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Abstract

Magnetic Resonance Imaging (MRI) plays a pivotal role in medical imaging, particularly
in the diagnosis and treatment of cancers via radiography. However, one of the limitations
of MRI is its low spatial resolution, which can hinder the accurate detection and charac-
terization of cancerous lesions, especially those that are small or subtle in nature. There
is a growing need for advancements in MRI technology to improve the resolution of MRI,
particularly in the field of oncology, where precise detection and segmentation of tumors
are crucial for effective treatment planning and optimal patient outcomes. In this paper,
we proposed a self-supervised deep learning technique to upscale cancer MRI images to
cell-level resolution with pathology Whole Slide Imaging (WSI). By integrating informa-
tion from pathology WSIs with MRI images, this approach aims to create hybrid images
that offer a more detailed and comprehensive view of cancer tissue structures. We evalu-
ated our techniques using prostate lesions both on the similarity metrics and downstream
segmentation tasks. For the similarity, our reconstructed fusion images can achieve an
average 0.933 in structural similarity index. We improved lesion segmentation dice score
from 57.3% to 64.0% on the test cases. Such fusion of the two imaging modalities shows
promise for improving the accuracy and reliability of cancer diagnosis, guiding treatment
decisions, and ultimately improving patient outcomes.
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1 Introduction and Background

Radiological imaging constitutes a cornerstone in the study of cancer, spanning critical
stages from foundational research to diagnostic elucidation, therapeutic strategizing, and
ongoing surveillance. Modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET) furnish intricate depictions of in-
ternal anatomical structures, affording clinicians invaluable insights into tumor localization,
metastatic dissemination, and anomalous tissue proliferation.

The interpretation of radiographic imagery presents challenges, particularly in distin-
guishing between malignant and benign tissue, which can be subjective even for experienced
experts. Manual demarcation of cancerous lesions on radiological scans, though essential,
often introduces inaccuracies that may underestimate tumor dimensions or miss less con-
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spicuous lesions due to low image resolution. In contrast, pathology whole slide images
(WSI) offer gigapixel-level resolution, providing pathologists unprecedented insight into cel-
lular morphology, tissue architecture, and aberrant features with exceptional precision. By
aligning histopathology images with corresponding radiological slices, clinicians can overlay
cancerous regions identified from histopathological analyses onto radiological scans. This
approach enables precise tumor segmentation, including lesions not easily visible on MRI
scans, thereby enhancing cancer evaluation.

However, fusing images from different modalities presents technical hurdles due to inher-
ent disparities in resolution, particularly when integrating images of large resolution gaps
such as pathology and radiology images. Currently, image registration techniques are pri-
marily developed for medical images with similar resolutions, such as PET, CT, and MRI
scans Hering et al. (2022); Wang et al. (2020); Sokooti et al. (2017). These methods typically
fall into two categories: traditional approaches, which often suffer from low computational
efficiency, and machine learning-based methods. The machine learning-based methods are
limited in their applicability as they tend to work only on specific datasets and struggle to
extend to larger resolution gaps, such as between MRI and pathology WSI. Furthermore,
these machine learning approaches face challenges due to the lack of paired and well-labeled
data available for training purposes.

To address the limitations of existing machine learning-based registration methods and
enhance the generation of fusion images with improved diagnostic capabilities, we present a
novel self-supervised learning framework specifically designed for the registration of radio-
logical and pathological images. This is achieved through the utilization of a self-supervised
transformer-based feature extraction network and a feature-matching network. Our ap-
proach is able to enhance the resolution of MRI images to the cell level using pathology
data, with the registration process serving as a crucial tool in achieving this goal. By lever-
aging advanced self-supervised learning, our framework overcomes the constraints of current
registration methods which need multiple paired and well-labeled data. Our contributions
be summarized as follows:

1. We developed a novel image fusing network for upscaling prostate MRI images to cell-
level resolution, leveraging registration as a key tool. The framework enables the creation
of fused images that seamlessly integrate high-resolution pathology data with MRI scans.
We have achieved 39 times resolution enhancement between the original MRI and the new
fusion image. Using the fused images for downstream tasks such as cancer segmentation, it
can offer enhanced details and accuracy crucial for improving diagnostic capabilities.

