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Abstract
Question Answering (QA) with large language001
models has shown impressive performance, yet002
hallucinations still persist, particularly when003
user queries carry incorrect premises, insuf-004
ficient context, or linguistic ambiguity. To005
address this issue, we propose Lightweight006
Query Checkpoint (LQC), a small classifi-007
cation model that detects verification-required008
queries before the LLM generates a potentially009
faulty answer. LQC leverages hidden states ex-010
tracted from intermediate layers of a smaller-011
scale, non-instruct-tuned LLM to effectively012
distinguish queries requiring verification from013
clear queries. We first systematically define cat-014
egories of queries that need verification, con-015
struct a dataset comprising both defective and016
clear queries, and train a binary contrastive017
learning model. Through extensive experiments018
on various QA datasets, we demonstrate that019
incorporating LQC into QA pipelines reduces020
hallucinations while preserving strong answer021
quality.022

1 Introduction023

Recently, as the performance of large language024

models has steadily improved, user experience in025

QA systems has also been greatly enhanced (Jin026

et al., 2024; Ren et al., 2024; Fu et al., 2020).027

Through simple interfaces such as web browsers028

or chatbots, users can easily input queries and re-029

ceive immediate answers, providing a more intu-030

itive user experience. However, in real-world us-031

age, questions containing incorrect premises, in-032

sufficient context, or linguistic ambiguities are of-033

ten entered (Tanjim et al., 2025; Kim et al., 2024;034

Vadlapati, 2023), which still poses a high risk of035

the model producing incorrect answers—so-called036

“hallucinations.”037

For instance, as shown in Figure 1, a question038

asking about the legal age to buy alcohol, such039

as “At what age is it legal to buy alcohol?”, with-040

out providing any national or regional context041

At what age is it legal to buy alcohol?

You can legally purchase alcohol at 18, 
and remember to bring valid ID, like an 
official ID card or driver’s license, 
since you may need to show it.

The user is 19 years old and lives in California, 
where alcohol can be purchased starting at age 21.

Verification needed for your query: 
your location details are insufficient, 
and the legal age for purchasing alcohol 
may vary by country or region.

