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Abstract

Receiving timely and personalized feedback001
is essential for second-language learners, es-002
pecially when human instructors are unavail-003
able. This study explores the effectiveness004
of Large Language Models (LLMs), includ-005
ing both proprietary and open-source models,006
for Automated Essay Scoring (AES). Through007
extensive experiments with public and private008
datasets, we find that while LLMs do not sur-009
pass conventional state-of-the-art (SOTA) grad-010
ing models in performance, they exhibit notable011
consistency, generalizability, and explainability.012
We propose an open-source LLM-based AES013
system, inspired by the dual-process theory.014
Our system offers accurate grading and high-015
quality feedback, at least comparable to that016
of fine-tuned proprietary LLMs, in addition to017
its ability to alleviate misgrading. Furthermore,018
we conduct human-AI co-grading experiments019
with both novice and expert graders. We find020
that our system not only automates the grading021
process but also enhances the performance and022
efficiency of human graders, particularly for023
essays where the model has lower confidence.024
These results highlight the potential of LLMs to025
facilitate effective human-AI collaboration in026
the educational context, potentially transform-027
ing learning experiences through AI-generated028
feedback.029

1 Introduction030

Writing practice is an essential component of031

second-language learning. While the provision of032

timely and reliable feedback poses a considerable033

challenge for educators in China due to the high034

student-teacher ratio. This limitation hampers stu-035

dents’ academic progress, especially those who are036

keen on self-directed learning. Automated Essay037

Scoring (AES) systems provide valuable assistance038

to students by offering immediate and consistent039

feedback on their work, and also simplifying the040

grading process for educators.041

Figure 1: Our study reveals that LLM-based essay scor-
ing systems can not only automate the grading process,
but also elevate novice evaluators to the level of experts.

However, implementing AES systems effectively 042

in real-world educational scenarios presents several 043

challenges. First, the diverse range of exercise con- 044

texts and the inherent ambiguity in scoring rubrics 045

complicate the ability of traditional models to de- 046

liver accurate scores. Second, interviews with high 047

school teachers indicate that despite receiving accu- 048

rate score predictions, they must still review essays 049

to mitigate potential errors from the models. Conse- 050

quently, relying exclusively on this system without 051

human supervision is impractical in real-world sce- 052

narios. Thus, there is a clear need for AES systems 053

that not only predict scores accurately but also facil- 054

itate effective human-AI collaboration. This should 055

be supported by natural language explanations and 056

additional assistive features to enhance usability. 057

To effectively tackle these challenges, it is cru- 058

cial to highlight the latest advancements in the field 059

of Natural Language Processing (NLP), particu- 060

larly focusing on the development of large lan- 061

guage models (LLMs). LLMs, such as OpenAI’s 062

ChatGPT 1, not only showcase impressive capa- 063

bilities of robust logical reasoning but also exhibit 064

a remarkable ability to comprehend and faithfully 065

follow human instructions (Ouyang et al., 2022). 066

Furthermore, recent studies have highlighted the 067

1https://chat.openai.com
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potential of leveraging LLMs in AES tasks (Mizu-068

moto and Eguchi, 2023; Yancey et al., 2023; Nai-069

smith et al., 2023).070

In this study, we explore the potential of pro-071

prietary and open-source LLMs such as GPT-3.5,072

GPT-4, and LLaMA3 for AES tasks. We con-073

ducted extensive experiments with public essay-074

scoring datasets as well as a private collection of075

student essays to assess the zero-shot and few-shot076

performance of these models. Additionally, we077

enhanced their effectiveness through supervised078

fine-tuning (SFT). Drawing inspiration from the079

dual-process Theory, we developed an AES system080

based on LLaMA3 that matches the grading accu-081

racy and feedback quality of fine-tuned LLaMA3.082

Our human-LLM co-grading experiment further083

revealed that this system significantly improves the084

performance and efficiency of both novice and ex-085

pert graders, offering valuable insights into the edu-086

cational impacts and potential for effective human-087

AI collaboration. Overall, our study contributes088

three major advancements to the field:089

• We pioneer the exploration of LLMs’ capa-090

bilities as AES systems, especially in com-091

plex scenarios featuring tailored grading crite-092

ria. Leveraging dual-process theory, our novel093

AES framework demonstrates remarkable ac-094

curacy, efficiency, and explainability.095

• We introduce an extensive essay-scoring096

dataset, which includes 13,372 essays writ-097

ten by Chinese high school students. These098

essays are evaluated with multi-dimensional099

scores by expert educators. This dataset sig-100

nificantly enhances the resources available for101

AI in Education (AIEd)2.102

• Our findings from the human-LLM co-103

grading task highlight the potential of LLM-104

generated feedback to elevate the proficiency105

of individuals with limited domain expertise106

to a level akin to that of experts. Additionally,107

it enhances the efficiency and robustness of hu-108

man graders by integrating model confidence109

scores and explanations. These insights set the110

stage for future investigation into human-AI111

collaboration and AI-assisted learning within112

educational contexts.113

2Codes and resources can be found in https://
anonymous.4open.science/r/LLM-AES-1EC4

2 Related Work 114

2.1 Automated Essay Scoring (AES) 115

Traditional Methods Automated Essay Scor- 116

ing (AES) stands as a pivotal research area at 117

the intersection of NLP and education. Tradi- 118

tional AES methods are usually regression-based 119

or classification-based machine learning models 120

(Sultan et al., 2016; Mathias and Bhattacharyya, 121

2018b,a; Salim et al., 2019) trained with textual fea- 122

tures extracted from the target essays. With the ad- 123

vancement of deep learning, AES has witnessed the 124

integration of advanced techniques such as convo- 125

lutional neural networks (CNNs) (Dong and Zhang, 126

2016), long short-term memory networks (LSTMs) 127

(Taghipour and Ng, 2016), and also pre-trained lan- 128

guage models (Rodriguez et al., 2019; Lun et al., 129

2020). These innovations have led to more precise 130

score predictions, and state-of-the-art methods are 131

primarily based on Bidirectional Encoder Repre- 132

sentations from Transformers (BERT) (Yang et al., 133

2020; Wang et al., 2022; Boquio and Naval, 2024). 134

LLM Applications in AES Recent studies have 135

explored The potential of leveraging the capabil- 136

ities of modern LLMs in AES tasks. Mizumoto 137

and Eguchi (2023) provided ChatGPT with spe- 138

cific IELTS scoring rubrics for essay evaluation but 139

found limited improvements when incorporating 140

GPT scores into the regression model. In a differ- 141

ent approach, Yancey et al. (2023) used GPT-4’s 142

few-shot capabilities to predict Common European 143

Framework of Reference for Languages (CEFR) 144

levels for short essays written by second-language 145

learners. However, the Quadratic Weighted Kappa 146

(QWK) scores still did not surpass those achieved 147

by the XGBoost baseline model or human anno- 148

tators. Similarly, Han et al. (2023); Stahl et al. 149

(2024) introduced prompting frameworks that did 150

not outperform the conventional baselines. 151

2.2 AI-Assisted Decision Making 152

Researchers have extensively investigated human- 153

AI teams, in which AI supports the decision- 154

making process by providing recommendations or 155

suggestions, while the human remains responsible 156

for the final decision (van den Bosch et al., 2019). 157

The objective of such human-AI collaboration is 158

to achieve complementary performance, where the 159

combined team performance exceeds that of ei- 160

ther party operating independently (Bansal et al., 161

2021). To realize this, it is crucial to design an 162
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AI-assisted decision-making process that allows163