2. We evaluated our framework using prostate cancer datasets, comparing it with the
original paper that presented those datasets Shao et al. (2021). Our framework demon-
strated an enhancement in accuracy from 56.3% to 64.6% for prostate cancer. We also
evaluated the similarity of our new fused image and up-scaled MRI image by Structural
Similarity Index (SSIM). We achieved an average SSIM of 0.939 and a minimum of 0.933,
suggesting that our new fused images have high similarity to the MRI images.

3. We tackled the issue of insufficient labeled or paired pathology and radiology images
using self-supervised learning, which enables model learning using unlabeled datasets. The
efficiency of the pre-trained self-supervised learning can be seen in the Appendix C.
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2 Proposed Framework

For medical images, which are multimodal in nature, fusion and registration of images of
different modality have been well studied topics. Our method advanced the state-of-the-
art by using self-supervised learning, which alleviates the dependency on labeled data by
leveraging the inherent structure and redundancy within the data itself. The self-supervised
learning framework is inspired by DINO Caron et al. (2021) and Prosregnet Shao et al.
(2021). In contrast to DINO/Prosregnet that are mainly used for image classification, ours
is an image fusion network for images that have high-resolution gaps, such as the tissue-level
MRI and the cellular-level pathology images, as illustrated in Fig. 1. The key component
of the network includes 1) Two self-supervised feature extractors, each devoted to MRI and
whole-slide pathology images respectively. 2) A correlation mapping block responsible for
generating correlation maps of features extracted by the previous feature extractors. 3)
A feature-matching sub-network designed to align and map distinctive features extracted
from both image types. 4) Post-processing techniques for fusing pathology and MRI patches
based on the correlation maps obtained in the previous step.

Figure 1: Overall Core Architecture Design of Cell Level Precision Registration

2.1 Data and Pre-processing

In this study, MRI and pathology data were obtained from TCIA Clark et al. (2013) and
TCGA for Cancer Genomics. TCIA provided two datasets of paired MRI/pathology data,
extensively described in the original work Shao et al. (2021). The first dataset, PROSTATE-
MRI P (2016), consists of 26 cases, with each case containing multiple pathology slides.
In total, we have 82 paired MRI and Pathology WSI from this dataset. The second
dataset Madabhushi (2016), referred to as fused MRI-Prostate, comprises 28 cases, each
containing 3 Tesla T1-weighted, T2-weighted, Diffusion weighted, and Dynamic Contrast-
Enhanced prostate MRI scans, accompanied by corresponding digitized histopathology
(H&E stained) images of radical prostatectomy specimens. For training purposes, we uti-
lized all images from the first dataset and 26 cases from the second dataset. The remaining
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two cases, along with 6 slides annotated with lesions, were reserved as the test dataset. The
first dataset was not used for the test cases due to the absence of lesion annotations neces-
sary for evaluating downstream segmentation tasks. Given the limited size of the datasets,
comprising only 82 paired data points, we relied on machine learning-based methods. To
mitigate the data limitations, we extended the training data by incorporating additional
unlabeled MRI and pathology images from TCIA Archive and TCGA for Cancer Genomics,
respectively. Each pre-training dataset consisted of 500 cases, enabling us to pre-train a
feature extractor in a self-supervised manner.

In the initial stage, we trained the feature extractor using unlabeled MRI and pathology
image data. We subdivided the acquired WSI from TCGA and MRI scans from TCIA
into smaller patches measuring 256 * 256 pixels. For the subsequent step, we trained our
feature matching subnet utilizing two paired MRI/pathology datasets. We standardized
the dimensions of these datasets to match those of our pre-trained feature extraction data.
Because the data of the two datasets are paired, corresponding MRI slides and pathology
images were aligned, as depicted in the PathologyImage and RadiologyImage sections of
Fig. 1. Furthermore, when performing downstream tasks on both pathology slices and MRI
scans, such as lesion annotation, we applied the same methodology. This ensured alignment
and correspondence between the annotations, as illustrated in the RadiologyImage section
of Fig. 1.

2.2 Self-supervised Feature Extractor Based on DINO

The first component of our framework comprises a self-supervised feature extractor inspired
by DINO Caron et al. (2021). DINO is a self-supervised learning method for visual rep-
resentation learning. It achieves cutting-edge performance by aligning representations of
the same image across different layers of the neural network through self-distillation. In
this paper, the initial phase involves pre-training a pathology and MRI feature extractors
by leveraging the DINO framework. Given the disparity in resolution and format between
MRI and pathology images, we undertake separate pre-training processes for each modality.
Consequently, we develop distinct feature extractors tailored to MRI and pathology images,
as illustrated by the two feature extractors depicted in Fig. 1.