LQC

Figure 1: LQC before-and-after QA situation

whatsoever, can lead the LLM to assume a spe- 042

cific country arbitrarily or present a universal figure 043

without sufficient basis, thereby conveying inaccu- 044

rate information (Thakur et al., 2024). In particu- 045

lar, because users may not realize their question is 046

ambiguous, they tend to trust any inaccurate infor- 047

mation provided by the model. If such situations 048

recur, misinformation can spread indiscriminately, 049

and this risk becomes especially serious in sensi- 050

tive domains such as medicine or law (Alber et al., 051

2025; Stevenson and Guo, 2010). 052

In order to address this issue, this paper proposes 053

a lightweight model called Lightweight Query 054

Checkpoint (LQC), which utilizes internal repre- 055

sentations within the LLM to preemptively iden- 056

tify questions “in need of verification”. By detect- 057

ing queries with potential flaws before generating 058

answers and explicitly guiding users about those 059

flaws, LQC reduces hallucinated answers that may 060

arise from ambiguous questions, while still ensur- 061

ing fast responses for normal questions. 062

To achieve this, LQC utilizes a binary classifi- 063

cation model that takes as input the hidden states 064

extracted from an intermediate layer of a trans- 065

former(Vaswani et al., 2023) based LLM. In other 066

words, it pairs a “normal (Clear) query” with a 067

“Defective query (one that requires verification)” 068

1



and performs contrastive learning, thereby aiming069

to achieve high classification performance even070

in resource-constrained environments. Here, a071

“Defective query” is defined as one that contains072

a flaw making it impossible to provide a single,073

definitive answer—specifically, it might include074

incorrect premises that render the query unanswer-075

able, lack concrete details such as time or location,076

or be open to multiple interpretations due to gram-077

matical or linguistic ambiguity.078

In this study, we constructed a publicly available079

dataset of such queries organized by category and080

conducted various experiments to verify that using081

LQC can reduce hallucinatory answers in real QA082

pipelines. Furthermore, we compared how both the083

model size (from which hidden states are extracted)084

and whether the model had undergone instruct tun-085

ing affect classification performance. Through this086

comparison, we demonstrated that even smaller-087

scale, non-instruct models can yield clearer signals088

for defect detection.089

• We propose LQC, which determines the pres-090

ence of query flaws through internal repre-091

sentations of LLM inputs, and confirm that092

applying LQC to actual QA environments en-093

ables the construction of a more reliable QA094

pipeline.095

• We systematically define various types of er-096

rors inherent in user queries and build a public097

QA dataset based on these types, making it098

available for research purposes.099

• We show that hidden states extracted from100

intermediate layers of smaller-scale or Non-101

Instruct LLMs provide even clearer signals for102

error detection, confirming their applicability103

in resource-limited environments.104

2 Related Work105

Internal Representations of LLM Recently, there106

has been active research on interpreting the internal107

representations of large language models (LLMs)108

and leveraging them (Zhang et al., 2024a; Lin et al.,109

2024b; Muttenthaler et al., 2020). Transformer-110

based models such as BERT (Devlin et al., 2019)111

have demonstrated excellent performance (Oren112

et al., 2024; Chen et al., 2024), leading to the devel-113

opment of probing techniques (He et al., 2024; Li114

et al., 2025; Chen and Gao, 2022) and visualization115

analyses (Katz and Belinkov, 2023) for examining116

their hidden layers. A representative example is the117

study by (Jawahar et al., 2019), which analyzed 118

BERT’s layer-wise representations. They observed 119

a hierarchical structure in which lower layers cap- 120

ture superficial lexical and phrase-level informa- 121

tion, intermediate layers capture syntactic features, 122

and upper layers capture increasingly deeper se- 123

mantic features (Tenney et al., 2019). There is also 124

growing interest in whether these internal represen- 125

tations of LLMs can detect anomalies in queries 126

(Slobodkin et al., 2023). In (Ji et al., 2024), it was 127

reported that solely by looking at the hidden states 128

of an LLM, one can determine whether a ques- 129

tion contains content unseen during training and 130

whether the model is uncertain about the answer. 131

Another line of research found that although LLMs 132

tend to produce hallucinatory answers when facing 133

unanswerable questions, the hidden representation 134

of merely the first output token already contains 135

information about whether the question can be an- 136

swered (Slobodkin et al., 2023). 137

Verification Needed Queries Detecting erro- 138

neous questions or questions without correct an- 139

swers in the process of utilizing LLMs is a key 140

task for mitigating hallucinatory responses (Cole 141

et al., 2023). For example, in the domain of reading 142

comprehension QA, some methods attach an addi- 143

tional classification head to a Transformer model 144

(such as BERT). This classification head is then 145

trained to predict whether a question is unanswer- 146

able (Schmidt et al., 2020; Guan et al., 2022; Jiang 147

et al., 2022). Classifying user query intentions and 148

detecting out-of-domain queries are also impor- 149

tant issues for improving QA system efficiency. 150

Recently, contrastive learning approaches have gar- 151

nered attention for determining question types and 152

domain suitability (Wang and Mine, 2024; Yue 153

et al., 2021). In addition, there have been multi- 154

ple attempts to improve the detection of incorrect 155

answers by fine-tuning the LLM’s parameters them- 156

selves (Kim et al., 2024). While these methods are 157

effective at analyzing queries and identifying er- 158

rors, they often exhibit limitations, such as being 159

biased toward certain error types and thus lacking 160

generality. 161

3 Methodology 162

The primary goal of this study is to enable an open- 163

domain, LLM-based question-answering system to 164

recognize the “need for verification” when a user 165

query contains flaws, explaining this need to the 166

user, while still delivering high-quality answers for 167
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Query: who was the ruler in 1830?

LQC

Verification 
Needed

All Clear

Response Generation
Large Language Model

Response: Verification required for this 
query. Further context is needed to 
determine which country or region the 
user is asking about.

The following user query 
requires verification....
Query: {query}
Response: 

Respond to the following 
query in one sentence:
Query: {query}
Response: 
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(a) LQC Training Procedure (b) Workflow when LQC is Integrated into a QA Pipeline

Verification Needed: When...
All Clear: When...

Linguistic Ambiguity
Verification Needed: Who...
All Clear: Who...

Unanswerable
Verification Needed: Tell...
All Clear: Tell...

Contextual Incompleteness

Figure 2: (a) Showing how LQC is trained and (b) the structure illustrating how it operates when applied to an LLM.