humans to effectively monitor and counteract any164

unpredictable or undesirable behavior exhibited by165

AI models (Eigner and Händler, 2024). This design166

aims to leverage the strengths of both humans and167

AI to enhance overall performance (Holstein and168

Aleven, 2022). To our knowledge, no studies have169

yet investigated AES systems from this angle of170

collaborative co-grading.171

2.3 Dual-Process Theory172

Recent studies have developed architectures that173

imitate human cognitive processes to enhance the174

capabilities of LLMs, particularly in reasoning and175

planning (Benfeghoul et al., 2024). According176

to dual-process theory in psychology (Wason and177

Evans, 1974; Daniel, 2017), human cognition op-178

erates via two distinct systems: System 1 involves179

rapid, intuitive "Fast Thinking", while System 2180

entails conscious and deliberate "Slow Thinking"181

processes. LLM architectures inspired by this the-182

ory have been implemented in complex interactive183

tasks (Lin et al., 2024; Tian et al., 2023), aiming184

to mitigate issues like social biases (Kamruzzaman185

and Kim, 2024) and hallucination (Bellini-Leite,186

2023). These adaptations have demonstrated im-187

proved performances in various areas.188

3 Data189

ASAP dataset The Automated Student Assess-190

ment Prize (ASAP3) dataset, stands as one of the191

most commonly used publicly accessible resources192

Automated Essay Scoring (AES) tasks. This com-193

prehensive dataset comprises a total of 12, 978 es-194

says, encompassing responses to 8 distinct prompts.195

Each essay has been evaluated and scored by hu-196

man annotators. Essay sets are also accompa-197

nied by detailed scoring rubrics, each tailored with198

unique scoring guidelines and score ranges. These199

intricacies are essential as they cater to the multi-200

faceted requirements and diverse scenarios of AES.201

Our Chinese Student English Essay (CSEE)202

dataset We have developed a novel English essay203

scoring dataset specifically designed for AES tasks.204

The dataset was carefully curated in collaboration205

with 29 high schools in China, encompassing a to-206

tal of 13, 372 student essays responding to two dis-207

tinct prompts used in final exams. The evaluation of208

these essays was carried out by highly experienced209

3https://www.kaggle.com/c/asap-aes.

English teachers following the scoring guidelines 210

of the Chinese National College Entrance Exam- 211

ination (Table 8). Scoring was comprehensively 212

assessed across three critical dimensions: Content, 213

Language, and Structure, with an Overall Score 214

ranging from 0 to 20. More descriptions of the two 215

datasets are presented in Appendix A. 216

4 Methods 217

In this section, we present the details of the models 218

used in this study, including traditional AES base- 219

lines, LLM-based approaches, and our proposed 220

Fast and Slow Thinking AES framework. 221

4.1 Traditional Essay Scoring Baselines 222

BERT Classifier Similar to the model used in 223

Yang et al. (2020); Han et al. (2023)’s work, we 224

implemented a simple yet effective baseline model 225

for score prediction based on BERT. This model 226

integrated a fully connected prediction layer fol- 227

lowing the BERT output, and the BERT parameters 228

remained unfrozen during training. Both the BERT 229

model and the prediction layer were jointly trained 230

on the training essay set (details in Appendix B). 231

SOTA baselines We also incorporate models 232

such as R2BERT (Yang et al., 2020) and Tran- 233

BERT-MS-ML-R (Wang et al., 2022), which repre- 234

sent the highest levels of performance in the ASAP 235

AES task. These models serve as the high-level 236

benchmarks against which we evaluate the perfor- 237

mance of our LLM-based models. 238

4.2 Prompting LLMs 239

We considered various prompting strategies includ- 240

ing with or without detailed rubrics context, zero- 241

shot or few-shot settings. An illustrative example 242

of a prompt and its corresponding model-generated 243

output can be found in Table 9 in the Appendices. 244

GPT-4, zero-shot, without rubrics In this set- 245

ting, we simply provide the prompt and the target 246

essay to GPT-4. The model then evaluates the es- 247

say and assigns a score based on its comprehension 248

within the specified score range. 249

GPT-4, zero-shot, with rubrics Alongside the 250

prompt and the target essay, we also provide GPT-4 251

with explicit scoring rubrics, guiding its evaluation. 252

GPT-4, few-shot, with rubrics In addition to the 253

zero-shot settings, the few-shot prompts include 254

sample essays and their corresponding scores. This 255
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Figure 2: Our proposed Fast and Slow Thinking AES framework.

assists GPT-4 in understanding the latent scoring256

patterns. With the given prompt, target essay, scor-257

ing rubrics, and a set of k essay examples, GPT-4258

provides an appropriate score reflecting this en-259

riched context. See Appendix C for details.260

In all these configurations, we adopted the Chain-261

of-Thought (CoT) (Wei et al., 2022) strategy. This262

approach instructed the LLM to analyze and ex-263

plain the provided materials before making final264

score determinations. Studies (Lampinen et al.,265

2022; Zhou et al., 2023; Li et al., 2023) have shown266

that this structured approach significantly enhances267

the capabilities of the LLM, optimizing perfor-268

mance in tasks that require inference and reasoning.269

4.3 Fine-tuning LLMs270

We conducted additional investigations into the271

effectiveness of supervised fine-tuning methods.272

Given that the ASAP and our CSEE dataset only273

include scores without expert explanations, we aug-274

mented these original datasets with explanations275

generated by GPT-4. To guide the explanation gen-276

eration process, we provided GPT-4 with a few277

expert-curated explanations and a structured tem-278

plate. By organizing the data into an instructional279

format, we created fine-tuning inputs that enable280

the LLMs to not only generate accurate scores but281

also provide high-quality feedback.282

We first fine-tuned OpenAI’s GPT-3.5-turbo, one283

of the best-performing LLMs. However, due to the284

proprietary nature of GPT-3.5 and considerations285

such as data privacy, training and inference costs,286

and flexibility in fine-tuning, we also fine-tune an287

LLaMA3-8B 4 model with both original and aug-288

mented datasets. This recent open-source model289

mitigates these concerns and has remarkable capa-290

bilities, making it a more practical choice for use291

in educational scenarios.292

4https://llama.meta.com/llama3/

4.4 Our Proposed Method 293

As previously mentioned, score prediction and ex- 294

planation generation are distinct but interrelated 295

tasks within the context of AES. Explanation gen- 296

eration, which covers the evaluation of content, 297

language, and structure, necessitates deliberate and 298

meticulous reasoning. On the other hand, score 299

prediction can either be a swift process based on 300

intuition and experiences or concluded after step- 301

by-step inference. These features align with the 302

idea of dual-process theory. Consequently, we have 303

designed an integrated system that includes sepa- 304

rate modules for each task: the Fast Module for 305

quick score prediction and the Slow Module for 306

detailed explanation generation. The framework of 307

our proposed AES system is shown in Figure 2. 308

Slow Module: Fine-tuned LLM The Slow Mod- 309

ule forms the core of our AES system, capable 310

of analyzing essays in depth, providing evidence 311

based on specific rubrics, and deriving appropri- 312

ate scores. This detailed process is time-intensive 313

but yields valuable natural language reasoning that 314

informs the final grading decision. In this study, 315

we implemented the fine-tuned LLaMA3-8B as the 316

Slow Module. It is worth noting that this module 317

is interchangeable with any other qualified LLM, 318

demonstrating the flexibility of our framework. 319

Fast Module: Lightweight Classifier In many 320

cases, swift score prediction is preferable to de- 321

tailed reasoning. To reduce the time and compu- 322

tational cost associated with generating detailed 323

explanations, we introduced a simple fully con- 324

nected layer as a bypass before the initiation of 325

text generation by the Slow Module. By using only 326

the embeddings of the input text, the Fast Module 327

not only conserves resources but also leverages the 328

latent knowledge acquired during the fine-tuning 329

of the Slow Module, aligning with the ’intuitive’ 330

facet of Fast Thinking. 331

When to switch from the Fast to Slow Thinking 332

module is one of the challenges in the design of 333
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dual-process LLM. Previous frameworks employed334

