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ABSTRACT

Existing efforts in building GUI agents heavily rely on the availability of robust
commercial Vision-Language Models (VLMs) such as GPT-4o and GeminiPro-
Vision. Practitioners are often reluctant to use open-source VLMs due to their
significant performance lag compared to their closed-source counterparts, partic-
ularly in GUI grounding and Out-Of-Distribution (OOD) scenarios. To facilitate
future research in this area, we developed OS-Atlas —a foundational GUI action
model that excels at GUI grounding and OOD agentic tasks through innovations
in both data and modeling. We have invested significant engineering effort in
developing an open-source toolkit for synthesizing GUI grounding data across
multiple platforms, including Windows, Linux, MacOS, Android, and the web.
Leveraging this toolkit, we are releasing the largest open-source cross-platform
GUI grounding corpus to date, which contains over 13 million GUI elements. This
dataset, combined with innovations in model training, provides a solid foundation
for OS-Atlas to understand GUI screenshots and generalize to unseen interfaces.
Through extensive evaluation across six benchmarks spanning three different plat-
forms (mobile, desktop, and web), OS-Atlas demonstrates significant performance
improvements over previous state-of-the-art models. Our evaluation also uncovers
valuable insights into continuously improving and scaling the agentic capabilities
of open-source VLMs.

1 INTRODUCTION

With the recent adoption of large language models (LLMs), the fantasy of building digital agents (Wu
et al., 2024)—similar to JARVIS in The Iron Man—to automate daily tasks is evolving from science
fiction into a tangible reality. Many current agents make decisions based on textual descriptions
of the environments, such as HTML and accessibility trees, which is often lengthy (Zheng et al.,
2024a), noisy (Cheng et al., 2024; WebAIM, 2024), and hard to acquire in practice. More recent
studies (Cheng et al., 2024; Hong et al., 2024b; Li et al., 2024) have explored the use of large vision-
language models (VLMs) to develop graphical user interfaces (GUI) agents capable of performing
complex tasks simply by analyzing the screen - an information-complete medium for agent’s decision-
making, allowing for greater flexibility. At the core of a GUI agent lies an action model that enables
GUI grounding - the process of transforming natural language instructions into executable actions
within the operating system (e.g., clicking somewhere on the screen).

Despite their advancements, existing open-source VLM-based GUI action models have been criti-
cized for their poor performance in GUI grounding and generalizing to Out-Of-Distribution (OOD)
scenarios (Lu et al., 2024b; Chai et al., 2024), significantly restricting their applicability in real-world
situations. The ineffectiveness of current models can be attributed to two primary factors.

First, most existing VLMs are rarely pretrained on GUI screenshot images. While some early efforts
have focused on gathering screenshots corpus for websites (Lee et al., 2022; Chen et al., 2024b)
and mobile applications (He et al., 2020; Wang et al., 2021), there remains a significant lack of
a large-scale, open-source corpus of screenshots that encompasses multiple platforms (Windows,
MacOS, Linux, iOS, Android), a variety of applications, and different resolution sizes. Given that all
GUIs operate under similar design principles, we believe that pre-training on such a comprehensive
corpus would enable GUI agents to achieve better GUI grounding, especially in OOD generalization.
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Figure 1: (Left) The OS-Atlas model operates in three distinct modes to cater to various research
needs. In Grounding mode, OS-Atlas predicts element coordinates based on user instructions and can
be integrated with a planner module to create a complete agent. In Action mode, OS-Atlas functions
independently to solve step-level agent tasks universally across different platforms and applications,
even in zero-shot OOD scenarios. In Agent mode, OS-Atlas undergoes further supervised fine-tuning
to address specific agent tasks. (Right) Overall performance comparisons between OS-Atlas and
other state-of-the-art models.

Second, the heterogeneity of content and format in existing datasets (Zhang et al., 2024c; Chen et al.,
2024c), along with the issue of action naming conflicts, further undermines generalization. In current
datasets, the same action is often labeled with different names across platforms. For instance, the
“tap” action on mobile devices and the “click” action on desktop platforms are logically equivalent
yet labeled differently. This inconsistency can create confusion during model training and ultimately
result in decreased performance.

In this work, we are motivated to build a strong foundation action model to facilitate the development
of future generalist GUI agents. Toward this goal, we make the following contributions:

1. We have developed and released the first multi-platform GUI grounding data synthesis toolkit. This
toolkit enables the automatic synthesis of GUI grounding data across various platforms, including
Windows, macOS, Linux, Android, and the Web. By doing so, it significantly reduces the engineering
efforts required for data curation in future research.

2. Leveraging this data toolkit, we curated and open-sourced the largest multi-platform GUI grounding
corpus to date, which comprises over 2.3 million distinct screenshots and more than 13 million GUI
elements. Notably, our corpus includes desktop grounding data that has not been present in previous
works. To facilitate evaluation of GUI grounding, we identify and re-annotate 11.32% incorrect
samples in the popular benchmark ScreenSpot (Cheng et al., 2024) and release ScreenSpot-V2.

3. Through the above data innovation and an approach to resolving action naming conflicts during
training, we developed OS-Atlas, a highly accurate foundation action model that operates universally
across all GUIs. OS-Atlas can function in three different modes when developing GUI agents as
depicted in Figure 1.

4. We present the most comprehensive evaluation of GUI agents to date, covering six benchmarks
across three different platforms: desktop, mobile, and web. As shown in Figure 1, OS-Atlas demon-
strates a superior performance improvement over previous SOTA models. This strong performance
indicates that OS-Atlas can serve as an open-source alternative to powerful commercial VLMs, such
as GPT-4o, for developing future GUI agents.

