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Abstract—Underactuation can enable low-cost, light-weight
robotics. However, their design is challenging. While classical
engineering intuition often leads to reasonable hardware and
control choices that ensure basic functionality, the resulting
performance is usually low. In contrast, purely data-driven co-
evolution of hardware and software conventionally needs high
computational effort to deliver meaningful results. We propose to
leverage the advantages of both approaches by using classical in-
tuitive controllers as proxies. As an example, we consider “Fizzy,”
an underactuated robotic ball that leverages a unique single-
motor configuration in combination with dynamic imbalance for
movement. In a first optimization, an intuitive Virtual Model
Control (VMC) proxy serves to quickly evaluate various design
parameters like motor mass and axle positioning for a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). The optimized
configurations then serve as a foundation for training more
sophisticated deep reinforcement learning (DRL) controllers. Our
methodology underscores the potential of integrating intuitive
proxies with evolutionary algorithms to enhance the performance
and efficiency of underactuated robotic systems, paving the way
for more adaptable and cost-effective robotic designs.

I. INTRODUCTION

Underactuated robots -i.e. those with fewer actuators than
degrees of freedom- are common in applications where
lightweight design or cost are critical [1]. Fizzy is an example
of such a lightweight, low-cost design: A robotic ball that
rolls around using only one motor [2]. Its conceptual design
is shown in Fig. 1. The ball’s shell contains an off-centered
axle around which a motorized block rotates. That way, the
combined mass distribution of the ball changes dynamically.
This construction detail ensures that the ball can move in the
horizontal plane by using two effects: Displacement of the
center of mass and inertial effects due to dynamic imbalance.
That way, theoretically any point in the plane can be reached,
similar to the solution by [3] for a unicycle. However, this
economy in the design comes with higher control complexity.

Classical control methods for these systems are based on
energy methods [4, 5, 6], on feedback linearization [7], or on
Virtual Model Control (VMC) [8]. However, these methods
are sensitive to parameters and noise and have limited regions
of attraction.

Recent results for quadruped and biped robots based on
Deep Reinforcement Learning (DRL) show that it is possible
to learn robust strategies in a model-free way [9, 10]. We
follow this direction and design two DRL controllers for Fizzy
in a simulated MuJoCo [11] environment, and we compare
them with a baseline VMC controller.
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Fig. 1: Design of the Fizzy robot ball.

Since the performance of the robot strongly depends on its
mechanical design parameters -i.e. the mass and inertia of the
rotating motor block or the location of the block’s axle- it
is useful to co-optimize the mechanical design of the robot
together with its controller [12, 13].

Such an approach has e.g. been previously proposed for
legged robots in Chadwick et al. [14], where optimization
methods are applied to the design of a robot’s legs. Specif-
ically, a metric based on motion trajectories together with
forces and torques at the joints is optimized using Genetic
Algorithms (GA) to find the best geometry for the robot legs.
Another method based on GA is used for legged robots in
Fadini et al. [15], where a two-stage optimization scheme
allows for adjustment of the duration of the movement, the
actuators, and the size of the robot. Other methods based
on Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [16] have been proposed by Hwangbo [17] for legged
robots, and Maywald et al. [18] for an Acrobot, in order to
increase the stability region of the controller and its closed-
loop performance by tuning the parameters. Dinev et al.
[19] instead optimize the morphology, payload distribution,
and actuator parameters of a quadruped robot with a bilevel
optimization approach, extracting the derivatives from the
motion planner and using them for nonlinear optimization.

Nonetheless, co-optimizing a controller together with the



configuration of a robot body remains a challenging and
computationally expensive problem, for two reasons. First,
optimizing the body parameters of a robot over some metric
typically requires the use of derivative-free optimization meth-
ods, like CMA-ES or GA, which are considerably less sample-
efficient than gradient-based methods. Second, the evaluation
of a controller based on DRL requires repeatedly training the
controller from scratch for each robot configuration, which
can take a long time (e.g., training a PPO agent on a simple
Mujoco task can take around 5-30 minutes on a fast computer).