heuristic rules or error feedback as the triggering335

criteria (Lin et al., 2024; Tian et al., 2023), which336

might be impractical in real-world cases. Our Fast337

module also calculates the probabilities of each338

possible output score, which we standardize and339

treat as confidence scores. Predictions with low340

confidence are considered unreliable, triggering341

the Slow Module for self-reflection, or passing to342

external judges (either human or AI). This design343

aims to enhance essay scoring accuracy and fos-344

ter effective human-AI collaboration, potentially345

elevating the complementary team performance.346

For training, we first fine-tune the Slow Module347

using our explanation-augmented dataset. Subse-348

quently, we employ the Slow Module to derive349

input embeddings, which, paired with the rated350

scores, are used to train the Fast Classifier from351

scratch. During inference, essay inputs initially352

pass through the fine-tuned LLM and are trans-353

formed into the embedding format. They are then354

processed by the Fast Module to quickly derive355

scores. The Slow Module is activated only when356

prediction confidence is low or based on specific357

additional requirements.358

5 Experimental Results359

5.1 Performance of LLM-based Methods360

We conducted experiments across all eight subsets361

of the ASAP dataset using both the LLM-based362

methods and baseline approaches. We adopted Co-363

hen’s Quadratic Weighted Kappa (QWK) as our pri-364

mary evaluation metric, which is the most widely365

recognized automatic metric in AES tasks (Ramesh366

and Sanampudi, 2022). A higher QWK value in-367

dicates a greater degree of agreement between the368

predicted score and the ground truth. For methods369

requiring a training dataset, we divided the data370

for each subset using an 80:20 split ratio between371

training and testing.372

Our extensive experiments, as detailed in Ta-373

ble 1, revealed that despite using carefully curated374

prompts and providing detailed context, the zero-375

shot and few-shot capabilities of GPT-4 did not376

yield high QWK scores on the ASAP dataset. In377

zero-shot scenarios, GPT-4’s performance was no-378

tably low, with some subsets scoring nearly as379

poorly as random guessing. For instance, Set 1380

recorded a QWK of 0.0423 and Set 7 a QWK of381

0.0809. This underperformance may be due to382

the broad scoring ranges and complex rubrics in383

ASAP, suggesting that even advanced LLMs like 384

GPT-4 may struggle to fully comprehend and ad- 385

here to complicated human instructions. In few- 386

shot settings, although there was an improvement 387

in scoring performance, particularly for Sets 4-6, 388

GPT-4 still significantly lagged behind SOTA grad- 389

ing methods. This is consistent with findings from 390

recent studies that utilize LLMs for essay scoring. 391

When fine-tuned with the training dataset, the 392

LLMs demonstrated significantly improved per- 393

formance compared to the zero-shot and few-shot 394

results, with QWK scores generally exceeding 395

0.7. However, these fine-tuned LLMs still did 396

not surpass traditional SOTA methods. Within our 397

framework, the performance of the fine-tuned open- 398

source LLaMA3-8B was comparable to that of fine- 399

tuned proprietary models. Even simple supervised 400

fine-tuning (SFT) of LLaMA3 achieved notable 401

results, suggesting that open-source LLMs might 402

be a cost-effective choice for AES tasks. The find- 403

ings from our CSEE dataset (see Table 2) align 404

with those on the ASAP dataset, indicating that our 405

framework predicts reliable scores across content, 406

language, and structure dimensions. 407

Although LLMs do not match traditional meth- 408

ods in terms of scoring accuracy, they excel at gen- 409

erating detailed explanations, benefiting both edu- 410

cators and students. Notably, when trained to pro- 411

duce both scores and explanations in a single output 412

(our proposed Slow Module), LLaMA3-8B expe- 413

rienced a performance drop in grading accuracy. 414

This decrease may be attributed to the model’s op- 415

timization process, where numerical score values 416

are treated similarly to textual data in the output, 417

leading to suboptimal accuracy. In our Fast and 418

Slow Thinking framework, however, separating nu- 419

merical from textual outputs and integrating them 420

based on a trigger condition improved the QWK 421

scores, enhancing collaborative performance. Ad- 422

ditionally, we evaluated the quality of explanations 423

generated by our AES system against those pro- 424

duced by GPT-4. Through a comparison competi- 425

tion among crowdsourced workers, analyzing 20 426

sets of paired essay grading explanations, our sys- 427

tem achieved a win rate of 35%, a tie rate of 40%, 428

and a loss rate of 25%. These results demonstrate 429

that our explanations are of high quality and com- 430

parable to those generated by GPT-4. 431

5.2 Further Analyses 432

Consistency To assess the consistency of scores 433

predicted by LLM-based methods, we conducted 434
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Table 1: Comparison of QWK scores for LLM-based methods and the baselines under the ASAP dataset. The "E."
column indicates whether the model output includes natural language explanations alongside the predicted scores.

E. Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Avg.

BERT Classifier % 0.6486 0.6284 0.7327 0.7669 0.7432 0.6810 0.7165 0.4624 0.6725
Tran-BERT-MS-ML-R % 0.8340 0.7160 0.7140 0.8120 0.8130 0.8360 0.8390 0.7660 0.7910
R2BERT % 0.8170 0.7190 0.6980 0.8450 0.8410 0.8470 0.8390 0.7440 0.7940

GPT-4, zero-shot, w/o rubrics ! 0.0423 0.4017 0.2805 0.5571 0.3659 0.5021 0.0809 0.4188 0.3312
GPT-4, zero-shot, with rubrics ! 0.0715 0.3003 0.3661 0.6266 0.5227 0.3448 0.1101 0.4072 0.3437
GPT-4, few-shot, with rubrics ! 0.2801 0.3376 0.3308 0.7839 0.6226 0.7284 0.2570 0.4541 0.4743

Fine-tuned GPT-3.5 % 0.7406 0.6183 0.7041 0.8593 0.7959 0.8480 0.7271 0.6135 0.7384
Fine-tuned LLaMA3 % 0.7137 0.6696 0.6558 0.7712 0.7452 0.7489 0.6938 0.2952 0.6617

Ours ! 0.7612 0.6517 0.7238 0.8093 0.8118 0.7764 0.7071 0.4885 0.7162
Fast module % 0.7580 0.6395 0.7228 0.7995 0.8023 0.7753 0.7157 0.5075 0.7151
Slow module ! 0.6048 0.5621 0.5700 0.6992 0.6774 0.5943 0.5772 0.2677 0.5691

Table 2: Comparison of QWK scores for LLM-based methods and the baselines under our CSEE dataset. The "E."
column indicates whether the model output includes natural language explanations alongside the predicted scores.