2 RELATED WORK

GUI Agents and Large Action Models. Autonomous agents powered by LLMs, known as lan-
guage agents (Weng, 2023; Sumers et al., 2023), have recently garnered significant attention due
to their interactive capabilities (Wang et al., 2023; Sun et al., 2023; Hong et al., 2024a; Durante
et al., 2024). Recent efforts have begun to enable agents to interact with operating systems via
programs (Sun et al., 2024) or API calls (Wu et al., 2024; Zhang et al., 2024a). However, the
closed-source nature of most commercial software imposed significant limitations, as agents don’t
have access to their internal APIs or codes. Consequently, research shifts toward GUI-based agents

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that interact with digital devices through human-like mouse and keyboard actions (Cheng et al., 2024;
Hong et al., 2024b; Zheng et al., 2024a). To facilitate effective agent interactions, Large Action Mod-
els (LAMs) have been developed to address general agentic tasks by interpreting human intentions
and predicting actions in the form of function-calling (Zhang et al., 2024c;b; Zeng et al., 2023; Yin
et al., 2023). Nevertheless, progress is hindered by the limited quantity and vast diversity of available
agent data (Li et al., 2024; Xu et al., 2024). Specifically, LAMs focusing on GUI interactions remain
underexplored, with only a few attempts made to train GUI grounding models or agents (Cheng et al.,
2024; Hong et al., 2024b; Gou et al., 2024).

To the best of our knowledge, OS-Atlas is the first LAM specifically designed for GUI agents.

GUI Executable Language Grounding. The core functionality of an LAM is to convert natural lan-
guage (NL) instructions into actions and associated parameters (e.g., element coordinates), commonly
known as GUI Executable Language Grounding, or simply GUI grounding. Existing GUI grounding
training data can be divided into two types: referring expression grounding (REG) (Liu et al., 2023)
and instruction grounding (IG) (Li et al., 2020). REG focuses on locating specific elements on the
screen based on explicit references in the language instructions, such as “click the Open button.”
Collecting REG data from webpages is straightforward through crawling and parsing (Cheng et al.,
2024; Chen et al., 2024b). However, when it comes to other platforms (e.g., desktop and mobile), it
presents significant challenges and often requires substantial human effort.

Compared to REG, IG data is more crucial for real-world applications. IG can be considered a
superset of REG, as it also includes actions that do not require specific coordinates, such as “Type”.
Moreover, the instructions in IG data are often nuanced and lack explicit element identification. For
instance, an instruction like “delete the last file” requires reasoning to identify the targeted action
type and element. IG data is often limited in size and diversity (Zhang et al., 2024b; Zheng et al.,
2024b), due to the need for human annotation during collection (Li et al., 2024).

OS-Atlas tackles these data-related challenges by developing a multi-platform infrastructure for
collecting GUI grounding data. A concurrent study by Gou et al. (2024) also addresses these
challenges; however, their focus is limited to scaling web data.

3 OS-ATLAS

To establish a robust foundation action model for GUI agents, we propose enhancements from both
data (§ 3.2) and methodological (§ 3.3) perspectives. Leveraging these innovations, we trained
OS-Atlas, the first foundation action model specifically designed for GUI agents.

3.1 TASK FORMULATION AND TRAINING

Our training process consists of two consecutive phases: (1) GUI Grounding Pre-training, which
equips VLMs with the knowledge to understand GUI screenshots and identify elements on the screen,
and on top of it, (2) Action Fine-tuning, which transforms instructions into executable GUI actions.
The framework overview can be found in Figure 2.

GUI Grounding Pre-training. This phase requires a large, high-quality, and diverse set of
<screenshot, element referring expression or instruction, element coordinate> triplets, where the
coordinates are represented as either points or bounding boxes. Models use the screenshot and the
referring expression or instruction to predict the corresponding element coordinates. To facilitate
large-scale pre-training, we have collected the largest multi-platform GUI reference corpus to date and
synthesized a set of instruction grounding data using VLMs, as detailed in § 3.2. As shown in Table 1,
our pre-training corpus covers 5 distinct platforms and includes over 2.3 million unique screenshots
containing more than 13 million elements. We denote the pre-trained model as OS-Atlas-Base.

Action Fine-tuning. To enable OS-Atlas to solve OS tasks effectively, we compile existing agent
datasets for multi-task imitation learning. Specifically, we use <screenshot, task instruction, action
history> triplets as model input and train the model to predict the corresponding action. Each action
can be further represented as <thoughts, action type, action parameters(e.g., coordinates)> triplets.
In our preliminary investigation, we discovered that fine-tuning with multiple diverse datasets can

3
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Figure 2: Overall training pipeline of OS-Atlas. We first perform large-scale pre-training using 13
million GUI grounding data collected to build OS-Atlas-Base. Next, we conduct multitask fine-tuning
on agent data, resulting in OS-Atlas.

introduce conflicts between actions, which degrade performance (see § 5.3). To address this issue, we
propose the use of a unified action space during training (see § 3.3).

3.2 GROUNDING DATA COLLECTION

Dataset #Screenshots Open #ElementsWeb Mobile Desktop Source

SeeClick 270K 94K - ✓ 3.3M
Ferret-UI - 124K - ✗ <1M
GUICourse 73K 9K - ✓ 10.7M
CogAgent 400K - - ✗ 70M

OS-Atlas 1.9M 285K 54K ✓ 13.58M

Table 1: Statistics of the grounding data we collected
compared to existing efforts. (For open-source datasets,
we only count the amount of data made publicly avail-
able.)

