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ABSTRACT

Gradient inversion attacks, as a means of privacy theft, have been extensively
studied and applied in classifier models, yet research on gradient inversion for
diffusion models, particularly classifier-free guidance (CFG) diffusion models,
remains relatively underdeveloped. CFG models such as Stable Diffusion present
significant challenges for such attacks due to their complex training mechanisms,
including the high-dimensional search space caused by multimodal variables, the
non-uniqueness of the noise ϵ solution space, and the difficulty in optimizing dis-
crete time steps t. To address these challenges, this paper proposes a novel joint
inversion framework featuring two core algorithmic innovations: the GradCFG
algorithm, which integrates a four-variable co-optimization mechanism for simul-
taneous reconstruction of image latent variables x0, text embeddings C0, noise ϵ,
and reparameterized continuous time steps t, alongside a periodic restart strategy
for ϵ to enhance solution stability and generalization; and the Inv-Sam algorithm,
a model-difference-based generation optimization method that leverages the gener-
ative capability disparities between pre-fine-tuning and post-fine-tuning models to
restore high-resolution details through a reverse-forward diffusion editing process.
Systematic experiments in CFG model fine-tuning scenarios demonstrate that the
proposed method effectively achieves high-quality image-text joint reconstruc-
tion for various textual conditions ranging from concise descriptions to complex
semantic combinations.

1 INTRODUCTION

Diffusion models (Ho et al., 2020) have achieved remarkable breakthroughs in the field of image gener-
ation by transforming random noise into high-fidelity images through a progressive denoising process.
Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) further introduces a text-conditioning mecha-
nism, enabling semantically controllable image synthesis. Representative CFG models such as Stable
Diffusion (SD) (Rombach et al., 2022) have been widely adopted in industry. With the growing
demand for personalized generation, users often fine-tune pre-trained models on private data (Gal
et al., 2022; Kumari et al., 2023; Hu et al., 2021; Bahmani et al., 2022). To protect privacy, users
typically share only training gradients with the server instead of the original images (Sun et al., 2021).
However, this process still faces severe privacy leakage risks: malicious attackers can reconstruct
private training samples from the gradients via Gradient Inversion Attacks. Such attacks have been
extensively demonstrated in classification models (Hatamizadeh et al., 2022; Zhu et al., 2019; Wei
et al., 2020), yet the unique training mechanism of diffusion models provides inherent defense
capabilities. In particular, for CFG models, the text-guided mechanism further increases the difficulty
of gradient inversion.

The challenge of performing gradient inversion on CFG-based diffusion models stems from their
multimodal and stochastic training pipeline. During training, the client samples a Gaussian noise
vector ϵ and a time step t independently, and computes gradients from both the image latent x0

and the text embedding C0. Consequently, the attacker must recover a coupled four-variable tuple
(x0, C0, ϵ, t) instead of a single image, substantially enlarging the solution space. Our analysis further
shows that the sampled noise ϵ does not have a unique solution—multiple ϵ values can satisfy gradient
alignment when accompanied by appropriately adjusted (x0, C0, t). This non-uniqueness requires
the remaining variables to flexibly adapt to feasible noise solutions rather than converge to a single
fixed point. At the same time, the discrete nature of the time step t prevents direct gradient-based
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Figure 1: The GradCFG method reconstructs the original data through gradient matching, employing
a time-step t̂ continuous strategy and a periodic ϵ̂ reset mechanism to mitigate variable discreteness
and solution non-uniqueness. Furthermore, the Inv-Sam method refines the initially reconstructed
image by leveraging the generative capability gap between the initial and final state models, thereby
recovering richer image details.

updates, making the joint optimization even more challenging. Moreover, given that the CFG model
is already a well-trained generative model, we are particularly interested in exploring how its inherent
generative capability can be incorporated into the reconstruction process to further enhance the quality
and detail of the recovered results.