E. Overall Content Language Structure

BERT Classifier % 0.7674 0.7312 0.7203 0.6650

GPT-4, zero-shot, w/o rubrics ! 0.4688 0.4412 0.3081 0.5757
GPT-4, zero-shot, with rubrics ! 0.5344 0.5391 0.4660 0.4256
GPT-4, few-shot, with rubrics ! 0.6729 0.6484 0.6278 0.4661

Fine-tuned GPT-3.5 % 0.7532 0.7241 0.7513 0.6576
Fine-tuned LLaMA3 % 0.7544 0.7321 0.7084 0.6461

Ours ! 0.7634 0.7347 0.7192 0.6656
Fast module % 0.7364 0.7272 0.7072 0.6627
Slow module ! 0.7310 0.6810 0.6990 0.6412

the same experiment three times, each with the435

temperature parameter of the LLMs set to 0. We436

observed that over 80% of the ratings remained437

unchanged across these trials, indicating a high438

level of consistency. We then computed the average439

of these three values to determine the final results.440

Generalizability The eight subsets of the ASAP441

dataset, featuring diverse scoring criteria and442

ranges, serve as an excellent framework for eval-443

uating the generalization capabilities of models.444

For methods such as fine-tuning and traditional445

baselines that require training data, we first trained446

the models on one subset and then assessed their447

performance across the remaining datasets. For ex-448

ample, we trained on Set 1 and tested on Sets 2-8,449

keeping the model weights fixed. We selected fine-450

tuned GPT-3.5 and the BERT Classifier to represent451

LLM-based and traditional methods, respectively.452

As detailed in Table 7, our fine-tuned GPT-3.5 gen-453

erally outperformed the BERT classifier, although454

there were instances of underperformance, notably 455

when trained on Set 4 and tested on Sets 1 and 456

7. The BERT classifier showed particularly weak 457

generalization when trained on Sets 7 and 8, per- 458

forming close to random guessing. 459

Prediction Confidence and Self-Reflection To 460

assess the reliability of confidence scores, we seg- 461

mented the test samples based on the output confi- 462

dence and observed a strong correlation between 463

these scores and model performance in Figure 3. 464

The trigger condition for switching from the Fast to 465

the Slow Module is set when the confidence score 466

falls below 0.2. Although the Slow Module gener- 467

ally exhibits lower performance compared to the 468

Fast Module, the overall performance of the inte- 469

grated system improved. This enhancement sug- 470

gests that employing detailed reasoning for cases 471

with low confidence is an effective grading strategy. 472

Time Efficiency Training the Slow Module 473

for each epoch with our explanation-augmented 474
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dataset requires around 2 hours using an RTX 4090475

24GB GPU, and the inference process consumes476

about 10 GPU hours. Meanwhile, training the Fast477

Module takes less than 0.5 hours, and scoring pre-478

dictions are completed in just 0.2 hours. Our pro-479

posed framework, which incorporates a confidence480

trigger condition, offers an effective trade-off by481

enhancing both accuracy and efficiency.482

Figure 3: QWK scores of our Fast module in different
confidence levels.

6 Human-AI Co-Grading Experiment483

Given that the AES system not only provides score484

predictions but also functions as a teammate to485

educators, we further explore the effectiveness of486

our proposed system in assisting human grading.487

6.1 Experiment Design488

To investigate the performance of human-only, AI-489

only, and human-AI team collaboration, we con-490

ducted a two-stage within-group experiment. We491

randomly selected 50 essays from the test set of our492

CSEE dataset, all on the same topic. We recruited493

10 college students from a Normal University in494

Beijing, who are prospective high school teach-495

ers with no current grading experience, to serve as496

novice evaluators. Additionally, 5 experienced high497

school English teachers participated as expert eval-498

uators. Initially, all evaluators graded the essays in-499

dependently using standard rubrics. Subsequently,500

they were provided with the scores, prediction con-501

fidence levels, and explanations generated by our502

AES system and had the option to revise their ini-503

tial scores based on this augmented information.504

To gather feedback on the process, we distributed505

questionnaires where evaluators rated their experi-506

ence on a 5-point Likert scale, with higher scores507

indicating better-perceived performance.508

In short, we mainly focus on the following re-509

search questions:510

• Can novice and expert human evaluators 511

achieve complementary performance in terms 512

of accuracy and efficiency using the proposed 513

AES system and collaborative workflow? 514

• Does the design of prediction confidence and 515

explanation generation contribute to perfor- 516

mance improvements? 517

6.2 Results 518

Feedback generated by LLM elevates novice 519

evaluators to expert level. As depicted in Fig- 520

ure 4 and Table 3, our findings reveal that novice 521

graders, with the assistance of LLM-generated 522

feedback (including both scores and explanations), 523

achieved a significant improvement in performance. 524

Their average QWK improved from 0.5256 to 525

0.6609, with a p-value of less than 0.01. Further- 526

more, when comparing the performance of LLM- 527

assisted novice evaluators (mean QWK of 0.6609) 528

to that of expert graders (mean QWK of 0.7117), 529

no statistical difference was found between the two 530

groups (p-value = 0.27). This indicates that with 531

LLM support, novice evaluators achieved a level of 532

grading proficiency comparable to that of experi- 533

enced experts. Similar trends were observed in the 534

scores for content, language, and structure, with 535

detailed results presented in Table 5. 536

Table 3: t-test of QWK scores for different experimental
groups. Diff. means the difference of means between
the two groups of QWK scores.

Diff. t statistic p-value

Expert vs. Novice 0.1860*** 3.2152 0.0068
Novice+LLM vs. Novice 0.1353*** 2.8882 0.0098
Expert+LLM vs. Expert 0.0617 1.7128 0.1251
Novice+LLM vs. Expert -0.0508 -1.1566 0.2682

Feedback generated by LLM boosts expert effi- 537

ciency and consistency. The integration of LLM- 538

generated feedback into the expert grading process 539

led to an increase in the average QWK from 0.7117 540

to 0.7734, which also surpassed the performance 541

of AES systems (a QWK of 0.7302) for these essay 542

samples, thereby achieving superior complemen- 543

tary performance (where the Human-AI team out- 544

performs both individual human and AI). Although 545

this improvement is not statistically significant (p- 546

value = 0.13), the benefits of LLM augmentation 547

for experts were evident in several other aspects. 548

According to self-report questionnaires (refer to 549

Table 4), experts required less time to complete 550

7



Figure 4: QWK of the overall score in LLM-assisted co-
grading experiment for the novice and expert evaluators.
The blue bar and orange bar of the LLM column indicate
the performance of our Fast module and the integrated
system respectively.

grading tasks when assisted by the LLM. Further-551

more, a reduction in the standard deviation of ex-552

pert ratings was observed, indicating a higher level553

of consensus among experts. This suggests that554

LLM-generated feedback leads to more consistent555

evaluations of student essays. Experienced domain556

experts also commended the accuracy and prac-557

ticality of the LLM-generated feedback, particu-558

larly praising the prediction confidence mechanism559

which alerted them to scrutinize more challenging560

cases. These findings highlight the potential to561

augment the human grading process with our AES562

system in real-world educational environments.563

Table 4: Experts’ feedback after grading student essays
with the support of the LLM-based system.