As an alternative approach, we suggest a three-stage pro-
cess. We initially propose an intuitive design and create the
controllers for this one. Then, rather than jointly optimizing the
DRL controller and the robot configuration, we use a simpler
-and faster- proxy controller in the body optimization stage,
specifically VMC. Such a proxy is embodiment-independent
and does not require adaptation to each possible configuration.
We thus use VMC evaluate each robot configuration proposed
by CMA-ES, optimizing for the average time it takes the
robot to reach a set of randomized target locations. Only after
optimizing the robot body, the DRL controllers are trained,
using the final optimized configuration.

II. METHODS

Our method has three parts. First, we manually design a
basic controller using Virtual Model Control (VMC). Second,
we train reinforcement learning controllers tailored for specific
tasks. Third, we use evolutionary optimization to enhance the
robot’s configuration for optimal control performance. VMC
serves as a proxy during optimization to save runtime. After-
wards, reinforcement learning is applied to the optimized robot
to improve the performance versus the baseline controller.

A. Modeling of Fizzy the Underactuated Robot Ball

Fig. 1 schematically shows the internal mechanism of Fizzy.
An eccentric axle is attached to the shell and a motor block
rotates around this axle. The motor block contains the battery,
motor and electronics, as well as an inertial measurement unit
(gyroscope, accelerometer, magnetometer).

The model consists of three objects of uniform density: The
shell, the block, and the axle. Parameters are the ball’s radius
R, the axle eccentricity b, and distances a and r that describe
the location of the center of mass P of the block. The shell is
simplified as a sphere of mass ms, the block as a point mass
of mass mb, the axle as a slender rod of mass ma.

B. Baseline Controller: Virtual Model Control

The baseline Virtual Model Control (VMC) controller is
designed in an intuitive way: It emulates a virtual spring
that “pulls” the motor block towards a target G, effectively
displacing the ball’s overall center of mass and forcing the
shell to follow. To mitigate singular configurations, where
the motor axis is aligned with the target, a singularity index
is calculated and used to modify the controller: The spring
becomes stronger closer to the singularity and thereby helps
the system “snap out” of that configuration.

Specifically, we define the singularity index δ as:

δ =

∣∣∣∣ b̂T1 rG/P

λ+ ∥rG/P ∥

∣∣∣∣ (1)

where rG/P denotes the vector from point P to G, the unit
vector b̂1 points in the direction of the motor axle, and the
normalization factor 0 < λ << 1 prevents division by zero.

The VMC’s virtual spring that “pulls” the motor block
towards the goal is emulated by the motor torque τ :

τ = sat

(
K

1− δ
b̂T1
(
rP/D × rG/P

))
. (2)

The gain K is the nominal stiffness of the spring, and sat(·)
is the saturation function (here, sat(x) = clip(x,−1, 1)).

C. Deep Reinforcement Learning

We formulate the control of the Fizzy robot via reinforce-
ment learning by framing it as a Markov Decision Process
defined by the tuple (S,A, p, T , r, ρ′, γ) [20], with a finite
time horizon T that delimits different trials. Each trial starts
by sampling a state from a distribution over initial states
s0 ∼ ρ0(s) and proceeds at discrete steps running at 10Hz in
a simulated Mujoco environment. At each step t = 1, . . . , T
the agent picks an action at ∈ A according to its policy
π : S → A, which maps states st ∈ S to actions. The state of
the MDP changes with each action according to the transition
function p : S × A → S , leading to new states st+1 together
with scalar rewards that are sampled from the reward function
r : S × A → R. The objective of reinforcement learning is
to find a policy that maximizes the accumulated rewards over
episodes, discounted with factor γ:

π⋆(s) = argmax
π

Eπ

[
T∑

t=1

γtrt|at ∼ π(st), s0 ∼ ρ0(s)

]
(3)

In this study, we use two reinforcement learning algorithms:
Proximal Policy Optimization (PPO) [21], and Soft Actor
Critic (SAC) [22]. We use standard implementations available
in stable-baselines3 [23]. PPO, an on-policy method utilizing
policy gradients, improves the stability of vanilla policy gra-
dient by indirectly applying trust-region constraints indirectly
to prevent policies to change too much at each training step.
PPO optimizes the policy function directly using gradient
descent while using a concurrently learned value function for
variance reduction. Soft Actor Critic is an off-policy method
that balances exploration and exploitation by optimizing a
trade-off between reward collection and policy entropy.