To address these challenges, this paper proposes an innovative solution consisting of two intercon-
nected algorithmic contributions, as shown in Figure 1. First, we propose the GradCFG algorithm,
which constructs a four-variable joint optimization framework that reparameterizes the discrete time
step t as a continuous variable t̂, enabling simultaneous optimization of x̂0, Ĉ0, ϵ̂, and t̂. Through peri-
odic restart and re-optimization of ϵ̂, the GradCFG algorithm allows x̂0, Ĉ0, and t̂ to achieve gradient
alignment across different ϵ̂ values. Second, we develop the Inv-Sam algorithm, a model-disparity
optimization strategy that leverages the difference in generative capabilities between the pre-trained
model at initial and final fine-tuning stages. This approach runs a reverse–forward diffusion process
guided by the pre-trained and fine-tuned models respectively, strategically injecting model-disparity
information into the reconstruction pipeline to significantly enhance textual alignment and semantic
adaptation in recovered images.

Experiments are conducted under personalized fine-tuning scenarios for CFG models, employing a
DREAMBOOTH-like (Ruiz et al., 2023) fine-tuning paradigm to systematically evaluate the method’s
effectiveness. Our comprehensive evaluation framework encompasses both general textual prompts
and specific textual prompts during fine-tuning, enabling a thorough analysis of reconstruction
performance across different semantic granularities. We simultaneously assess the recovery quality of
both image data and textual embeddings, providing a holistic evaluation of multimodal privacy leakage.
Additionally, we conduct ablation studies to systematically investigate the specific impact of the
periodic restart mechanism on reconstruction fidelity, while also designing controlled experiments to
validate the non-uniqueness of solutions for the noise variable ϵ. The proposed approach is rigorously
validated on multiple fine-tuning datasets containing diverse semantic categories, demonstrating
robust performance across varying image contents and textual descriptions.

The core contributions of this paper are as follows:

• For the first time, we empirically demonstrate a joint image-text privacy leakage attack in
text-guided diffusion models (CFG), opening a new attack surface.
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• We propose the first joint optimization framework that simultaneously reconstructs images,
text, noise, and time steps, overcoming the challenge of variable coupling under complex
training mechanisms.

• We innovatively leverage the generative capability disparity of diffusion models during
training to design a reconstruction optimization method, significantly enhancing the detail
restoration and visual quality of high-resolution images.

2 RELATED WORK

Classifier-Free Guidance (CFG) Models and Privacy. Diffusion model variants integrating CFG
have become mainstream architectures in text-to-image generation (Rombach et al., 2022; Dhariwal
& Nichol, 2021; Saharia et al., 2022; Ramesh et al., 2022). Current research on CFG model
privacy primarily focuses on Membership Inference Attacks (Shokri et al., 2017), Model Inversion
Attacks (Zhou et al., 2024), and Training Data Extraction (Carlini et al., 2023), while privacy leakage
risks from gradient inversion attacks during training remain systematically underexplored.

Gradient Inversion. Early pioneering work (e.g., DLG proposed by Zhu et al. (2019)) first demon-
strated the feasibility of reconstructing training data from gradients, building upon earlier recognition
of gradients as a primary leakage channel in collaborative learning (Podschwadt et al., 2022). The
attack was primarily effective for small batches (e.g., size=1) and low-resolution images. Subsequent
research significantly enhanced its practicality and scope: Geiping et al. (2020) improved recon-
struction quality on complex datasets (e.g., ImageNet) by introducing a cosine similarity loss and
critical regularizations like Total Variation (Zhu & Blaschko, 2021); Zhao et al. (2020) developed an
analytical method to deduce labels from gradients exactly; Yin et al. (2021) proposed GradInversion,
which leveraged Batch Normalization statistics and group consistency to tackle larger batches and
higher-resolution images. Recently, methodologies have diversified: Generation-based attacks (GEN-
GIA) (Wei et al., 2020; Jeon et al., 2021) employ pre-trained generative models (e.g., GANs, diffusion
models) as strong priors to produce high-fidelity reconstructions, but their reliance on external data
and sensitivity to architectures limit generality. Analytics-based attacks (ANA-GIA) (Gao et al.,
2021; He et al., 2019) derive data through maliciously altering model parameters or analyzing model
outputs, which is efficient but operates under a strong threat model. In addition to direct attacks, Tian
et al. (2025) explored reconstructing data by analyzing the weight differences between pre-training
and post-training states of models. Notably, Huang et al. (2025a) investigated gradient inversion in
diffusion models, but their approach fails to address the fundamental challenges of sampling noise ϵ
multiplicity and time step t discontinuity, while also being constrained by dependency on pre-trained
generators. Currently, research on gradient inversion attacks targeting diffusion models, particularly
their widely adopted CFG mechanism, remains notably scarce (Yu et al., 2024).