As shown in Table 1, existing GUI ground-
ing corpora predominantly focus on web-
page screenshots, as these can be easily ob-
tained using web crawlers (Cheng et al.,
2024; Hong et al., 2024b; Chen et al.,
2024b) or on mobile screenshots (You et al.,
2024; Zhang et al., 2024d), leaving a sig-
nificant gap for desktop screenshots. Fur-
thermore, many of these corpora are either
not open-sourced or are available only in
relatively small scales. To lay a solid foun-
dation for GUI agents, we have developed
and open-sourced the first cross-platform
GUI grounding data collection platform,
along with a dataset comprising 13 million
GUI grounding instances that cover Windows, macOS, Linux, Android, and the Web. However, due to
significant discrepancies between these platforms, we were required to create distinct infrastructures
for each one, which presents unique challenges in ensuring consistent data quality and compatibility
across different environments.

Web. We crawled about 4 million web pages from the latest URLs obtained from FineWeb (Penedo
et al., 2024), a cleaned and deduplicated English dataset derived from CommonCrawl. For each
webpage, we extracted all visible clickable elements from the HTML code — including buttons, scroll
bars, search bars, hyperlinks, and SVG images with titles — along with their referring expressions
and coordinates derived from the associated HTML attributes. Unlike previous methods (Cheng et al.,
2024) that primarily focused on processing only the upper portions of websites, we render entire
websites and then segment them into 1920x1080 resolution screenshots. This approach enhances the
diversity of our web data by capturing a more comprehensive view of each webpage.

By excluding all error pages (e.g., 404 errors), we initially curated 3.7 million webpage screenshots
and 37 million elements. However, upon human examination, we identified numerous low-quality
samples within this dataset. To address this issue, we implemented rule-based data filtering to exclude
webpages that were either incompletely rendered or contained poorly distributed elements (e.g., all
elements clustered at the bottom of the screen). Additionally, we restricted the maximum number of
elements per webpage to 10 to encourage diversity. As a result of these stringent filtering criteria, we
obtained a cleaned corpus consisting of 1.6 million screenshots and 7.7 million elements.
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Desktop & Mobile. Capturing desktop and mobile screenshots is significantly more complex than
collecting web screenshots. Previous methods primarily relied on manual collection, which resulted
in a relatively small dataset. However, large-scale automated data collection presents the following
challenges: (1) the substantial engineering efforts required to set up a simulation environment for
data collection within a real operating system, and (2) the necessity of designing a program to
mimic human interactions with the operating system, thereby changing system states to obtain new
screenshots.

For Android, we utilize AndroidEnv (Toyama et al., 2021) to create a simulation environment, and
for Linux, we employ OSWorld (Xie et al., 2024). Given the difficulties associated with virtualizing
Windows and MacOS, we deploy the data synthesis platform on physical machines to collect data
from these two operating systems. On these platforms, we leverage A11y tree to collect grounding
data. Due to the differences in A11y tree APIs and tools supported by each operating system, we
utilize pyatspi to access the A11y tree on Ubuntu, pywinauto on Windows, and ApplicationServices
on macOS. We then simulate human-computer interactions by sampling actions from the obtained
A11y tree. In our simulation environment, we employ two different exploration methods: Depth-First
Search (DFS) and Random Walk. We apply a similar data filtering pipeline to the grounding data
obtained as we did for the webpages.

Instruction Grounding Data Collection. In addition to the large-scale automated collection of
referring expression data, we also annotated existing trajectory datasets using GPT-4o to obtain
instruction grounding data. Given a high-level task instruction along with the before-and-after
interface screenshots of an action, we instruct GPT-4o to carefully analyze the changes in the
interface to derive a sub-instruction for the current action. Specifically, we employ Set-of-Mark
prompting (Yang et al., 2023) to indicate the locations of the operated elements, which helps GPT-4o
better comprehend the screenshots. We annotated the training sets of four trajectory datasets collected
from both web and mobile platforms, namely Mind2Web (Deng et al., 2023b), AMEX (Chai et al.,
2024), and AITZ (Zhang et al., 2024d). We also utilize instruction grounding data from two publicly
available datasets: AndroidControl (Li et al., 2024) and Wave-UI 1.

3.3 UNIFIED ACTION SPACE

Our preliminary investigation found that blindly mixing data from different sources for multitask
fine-tuning can significantly harm performance due to action space conflicts. For instance, the action
“click” in a desktop environment is logically equivalent to the “tap” operation on a mobile device;
training with such conflicts can confuse the model. To address this issue, we propose a unified action
space that standardizes the format of all existing datasets. Our unified action space comprises both
Basic Actions and Custom Actions. The prompt can be found in Table 6.

Basic Actions. These are standardized and available across all platforms. They provide essential
functionality and are defined with a specific format, ensuring consistency and reliability. In the
current design, we have three basic actions: click, type, and scroll. This design significantly reduces
the size of action space when fine-tuning, and facilitates knowledge sharing across platforms and
apps.

Custom Actions. These are unique to each user’s platform and device. They enable the model
to support new and unseen actions defined by users. The design of custom actions is crucial to
OS-Atlas’s good out-of-distribution performance, as they allow for on-demand extensions to support
previously unseen tasks and actions. Typical custom actions include open app (to open the specified
application) and drag (to move an object to another location).

1https://huggingface.co/datasets/agentsea/wave-ui. We remove entries from ScreenSpot (Cheng et al., 2024),
Mind2Web, and Omniact to avoid data contamination in downstream evaluation.
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4 EXPERIMENTS: GROUNDING TASKS

4.1 EVALUATION DETAILS

Benchmarks. We begin by conducting a comprehensive evaluation of the GUI grounding perfor-
mance of OS-Atlas-Base. Our evaluation utilizes ScreenSpot (Cheng et al., 2024), which assesses
single-step GUI grounding capabilities across multiple platforms. During the evaluation, we identified
approximately 11.32% percent annotation errors in the ScreenSpot dataset. To enhance the accuracy
of our grounding evaluation, we corrected these errors and re-annotated certain examples, ensuring
that the total number of test samples remains unchanged. In recognition of ScreenSpot’s contributions,
we have named the revised grounding dataset ScreenSpot-V2.