queries that do not contain any flaws. To achieve168

this, we propose an LLM-based classifier called169

Lightweight Query Checkpoint (LQC), which170

determines in advance whether the user query re-171

quires verification before the LLM generates an172

answer. The overall pipeline of the LLM-based QA173

system incorporating LQC is shown in Figure 2.174

Specifically, Figure 2(a) illustrates the training pro-175

cess for LQC, and Figure 2(b) describes the stage176

in which different answer templates are generated177

according to LQC’s classification results (whether178

verification is required). In this chapter, we exam-179

ine each of these steps in detail.180

3.1 Classification with Contrastive Learning181

Training Dataset Collection In order to build a182

contrastive learning-based classifier, we first di-183

vided the “queries requiring verification” into three184

main types. Specifically, these types are: Contex-185

tual Incompleteness, which lacks the necessary in-186

formation; Linguistic Ambiguity, which involves187

linguistic ambiguity; and Unanswerable, which is188

difficult to answer because it contains incorrect as-189

sumptions or requests information that does not190

exist. We then collected data from publicly avail-191

able datasets in which each of these three types192

includes both defective and non-defective queries.193

Detailed information on dataset construction can194

be found in Appendix A.195

Hidden State Extraction To obtain a represen-196

tation of a user query x based on a pretrained LLM,197

we first structure the user query in a chat template198

format, convert it into a token sequence, and then199

feed it into the LLM. The input token sequence 200

passes through internal Transformer layers, gener- 201

ating a hidden state for each token. In this study, 202

we use the hidden states extracted from one of the 203

intermediate layers as the query embeddings. We 204

then apply a Hybrid Pooling strategy that combines 205

Mean Pooling and Last Token Pooling on the ex- 206

tracted hidden states: Mean Pooling reflects the 207

overall context, while the last token supplements 208

key information of the sentence. We implement a 209

weighted sum of the mean vector of all tokens in 210

the sequence (hmean) and the last token vector 211

(hlast) as follows: 212

hhybrid = αhlast + (1− α)hmean, (1) 213

α is a hyperparameter that adjusts the weight 214

between the two vectors. By using it to balance both 215

the overall query distribution and the key token 216

information, it can achieve higher classification 217

performance compared to simple pooling. 218

Binary Classifier Training Based on Con-
trastive Learning We feed the embedding hhybrid

obtained through Hybrid Pooling into an MLP
(Multi-Layer Perceptron)–based classifier. At this
point, we apply contrastive learning (Gao et al.,
2021) to enhance the model’s ability to distinguish
among queries. Specifically, we project pairs of
queries—those requiring verification versus normal
queries—into the latent space in such a way that
embeddings of the same class remain close to each
other, whereas embeddings of different classes are
spaced far apart. In the latent space, for a vector h,
let H+ be the set of embeddings belonging to the
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same class, and let H− be the set of embeddings
belonging to a different class. The model is trained
so that h stays close to H+ and far from H−. The
following equation represents the training objective
of this Contrastive Learning approach.