To optimize performance, we leverage pre-trained weights obtained from the TCIA
dataset for both the student and teacher networks, as outlined in Caron et al. (2021).
Given the larger size of pathology images compared to natural images, we decompose each
image into smaller patches, each measuring 256 × 256 pixels. These patch images are fed
into both the student and teacher networks, which share identical network structures. The
networks employed standard vision transformer blocks, depicted in the feature extractor
block at the bottom of Fig. 1, featuring components such as Layer Normalization, multi-
headed self-attention, residual connections, and a multi-layer perceptron. We adopted the
ViT-small as the backbone for our feature extractor, maintaining the parameter settings as
per Caron et al. (2021). During the pre-training phase, the teacher network is frozen with
weight updates solely in the student network. A distillation loss across the teacher-student
predictions is imposed to train the self-supervised framework (see Fig. 1). The parameters
in the teacher network is updated using Exponential Moving Average (EMA).
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2.3 Feature Matching Sub-Network Based on CNN

Our feature-matching network, inspired by the methodology outlined in the work of Shao
et al. Shao et al. (2021), consists of two main components: correlation mapping and feature
matching. Initially, we obtained features for both MRI and pathology images from two
separate feature extractors. Each feature map, denoted as f, represents an image with
dimensions (w, h, d), where d represents the number of features, w represents the width,
and h represents the height. Subsequently, the feature maps fA and fB were downsampled
into a smaller dimension representation to reduce computational costs. These downscaled
feature maps were then input into a correlation layer, which computes the dot product of
input features to quantify the similarity between the two images. This correlation layer
combines fA and fB to generate a correlation map Cab of the same size. The computation
of the correlation map is expressed as:

Cab

(
i, j, k

)
= fB

(
i, j

)T ∗ fA
(
ik, jk

)
(1)

The equation k = h(jk−1)+ ik is used to calculate the index variable k based on the in-
dices ik and jk, with h representing the width of the feature map. The resulting correlation
map Cab indicates the similarity of features from fb at position (i, j) with all features from
fa. To address potential ambiguous matches, normalization is applied to obtain the corre-
spondence map fab. This map then undergoes processing by a feature-matching network,
which is a regression network responsible for estimating the parameters of the geometric
transformation associated with the input MRI and pathology images. Following the archi-
tecture described in paper Shao et al. (2021), the regression network comprises two layers.
Each layer begins with a convolutional unit, followed by batch normalization and ReLU
activation. A final fully-connected (FC) layer performs the regression of parameters for
the geometric transform, outputting the affine matrix θ. The matrix θ serves as the affine
transformation for the registration process.

2.4 Loss Function for Feature Matching

The loss function was determined as the sum of squared differences (SSD) between the
original input MRI and the deformed pathology image. The formula of the loss function
was shown as:

loss =

H∑
i

W∑
i

∥IA(i, J)− IB(i, J) • ϕΘ(i, j)∥2 (2)

where ϕΘ(i, j) is the related transformation vector from the output of feature matching
sub-network, H is the height of the image and W is the weight of the image.

2.5 Fusing Pathology and MRI

After completing the image registration process, the pathology images, MRI scans, and
annotated lesions were aligned with the corresponding MRI slices using the estimated com-
posite affine transformation θ. It is important to note that pathology images typically have
larger dimensions than sliced MRI images, which are usually 512× 512. Consequently, the
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deformed pathology images maintain their original size as high-resolution images, as the
affine transformation is only applied to the original image. Once the affine transformation
matrix θ is determined based on the input image, it remains fixed. During inference for
high-resolution pathology images in gigapixel scale, we first resize them to the same smaller
size as the MRI slides. These resized images are then fed into our network to obtain the
transformation matrix θ. Finally, we apply θ to the original resolution pathology image to
obtain the registered high-resolution pathology image.