D. Goal-Reaching Environment

1) Task: We define a goal-reaching task in the following
way: In each episode, the robot starts at the origin with
a randomized configuration. That is, the orientation of the
ball and motor are sampled uniformly at random, the initial
velocities in the x and y directions follow a Normal distribution
with a standard deviation of 0.5m/s, and the angular velocities



of both the ball and the motor are sampled from a Normal
distribution with a standard deviation of 1 rad/s.

A target location is sampled uniformly from a disc with a
radius ranging from 0.5m to 3m, centered at the origin. The
robot’s goal is to reach this target location as fast as possible
by controlling the torque of its single motor.

A trial is considered successful if the robot reaches the target
location (within a margin of 20 cm) within 20 seconds.

2) Observation Space: The reinforcement learning agents
receive a state representation composed of sensor readings
(acceleration and angular velocities) from the IMU mounted
on the motor block, together with the absolute rotation of the
IMU as a quaternion. Additionally, the agent receives a goal
vector indicating the relative Cartesian position of the target
with respect to the center of the ball, expressed in the global
coordinate frame.

3) Reward Function: To motivate the agent to reach the
target location swiftly, we design a reward function as follows:

r(st, at, st+1) = 10 (d(st)− d(st+1)))− 0.5 (4)

where d(st) denotes the distance between the robot and the
target at time t. Additionally, an extra reward of 200 is
provided when the agent arrives at the target (d(st) < 0.2m).

E. Evolutionary Optimization with Proxy Controller

Our goal is to automatically optimize the configuration of
the underactuated Fizzy robot to enhance its maneuverability
and performance. To achieve this, we aim to adjust six key
parameters, subsumed in vector θ ∈ Rn, that influence the
robot’s dynamics. These parameters include the masses of the
sphere ms, axle ma, and motor block mb, as well as three
distances: the lateral eccentricity of the motor block (a in Fig.
1d), the distance r between the motor block’s center of mass
P and the motor axle, and the offset displacement of the axle
from the sphere’s center (b in Fig. 1d).

We determine the effectiveness of different configurations
by measuring the average time (Ti) needed for the VMC
controller to reach a random target location across ntrials = 20
trials. The VMC controller is thus used as a proxy to assess
the quality of a configuration under the assumption that a
configuration on which VMC performs well is also going to
be easier to control for a DRL agent. Our objective is to find
the parameters that minimize this average time

θ⋆ = argmin
θ∈Θ

1

ntrials

ntrials∑
i=1

Ti. (5)

Solving the problem above is difficult since it is not possible
to analytically differentiate the objective with respect to the
model parameters. We can however reframe the problem
as derivative-free optimization, and then solve it using the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[16]. CMA-ES is an evolutionary algorithm that works by
maintaining a multivariate normal distribution in Rn, from
which candidate solutions (parameter vectors θ) can be sam-
pled. The distribution is optimized via maximum likelihood
to increase the probability of sampling higher-value solutions.

This involves alternating between improvement to the mean
of the distribution and the covariance matrix.

The effectiveness of using a proxy controller becomes
evident from expected computational effort for CMA-ES. For
instance, with a population size of 200 and 50 CMA-ES itera-
tions, we would need to evaluate N = 200·50 = 10, 000 robot
configurations. If training a DRL agent for each evaluation
took 20 minutes, the total training time would exceed 3300
hours (139 days). In contrast, evaluating the proxy controller
takes less than 2 seconds per configuration, totaling around 5
hours, an approximate 600-fold increase in efficiency.

For complete details on the CMA-ES hyperparameters and
the bounds Θ of the 6 parameters, please see Appendix A.

F. Experimental Evaluation Setup

We evaluate the three controllers PPO, SAC, and VMC in
a simulated Mujoco environment on a goal-reaching task.

The controllers undergo training on the same task in two
phases: initially using the original Fizzy robot design, and
then with a design optimized by CMA-ES. Detailed training
procedures are described in Appendix A.