3 METHODOLOGY

This paper focuses on the fine-tuning scenario of CFG models, employing a training paradigm similar
to DREAMBOOTH (Ruiz et al., 2023). The objective is to reconstruct private training data—including
images and their corresponding text embeddings—from gradient information.

3.1 CFG MODEL FINE-TUNING FRAMEWORK

In this distributed training framework, each client (user) maintains four private data elements during
training round r: Raw image X , Text prompt P , Sampled time step t ∼ U({1, . . . , T}), Gaussian
noise ϵ ∼ N (0, I). None of these elements are directly shared with the server. The fine-tuning
process is shown in Algorithm. 1. The training objective minimizes the following denoising loss
function:

L(θr) = Et,x0,ϵ

[∥∥ϵ− ϵθr
(√

ᾱtx0 +
√
1− ᾱtϵ, t, C0

)∥∥2] , (1)

where the frozen pretrained image encoder Vae(·) encodes the raw image X into latent representation
x0 = Vae(X), and the text encoder Encoder(·) maps the text prompt P to conditional embedding
C0 = Encoder(P ); θr denotes the learnable parameters of the diffusion model at round r, ᾱt is the
hyperparameter controlling the noise schedule in the forward diffusion process, and ϵθr (·) represents
the noise prediction network taking (·) as input.
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Algorithm 1 CFG Model Training Process
Input: Training rounds R, user dataset X , text prompt P , diffusion steps T , learning rate η
Pretrained model θ0, pretrained text encoder Encoder, pretrained VAE Vae(·)
for training round r = 1, 2, . . . , R do

User execution:
Encode image: x0 ← Vae(X)
Encode text: C0 ← Encoder(P )
Sample time step: t ∼ U({1, . . . , T})
Sample noise: ϵ ∼ N (0, I)

Compute loss function: L(θr) = Et,x0,ϵ

[∥∥ϵ− ϵθr
(√

ᾱtx0 +
√
1− ᾱtϵ, t, C0

)∥∥2]
Compute gradient: g(r) = ∇θrL(θr)
Send g(r) to server
Server execution:
Update model: θr+1 ← θr − ηg(r)

Output: Optimized model parameters θR

Clients locally compute the gradient g(r) = ∇θrL(θr) and transmit only this gradient to the server.
The server coordinates R training rounds by aggregating gradients and updating global model
parameters.

3.2 GRADIENT INVERSION ATTACK METHODOLOGY (GRADCFG)

3.2.1 ATTACK MODELING

A malicious server can inversely reconstruct users’ private data x0 and text embeddings C0 when only
accessing model gradients g(r), where noise vector ϵ and time step t remain private user information.
This attack process is formalized as the following multivariate optimization problem:

min
x̂0,Ĉ0,ϵ̂,t̂

D
(
∇θrL(x̂0, Ĉ0, ϵ̂, t̂; θr), g

(r)
)
+ η(s)Lmix(x̂0) (2)

where D(·, ·) is the gradient similarity metric function (cosine similarity is adopted in this paper),
g(r) = ∇θrL(x0, C0, ϵ, t; θr) represents the observed true gradient, and ∇θrL(x̂0, Ĉ0, ϵ̂, t̂; θr) is
the gradient based on virtual parameters. Lmix(x̂0) is defined as the disentanglement regularizer,
implemented by computing the mean cosine similarity of all data pairs in the reconstructed image set
{x̂(1)