Score

Perceived accuracy of LLM overall score 4.3/5
Perceived accuracy of LLM content score 4.0/5
Perceived accuracy of LLM language score 3.9/5
Perceived accuracy of LLM structure score 3.8/5

Helpfulness of the predicted scores 4.6/5
Helpfulness of the confidence scores 4.8/5
Helpfulness of LLM explanations 4.7/5
Efficiency of LLM assistance 4.4/5
Willingness to use our AES system 4.3/5

The Importance of Prediction Confidence and564

Explanations We previously assessed the relia-565

bility of prediction confidence from our Fast Mod-566

ule and noted a modest improvement in model per-567

formance after self-reflection by the Slow Module568

(as shown in the LLM column of Figure 4). In569

the context of human-AI collaboration, we focused570

on cases where the predicted scores presented to571

human evaluators were of low confidence (below 572

0.2). We observed that the overall QWK scores 573

for expert and novice evaluators were 0.6809 and 574

0.5680. These QWK values, lower than the average 575

human performances, suggest that these essays are 576

inherently challenging to grade, even for humans. 577

However, human performances exceeded that of 578

the LLM Slow Module’s 0.5478 QWK, achiev- 579

ing complementary team performance. These find- 580

ings support a practical, intuitive LLM-assisted 581

decision-making workflow: the model manages 582

routine cases with high confidence and minimal 583

human intervention, while low-confidence cases 584

are presented to human collaborators for in-depth 585

analysis and final decision-making. 586

7 Conclusion 587

In this study, we explored the capabilities of LLMs 588

within AES systems. With detailed contexts, clear 589

rubrics, and high-quality examples, GPT-4 demon- 590

strated satisfactory performance, consistency, and 591

generalizability. Further accuracy enhancements 592

were achieved through supervised fine-tuning using 593

task-specific instruction datasets, bringing LLM 594

performance close to conventional SOTA methods. 595

To leverage the LLMs’ ability to generate natural 596

language explanations along with predicted scores, 597

we introduced an open-source Fast and Slow Think- 598

ing AES framework. This framework not only 599

matches the quality of proprietary models but also 600

offers greater efficiency. 601

Our research extended into human-AI co- 602

grading experiments within this new framework. 603

A notable finding was that LLMs not only auto- 604

mated the grading process but also augmented the 605

grading skills of human evaluators. Novice graders, 606

with support from our AES framework, reached 607

accuracy levels comparable to those of experienced 608

graders, while expert graders showed gains in effi- 609

ciency and consistency. The collaboration between 610

humans and AI particularly enhanced performance 611

in handling low-confidence cases, demonstrating a 612

significant synergy that approached the upper lim- 613

its of team performance. These results highlight the 614

transformative potential of AI-assisted and human- 615

centered decision-making workflows, especially 616

in elevating those with limited domain knowledge 617

to expert-level proficiency. This study illuminates 618

promising future directions for human-AI collab- 619

oration and underscores the evolving role of AI in 620

educational contexts. 621
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Limitations622

This study has certain limitations. Firstly, although623

our CSEE dataset includes a substantial number624

of student essays, these essays originate from only625

two final exams designed for high school English626

learners in China. This raises concerns about the ro-627

bustness of our proposed AES system when applied628

to a broader range of topics and diverse student629

demographics. Secondly, our human-AI collabo-630

ration experiment, while indicative of promising631

directions for future human-AI co-grading tasks, is632

a pilot study that yields general results. Further ex-633

periments are necessary to thoroughly explore the634

mechanisms of complementary team performance,635

such as identifying circumstances under which hu-636

mans are likely to recognize and correct their er-637

rors following AI feedback, or instances where638

unreliable AI feedback could potentially mislead639

them. A deeper understanding of these collabora-640

tion mechanisms will enable researchers to develop641

AES systems that offer more effective support to642

educators.643

Ethical Considerations644

We secured Institutional Review Board (IRB) ap-645

proval for both the data collection and the human-646

AI co-grading experiment (details provided in the647

online materials). In our CSEE dataset, all per-648

sonal information concerning the students has been649

anonymized to safeguard their privacy. The dataset650

comprises solely of essays and the corresponding651

scores, omitting any additional information that652

might raise ethical concerns. However, details of653

the data annotation process remain undisclosed to654

us, including the number of teachers involved in655

the scoring and the level of inter-annotator agree-656

ment among them. We have also obtained explicit657

consent to use the data exclusively for research658

purposes from both teachers and students.659

References660

Gagan Bansal, Tongshuang Wu, Joyce Zhou, Ray-661
mond Fok, Besmira Nushi, Ece Kamar, Marco Tulio662
Ribeiro, and Daniel Weld. 2021. Does the whole663
exceed its parts? the effect of ai explanations on com-664
plementary team performance. In Proceedings of the665
2021 CHI conference on human factors in computing666
systems, pages 1–16.667

Samuel C Bellini-Leite. 2023. Dual process theory for668
large language models: An overview of using psy-669

chology to address hallucination and reliability issues. 670
Adaptive Behavior, page 10597123231206604. 671

Martin Benfeghoul, Umais Zahid, Qinghai Guo, and 672
Zafeirios Fountas. 2024. When in doubt, think slow: 673
Iterative reasoning with latent imagination. arXiv 674
preprint arXiv:2402.15283. 675

Eujene Nikka V. Boquio and Prospero C. Naval, Jr. 676
2024. Beyond canonical fine-tuning: Leveraging 677
hybrid multi-layer pooled representations of BERT 678
for automated essay scoring. In Proceedings of the 679
2024 Joint International Conference on Computa- 680
tional Linguistics, Language Resources and Eval- 681
uation (LREC-COLING 2024), pages 2285–2295, 682
Torino, Italia. ELRA and ICCL. 683

Kahneman Daniel. 2017. Thinking, fast and slow. 684

Fei Dong and Yue Zhang. 2016. Automatic features for 685
essay scoring–an empirical study. In Proceedings of 686
the 2016 conference on empirical methods in natural 687
language processing, pages 1072–1077. 688

Eva Eigner and Thorsten Händler. 2024. Determinants 689
of llm-assisted decision-making. arXiv preprint 690
arXiv:2402.17385. 691

Jieun Han, Haneul Yoo, Junho Myung, Minsun Kim, 692
Hyunseung Lim, Yoonsu Kim, Tak Yeon Lee, Hwa- 693
jung Hong, Juho Kim, So-Yeon Ahn, et al. 2023. 694
Fabric: Automated scoring and feedback generation 695
for essays. arXiv preprint arXiv:2310.05191. 696

Kenneth Holstein and Vincent Aleven. 2022. Designing 697
for human–ai complementarity in k-12 education. AI 698
Magazine, 43(2):239–248. 699

Mahammed Kamruzzaman and Gene Louis Kim. 2024. 700
Prompting techniques for reducing social bias in llms 701
through system 1 and system 2 cognitive processes. 702
arXiv preprint arXiv:2404.17218. 703