Settings. Following Gou et al. (2024), we evaluate under two settings: 1) the Grounding Mode
Setting, which utilizes a planner model (e.g., gpt-4o) before grounding. The instructions from
ScreenSpot are treated as subtask instructions and input into the planner to generate more detailed
instructions for the grounding models. 2) the Standard Setting without a planner, which directly uses
the original instructions from ScreenSpot.

Models. We consider two distinct backbone models: Qwen2-VL (Wang et al., 2024), which is
trained explicitly with GUI data, and InternVL-2 (Chen et al., 2024d) which is trained without GUI
data. These models also differ in their handling of image resolutions. InternVL-2-4B employs
AnyRes (Liu et al., 2024; You et al., 2024) to resize images and segment larger images into smaller
patches, which are then encoded independently using vision encoders. In contrast, Qwen2-VL-7B
supports arbitrary image resolutions by directly mapping an image into a dynamic number of visual
tokens. We denote our model as OS-Atlas-Base-4/7B, based on the backbones being used. Further
details regarding the training setups can be found in Appendix E.

Baselines. We focus on VLMs that are explicitly trained with GUI data, including Fuyu (Bavishi
et al., 2023), CogAgent (Hong et al., 2024b), Qwen2-VL (Wang et al., 2024), SeeClick (Cheng et al.,
2024), and even a concurrent work UGround (Gou et al., 2024). We omit general VLMs such as
GPT-4V, as they are well-studied and perform poorly on ScreenSpot (Cheng et al., 2024).

Metrics. We follow previous practices by using grounding accuracy on ScreenSpot, where a
prediction is considered correct if the predicted location falls within the ground truth element’s
bounding box. However, this metric does not capture more fine-grained grounding errors. Therefore,
we also use Intersection over Union (IoU), a widely used metric for measuring localization accuracy
in object detection. IoU quantifies the overlap between the predicted bounding box and the ground
truth bounding box.

4.2 RESULTS AND ANALYSIS

As shown in Table 2, under both settings, OS-Atlas-Base significantly outperforms previous grounding
models on ScreenSpot across mobile, desktop, and web platforms, achieving state-of-the-art results.
A similar trend is observed in ScreenSpot-V2 (see Appendix B). Notably, even for VLMs like Qwen2-
VL, which have been pre-trained on GUI screenshots, incorporating GUI grounding pre-training
can further enhance grounding capabilities. To gain deeper insights into the reasons behind this
strong performance, we conducted a series of analyses under the standard setting (without a planner),
including those in § 5.3, using InternVL-2-4B due to GPU constraints.

The Effect of Grounding Data Scaling. We plot the changes in grounding accuracy and IoU
of OS-Atlas-Base-4B on ScreenSpot throughout the training process. As illustrated in Figure 3,
grounding accuracy and IoU exhibit a clear positive correlation with the scaling of data, particularly
in the case of IoU and the web domain, where we have nearly 10 million elements. The correlation is
relatively weak in grounding accuracy because it cannot capture finer-grained errors. On one hand,
this suggests the significant potential of continuously scaling the grounding data to further enhance
performance. On the other hand, it underscores the need for more challenging benchmarks and
improved metrics to effectively track performance improvements.
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Figure 4: Ablation studies and performance on ScreenSpot. IG/Mobile/Desktop refers to instruction
grounding, mobile, and desktop grounding data, respectively.

Planner Grounding Models Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-

Fuyu 41.00 1.30 33.00 3.60 33.90 4.40 21.31
CogAgent 67.00 24.00 74.20 20.00 70.40 28.60 49.58
SeeClick 78.00 52.00 72.20 30.00 55.70 32.50 55.75
InternVL-2-4B 9.16 4.80 4.64 4.29 0.87 0.10 4.32
Qwen2-VL-7B 61.34 39.29 52.01 44.98 33.04 21.84 42.89
UGround-7B 82.80 60.30 82.50 63.60 80.40 70.40 74.15
OS-Atlas-Base-4B 85.71 58.52 72.16 45.71 82.61 63.11 70.13
OS-Atlas-Base-7B 93.04 72.93 91.75 62.86 90.87 74.27 82.47

GPT-4o

SeeClick 83.52 59.39 82.47 35.00 66.96 35.44 62.89
UGround-7B 93.40 76.90 92.80 67.90 88.70 68.90 82.71
OS-Atlas-Base-4B 94.14 73.80 77.84 47.14 86.52 65.53 76.81
OS-Atlas-Base-7B 93.77 79.91 90.21 66.43 92.61 79.13 85.14

Table 2: Grounding accuracy on ScreenSpot. The best results are in bold.
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Figure 3: The effect of grounding data scaling on two
metrics. The performances on three different domains
are reported.

Ablation. We first remove the instruction
grounding (IG) data from the pre-training
phase to conduct a more controlled ablation
analysis. Next, we further exclude mobile
and desktop data to investigate whether pre-
training solely on web data can generalize
to other platforms. The results presented in
Figure 4 reveal the following insights: (1)
Referring expression data is nearly sufficient
for training a strong grounding model and
can be easily scaled compared to instruc-
tion grounding data. (2) Despite the sim-
ilarities between different GUI platforms,
pre-training solely on web data struggles to
generalize to other platforms. This empha-
sizes the importance of our data infrastruc-
ture in facilitating the scaling of desktop and
mobile referring expression data.