CL(h,H+,H−) =

− log

∑
h′∈H+ exp{sim(h, h′)/τ}∑

h′∈(H+∪H−) exp{sim(h, h′)/τ}

where sim refers to the cosine similarity and τ is219

the temperature value. Let Hc be the set of normal220

queries and Hv be the set of queries requiring veri-221

fication. We define the contrastive loss as follows:222

Lcont = CL(hc,Hc,Hv) + CL(hv,Hv,Hc) (3)223

Finally, the total loss of LQC is obtained by com-224

bining the cross-entropy loss Lce for classification225

as follows.226

L = Lce + Lcont (4)227

3.2 Response Generation228

Depending on the classification model’s prediction229

regarding whether the query requires verification,230

we provide one of two types of input to the LLM231

for answer generation. If the classification model232

predicts that a query needs verification, we supply233

an additional verification template (for example,234

“This query requires additional verification, please235

provide the reason why verification is necessary.”)236

together with the query. This encourages the LLM237

to first explain any errors or ambiguities to the238

user and then ask for additional information. Con-239

versely, if the model determines that the query is240

clear, we use a simple template similar to existing241

open-domain QA methods as the LLM input. Fig-242

ure 2 provides an overview of the entire system’s243

scenario, where QA proceeds in the order of verifi-244

cation classification → template branching → final245

answer generation.246

4 Experiments247

In this chapter, we evaluate the proposed LQC248

framework, which classifies queries and then gener-249

ates responses, using various datasets and baseline250

methods.251

4.1 Datasets252

We collected both clear queries and queries253

requiring verification from four different datasets.254

This setup is well-suited for evaluating how255

the proposed classification model performs 256

under diverse conditions. SituatedQA-Geo and 257

SituatedQA-Temp(Zhang and Choi, 2021) are 258

datasets where queries are highly dependent on a 259

specific location (Geo) or a specific time (Temp), 260

and models must leverage contextual understand- 261

ing to answer accurately. CLAMBER-Linguistic 262

Ambiguity(Zhang et al., 2024b) presents queries 263

with polysemy or syntactic ambiguity, and 264

CoCoNot-False-Presuppositions(Brahman 265

et al., 2024) includes queries containing false 266

premises that the model must identify and address 267

appropriately. 268

4.2 Baselines 269

To compare the performance of our proposed 270

model, we generate answers using two different 271

approaches. First, the INSTANT approach imme- 272

diately feeds the user query to the LLM without 273

any additional steps, to see if the LLM can inher- 274

ently recognize queries requiring verification with- 275

out the help of a classification model. The second 276

approach, REFLECT, uses a prompt that instructs 277

the model itself to determine whether the query 278

“needs verification.” This also relies entirely on 279

the model’s own reasoning capabilities, without a 280

classification model. 281

4.3 Evaluation Metrics 282

In this study, we categorize the model’s responses 283

into five categories, as shown in Figure 3. Based 284

on these categories, we compute the Accuracy, F1, 285

F1c, and F1v metrics (Kim et al., 2024) for evalua- 286

tion. 287

Figure 3: Metric

By comprehensively evaluating these five cate- 288

gories, we can ascertain whether the model appro- 289

priately identifies queries that require verification 290

(comparing A vs. B) and still provides accurate 291

answers for queries that are clear (comparing C 292

vs. D, E). We conducted an automated evaluation 293
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using a GPT-4o model to classify the generated294