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke 704
Zettlemoyer, and Mike Lewis. 2020. Generalization 705
through memorization: Nearest neighbor language 706
models. In International Conference on Learning 707
Representations. 708

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan, 709
Kory Mathewson, Mh Tessler, Antonia Creswell, 710
James McClelland, Jane Wang, and Felix Hill. 2022. 711
Can language models learn from explanations in con- 712
text? In Findings of the Association for Computa- 713
tional Linguistics: EMNLP 2022, pages 537–563, 714
Abu Dhabi, United Arab Emirates. Association for 715
Computational Linguistics. 716

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, 717
Jian-Guang Lou, and Weizhu Chen. 2023. Making 718
language models better reasoners with step-aware 719
verifier. In Proceedings of the 61st Annual Meet- 720
ing of the Association for Computational Linguistics 721
(Volume 1: Long Papers), pages 5315–5333, Toronto, 722
Canada. Association for Computational Linguistics. 723

9

https://aclanthology.org/2024.lrec-main.204
https://aclanthology.org/2024.lrec-main.204
https://aclanthology.org/2024.lrec-main.204
https://aclanthology.org/2024.lrec-main.204
https://aclanthology.org/2024.lrec-main.204
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291


Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-724
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj725
Ammanabrolu, Yejin Choi, and Xiang Ren. 2024.726
Swiftsage: A generative agent with fast and slow727
thinking for complex interactive tasks. Advances in728
Neural Information Processing Systems, 36.729

Jiaqi Lun, Jia Zhu, Yong Tang, and Min Yang. 2020.730
Multiple data augmentation strategies for improving731
performance on automatic short answer scoring. In732
Proceedings of the AAAI Conference on Artificial733
Intelligence, volume 34, pages 13389–13396.734

Sandeep Mathias and Pushpak Bhattacharyya. 2018a.735
Asap++: Enriching the asap automated essay grading736
dataset with essay attribute scores. In Proceedings737
of the eleventh international conference on language738
resources and evaluation (LREC 2018).739

Sandeep Mathias and Pushpak Bhattacharyya. 2018b.740
Thank “goodness”! a way to measure style in student741
essays. In Proceedings of the 5th Workshop on Natu-742
ral Language Processing Techniques for Educational743
Applications, pages 35–41.744

Atsushi Mizumoto and Masaki Eguchi. 2023. Exploring745
the potential of using an ai language model for auto-746
mated essay scoring. Research Methods in Applied747
Linguistics, 2(2):100050.748

Ben Naismith, Phoebe Mulcaire, and Jill Burstein. 2023.749
Automated evaluation of written discourse coherence750
using GPT-4. In Proceedings of the 18th Workshop751
on Innovative Use of NLP for Building Educational752
Applications (BEA 2023), pages 394–403, Toronto,753
Canada. Association for Computational Linguistics.754

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,755
Carroll Wainwright, Pamela Mishkin, Chong Zhang,756
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.757
2022. Training language models to follow instruc-758
tions with human feedback. Advances in Neural759
Information Processing Systems, 35:27730–27744.760

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,761
Amnon Shashua, Kevin Leyton-Brown, and Yoav762
Shoham. 2023. In-context retrieval-augmented lan-763
guage models. arXiv preprint arXiv:2302.00083.764

Dadi Ramesh and Suresh Kumar Sanampudi. 2022.765
An automated essay scoring systems: a system-766
atic literature review. Artificial Intelligence Review,767
55(3):2495–2527.768

Pedro Uria Rodriguez, Amir Jafari, and Christopher M769
Ormerod. 2019. Language models and automated770
essay scoring. arXiv preprint arXiv:1909.09482.771

Yafet Salim, Valdi Stevanus, Edwardo Barlian,772
Azani Cempaka Sari, and Derwin Suhartono. 2019.773
Automated english digital essay grader using ma-774
chine learning. In 2019 IEEE International Con-775
ference on Engineering, Technology and Education776
(TALE), pages 1–6. IEEE.777

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min- 778
joon Seo, Rich James, Mike Lewis, Luke Zettle- 779
moyer, and Wen-tau Yih. 2023. Replug: Retrieval- 780
augmented black-box language models. arXiv 781
preprint arXiv:2301.12652. 782

Maja Stahl, Leon Biermann, Andreas Nehring, and Hen- 783
ning Wachsmuth. 2024. Exploring llm prompting 784
strategies for joint essay scoring and feedback gener- 785
ation. arXiv preprint arXiv:2404.15845. 786

Md Arafat Sultan, Cristobal Salazar, and Tamara Sum- 787
ner. 2016. Fast and easy short answer grading with 788
high accuracy. In Proceedings of the 2016 Confer- 789
ence of the North American Chapter of the Associ- 790
ation for Computational Linguistics: Human Lan- 791
guage Technologies, pages 1070–1075. 792

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural 793
approach to automated essay scoring. In Proceed- 794
ings of the 2016 conference on empirical methods in 795
natural language processing, pages 1882–1891. 796

Xiaoyu Tian, Liangyu Chen, Na Liu, Yaxuan Liu, Wei 797
Zou, Kaijiang Chen, and Ming Cui. 2023. Duma: a 798
dual-mind conversational agent with fast and slow 799
thinking. arXiv preprint arXiv:2310.18075. 800

Karel van den Bosch, Tjeerd Schoonderwoerd, Romy 801
Blankendaal, and Mark Neerincx. 2019. Six chal- 802
lenges for human-ai co-learning. In Adaptive Instruc- 803
tional Systems: First International Conference, AIS 804
2019, Held as Part of the 21st HCI International Con- 805
ference, HCII 2019, Orlando, FL, USA, July 26–31, 806
2019, Proceedings 21, pages 572–589. Springer. 807

Yongjie Wang, Chuang Wang, Ruobing Li, and Hui Lin. 808
2022. On the use of bert for automated essay scoring: 809
Joint learning of multi-scale essay representation. In 810
Proceedings of the 2022 Conference of the North 811
American Chapter of the Association for Computa- 812
tional Linguistics: Human Language Technologies, 813
pages 3416–3425, Seattle, United States. Association 814
for Computational Linguistics. 815

Peter C Wason and J St BT Evans. 1974. Dual processes 816
in reasoning? Cognition, 3(2):141–154. 817

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 818
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 819
et al. 2022. Chain-of-thought prompting elicits rea- 820
soning in large language models. Advances in Neural 821
Information Processing Systems, 35:24824–24837. 822

Kevin P. Yancey, Geoffrey Laflair, Anthony Verardi, and 823
Jill Burstein. 2023. Rating short L2 essays on the 824
CEFR scale with GPT-4. In Proceedings of the 18th 825
Workshop on Innovative Use of NLP for Building 826
Educational Applications (BEA 2023), pages 576– 827
584, Toronto, Canada. Association for Computational 828
Linguistics. 829

Ruosong Yang, Jiannong Cao, Zhiyuan Wen, Youzheng 830
Wu, and Xiaodong He. 2020. Enhancing automated 831
essay scoring performance via fine-tuning pre-trained 832
language models with combination of regression and 833