4.3 APPLICATION: GROUNDING MODE

We evaluate how OS-Atlas-Base work under the grounding mode in Figure 1: it can serve as a
replacement for the grounding module of an existing GUI agent, thereby enhancing overall perfor-
mance. In this study, we benchmark our approach on the challenging OS agent testbed, OSWorld (Xie
et al., 2024). OSWorld is an interactive environment just like our computers, where the agent must
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interact with the operating system at each step and wait for a response before proceeding to the
next step. Refer to Figure 8 for a concrete example from the benchmark. Following their best
practices, we constructed a screenshot-based GUI agent using GPT-4o. Given a specific task, the
agent generates a detailed, step-by-step plan to accomplish it. It then executes this plan by generating
actions and coordinates at each step. We substitute these coordinates with those generated by an
external grounding model, either OS-Atlas-Base or SeeClick.

As shown in Table 3, although GPT-4o with OS-Atlas-Base as the grounding module still lags behind
human performance, it significantly outperforms other grounding methods such as SeeClick and
Set-of-Mark (SoM). This demonstrates the potential of OS-Atlas-Base as a standalone grounding
module for developing future GUI agents.

Models Successful Rate Avg.OS Calc Impress Writer VLC TB Chrome VSC GIMP WF

GPT-4o + SoM 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60 4.59
GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58 5.03
+ SeeClick 16.67 0.00 12.76 4.35 23.52 6.67 10.86 8.70 11.54 7.92 9.21
+ OS-Atlas-Base-4B 20.83 2.23 14.89 8.70 23.52 13.33 15.22 13.04 15.38 7.92 11.65
+ OS-Atlas-Base-7B 25.00 4.26 17.02 8.70 29.41 26.67 19.57 17.39 19.23 8.91 14.63

Human 75.00 61.70 80.85 73.91 70.59 46.67 78.26 73.91 73.08 73.27 72.36

Table 3: Successful rate on OS World benchmark, divided by apps (domains). Workflow (WF) is a
special domain that requires navigation across multiple apps.

5 EXPERIMENTS: AGENT TASKS

5.1 EXPERIMENT SETUPS

Training details. Given that there are currently relatively few agent benchmarks, especially in
the desktop domain, we have only utilized three datasets — AMEX (Chai et al., 2024) (mobile),
AITZ (Zhang et al., 2024d) (mobile), and Mind2Web (Deng et al., 2023a) (web) — to train our model,
leaving a significant number of available benchmarks for OOD testing. For the sake of simplicity
in notation, we denote our model as OS-Atlas-4/7B, which reflects the different backbone models
utilized: InternVL-2-4B and Qwen2-VL-7B.

Evaluation Benchmarks. We examine five distinct agent benchmarks across three different plat-
forms: AndroidControl (Li et al., 2024) and GUI-Odyssey (Lu et al., 2024a) for mobile agents;
GUI-Act-Web (Chen et al., 2024a) and OmniAct-Web (Kapoor et al., 2024) for web agents; and
OmniAct-Desktop for Windows environments. We only use the test split from these benchmarks for
evaluation. Detailed statistics for these benchmarks can be found in Appendix C. Following common
practices (Cheng et al., 2024; Deng et al., 2023a; Zhang et al., 2024d), we evaluate all benchmarks at
the subtask granularity, as described in § 3.1. This involves allowing the model to predict actions for
each step based on the task instruction, the associated screenshot, and action history (if available).

Settings and Baselines. We evaluate under two different settings to demonstrate two different
practical applications of foundation action models like OS-Atlas: (1) zero-shot OOD setting (the
Action Mode in Figure 1). In this setting, action models are benchmarked on unseen tasks, domains,
or applications in a zero-shot manner, mimicking real-world usage scenarios for GUI agents.; (2)
supervised fine-tuning setting (the Agent Mode): In this setting, researchers fine-tune models on
downstream tasks to create agents specifically tailored for their intended applications.

In the zero-shot OOD setting, we use GPT-4o as the baseline, as existing VLMs perform poorly
under this setting. For the supervised fine-tuning setting, we select InternVL-2, Qwen2-VL, and the
grounding model, SeeClick, as our backbone for training.

Metrics. We evaluate our models using three commonly used metrics for GUI agents that assess
the accuracy of action type prediction, coordinate prediction, and step success rate, denoted as Type,
Grounding, and SR, respectively. Type measures the exact match score between the predicted action
types (e.g., CLICK, SCROLL) and the ground truth, often referred to as Type EM in the literature.
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Models GUI-Act-Web OmniAct-Web OmniAct-Desktop
Type Grounding SR Type Grounding SR Type Grounding SR

Zero-shot OOD Setting

GPT-4o 77.09 45.02 41.84 79.33 42.79 34.06 79.97 63.25 50.67
OS-Atlas-4B 79.22 58.57 42.62 46.74 49.24 22.99 63.30 42.55 26.94
OS-Atlas-7B 86.95 75.61 57.02 86.12 69.35 59.99 90.24 62.87 56.73

Supervised Fine-tuning Setting

InternVL-2-4B 81.42 47.03 36.17 47.51 51.34 24.39 67.00 44.47 29.80
Qwen2-VL-7B 89.36 90.66 82.27 89.22 85.94 78.58 96.27 94.52 91.77
SeeClick 88.79 78.59 72.34 86.98 75.48 68.59 96.79 70.22 72.69
OS-Atlas-4B 89.36 89.16 81.06 88.56 82.00 73.91 96.51 85.53 84.78
OS-Atlas-7B 89.08 91.60 82.70 97.15 95.41 93.56 97.15 95.85 94.05

Table 4: Results on web and desktop tasks. InternVL-2/Qwen2-VL and OS-Atlas-4/7B differ in that
the former utilizes the original checkpoints, while the latter is fine-tuned on OS-Atlas-Base.