0 , ..., x̂
(k)
0 }:

Lmix(x̂0) =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

⟨x̂(i)
0 , x̂

(j)
0 ⟩

∥x̂(i)
0 ∥2 · ∥x̂

(j)
0 ∥2

(3)

The regularization strength is dynamically controlled by the iteration step scheduler η(s), where s
denotes the current optimization iteration count:

η(s) =

{
ηmax s < Sswitch

0 s ≥ Sswitch
(4)

This scheduling strategy preserves the full regularizer ηmaxLmix(x̂0) during the early training phase
(s < Sswitch) to enforce feature disentanglement and prevent feature mixing in reconstructed samples.
During the later training phase (s ≥ Sswitch), the regularizer constraint is completely removed,
allowing the optimization process to focus solely on minimizing the gradient difference D(·, ·). Here,
Sswitch is a preset iteration count threshold controlling the transition from the feature disentanglement
phase to the precision optimization phase.

3.2.2 QUADRUPLE COLLABORATIVE OPTIMIZATION ALGORITHM

Defining the pseudo-gradient objective function G = D
(
∇θrL(x̂0, Ĉ0, ϵ̂, t̂; θr), g

(r)
)

with its corre-
sponding gradient denoted as ∇G, we propose a quadruple collaborative optimization framework:

4
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Image Reconstruction (x0 optimization): To maintain latent space consistency, an initial point
X̂0 ∼ N (0, I) is sampled from image space and projected into latent space via the VAE encoder:
x̂
(0)
0 = VAE(X̂0) Update rule: x̂0 ← x̂0 − ηx∇x̂0

G

Text Reconstruction (C0 optimization): Initialized with empty text P̂ = ϕ, projected through the
text encoder: Ĉ(0)

0 = Encoder(P̂ ) Update rule: Ĉ0 ← Ĉ0 − ηC∇Ĉ0
G

Time Step Reconstruction (t optimization): To optimize the originally discrete time step t̂ ∈
{1, . . . , T} in continuous space, we propose a function reparameterization strategy. Addressing the
discrete nature of the noise scheduler αt, we establish a continuous mapping through mathematical
transformation. Specifically, considering the definition αt =

∏t
i=1(1 − βi) where βi = f(i) is a

predefined discrete scheduling function (e.g., linear or cosine decay), when βi ≪ 1, we utilize the
natural logarithm approximation ln(1−βi) ≈ −βi to transform the discrete summation

∑t
i=1 ln(1−

βi) into integral form:

lnαt ≈ −
t∑

i=1

βi ≈ −
∫ t

0

f(x)dx (5)

This derivation yields the continuous time step representation:α(t) ≈ exp
(
−
∫ t

0
f(x)dx

)
.

This continuous representation enables time step t̂ to be updated via standard gradient descent:
t̂← t̂− ηt∇t̂G
Noise Reconstruction with Dynamic Reset (ϵ optimization): Initialize ϵ̂ ∼ N (0, I). We incor-
porate a dynamic reset mechanism where ϵ̂ is randomly resampled from N (0, I) at fixed intervals
Sreset:

ϵ̂ ∼ N (0, I) when s ≡ 0 (mod Sreset) (6)

This mechanism continuously searches for new solutions within the solution space, allowing other
optimization variables (x̂0, Ĉ0, and t̂) to adapt to different solutions and achieve optimal performance.
The update rule is: ϵ̂← ϵ̂− ηϵ∇ϵ̂G

3.3 BIDIRECTIONAL SAMPLING ENHANCEMENT ALGORITHM (INV-SAM)

The preliminary reconstruction results (x̂0, Ĉ0) ∈ Rm×B × R77×768 obtained through gradient
inversion at round r are mapped to natural image space via the pretrained VAE decoder: X̂ =

VAE−1(x̂0) However, X̂ suffers from insufficient visual fidelity and missing high-frequency details.
We leverage the dynamic evolution of generative capabilities during fine-tuning: compared to the
initial model θ0, the final model θR generates images with richer training-set features under text
embedding C0 guidance. This paper proposes using the generative capability difference θR − θ0 as
an optimization prior.