Controller performance is evaluated based on two main
metrics: Success rate and median time to target. The success
rate measures the proportion of trials in which the robot gets
within 0.2m of the target location within the allotted time.
The median time to target reflects the typical episode duration
-either the time taken to reach the target successfully, or 20
seconds if the target is not reached.

III. RESULTS

A. Performance of the Controllers

Results for the controllers trained on both the initial and
the optimized robot designs are shown in Table I. The metrics
shown are median values over 500 randomized trials. Square
brackets denote the range of 90% of the values. A visualization
of the success rate of the different controllers with respect to
eight fixed targets is attached as Suppl. Fig. 5.

Our findings show that learning-based controllers (PPO
and SAC) outperform the VMC controller in both metrics,
achieving a higher success rate and lower times to reach the
target locations, with SAC overall performing better than PPO.
The result was consistent across the two robot embodiments.

We also find that the trajectories produced by PPO and SAC
tend to approach the target directly, with fewer deviations
and spread than the VMC controller. Fig. 2 illustrates this

base model CMA-ES optimized model

success rate time to target / s success rate time to target / s
ppo 92% 9.6 [2.45, 20] 100% 2.6 [1.1, 4.65]
sac 93% 7.3 [1.35, 20] 100% 2.3 [1, 4.1]
vmc 46% 20 [1.3, 20] 99.4% 3.2 [1.1, 7.5]

TABLE I: Performance of the three controllers PPO, SAC
(reinforcement learning), and VMC (manually designed) on
goal-reaching tasks for the Fizzy robot ball.



C
M

A
-E

S
 o

p
ti

m
iz

e
d
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 b

a
se

 m
o
d
e
l

PPO                                                                         SAC                                                                        VMC

x (m)

y
 (

m
)

x (m)

y
 (

m
)

x (m)

y
 (

m
)

x (m)

y
 (

m
)

x (m)

y
 (

m
)

x (m)

y
 (

m
)

Fig. 2: Trajectories of the Fizzy robot controlled with the PPO, SAC, and VMC controllers. The task involves guiding the
robot to 4 goal locations, marked with different colors. For each goal, we collect 20 trajectories by resetting the robot to the
origin and randomizing its initial state. The top row shows trajectories from controllers based on the initial robot body, while
the bottom row shows those based on the robot body optimized through CMA-ES. Small circles indicate the robot’s position
if it successfully reaches a goal, whereas crosses mark its last position if time ran out.

difference, depicting trajectories to four designated targets,
each tested 20 times under randomized initial conditions.

B. Evolutionary Optimization of the Robot Body

Optimization with CMA-ES approached convergence within
the first 20 iterations of optimization, with performance im-
proving monotonically (see Suppl. Fig. 3). Both original and
optimized parameters are provided in Table II.

We then train new PPO and SAC agents on the optimal robot
found by CMA-ES, and evaluate the new controllers together
with VMC. The results (Table I) show that all controllers
achieve considerably better performance on the optimized
robot than in the original one, with times to target ∼ 3-6
times lower, and with a success rate close to 100%.

IV. DISCUSSION AND CONCLUSION

We found that Deep Reinforcement Learning considerably
improved the control performance of the Fizzy robot compared
to the intuitively designed Virtual Model Control.

Using VMC as a proxy controller while optimizing the
configuration of the robot, rather than optimizing directly for
the performance of DRL controllers, proved crucial. This ap-
proach drastically cut computational costs and time, showing

ms / g ma / g mb / g a / cm r / cm b / cm

original 150 27 150 1.36 3.16 2.48
optimized 56.9 149.1 276.5 0.13 4.87 0.15

TABLE II: Original and optimized parameters: ms shell mass,
ma axle mass, mb motor block mass, a and b as shown in
Fig. 1d, and r distance between the CoM of the motor and
the axle.

the effectiveness of simplified models in the early stages of
optimization. The fact that PPO and SAC still outperformed
VMC, despite the robot body being optimized explicitly for
VMC, highlights the robustness and flexibility of RL.

This simulation was a proof of concept, and future work will
e.g. include more realistic modeling of the mechanical system
and its sensor processing. Nonetheless, it shows the potential
of machine learning techniques for controlling underactuated
systems, highlighting the intricate interplay between mechan-
ical design and control strategies.