10

https://doi.org/10.18653/v1/2023.bea-1.32
https://doi.org/10.18653/v1/2023.bea-1.32
https://doi.org/10.18653/v1/2023.bea-1.32
https://doi.org/10.18653/v1/2022.naacl-main.249
https://doi.org/10.18653/v1/2022.naacl-main.249
https://doi.org/10.18653/v1/2022.naacl-main.249
https://doi.org/10.18653/v1/2023.bea-1.49
https://doi.org/10.18653/v1/2023.bea-1.49
https://doi.org/10.18653/v1/2023.bea-1.49


ranking. In Findings of the Association for Computa-834
tional Linguistics: EMNLP 2020, pages 1560–1569.835

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,836
Nathan Scales, Xuezhi Wang, Dale Schuurmans,837
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.838
Chi. 2023. Least-to-most prompting enables com-839
plex reasoning in large language models. In The840
Eleventh International Conference on Learning Rep-841
resentations.842

A Datasets 843

The details of the ASAP dataset are presented in Ta- 844

ble 6. As previously mentioned, this dataset is com- 845

posed of 8 subsets, each with unique prompts and 846

scoring rubrics. Our Chinese Student English Es- 847

say (CSEE) dataset consists of 13,372 essays, along 848

with their corresponding scores carefully rated by 849

experienced English teachers based on the scoring 850

standards in the Chinese National College Entrance 851

Examination (Table 8). The basic statistics of this 852

dataset are outlined in Table 5. 853

Table 5: Descriptive statistics of our private dataset.

Chinese Student English Essay Dataset

# of schools 29
# of essay prompts 2
# of student essays 13,372
avg. essay length 124.74
avg. Overall score 10.72
avg. Content score 4.13
avg. Language score 4.05
avg. Structure score 2.55

B Details of BERT Classifier Baseline 854

We employed the bert-base-uncased BERT model 855

from the huggingface transformers library5 using 856

PyTorch. A simple fully connected layer was added 857

to perform the classification task. The datasets 858

were divided into training and testing sets at an 859

8:2 ratio. To ensure better reproducibility, we set 860

all random seeds, including those for dataset split- 861

ting and model training, to the value 42. During 862

training, we used cross-entropy loss as our loss 863

function. We allowed BERT parameters to be fine- 864

tuned, without freezing them, in line with the objec- 865

tive function. AdamW was chosen as the optimizer, 866

with a learning rate set to 10−5 and epsilon at 10−6. 867

With a batch size of 16 and a maximum of 10 train- 868

ing epochs, we also integrated an early stopping 869

strategy to mitigate potential overfitting. All the 870

experiments of the BERT baseline were run with 2 871

RTX A4000 16G GPUs in around one week. 872

C Details of LLM-based Methods 873

C.1 LLM Prompts 874

The prompts used for LLMs in our study fall into 875

two distinct categories: firstly, the zero-shot and 876

few-shot configurations of GPT-4; secondly, the 877

5https://huggingface.co/docs/transformers/
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Table 6: Descriptive statistics of the ASAP dataset.

Essay Set Essay Type Grade Level # of Essays Avg. Length Score Range

1 Persuasive/Narrative/Expository 8 1783 350 [2, 12]
2 Persuasive/Narrative/Expository 10 1800 350 [1, 6]
3 Source Dependent Responses 10 1726 150 [0, 3]
4 Source Dependent Responses 10 1772 150 [0, 3]
5 Source Dependent Responses 8 1805 150 [0, 4]
6 Source Dependent Responses 10 1800 150 [0, 4]
7 Persuasive/Narrative/Expository 7 1569 300 [0, 12]
8 Persuasive/Narrative/Expository 10 723 650 [0, 36]

instructions for fine-tuning and inference of GPT-878

3.5 and LLaMA3-8B. The prompts for the few-shot879

scenario incorporate those used in the zero-shot880

setting and overlap with the fine-tuning prompts.881

Therefore, for clarity and conciseness, we present882

examples of the GPT-4, few-shot, with rubrics and883

the inputs of fine-tuned LLaMA3-8B in Table 9.884

C.2 Few-Shot GPT-4885

In the few-shot setting of GPT-4 with k essay ex-886

amples, as indicated by prior studies in AES tasks887

(Yancey et al., 2023), increasing the value of k888

did not consistently yield better results, showing a889

trend of diminishing marginal returns. Therefore,890

we choose a suitable k = 3 in the study.891

We explored two sampling approaches. The first892

involved randomly selecting essays from various893

levels of quality to help LLM understand the ap-894

proximate level of the target essay. The second895

method adopted a retrieval-based approach, which896

has been proven to be effective in enhancing LLM897

performance (Khandelwal et al., 2020; Shi et al.,898

2023; Ram et al., 2023). Leveraging OpenAI’s899

text-embedding-ada-002 model, we calculated the900

embedding for each essay. This allowed us to iden-901

tify the top k similar essays based on cosine sim-902

ilarity (excluding the target essay). Our experi-903

ments demonstrated that this retrieval strategy con-904

sistently yielded superior results. Therefore, we905

focused on the latter approach in this study.906

C.3 Fine-tuning LLaMA3907

We fine-tuned the llama-3-8b-bnb-4bit model using908

the unsloth framework6. For this process, we em-909

ployed a Parameter-Efficient Fine-Tuning (PEFT)910

approach with a rank of 16 and a LoRA alpha value911

of 16. We utilized an 8-bit AdamW optimizer, start-912

ing with an initial learning rate of 2× 10−4. After913

50 warm-up steps, the learning rate was scheduled914

to decay linearly, with the weight decay parameter915

6https://github.com/unslothai/unsloth

set at 0.01. We maintained all random seeds at 3407 916

and completed the fine-tuning over 2 epochs. All 917

experiments involving the fine-tuned LLaMA3-8B 918

were conducted using a single RTX 4090 24GB 919

GPU, spanning approximately three weeks. 920

D Human-AI Co-Grading Details 921

In our LLM-assisted human grading experiment, 922

the 10 college students were all from a Normal 923

University in Beijing, and had a male-to-female 924

ratio of 4:6, with ages ranging from 19 to 23 years 925

(from freshmen to seniors). Their English capabili- 926

ties were certified by China’s College English Test 927

(CET). None of the novices have the experience 928

of grading student essays currently. The 5 expert 929

evaluators comprised experienced English teachers 930

from Beijing high schools, with teaching tenures 931

ranging from 8 to 20 years. Before evaluation, 932

all participants received training on the standard 933

scoring rubrics. They were also incentivized with 934

appropriate remuneration for their participation. 935

The instructions for the evaluators include the 936

standard scoring rubrics of the College Entrance 937

Examination in China and several grading exam- 938

ples. The writing exercise and the essays desig- 939

nated for assessment will be presented to the evalu- 940

ators. Moreover, supplementary feedback (scores, 941

output confidences, and explanations) will be pro- 942

vided for the experimental groups. To enhance the 943

evaluators’ comprehension and avoid possible mis- 944

understandings, all the information provided has 945

been translated into Chinese. 946

The results of Overall, Content, Language, and 947

Structure scores in the human-AI co-grading exper- 948

iment are presented in Figure 5. We observed that 949

the Content and Language scores exhibit a similar 950

trend as the Overall score discussed in the Results 951

section. The expert evaluators noted that the Struc- 952

ture dimension is the most ambiguous and difficult 953

part of the grading task which has the lowest QWK 954

values among the three dimensions. 955
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Table 7: Generalization comparison of QWK scores for the Fine-tuned GPT-3.5 and the BERT Classifier under the
ASAP dataset.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Trained on Set 1 BERT Classifier - 0.3299 0.1680 0.1380 0.3045 0.1234 0.3002 0.1541
Fine-tuned GPT-3.5 - 0.5216 0.5405 0.4891 0.5076 0.6344 0.6306 0.3126