Inspired by reverse diffusion and forward sampling in image editing (Miyake et al., 2024; Huang
et al., 2025b), we design a text-guided latent optimization method (Algorithm 2). Using the recovered
condition Ĉ0, we first perform inverse diffusion with θ0 to project x̂0 into noise space, then execute
sampling using the generative difference θR − θ0 to reproject to latent space. Analysis of the inverse
and sampling path relationship reveals that under path proximity (Miyake et al., 2024), their difference
is approximately proportional to the model prediction difference:

xsam
t − xinv

t ∝ ωsam ·
(
ϵθR(x

sam
t+1, t+ 1, Ĉ0)− ϵθ0(x

sam
t+1, t+ 1, Ĉ0)

)︸ ︷︷ ︸
∆ϵθ

where ∆ϵθ quantifies the directional correction from fine-tuning. A formal proof is provided in
Appendix D.
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Algorithm 2 Inv-Sam Optimization

Input: Initial latent state x̂0 ∈ Rm, reconstructed text embedding Ĉ0 ∈ R77×768

Reverse step guidance factor ωinv = 1, sampling step guidance factor ωsam
Noise schedule {ᾱt}Tt=0
Fine-tuned model parameters θR, initial model parameters θ0
Phase I: Inverse Diffusion xinv

0 ← x̂0

for t = 0 to T − 1 do
ϵ̃inv ← ϵθ0(x

inv
t , t, Ĉ0)

xinv
t+1 ←

√
ᾱt+1

(
xinv
t −

√
1−ᾱt ϵ̃

inv
√
ᾱt

)
+
√
1− ᾱt+1ϵ̃

inv

Phase II: Conditional Sampling xsam
T ← xinv

T
for t = T − 1 to 0 do

ϵempty ← ϵθ0(x
sam
t+1, t+ 1, Ĉ0)

ϵtext ← ϵθR(x
sam
t+1, t+ 1, Ĉ0)

ϵ̃sam ← ϵempty + ωsam(ϵtext − ϵempty)

xsam
t ←

√
ᾱt

(
xsam
t+1−
√

1−ᾱt+1 ϵ̃
sam

√
ᾱt+1

)
+
√
1− ᾱtϵ̃

sam

Output: Optimized latent state x̂opt
0 ← xsam

0

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Experiments utilize the standard DREAMBOOTH (Ruiz et al., 2023) training dataset containing image
samples at 512 × 512 resolution. All models are fine-tuned using the TinySD (Kim et al., 2023)
framework to ensure parameter-efficient optimization. Two experimental scenarios are designed:

Gradient inversion for generic text prompt fine-tuning: Constructs a category-uniform scenario
where images of similar objects (e.g., backpacks in different environments) are fine-tuned using
unified text prompts (e.g., "backpack").

Gradient inversion for specific text prompt fine-tuning: Constructs a fine-grained control scenario
where each image is paired with a dedicated granular prompt (e.g., "a red backpack on a mountain
trail") to evaluate reconstruction performance under complex text conditions.

To the best of our knowledge, this is the first work to study gradient inversion attacks on CFG-based
diffusion models. Existing approaches are unable to jointly recover both images and text prompts
from gradients under this setting. While no directly comparable baselines currently exist, we still
make an effort to construct several reasonable baseline variants in Appendix I. These baselines
allow us to carefully analyze and contrast our method with alternative designs. Therefore, our main
evaluation compares our full pipeline (GradCFG + Inv-Sam) with these constructed baselines and
with its own ablated variants to isolate the contribution of each component.

