasets (Hancock et al., 2019; So-1564

laiman and Dennison, 2021; Scheurer et al., 2022),1565

or instruction fine-tuning LMs on massive highly-1566

curated sets of tasks (Sanh et al., 2022; Chung et al.,1567

2022). With extra requirements on data, modelling,1568

and/or compute, recent LM works also conduct1569

preference alignment by formulating text genera-1570

tion as a constraint satisfaction problem on LM’s1571

generation distribution (e.g., Khalifa et al., 2021;1572

Korbak et al., 2022; Go et al., 2023), or utilizing1573

the preference dataset in LMs’ pre-training stage1574

(Korbak et al., 2023).1575

In this paper, we seek to refine RL-based LM1576

preference alignment by re-thinking the suitable1577

action space in the RL formulation that allows both1578

denser immediate feedback while not jeopardizing1579

the feedback accuracy. Our segment-level design1580

is validated through numeric and example in Sec-1581

tion 4.1582

H More on the Reward Normalizers in1583

PPO Training1584

To center the assigned rewards from the reward1585

model and reduce their variance, in most open-1586

source (bandit) RLHF PPO implementations (e.g.,1587

Havrilla et al., 2023; Hu et al., 2024), the bandit1588

reward of the newly sampled response y is first “Z-1589

score” normalized, before being fed into the PPO1590

routine. Concretely, for the prompt x and sampled1591

response y, the bandit reward rϕ(x, y) is normal-1592

ized as rϕ(x, y)← (rϕ(x, y)−µ)/σ, where µ and1593

σ are respectively the mean and standard deviation1594

of (bandit) rewards in the reward calibration dataset.1595

The PPO routine starts by using this normalized1596

rϕ(x, y), e.g., first subtract it by the KL regular-1597

izer, and then calculate the advantage estimates1598

and value function training target, etc.1599

For the segment-level action space, we will then1600

need to normalize the reward rϕ(st, at) for each1601

segment at. As shown in Table 4 (“Global Statis-1602

tics of All”), the most intuitive idea of simply using1603

the global mean and standard deviation over all1604

segment-level rewards in the reward calibration1605

dataset does not train a good LM. Looking into1606

the responses sampled in PPO training and in the 1607

reward calibration dataset, we find that, for exam- 1608

ple, the beginning segments of the responses are 1609

typically greeting alike phrases that are less infor- 1610

mational and/or essential to respond to the given 1611

prompt, which tend to receive relatively lower 1612

rewards. If we normalize the segment-level re- 1613

wards of those early segments by the global mean 1614

and standard deviation, those normalized rewards 1615

will be significantly negative, rather than centered 1616

around 0. This will undesirably refrain the genera- 1617

tion of necessary greeting alike phrases, resulting 1618

in an “impolite LM” and thus inferior benchmark 1619

results. More generally, the linguistic structure of 1620

the response leads to certain correlation between 1621

the mean and standard deviation of segment-level 1622

reward values and the normalized location of seg- 1623

ment in the response, e.g., in the early or middle or 1624

later part. This observation motivates us to design 1625

location-aware reward normalizers that can approx- 1626

imately capture the reward statistics at an arbitrary 1627

location of the response, so that the normalized 1628

segment-level rewards can be more centered and 1629

less varying. It is important to have proper re- 1630

ward normalizers at an arbitrary location of the re- 1631

sponse, because the response sampled in PPO train- 1632

ing will have a stochastic total length, nondeter- 1633

ministic number of segments, and less-controllable 1634

length of each segment. These considerations mo- 1635

tivate our design of the regression-based reward 1636

normalizer functions in Section 2.3. 1637
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