responses into categories A through E.295

Accuracy & F1 Among all responses, Accu-296

racy measures the proportion of cases where the297

model correctly requests verification for queries298

that need it (A) and provides correct answers299

for clear queries (C). It is calculated as follows:300

Accuracy = A+C
A+B+C+D+E . F1 focuses on how301

well the model correctly verifies queries that re-302

quire verification (A), using the harmonic mean of303

Precision and Recall: Precision = A
A+B , Recall =304

A
A+C . This indicates how accurately the model iden-305

tifies situations in which verification is needed.306

F1c (Clear Prediction F1) evaluates the accuracy307

(C) for clear queries while minimizing unnecessary308

verification (E). It is the harmonic mean of Preci-309

sion and Recall defined as: Precision = C
B+C+D ,310

Recall = C
C+D+E .311

F1v (Verification Needed Detection F1) mea-312

sures how well the model requests verification (A)313

in queries that actually require it. It is calculated as314

the harmonic mean of Precision and Recall defined315

as: Precision = A
A+E , Recall = A

A+B .316

4.4 Implementation Details317

Hidden State Extraction & Classifier318

To extract the hidden states of queries in LQC,319

we conducted three experiments each on the320

LLAMA family and the QWEN(Yang et al., 2024)321

family of LLMs, then selected the model with the322

highest average performance within each family.323

As a result, the LLAMA-3.2-1B and QWEN2.5-0.5B324

models were chosen. For the Llama model, we ex-325

tracted the hidden state from the 12th layer and set326

α = 0.5 for hybrid pooling, whereas for the Qwen327

model, we extracted the hidden state from the 18th328

layer and set α = 0.25.329

Response Generation Models For the model330

generating answers based on LQC’s classification331

results, we used LLAMA-8B-Instruct, QWEN2.5-332

7B-Instruct, and QWEN2.5-14B-Instruct. Each333

model was tested using two random seeds, and we334

computed the average results. This setup allows us335

to comprehensively evaluate both classification ac-336

curacy and final answer quality, thereby confirming337

the model’s superior ability to handle ambiguity338

and provide accurate answers compared to the base-339

lines (, REFLECT).340

4.5 Main Results 341

Overall Performance (Accuracy, F1) Table 1 rep- 342

resents the main results. In each of the four datasets, 343

we measured the four metrics of Accuracy, F1, 344

F1c, and F1v . Out of the total of 16 experimental 345

items, LQCllama and LQCqwen achieved the high- 346

est scores on 14 metrics compared to the baselines 347

(INSTANT, REFLECT), showing superiority in 348

most cases other than F1c and F1v in the False Pre- 349

suppositions setting. This suggests that the strategy 350

of classifying whether verification is required in ad- 351

vance, then branching to a suitable template before 352

feeding the query into the answer-generating LLM, 353

is effective for reducing incorrect information and 354

minimizing unnecessary verification. 355

Performance in Identifying Verification- 356

Required Queries (F1v) Because the LQC models 357

are designed to prevent missing queries requiring 358

verification (suppressing the transition from cat- 359

egory A to B), they show a significant improve- 360

ment in F1v compared to INSTANT and REFLECT. 361

Instead of passing queries directly to the LLM, 362

queries classified as “requiring verification” are 363

handled using a verification-focused template. This 364

explicit approach to ambiguity or flaws helps pre- 365

vent missed verifications and is viewed as a major 366

structural advantage. 367

Performance in Handling Clear Queries (F1c) 368

As for clear queries, the improvement in F1c in- 369

dicates that the approach effectively avoids un- 370

necessary verification and yields correct answers 371

promptly (suppressing the transitions from cate- 372

gory C to D or E). When LQC classifies a query 373

as clear, it immediately generates an answer us- 374

ing a simple QA template, thereby reducing incor- 375

rect answers (D) and unnecessary verification (E), 376

which leads to better overall performance. More- 377

over, there was no significant increase in exces- 378

sive refusal to answer. Unlike INSTANT or RE- 379

FLECT—where the model itself must fully decide 380

about ambiguity—LQC pre-classifies a question as 381

“clear,” making it possible to respond without un- 382

necessary warnings or refusals. Consequently, the 383

system more consistently and efficiently handles 384

clear queries compared to INSTANT and REFLECT. 385

5 Analysis 386

In this section, we conduct an in-depth analysis 387

of LQC, a classifier that learns from the hidden 388

states of an LLM in order to determine whether a 389

user’s query requires verification. Unless otherwise 390
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SituatedQA-

Geo

SituatedQA-

Temp

CLAMBER-

Linguistic Ambiguity

CoCoNot-

False PresuppositionsMethods

Acc. F1 F1c F1v Acc. F1 F1c F1v Acc. F1 F1c F1v Acc. F1 F1c F1v

LLAMA-3.1-8B-Instruct

INSTANT 52.56 37.19 51.25 55.04 38.68 35.96 33.96 49.10 43.33 29.46 43.41 43.08 84.25 81.83 62.84 96.33

REFLECT 62.74 51.67 56.32 72.24 41.32 45.21 32.39 58.81 48.33 41.44 43.52 56.87 86.46 81.01 69.26 95.93

LQCllama 80.98 72.33 67.28 94.67 52.17 57.16 39.20 72.53 68.75 79.30 46.87 87.60 86.46 84.28 65.01 97.49

LQCqwen 79.65 73.07 66.05 92.68 53.03 60.77 38.29 74.61 63.75 78.39 40.73 84.26 83.70 84.35 59.92 96.02

QWEN2.5-7B-Instruct

INSTANT 56.91 36.06 57.76 55.31 44.87 25.31 47.36 38.94 47.92 26.40 51.85 39.74 88.67 78.79 76.05 95.88

REFLECT 56.08 34.79 57.38 53.60 43.36 23.99 46.03 36.90 50.83 27.24 55.63 41.21 90.33 79.72 78.32 96.99

LQCllama 73.28 55.18 68.72 79.34 56.69 40.20 54.91 60.06 68.07 55.71 61.54 76.85 91.71 79.37 81.71 97.22

LQCqwen 69.23 55.56 62.87 77.82 54.64 36.28 54.64 54.65 59.58 49.43 53.98 68.06 85.28 81.97 70.50 93.68

QWEN2.5-14B-Instruct

INSTANT 63.32 41.77 63.05 63.77 43.55 25.10 45.75 38.28 53.75 28.88 58.86 43.81 86.74 77.26 74.63 93.86

REFLECT 68.32 52.03 64.08 74.32 48.36 36.31 47.37 50.24 54.17 40.00 54.98 52.90 89.50 80.49 75.79 97.00

LQCllama 87.47 70.30 79.51 95.19 69.01 60.56 59.60 81.53 77.50 71.90 66.09 88.00 90.61 80.28 80.00 96.20

LQCqwen 85.77 71.42 78.60 92.25 68.49 62.32 58.32 81.40 70.83 68.98 59.59 81.63 90.33 81.13 80.20 95.43

Table 1: Main results. The shaded portion denotes the QA system incorporating the proposed LQC from this study.
Among the four experimental results for each answer generation model, the highest performance is emphasized in
bold.

specified, the settings are the same as in the main391

experiment.392

5.1 Ablation Studies393

Table 2 compares performance when the query hid-394

den states extracted from the LLM are fed into395

an MLP classifier, with and without the applica-396

tion of Contrastive Learning. According to the397

experimental results, the model that applies Con-398

trastive Learning consistently achieves higher accu-399

racy and F1 scores than the control group. This is400

because Verification Needed Query and All Clear401

Query may exhibit superficially similar word dis-402

tributions or sentence structures, but it is necessary403

to correctly understand actual meaning in order to404

classify them accurately. Through contrastive learn-405

ing, once the boundaries between classes become406

distinctly delineated in the embedding space, we407

confirmed in this experiment that the model can408

easily distinguish each class during the classifier409

stage.410

5.2 Effectiveness of Using intermediate411

Layers412

In this section, we explore which layer should be413

used when extracting the query feature vector in414

LQC to maximize the performance of the verifica-415

(a) LLAMA-3.2-1B (b) QWEN2.5-0.5B

Figure 4: Comparison of LQC performance by layer.
The red graph indicates the setting used in the main
experiment.