4.2 EVALUATION METRICS

To comprehensively assess reconstruction quality, we employ both quantitative and qualitative
evaluation frameworks. Image reconstruction quality is measured using three complementary metrics:
Peak Signal-to-Noise Ratio (PSNR) (Wang et al., 2004) for pixel-level fidelity assessment, Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) for human visual perception similarity
(with lower values indicating better performance), and the Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) for assessing the perceptual quality related to structural information,
luminance, and contrast.

For semantic recovery evaluation of generic prompts, we implement a dual-modality analysis frame-
work that computes cosine similarity between reconstructed and original prompts in embedding space
to quantify semantic consistency, while also generating images guided by original and reconstructed
prompts under identical initial noise conditions using the TinySD model to compute PSNR between
paired images as an indirect measure of semantic recovery effectiveness.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 RESULTS

5.1 IMAGE RECONSTRUCTION ANALYSIS

We conducted gradient inversion experiments under two distinct fine-tuning scenarios: generic text
prompts and detailed text prompts. The reconstruction process employed a two-stage approach: initial
image reconstruction was performed using the GradCFG method, followed by detail enhancement
via the Inv-Sam algorithm.

Table 1 presents comparative reconstruction results under different text prompts. Experimental
results demonstrate that baseline gradient inversion achieves preliminary reconstruction for both
prompt types, with comparable quantitative metrics (structural similarity SSIM∼0.12, peak signal-to-
noise ratio PSNR∼10.6 dB, perceptual similarity LPIPS∼0.78). Inv-Sam optimization significantly
enhances reconstruction quality: under generic prompts, SSIM increases by 77% to 0.219 while
LPIPS decreases by 24% to 0.591. For specific prompts, SSIM improvement reaches 55% with a
20% reduction in LPIPS.

Table 1: Experimental results of GradCFG and Inv-Sam under different prompt settings (Values in
parentheses indicate metric changes after applying Inv-Sam)

Setting GradCFG + Inv-Sam

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Generic prompts 0.1240 10.60 0.7778 0.2189 (+77%) 11.65 (+10%) 0.5911 (-24%)

Specific prompts 0.1213 10.65 0.7789 0.1875 (+55%) 11.51 (+8%) 0.6226 (-20%)

Visual results are presented in Figure 2 (generic prompts) and Figure 3 (specific prompts). The
gradient inversion stage effectively captures object contours and base colors, establishing structural
frameworks. Subsequently, Inv-Sam refinement enhances textural details, enabling reconstruction of
fine-grained features.

GradCFG    +Inv-Sam    Original GradCFG    +Inv-Sam    Original GradCFG    +Inv-Sam    Original

Figure 2: Reconstruction workflow under generic prompts: GradCFG results (left), Inv-Sam
optimized results (middle), Original picture (right)

Comprehensive analysis confirms the effective synergy: gradient inversion recovers structural frame-
works, while Inv-Sam enhances texture details. This mechanism achieves greater metric improve-
ments under generic prompts while maintaining robustness for specific prompt scenarios.

5.2 TEXT EMBEDDING RECOVERY ANALYSIS

In the fine-tuning scenario with generic text prompts, we conducted a systematic analysis of text
encoding embeddings. The evaluation procedure consisted of three sequential steps: First, we com-
puted the cosine similarity between the recovered text embeddings and the original text embeddings.

7
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A backpack sitting on top of a rock with 
mountains in the background

A red backpack sitting on a tree branch

A woman with a backpack looking up 
at the sky

A red backpack sitting on the ground 
in the woods

A red backpack hanging on a tree 
branch

GradCFG      +Inv-Sam        Original

Figure 3: Reconstruction results for backpack category images under various scenes.

Subsequently, both the recovered and original embeddings were separately employed as conditional
guidance inputs to a pre-trained CFG model to generate corresponding images. Finally, we quantified
the similarity between these generated image pairs using PSNR, thereby validating the semantic
consistency of the recovered embeddings.