3 Evaluation

In this section, we demonstrate the effectiveness of our proposed registration framework
on two prostate cancer datasets Madabhushi A (2018). Our evaluation consists of three
parts. In the first part, we evaluate the fusion image from the resolution comparison, and
Structural Similarity (SSIM). In the second part, we will display some qualitative results
for our fusion image. In the last part, we will have a quantitative evaluation of downstream
lesion segmentation tasks.

3.1 Comparison of the Fused Images and The Original MRI Images

We evaluated the difference between the fusion image and the original MRI both for reso-
lution enhancement, and SSIM on the prostate cancer dataset Madabhushi A (2018).

3.1.1 Resolution Enhancement

The resolution enhancement from the original MRI to the fused images for each test case
is from 320*320 MRI to a resolution of 2000*2000, which is 39x times higher resolution.

3.1.2 Structural Similarity Index (SSIM)

We also evaluated the structural similarity of the fusion image and MRI image by Structural
Similarity Index (SSIM). SSIM is a metric used to measure the similarity between two
images. The calculation of SSIM is located at Appendix B. The SSIM value ranges from
-1 to 1, where a value of 1 indicates perfect similarity between the two images. The result
of SSIM in all six cases is shown in Fig. 2. As the value shows, the lowest SSIM score we
have for aaa0069 is still 0.933 which is close to the max SSIM value which is 1. The average
SSIM is 0.939. That suggested that our fusion image has high similarity with the up-scaled
MRI in both luminance, contrast, and structure.

3.2 Quantitative and Qualitative Result on Downstream Segmentation Task

3.2.1 Quantitative results

We assessed the quantitative results for lesion segmentation using two metrics: the Eu-
clidean distance and the Dice score, applied to MRI and registered pathology images across
six test cases. A higher Dice score indicates increased similarity, while a lower Euclidean
distance(ED) signifies reduced separation. In this evaluation, lesions manually annotated
on both MRI and pathology images served as landmarks for assessing the segmentation
quality. These lesion annotations were solely used for evaluation purposes and were not
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Figure 2: SSIM score of all six test cases

incorporated into the training process. To ensure consistency, the same transformation was
applied to the original lesions on the pathology images. The Euclidean distance measured
the distance between landmarks on MRI and registered pathology images, while the Dice
score indicated the overlap of lesions between the two images. The initial findings, summa-
rized in Table 1, revealed an average Dice score of 64.0%± 4.1% across the six cases, with
an average Euclidean distance of 2.074,mm ± 0.776,mm. Compared to the original work
by Shao et al. Shao et al. (2021), our method demonstrated improvements, increasing the
average Dice score from 57.3% to 64.0% and reducing the average distance from 5.42 mm
to 2.074 mm. Since the original paper did not report the Dice score and Euclidean distance
(ED) for each case, our comparison in this paper focuses on the mean Dice score and mean
ED across all cases.

Case ID
Euclidean Distance (mm)↓ Dice ↑
Original Our Original Our

aaa0060 C1C2C3C4 N/A 1.663 N/A 0.653
aaa0060 D1D2D3D4 N/A 1.872 N/A 0.632
aaa0060 E1E2E3E4 N/A 1.763 N/A 0.665
aaa0069 CSlides N/A 1.532 N/A 0.681
aaa0069 DSlides N/A 2.851 N/A 0.600
aaa0069 ESlides N/A 2.767 N/A 0.609

Mean 5.42 2.074 0.573 0.640

Table 1: Quantitative result of registering pathology images with MRI image on all the
six test cases. The Euclidean Distance and the Dice score metrics are calculated
between the ground truth of lesions on MRI and fused pathology images.

3.2.2 Qualitative results

We present the visualization of our registered results in Fig. 3. The figure showcases the
following components: the upscaled MRI in section (a), the pathology image with the related
mask in section (b), the fusion image in section (c), and the lesion labels in section (d).
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Each row corresponds to a visualized patient, with cases aa0069 Cslides, aa0069 Dslides,
and aa0069 Eslides displayed from top to bottom, respectively. The lesion labels were
annotated by an expert pathologist reported on the original dataset. We applied the same
transformation to the labels and registered them with the fusion image, as illustrated in
sub-figures (d) and (e).

Figure 3: Visualization of Qualitative Result. (a) is the visualization of three MRI sample
slides that aligned with the axial view and resized to (2000,2000). (b) is the visu-
alization of pathology images. All sides were combined by four WSIs. (c) is fused
pathology-MRI image. (d) is the visualization of registered lesions segmentation.
(e) is the visualization of registered lesions with fusion images.