tion query classifier, LQC. According to the results 416

presented in Figure 4, the F1 score starts low in 417

the early layers, rises toward the intermediate lay- 418

ers, and then declines again in the final layer. The 419

LLAMA-3.2-1B model achieves its highest score 420

at the 12th layer, while the QWEN2.5-0.5B model 421

attains its peak at the 18th layer. This is because the 422

early layers primarily process the lexical and gram- 423

matical information of the input sentence, whereas 424

the intermediate layers more effectively capture 425

contextual and logical relationships. Therefore, the 426

features needed to detect errors such as premise 427

conflicts or linguistic ambiguity inherent in the 428

query appear to be most effectively extracted in 429

the intermediate layers. On the other hand, since 430
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ModelLQC
w/ CL w/o CL

Acc. F1 Acc. F1
LLAMA-3.2-1B 91.3 91.3 89.1 89.7
QWEN2.5-0.5B 88.7 89.1 85.5 87.2

Table 2: Comparison of LQC performance with or with-
out contrastive learning.

(a) LLAMA-3.2-1B (b) QWEN2.5-0.5B

Figure 5: Comparison of LQC performance by pooling
method(α). The red graph indicates the setting used in
the main experiment.

the final layer is specialized for language model-431

ing that focuses on generating natural responses, it432

can be interpreted that the features necessary for433

response generation overshadow those required for434

verification. This result is in line with previous re-435

search(Tenney et al., 2019) that classifies the stabil-436

ity of large language models (LLMs) by leveraging437

their internal representations.438

5.3 Effectiveness of Hybrid Pooling439

In this section, we compare various pooling meth-440

ods used to extract input sequences for LQC train-441

ing. We measure the performance of Mean pooling442

(α = 0.0), Last token pooling (α = 1.0), and the443

Hybrid pooling method proposed in this study. As444

shown in Figure 5, both models exhibit superior445

performance when Hybrid pooling is applied. This446

is because Hybrid pooling simultaneously captures447

the benefits of a global summary effect and the448

emphasis on key tokens, thus producing richer and449

more fine-grained embeddings.450

5.4 LLMs for Hidden State Extraction451

We analyze how the type of LLM used to extract452

hidden states affects LQC’s performance.453

Vanilla Model vs. Instruct Tuned Model As454

shown in Figure 6, using hidden states from a455

Vanilla model yields higher performance in cap-456

turing query defects (e.g., errors, ambiguities) than457

using an Instruct-tuned model. This can be inter-458

preted as part of the alignment tax (Lin et al., 2024a;459

Figure 6: Comparison of LQC performance according
to whether Instruction Tuning is applied.

(a) LLAMA-3.2-1B (b) LLAMA-3.2-1B-Instruct

Figure 7: The result of inputting a set of queries re-
quiring verification and normal queries into the LLM,
extracting the hidden states, and then performing PCA
dimensionality reduction.

Thakkar et al., 2024; Lou et al., 2024), where 460

greater “helpfulness” training diminishes a model’s 461

ability to extract defect-related information. Con- 462

sequently, for identifying query flaws, an untuned 463

model may be more suitable. 464

Furthermore, as shown in Figure 7, the embed- 465

ding space of the Vanilla model more distinctly sep- 466

arates Verification needed queries from All clear 467

queries, whereas the Instruct model’s embeddings 468

do not clearly distinguish between these two types 469

of queries. This indicates that the hidden states 470

from a Vanilla model can provide a clearer repre- 471

sentation for detecting query flaws. 472

Parameter size of LLM According to the re- 473

sults shown in Figure 8, increasing the number of 474

parameters in the LLM model used to extract the 475

query’s hidden states actually leads to lower clas- 476

sification performance. Although larger-parameter 477

models are expected to provide richer hidden states, 478

they can dilute the features needed to identify query 479

defects, causing the embeddings to become overly 480

dispersed. On the other hand, smaller models may 481

not fully capture complex knowledge or reason- 482

ing, but they more distinctly capture query de- 483

fects, often yielding higher binary classification 484
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Type Responses
Verification Needed Query Who served the longest term as president?

INSTANT Franklin D. Roosevelt served the longest term as President of the United States...

REFLECT Franklin D. Roosevelt served the longest term as President of the United States...

LQCllama Verification required for this query. The user’s question does not specify a country...

LQCqwen Verification required for this query. The user’s request does not specify a particular country...