Models AndroidControl-Low AndroidControl-High GUI-Odyssey
Type Grounding SR Type Grounding SR Type Grounding SR

Zero-shot OOD Setting

GPT-4o 74.33 38.67 28.39 63.06 30.90 21.17 37.50 14.17 5.36
OS-Atlas-4B 64.58 71.19 40.62 49.01 49.51 22.77 49.63 34.63 20.25
OS-Atlas-7B 73.00 73.37 50.94 57.44 54.90 29.83 60.42 39.74 26.96

Supervised Fine-tuning Setting

InternVL-2-4B 90.94 84.05 80.10 84.09 72.73 66.72 82.13 55.53 51.45
Qwen2-VL-7B 91.94 86.50 82.56 83.83 77.68 69.72 83.54 65.89 60.23
SeeClick 93.00 73.42 75.00 82.94 62.87 59.11 70.99 52.44 53.92
OS-Atlas-4B 91.92 83.76 80.64 84.69 73.79 67.54 83.47 61.37 56.39
OS-Atlas-7B 93.61 87.97 85.22 85.22 78.48 71.17 84.47 67.80 61.98

Table 5: Results on mobile tasks. InternVL-2/Qwen2-VL and OS-Atlas-4/7B differ in that the former
utilizes the original checkpoints, while the latter is fine-tuned on OS-Atlas-Base. AndroidControl-
Low refers to the scenario where both low-level and high-level instructions are provided as inputs,
while AndroidControl-High indicates that only high-level instructions are given.

Grounding evaluates the performance of GUI grounding in downstream tasks. SR represents the
step-wise success rate, where a step is deemed successful only if both the predicted action and its
associated arguments (e.g., coordinates for a click action) are correct. Appendix D provides detailed
information on how these metrics are calculated.

5.2 RESULTS

The performances are presented in Table 4, 5. OS-Atlas achieved SOTA performance across three
different platforms, six distinct datasets, and two evaluation settings. In comparison with GPT-4o, our
model demonstrated superior capabilities in addressing unseen tasks across all six OOD evaluation
datasets, even the desktop domain models haven’t seen during action fine-tuning. This suggests
that in the realm of GUI agents, OS-Atlas has the potential to be a robust open-source alternative to
leading commercial VLMs. Additionally, the results of the SFT setting further confirm that OS-Atlas
can serve as a robust foundation for researchers to train their custom GUI agents.

5.3 ANALYSIS

In this paper, we present two key research contributions: the development of a data infrastructure
for grounding data synthesis and the proposal of a unified action space. We conduct experiments
to analyze the significance of these factors in enhancing the zero-shot OOD performance of a
foundational action model.

First, we investigate the effect of grounding pre-training by training OS-Atlas directly from the
original VLMs, which we refer to as w/o pre-training. As illustrated in Figure 5, omitting the
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Figure 5: Ablation studies on the zero-shot OOD setting. The results are reported respectively across
three platforms.

pre-training stage significantly degrades performance, particularly on the desktop and web platforms,
where we have very limited data available for fine-tuning (7k samples for web and none for desktop).
These results highlight the critical importance of the data infrastructure for grounding data synthesis;
with this infrastructure in place, we can easily improve OOD downstream performance simply by
scaling the pre-training corpus.

Next, we investigate the impact of removing the unified action space during fine-tuning, denoted as
w/o unified action. For each fine-tuning dataset, we adhere to the optimal action space design proposed
in SOTA models. As illustrated in Figure 5, we again observe a noticeable drop in performance.
This validates our hypothesis that the conflicting action spaces indeed degrade model performance.
Quantitatively, we find that employing our unified action space reduces the number of unique action
types from 17 to 10, effectively resolving several naming conflicts, such as between “tap” and “click”,
“press home” and “home”, as well as “type” and “input”.

5.4 OS-ATLAS-PRO
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Figure 6: OS-Atlas-Pro evaluation results.

To ensure that most datasets remain available for OOD
evaluation, OS-Atlas is initially trained using a limited
selection of 3 agent datasets. To fully leverage its po-
tential for broader applications, we use all 7 previously
mentioned agent datasets for multitask fine-tuning. We
report the average Success Rate (SR) across three do-
mains: Web (GUI-Act-Web and OmniAct-Web), Mo-
bile (AndroidControl-Low/High and GUI-Odyssey),
and Desktop (OmniAct-Desktop). As illustrated in
Figure 6, large-scale multitask fine-tuning significantly
enhances model performance, thereby ensuring a bet-
ter user experience when deployed in real-world appli-
cations.

6 CONCLUSION

In this paper, we present OS-Atlas, a foundation action
model for GUI agents. OS-Atlas demonstrates excep-
tional performance in tackling open-environment GUI
tasks across six complex benchmarks. This strong
performance highlights the potential of OS-Atlas as
an open-source alternative to powerful commercial
VLMs, such as GPT-4o, for the development of future
GUI agents.
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ETHICS AND REPRODUCIBILITY STATEMENT

This research focuses on constructing a foundation action model for generalist GUI agents. The
data used are obtained either from synthesizing or reprocessing from previously released datasets,
with all datasets or benchmarks properly cited. There are no discrimination, bias, or fairness issues
that need to be addressed in this paper. Further, our models are not expected to generate potentially
harmful content. To ensure reproducibility, we provide all experimental details in Section 5 and their
corresponding appendices. We will release all data, source code, and model checkpoints to support
reproducibility.
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Unified Action Space Prompt
You are a foundational action model capable of automating tasks across various digital environ-
ments, including desktop systems like Windows, macOS, and Linux, as well as mobile platforms
such as Android and iOS. You also excel in web browser environments. You will interact with
digital devices in a human-like manner: by reading screenshots, analyzing them, and taking
appropriate actions.
Your expertise covers two types of digital tasks:

- Grounding: Given a screenshot and a description, you assist users in locating elements
mentioned. Sometimes, you must infer which elements best fit the description when they aren’t
explicitly stated.