Trained on Set 2 BERT Classifier 0.2776 - 0.1975 0.2392 0.1750 0.1453 0.2474 0.3783
Fine-tuned GPT-3.5 0.4270 - 0.4131 0.4619 0.5958 0.5579 0.5438 0.6684

Trained on Set 3 BERT Classifier 0.3468 0.4444 - 0.6230 0.6319 0.5299 0.4368 0.2427
Fine-tuned GPT-3.5 0.3991 0.2488 - 0.7674 0.7714 0.7150 0.4964 0.1134

Trained on Set 4 BERT Classifier 0.3257 0.5332 0.6267 - 0.5483 0.4959 0.4659 0.3204
Fine-tuned GPT-3.5 0.0631 0.3493 0.4908 - 0.6515 0.7420 0.0865 0.3419

Trained on Set 5 BERT Classifier 0.4051 0.3341 0.4264 0.4202 - 0.5243 0.3255 0.2035
Fine-tuned GPT-3.5 0.4354 0.4301 0.5765 0.6877 - 0.7368 0.1061 0.3118

Trained on Set 6 BERT Classifier 0.3164 0.3462 0.4000 0.3067 0.4882 - 0.2303 0.3047
Fine-tuned GPT-3.5 0.1342 0.3607 0.4579 0.3157 0.3734 - 0.0061 0.0859

Trained on Set 7 BERT Classifier 0.0975 0.0086 0.1854 0.0328 0.0554 0.1244 - 0.2917
Fine-tuned GPT-3.5 0.5862 0.3993 0.4865 0.4425 0.4494 0.4417 - 0.2157

Trained on Set 8 BERT Classifier 0.0560 0.1102 0.0110 0.0164 0.0371 0.0454 0.1777 -
Fine-tuned GPT-3.5 0.2714 0.4822 0.4768 0.6009 0.4199 0.3231 0.5460 -

Figure 5: LLM-assisted grading experiment results for the novice, expert, and GPT-4 evaluators. From the top left to
the bottom right is the result of the Overall score, Content score, Language score, and Structure score, respectively.
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Table 8: Rubrics for evaluating high school student essays in our private dataset.

Rubrics

Overall Score (20 points) = Content Score (8 points) + Language Score (8 points) + Structure Score (4 points)
Content Dimension (8 points in total)

• 6-8 points:

– Content is complete with appropriate details
– Expression is closely related to the topic

• 3-5 points:

– Content is mostly complete
– Expression is fundamentally related to the topic

• 0-2 points:

– Content is incomplete
– Expression is barely related or completely unrelated to the topic

Language Dimension (8 points in total)

• 6-8 points:

– Language is accurate with diverse sentence structures and little or no errors (2 errors or fewer, 8 points;
3-4 errors, 7 points; 5-6 errors, 6 points)

– Language expression is mostly appropriate

• 3-5 points:

– Language is not quite accurate, with some variation in sentence structures and several errors, but they
don’t impede understanding (7-8 errors, 5 points; 9-10 errors, 4 points; 11-12 errors, 3 points)

– Language expression is somewhat inappropriate

• 0-2 points:

– Language is hopelessly inaccurate with numerous language errors, hindering understanding (more than
12 errors)

– Language expression is completely inappropriate

Structure Dimension (4 points in total)

• 3-4 points:

– Clearly and logically structured
– Smooth and coherent transitions

• 1-2 points:

– Mostly clearly and logically structured
– Relatively smooth and coherent transitions

• 0-1 points:

– Not clearly and logically structured
– Fragmented and disconnected structures and sentences
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Table 9: The example prompt (the GPT-4, few-shot, with rubrics approach and the fine-tuned LLaMA3-8B) and the
corresponding model output.

Example Prompt Example Output

As a virtual evaluator with expertise in English composition, your role is to
critically analyze and grade student essays according to a predetermined set
of rubrics. You are to act as an impartial judge and evaluate the essays based
on the quality of the writing and adherence to the essay prompt.

Here are the specific guidelines for each score:
{Rubrics}
Sample Essay Prompt:
{Essay Prompt}
The graded example essays:
{Examples}
Student’s Essay to Evaluate:
{Target Student Essay}

Task Breakdown:
1. Carefully read the provided essay prompt, scoring guidelines, and the
student’s essay.
2. In the Explanations part, identify specific elements in the essay referring
to the rubrics. In the language dimension, list all the spelling and grammar
errors, and count the number of them to determine the Language Score. The
Explanations for each dimension should be as detailed as possible.
3. Determine the appropriate scores according to the analysis above.

Please present your evaluation in the following manner:
Explanations: ..., Content Score: ...
Explanations: ..., Language Score: ...
Explanations: ..., Structure Score: ...
Explanations: ..., Total Score: ...
Your final evaluation:
[Total Score: ..., Content Score: ..., Language Score: ..., Structure Score: ...]

Explanations: The student’s essay responds ac-
curately to Jim’s request for suggestions on how
to learn Chinese, providing thoughtful advice
and support. Detailed suggestions include lis-
tening to Chinese radio, reading Chinese litera-
ture, and using mobile applications. The tone is
hopeful and supportive.
Content Score: 8

Explanations: There are no language errors;
the grammar and spelling are all accurate. The
student used formal, respectful language suit-
able for this kind of communication and also
included diversity in sentence structures.
Language Score: 8

Explanations: The essay is well-structured and
organized. It follows the accepted structure of
a reply email, with an opening greeting, a body
containing the main content, and a closing re-
mark. Transitions are also smooth and coherent,
logically linking one thought to another.
Structure Score: 4

Total Score: This is the sum of the content,
language, and structure scores. Total Score: 20

Your final evaluation:
[Total Score: 20, Content Score: 8, Language
Score: 8, Structure Score: 4]

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

### Instruction:
You are an experienced English teacher analyzing high school students’ es-
says according to a specific rubric. Evaluate the following essay based on
three dimensions: Content, Language, and Structure, and provide the overall
assessment.
Please provide your evaluation in the following JSON format:
{Output Format}

### Input:
Scoring rubrics:
{Rubrics}
Essay Prompt:
{Essay Prompt}
Student’s Essay to Evaluate:
{Target Student Essay}

### Response:
{}

{
’content’:

{’completeness’: ’The essay covers the basic
requirements of the prompt by introducing de-
sign ideas for the graduation ceremony and ex-
plaining the reasons behind these designs. How-
ever, the explanations are quite brief and lack
depth.’,

’topic_relevance’: ’The essay is related to the
given topic, as it discusses ideas for a graduation
ceremony design.’,

’content_details’: ’The details provided are
minimal and lack depth. For example, the stu-
dent mentions launching a ball in the dining
hall and writing gratitude letters but does not
elaborate on how these activities contribute to
the overall design or the reasons behind these
choices in detail.’,

’score_level’: ’Level 2’,
’score_point’: 4.5},

’language’: {...},
’structure’: {...},
’overall’: {...}
}
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