All Clear Query Who became the king of england in 1830?

INSTANT In 1830, King William IV became the King of England.

REFLECT Victoria became the Queen of England in 1837, not 1830. Verification is necessary because...

LQCllama King William IV became the King of England in 1830...

LQCqwen King William IV became the King of England in 1830...

Table 3: An example comparing how INSTANT, REFLECT, LQCllama, and LQCqwen actually generate responses
for Verification Needed Query (results of QWEN2.5-14B-Instruct) and All Clear Query (results of QWEN2.5-7B-
Instruct). Because the LQC approach selectively identifies ambiguity in the query and undergoes a verification
process only when necessary, it visually demonstrates that it can suppress incorrect information generation while
still providing immediate responses to clear queries.

Figure 8: Comparison of LQC performance according
to model parameter size.

performance. They also offer lower resource con-485

sumption. In this study, we use LLAMA-3.2-1B486

and QWEN2.5-0.5B models for classification pur-487

poses(LQC), confirming that both can be run on a488

single 24GB RTX3090 GPU without difficulty.489

5.5 Qualitative Evaluation490

As shown in Table 3, the Verification Needed Query491

(“who served the longest term as president”) lacks492

essential details (such as a country or time), yet493

INSTANT and REFLECT both respond immedi-494

ately without any checks. In contrast, LQCllama495

and LQCqwen first detect this ambiguity and re-496

quest verification, thereby avoiding the generation497

of incorrect information.498

The All Clear Query (“Who became the king499

of england in 1830”) explicitly includes relevant500

information, enabling INSTANT to provide an im-501

mediate and accurate answer. REFLECT, however,502

performs an unnecessary verification step, while503

LQCllama and LQCqwen respond swiftly and pre- 504

cisely, underscoring their ability to deliver correct 505

answers for well-defined queries. 506

These findings align with the quantitative eval- 507

uation (Section 4.5), indicating that the LQC 508

framework—which selectively applies verification 509

only when needed—confers a clear advantage in 510

actual conversational contexts. 511

6 Conclusion 512

In this study, we propose a question-verification 513

model called LQC to prevent hallucination issues in 514

LLMs that can arise from users’ incorrect queries, 515

and we present a complete pipeline that integrates 516

LQC into a QA system. LQC extracts the hid- 517

den states from intermediate transformer layers 518

using a newly proposed “Hybrid Pooling” tech- 519

nique, then explicitly notifies users of queries that 520

require verification—demonstrating superior per- 521

formance compared to other baseline. Furthermore, 522

the model can be easily trained by extracting hid- 523

den states from a lightweight LLM and employ- 524

ing a simple MLP-based binary classification ap- 525

proach.Above all, our results show that it is possi- 526

ble to clearly identify and address defects in user 527

queries without modifying the LLM’s weights or in- 528

put prompts in any way. This lightweight approach 529

functions as an initial safeguard that complements 530

the input and output stages of LLMs, helping pre- 531

vent the generation of incorrect information in QA 532

systems and ultimately enhancing user satisfaction. 533
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Limitations534

The proposed approach focuses on reducing the fre-535

quency of hallucinations by filtering user questions536

before the LLM generates a hallucinated answer.537

However, it does not directly control or modify the538

potential for hallucination inherent in the LLM it-539

self. The question data used in this study consists of540

relatively simple questions. When applied to a real541

QA system, the difficulty of determining whether542

a question needs verification may vary depending543

on the domain, and there is a possibility of encoun-544

tering a wider variety of question types. In future545

research, it will be necessary to obtain a dataset546

that includes more complex and diverse types and547

domains of questions to verify the generalizability548

of the proposed methodology.549
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A Dataset Details778

In this section, we provide a detailed overview779

of the datasets used to train LQC. We outline780

the dataset categories and offer example sen-781

tences—namely, those requiring verification and782

those deemed clear. For more information, please783

refer to Table 4 and Table 5.784

B Baseline Details785

This section describes the implementation details786

of the baseline.787

INSTANT Using the template provided below, we788

perform inference directly without any additional789

instructions. In doing so, the generation tempera-790

ture is set to 0.5, and the generated results are used791

for evaluation.792

Respond to the following query in one sentence:
Query: {query}
Response:

793

REFLECT Using the template presented below,794

the model first determines whether verification is795

required for a given query and then provides an796

answer. In this process as well, the generation tem-797

perature is set to 0.5, and the generated results are798

used for evaluation.799

The following user query requires verification.
Analyze the query and explain in one sentence
why further verification is necessary.
Begin your response with "Verification required
for this query.
Query: {query}
Response:

800

C Prompt for Evaluation801

In this section, we present the prompt used to802

classify the answers generated by the answer-803

generation model into the five categories shown804

in Figure 3 for metric calculation.805

Verification needed query evaluation prompt
You need to classify the responses of an LLM
into two categories.
Query: {query}
Response: {response}
Review the query and response. Classify the
response into one of the two categories based on
the following guidelines:
If the response mentions that the query is unan-
swerable due to a wrong premise, contextual
incompleteness, linguistic ambiguity, known un-
knowns, or any other reason, output ’1’. Other-
wise, output ’2’. Only output the corresponding
number based on the guidelines.
Classification result:

806

All clear query evaluation prompt
You need to classify the responses of an LLM
into two categories.
Query: {query}
Response: {response}
Review the query and response. Classify the
response into one of the two categories based on
the following guidelines:
If the response mentions that the query is unan-
swerable due to a wrong premise, contextual
incompleteness, linguistic ambiguity, known un-
knowns, or any other reason, output ’1’. Other-
wise, output ’2’. Only output the corresponding
number based on the guidelines.
Classification result:

807

D Classifier Results 808

We compare the performance of LLAMA-3.2-1B 809

and QWEN2.5-0.5B, which are primarily used for 810

LQC implementation. For each model, we present 811

comparison tables for different α values, focusing 812

on the layers from which hidden states are extracted 813

and the pooling methods. The performance com- 814

parison of LLAMA-3.2-1B is given in Table 6, and 815

that of QWEN2.5-0.5B is presented in Table 7. 816
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Category
Examples

Verification Needed All Clear

Contextual Incompletenss when was the decimal currency system introduced when was the decimal currency system introduced in india

Linguistic Ambiguity What are some popular spirits at the bar?
Who is the artist that performed the song "Doomed"

in the context of the album "That’s the Spirit"?

Unanswerable What does the pancreas do in the urinary system? What does the urethra do in the urinary system?

Table 4: Details of datset

Category Definition Source
Size

Verification Needed All Clear

Contextual
Incompletenss

requests that lacks crucial situational
or background information needed to
provide a definitive answer.

SituatedQA Geo 3,234 3,423

Temp 2004 2297

Linguistic Amibuity CLAMBER 340 340requests that can be interpreted
in multiple ways due to imprecise
or unclear wording or sentence structure.

Unanswerable
Requests that either contain a false or
unverifiable premise, or refer to concepts
or knowledge that cannot be answered because
it is universally unknown.

CoCoNot
False Presuppositions 680 340

Universal Unknowns 313 0

Table 5: Definition, source and size of datasets.

Alpha

0 0.25 0.5 0.75 1

Layer

0 85.21 86.2 82.03 81.27 78.72 80.32 69.91 71.43 67.5 70.09

4 89.42 89.78 88.99 89.17 87.06 87.41 85.51 85.93 85.94 86.17

8 89.81 89.89 90.93 90.74 90.41 90.33 89.51 89.51 88.61 88.83

12 89.42 89.98 90.84 90.75 91.27 91.32 89.77 89.72 88.52 88.8

16 84.74 85.81 86.24 87.41 86.46 86.77 87.4 87.58 87.32 87.18

Table 6: Performance comparison table of LQC for LLAMA-3.2-1B with different α values and hidden-state
extraction layers
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Alpha

0 0.25 0.5 0.75 1

Layer

0 82.72 83.44 81.73 80.76 76.7 73.74 51.33 67.84 51.33 67.84

6 87.83 88.05 85.81 84.68 88.48 88.48 84.78 85.25 86.16 85.71

12 88.74 88.99 88.39 88 86.93 87.46 85.55 84.57 86.46 86.23

18 87.83 88.72 88.69 89.06 86.8 86.15 85.6 86.06 84.18 83.83

24 83.83 84.56 84.78 85.52 84.09 84.56 81.47 80.4 82.29 81.29

Table 7: Performance comparison table of LQC for QWEN2.5-0.5B with different α values and hidden-state
extraction layers

CategoryDefinitionSourceSizeVerificationNeededAllClearContextualIncompletenssrequeststhatlackscrucialsituationalorbackgroundinformationneededtoprovideadefinitiveanswer.SituatedQAGeo3,2343,423Temp20042297LinguisticAmibuityrequeststhatcanbeinterpretedinmultiplewaysduetoimpreciseorunclearwordingorsentencestructure.CLAMBER340340UnanswerableRequeststhateithercontainafalseorunverifiablepremise,orrefertoconceptsorknowledgethatcannotbeansweredbecauseitisuniversallyunknown.CoCoNotFalsePresuppositions680340UniversalUnknowns3130
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