The benefits of integrating evolutionary algorithms with
Deep Reinforcement Learning may also transfer to other
robots, especially underactuated ones.
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APPENDIX

A. Supplementary Methods

1) CMA-ES Optimization: We use the CMA-ES implemen-
tation provided in the cmaes Python package with parameters
σ = 0.1 and population size n = 200, and perform 50 itera-
tions of optimization. We enforce constraints on the individual
parameters ms (mass of the shell), ma (mass of the axle), mb

(mass of the motor block), a (lateral displacement of the motor
block), r (distance between the center of mass of the motor
block and its axis of rotation), and b (offset displacement of
the axis of rotation from the center of the sphere). The upper
and lower bounds for each parameter are shown in Table III.

To improve on the physical realism of the configurations, we
further enforce a penalty for configurations where the center
of mass of the motor block can reach closer than 3 cm from
the shell, to prevent the motor block from hitting the shell. The
penalty is enforced by giving a constant penalty of 20 s to the
configuration, corresponding to the worst possible score.

2) DRL Training and Hyperparameters: DRL agents were
trained with the following hyperparameters. Both SAC and
PPO used distinct actor and critic networks with the same
architecture. First, features are learned through MLP embed-
dings for the state vector (two hidden layers of size 256 and
128) and the task information (relative distance of the target
with respect to the agent; two hidden layers of size 32 and
32). The embeddings are then concatenated and input into two
separate MLPs -one for the policy and one for the value (PPO)
or Q function (SAC)- each with 128 units. Hyperbolic tangent
was used as an activation function for all hidden layers.

The training was performed over 5M timesteps using 16
parallel environments. Observations and rewards are normal-
ized using running statistics. The hyperparameters used to train
the SAC agents are: γ = 0.995, and 2 gradient updates are
performed for each environment timestep. The learning rate
was set to η = 0.0003, the size of the experience replay buffer
was 1000000, updates were calculated with a batch size of
256, and the target network tracked the main network via soft
updates with τ = 0.005. The hyperparameters of PPO-clip
are: γ = 0.995, batch size 256, rollouts of 256 steps, and
clip ϵ = 0.2. The training was performed over 3 epochs for
each environment timestep, using minibatches of size 256 and
learning rate η = 0.0003. Generalized Advantage Estimation
was used with λ = 0.95.

B. Supplementary Results

Fig. 3 reports the training curve of CMA-ES, showing a
monotonic decrease in the mean time to target the configura-
tions samples from the population during training.

Performance of the DRL agents is shown in Fig. 4.
Fig. 5 is produced in a manner similar to Fig. 2, but with

8 target locations, a larger number of trials per goal, and
without drawing the individual trajectories, to remove clutter.
The figure shows the success rate and the precision of the three
controllers in the two embodiments. We also note that, while
all controllers achieve a 100% success rate on the optimized

Fig. 3: The mean time to reach the target is plotted for
each optimization iteration, averaged over candidate solutions
sampled from the CMA-ES distribution at each iteration. The
shaded area denotes the standard deviation.

ms / g ma / g mb / g a / cm r / cm b / cm

lower 50 10 50 0 1 0
upper 500 200 300 4 5 5

TABLE III: Bounds Θ used as constraints for CMA-ES
optimization.

robot, SAC manages to reach the target in a more straight way,
as evidenced by the final positions of the robot being closer
to the origin.
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Fig. 4: Training curves for the two reinforcement learning agents (PPO and SAC) trained in both the original (blue) and
CMA-ES optimized (orange) robot embodiments.
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Fig. 5: Final position of the Fizzy robot ball controlled with the three controllers PPO, SAC, and VMC, on tasks where the
robot is required to reach 8 goal locations. For each target location (indicated by a different color), we collect 50 trajectories by
resetting the robot to the origin and randomizing its initial velocity, angular velocities, and pose. The top row shows trials from
controllers trained and evaluated on the initial robot body, while the bottom row shows the controllers trained and evaluated
on the robot body optimized through CMA-ES. Small circles are used to denote the final position of the robot if it manages
to reach its designated goal, while crosses denote the last position of the robot when the 20 seconds timeout is reached.
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