Table 2: Recovery Performance for
Generic Embeddings

Similarity PSNR

0.7953 16.28

Quantitative results presented in Table 2 demonstrate that
the gradient inversion method effectively recovers generic
text embeddings while maintaining high semantic fidelity
(cosine similarity: 0.7953; PSNR: 16.28 dB). Visual com-
parisons in Figure 4 further confirm that images gener-
ated from recovered embeddings exhibit strong semantic
alignment with those produced from original embeddings, validating the method’s effectiveness in
preserving semantic information integrity.

original
prompt

recons
prompt

original
prompt

recons
prompt

original
prompt

recons
prompt

Figure 4: Generated image comparison based on text embeddings (left to right: backpack, dog,
monster toy). For each group: left image generated from original prompt embedding, right image
from reconstructed text embedding.

5.3 IMPACT OF ϵ RESET CYCLE ON RECONSTRUCTION QUALITY

This experiment systematically investigates the influence of different ϵ reset cycles on image recon-
struction quality in gradient inversion attacks. As shown in Figure 5, under a fixed total optimization
budget of 4000 iterations, we evaluated reconstruction performance at reset cycles of 1, 10, 100, 1000,
and 4000 (no reset).Experimental results reveal significant performance variations based on reset
cycle selection. When the reset cycle is too short (e.g., 1 or 10), the ϵ parameter cannot sufficiently
optimize to convergence regions, causing estimation bias in latent variables. This manifests as recon-
structed images with clear pixel-level details but noticeable structural misalignments and semantic
inconsistencies. Conversely, excessively long reset cycles (e.g., 1000) or no reset (4000) prevent

8
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adequate exploration of diversity within the ϵ solution space, causing optimization to stagnate in local
minima. This results in reconstructed images with blurred details and lacking texture features.

Original ������ = � ������ = �� ������ = ���������� = ���������� = ���

Figure 5: Impact of ϵ reset cycles on image reconstruction quality. From left to right: reset cycles = 1,
10, 100, 1000, 4000 (no reset). Experimental results demonstrate that a moderate reset cycle (100)
optimally balances optimization stability and solution space exploration capability.

In conclusion, the ϵ reset cycle requires careful balancing between optimization stability and solution
space exploration capacity. Our experimental findings indicate that a reset cycle of 100 achieves opti-
mal reconstruction quality, ensuring sufficient ϵ parameter optimization while maintaining effective
solution space exploration.

5.4 ANALYSIS OF NON-UNIQUENESS IN ϵ SOLUTIONS

In this experiment, we use both the SD 1.4 model and the Tiny-SD model. For each model, we select
100 different random initializations of the noise ϵ and independently optimize them under known
x0, C0, and t. During optimization, we track two quantities: (1) the average similarity between the
recovered noise ϵ̂ and the ground-truth noise ϵ, and (2) the average similarity between the simulated
gradient g and the original gradient g0. Figure 6 shows the evolution of these two curves for both
models.

We observe that, for both SD 1.4 and Tiny-SD, the simulated gradient g can become highly aligned
with g0 (similarity > 0.9), while the similarity between ϵ̂ and ϵ remains low (around 0.2). This
indicates that strict noise-level alignment is not required to achieve strong gradient alignment: multiple
distinct ϵ configurations can induce nearly identical gradients, implying non-uniqueness of feasible ϵ.
Therefore, our reconstruction method is designed so that the recovered variables remain valid across
many possible ϵ solutions. Concretely, we periodically reinitialize ϵ during optimization, encouraging
the remaining variables to satisfy gradient alignment under diverse, plausible noise realizations.

Tiny-SD SD 1.4

Figure 6: Optimization of randomly sampled noise ϵ under fixed x0, C0, and t, while monitoring
gradient alignment and noise similarity relative to the original data. Left: Tiny-SD model; right:
SD 1.4 model.

6 CONCLUSION

This study introduces a novel gradient inversion technique for reconstructing high-resolution images
and their corresponding text prompts during CFG-based model training. The proposed GradCFG
method enables, for the first time, simultaneous recovery of both training images and associated
text prompts, overcoming a key limitation of prior approaches that struggle with joint visual and
semantic reconstruction. An enhancement module, Inv-Sam, leverages the generative gap between
fine-tuned and initial models as prior knowledge, substantially improving image quality and semantic
accuracy. Experiments conducted under a DREAMBOOTH-like fine-tuning setup using TinySD models
demonstrate high-fidelity reconstruction of 512 × 512 complex scenes and accurate text recovery.
The method performs robustly across both generic and specific prompts, regardless of complexity.