- Executable Language Grounding: With a screenshot and task instruction, your goal is
to determine the executable actions needed to complete the task. You should only respond with
the Python code in the format as described below:
You are now operating in Executable Language Grounding mode. Your goal is to help users
accomplish tasks by suggesting executable actions that best fit their needs. Your skill set includes
both basic and custom actions:
1. Basic Actions
Basic actions are standardized and available across all platforms. They provide essential function-
ality and are defined with a specific format, ensuring consistency and reliability.

Basic Action 1: CLICK
- purpose: Click at the specified position.
- format: CLICK <point>[[x-axis, y-axis]]</point>
- example usage: CLICK <point>[[101, 872]]</point>

Basic Action 2: TYPE
- purpose: Enter specified text at the designated location.
- format: TYPE [input text]
- example usage: TYPE [Shanghai shopping mall]

Basic Action 3: SCROLL
- purpose: SCROLL in the specified direction.
- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

2.Custom Actions
Custom actions are unique to each user’s platform and environment. They allow for flexibility
and adaptability, enabling the model to support new and unseen actions defined by users. These
actions extend the functionality of the basic set, making the model more versatile and capable of
handling specific tasks.
Your customized actions varied by datasets.

Table 6: The prompt for the action fine-tuning with a unified action space.

A DATA STATISTICS

We detailed the statistics of the pre-training corpus we collected in Table 7.

B SCREENSPOT-V2

During our error analysis of Screenspot, we identified that several errors stem from incorrect or
ambiguous annotations in the benchmark. Specifically, we observed the following issues:

1. Some instructions contain spelling mistakes or reference elements that are not present in the
screenshots.

2. Certain questions are ambiguous, allowing for multiple valid answers, while the ground
truth includes only one of these options.

3. Several questions exhibit a high degree of similarity to one another.
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Training dataset Type Platform Source #Elements #Screenshots

FineWeb-filtered REG Web synthetic 7,779,922 1,617,179
Windows-desktop REG Windows synthetic 1,079,707 51,726
Linux-desktop REG Linux synthetic 41,540 1,186
MacOS-desktop REG MacOS synthetic 13,326 1,339
Pixel6-mobile REG Mobile synthetic 104,598 21,745
SeeClick REG Web & Mobile public 3,303,479 364,760
AMEX REG Mobile public 1,097,691 99,939
UIbert REG Mobile public 16660 5682

Mind2Web-annotated IG Web GPT-4o 5,943 5,943
AITZ-annotated IG Mobile GPT-4o 10,463 10,463
AMEX-annotated IG Mobile GPT-4o 5,745 5,745
AndroidControl IG Mobile public 47,658 47,658
Wave-UI IG All platforms public 65,478 7,357

Total 13,582,210 2,240,717

Table 7: Grounding training datasets statistics overview.

Planner Models Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-
SeeClick 78.39 50.66 70.10 29.29 55.22 32.52 55.09
OS-Atlas-Base-4B 87.24 59.72 72.68 46.43 85.90 63.05 71.86
OS-Atlas-Base-7B 95.17 75.83 90.72 63.57 90.60 77.34 84.12

GPT-4o
SeeClick 85.17 58.77 79.90 37.14 72.65 30.05 63.60
OS-Atlas-Base-4B 95.52 75.83 79.38 49.29 90.17 66.50 79.09
OS-Atlas-Base-7B 96.21 83.41 89.69 69.29 94.02 79.80 87.11

Table 8: Grounding accuracy on ScreenSpot-v2. The best results are in bold.

4. Some ground truth bounding boxes are incorrectly labeled.

Given that the aforementioned factors could lead to biased evaluation results, we revised and edited
the questions in the Screenspot benchmark. We ensured that the total number of questions remained
the same in the release of Screenspot-v2. Our specific approach is outlined as follows:

1. We removed the problematic questions and replaced them with new ones.
2. We revised the instructions that were in the REG form and rewrote them as natural language

instructions.
3. We corrected mislabeled ground truth bounding boxes.

We modified a total of 63 out of 436 (≈14.4%) questions in the web domain, 28 out of 334 (≈8.4%)
in the desktop domain, and 53 out of 502 (≈10.6%) in the mobile domain. The evaluation results on
the new benchmark can be found in Table 8.

C DETAILS OF EVALUATION BENCHMARKS

We display the statistical details of the evaluation benchmarks in Table 9. Notably, AndroidControl-
Low denotes that both low-level and high-level instructions are provided as the inputs, while
AndroidControl-High denotes that only the high-level instruction is in the input. Although screenshots
from the training set of AndroidControl are used during the pretraining phase, we still classify it as an
OOD dataset because it contains diverse OOD splits that differ from the training set. GUI-Odyssey-
Random/Task/Device/App datasets are four different test splits based on the categories. We report the
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macro-average performance across these splits. For OmniAct, the original dataset only provides the
initial screenshot and does not have the dynamic environment, thus we evaluate the first action of
each example under the OOD setting (Action mode). While under the supervised fine-tuning setting
(Agent mode), we evaluate all actions in the trajectories.