4 Conclusion, Limitation and Future Work

In this paper, we proposed a registration framework for aligning radiological and patholog-
ical images. Through our experimental analysis, we have demonstrated the capability of
self-supervised learning approach to bridge the resolution gap between these two modali-
ties, facilitating accurate registration without the need for labeled training data. The fusion
of high-resolution pathology data with low-resolution radiological scans have shown great
promise in enhancing the diagnostic potential of medical imaging, particularly in tasks such
as cancer segmentation. However, it is important to acknowledge the limitations of our
work. Our experiments were conducted on limited datasets, and the fused high-resolution
image was not directly generated but created through the registration process. These limita-
tions highlight areas for future research and improvement. Moving forward, further research
and validation studies will be essential to validate the clinical utility and robustness of our
framework across diverse datasets and clinical scenarios.
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Appendix A. Mutual Information(MI)

We also evaluated the similarity of fusion image and MRI image by Mutual Information
(MI). MI is a measure of the mutual dependence between two random variables. It quan-
tifies the amount of information obtained about one random variable through the other
random variable. In the context of image processing, MI can be utilized to assess the sim-
ilarity between two images by comparing the statistical dependencies between their pixel
intensities. The mutual information between two discrete random variables X and Y is
defined as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

where:I(X;Y ) is the mutual information between X and Y . p(x, y) is the joint proba-
bility mass function of X and Y . p(x) and p(y) are the marginal probability mass functions
of X and Y , respectively.

Higher MI values indicate a greater similarity between the images, while lower MI values
suggest dissimilarity. The result of MI information is show in the table 2. As shown in the
table, our MI score is close to the upper bounder of MI score which is 4 on average. We
also display the normalized MI score as a reference. The score suggested our fusion image
has high similarity to the upscaled MRI.

Case ID
Mutual Information ↑

MI MI Upper boundary MI(Normal)

aaa0060 C1C2C3C4 4.112 15.6 6.80e-7
aaa0060 D1D2D3D4 4.142 15.6 6.82e-7
aaa0060 E1E2E3E4 4.033 15.6 6.71e-7
aaa0069 CSlides 4.161 15.6 6.93e-7
aaa0069 DSlides 4.011 15.6 6.69e-7
aaa0069 ESlides 4.032 15.6 6.70e-7

Table 2: MI information and score of all six test cases.

Appendix B. SSIM

SSIM takes into account three aspects of image quality: luminance, contrast, and structure.
The formula for SSIM is given by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where: µx is mean of x, µy is mean of y, σx is standard deviation of x, σy is standard
deviation of y, σxy is covariance of x and y, c 1 is constant to stabilize the division with
weak denominator, c 2 is constant to stabilize the division with weak denominator.
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Appendix C. Ablation Study

In our methodology, we utilized the DINO self-supervised learning (DINO-SSL) framework
for pre-training on diverse datasets. To measure the effectiveness of our pre-training strategy
using self-supervised learning, we employed the downstream lesion segmentation task as
our evaluation metric. The results are summarized in Table 3. All experiments utilized the
same architecture, leveraging the vit small backbone within the DINO framework with an
output dimension of 348. The first row of the table corresponds to our framework without
pre-training, trained with feature matching network on two training datasets. Here, we
observed a Dice score as low as 55%. However, when employing pre-trained model weights
from ImageNet, as provided by the official DINO paper, for both MRI and pathology
feature extractors, we observed a notable improvement, with the Dice score increasing to
61%. Furthermore, adopting separate pre-training on TCIA and TCGA datasets for MRI
and pathology images can led to further enhancement, with the Dice score reaching 64%.
This highlights the significance of pre-training on distinct datasets as a crucial factor in
enhancing the performance of existing methodologies. Through our ablation study, we
identified key factors contributing to the overall efficacy of our proposed framework.

Arch SSL Method Dataset Epochs Dim Dice Score

ViT-S/16 Dino scratch N/A 348 0.55
ViT-S/16 Dino ImageNet 100 348 0.61
ViT-S/16 Dino TCIA/TCGA 100 348 0.64

Table 3: Dice Scores of Various Training Configurations using Pre-Trained Feature Extrac-
tors on Different Datasets for Downstream Prostate Cancer Segmentation
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