Benchmarks Platforms #Test Samples History? # Unified Actions

GUI-Act-Web Web 1,410 3+2

Omniact Web 1,427 3+11
Desktop 594 3+11

AndroidControl-Low Mobile 7,708 ✓ 3+5
AndroidControl-High Mobile 7,708 ✓ 3+5

GUI-Odyssey-Random Mobile 29,414 3+6
GUI-Odyssey-Task Mobile 17,920 3+6
GUI-Odyssey-Device Mobile 18,969 3+6
GUI-Odyssey-App Mobile 17,455 3+6

Table 9: Details of the agentic benchmarks. History represents whether the history information of
the previous actions is provided in the input. #Unified Actions denotes the number of actions (basic
actions + custom actions) for each task.

D DETAILS OF EVALUATION METRICS

To ensure fair comparisons across all baseline methods, we standardize the evaluation metrics for
each action.

For click-based actions (e.g., CLICK, LONG PRESS), the action models must generate both the
action type and the position coordinates (x,y). Since the ground-truth bounding box is not always
available in the test data, we measure the performance by calculating the distance between the
predicted coordinates and the ground-truth coordinates. Following Lu et al. (2024a), we consider the
coordinates correct if they fall within a distance of 14% screen width from the ground truth.

type-based actions (e.g., TYPE, OPEN APP) are considered correct if and only if both action type
and action content are correct. We calculate the F1 score between the predicted text and the ground
truth. The text is considered correct if F1 >0.5.

For scroll action, the direction argument (i.e., UP, DOWN, LEFT, and RIGHT) must precisely match
the ground truth.

For other actions (e.g., PRESS BACK), they must exactly match the ground truth to be considered
correct.

E TRAINING DETAILS

OS-Atlas-Base and OS-Atlas (4B) InternVL-2 employs Dynamic Aspect Ratio Matching to
process dynamic high-resolution input. We set the max dynamic patch parameter to 6 to ensure
the model captures sufficient pixel information. As a result, the input image, after resizing, is
divided into a maximum of 6 tiles of 448×448 pixels, along with a thumbnail of the entire image
to capture global context. In terms of grounding data format, to maintain consistency with the
original InternVL training process, we convert all box format data into the form <box>[[x1, y1,
x2, x2]]</box>, where (x1, y1) and (x2, y2) are the normalized relative coordinates within the
range [0,1000]. Similarly, point data is converted into <point>[[x, y]]</point> format. <box>,
</box/>, <point>, and </point> are treated as special tokens.

OS-Atlas-Base and OS-Atlas (7B) Qwen2-VL can handle arbitrary image resolutions by map-
ping them into a dynamic number of visual tokens, offering a more human-like visual process-
ing experience. Through our experiments, we discover that setting the max pixel of image
input to 1024x1024 during both training and inference yields excellent results for GUI grounding
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tasks, while also optimizing the model’s training and inference cost. Similarly, to maintain consis-
tency with Qwen2-VL’s original grounding training format, we convert box data into the format
<|box start|>(x1,y1),(x2,y2)<|box end|>, where <|box start|> and <|box end|>
are treated as special tokens.

We follow SeeClick to preprocess grounding pre-training data, formatting each REG data sample
into three types: point grounding, box grounding, and OCR. Each type of data is wrapped up using
30 distinct GPT-generated prompts. To accelerate the training process, we group 15 samples into a
single conversation, using 100 predefined prefix prompts.

F SCALING LAW OF GUI GROUNDING PRETRAINING

We also find that downstream task performance is not an ideal metric to measure scaling law. This is
because downstream datasets often cannot accurately reflect the true data distribution, and evaluation
metrics are too coarse-grained – for instance, correctly clicking an element does not necessarily mean
the predicted coordinates exactly match the ground truth.

To study the scaling effect more rigorously, we plot the loss curve and, following Kaplan et al. (2020),
fit a power law-based scaling curve, as shown in Figure 7. The horizontal axis represents the number
of model training steps. Each step encompasses 1,024 samples, with each sample containing up to 15
grounding elements. The dark blue curve depicts the smoothed loss trajectory. From the figure, we
observe a compelling trend suggesting significant potential for continually scaling pretraining data.
Through our scaling law analysis, we estimate that increasing training data by 8 times could lead to
a 40% relative reduction in loss. Moreover, scaling data by 64 times might potentially yield a 57%
relative decrease in loss.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Pretraining Steps (2^N)

0.1
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Figure 7: The curve of scaling law for the GUI grounding pretraining stage.
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G CASE STUDY: OS-WORLD

Step 1 Step 2

GPT-4o Grounding Model

Step 3

Step 4 Step 5

[[364, 1036]]

Click on the gear icon 
Settings

Click on \"Settings\" in the 
dropdown menu

[[443, 844]] [[948, 398]]

Click on the search settings 
input box

TYPE ['files: exclude']

Type \"files: exclude\" in 
the search settings input box

Click on \"Add Pattern\" 
button under Files: Exclude

[[925, 767]]

Step 6

Step 7 Step 8

TYPE ['**/__pycache__']

Type the pattern to exclude 
__pycache__ folders

[[1221,759]]

Click on the \"OK\" button to 
confirm the exclusion pattern

Press Enter to confirm the 
exclusion pattern

ENTER HOTKEY [CTRL, “W”]

Close the settings tab using 
the keyboard shortcut

Task Please help me modify VS Code setting to hide all 
"__pycache__" folders in the explorer view. 

Step 9

Figure 8: A case study from OS-World. OS-Atlas-Base works in the grounding mode, integrating
GPT-4o as a task planner to create an agent. For each Click step, OS-Atlas-Base outputs the
coordinates based on the provided step-level instructions.
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