9
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A ETHICS STATEMENT

This work investigates potential privacy vulnerabilities in classifier-free guidance (CFG) diffusion
models during personalized fine-tuning. We strictly adhere to the ICLR Code of Ethics and are
fully aware of the dual-use implications of our research. To mitigate potential risks, all experiments
exclusively utilize publicly available benchmark datasets (DREAMBOOTH), ensuring no private
or sensitive data is involved. The fundamental objective of this research is to raise community
awareness about privacy leakage threats in distributed learning scenarios, with the ultimate goal of
contributing to more secure federated learning frameworks. We emphasize that the defensive value
of understanding these vulnerabilities significantly outweighs any offensive potential. While our
method demonstrates reconstruction capabilities, we strongly oppose any malicious application of
this technique and believe transparent analysis of such attack vectors is essential for developing robust
defenses.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this research, comprehensive efforts have been made to provide com-
plete implementation details and resources. Full implementation code, pretrained model weights, and
evaluation scripts are available in the supplementary materials. The core methodologies (GradCFG
and Inv-Sam algorithms) are thoroughly described in Sec. 3, including optimization objectives, loss
functions, and key reparameterization strategies. Complete hyperparameter configurations (learning
rates, reset period Sreset, etc.) are documented in Appendix. E.

C ON THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed solely for writing assistance, including surface-level
text editing (grammar correction, clarity improvement), document formatting, and experimental code
comment generation. LLMs did not contribute to originating research ideas, claims, or conclusions.
The authors take full responsibility for all intellectual content. All LLM-assisted text was carefully
reviewed and rewritten by the authors to ensure accurate expression of the research.

D PROOF OF INV-SAM

Why path proximity implies proportional correction. We formalize this relationship as the
following Prop. D.1 and provide a dimension-free proof based on linear operator analysis.

Proposition D.1 (Proportionality of sampling-inverse path difference to model prediction difference).
Consider the DDIM framework with linear update function gt(x, ϵ) = Atx+Btϵ, where

At =

√
ᾱt√

ᾱt+1
, Bt =

√
1− ᾱt −

√
ᾱt
√
1− ᾱt+1√
ᾱt+1

. (7)

Define the path difference δt = xsam
t −xinv

t , model prediction difference ∆ϵθ = ϵθR(x
sam
t+1, t+1, Ĉ0)−

ϵθ0(x
sam
t+1, t + 1, Ĉ0), and sampling noise ϵ̃sam = ϵθ0(x

sam
t+1, t + 1, Ĉ0) + ωsam∆ϵθ. Under the path

proximity assumption xsam
t+1 ≈ xinv

t+1 (implying δt+1 ≈ 0 and similar denoising outputs), we have

δt ≈ Btωsam∆ϵθ. (8)

In particular, the path difference is proportional to the guidance-weighted model prediction difference:

xsam
t − xinv

t ∝ ωsam ·∆ϵθ (9)

with proportionality constant Bt depending only on the noise schedule.

Proof of Prop. D.1. Starting from the definition of the path difference and substituting the update
operations:

δt = gt(x
sam
t+1, ϵ̃

sam)− gt(x
inv
t+1, ϵθ0(x

inv
t+1, t+ 1, Ĉ0)) (10)
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Exploiting the linearity of the update function gt:

δt = At(x
sam
t+1 − xinv

t+1) +Bt(ϵ̃
sam − ϵθ0(x

inv
t+1, t+ 1, Ĉ0)) (11)

Substituting δt+1 and applying the path proximity assumption (δt+1 ≈ 0):

δt ≈ Bt(ϵ̃
sam − ϵθ0(x

inv
t+1, t+ 1, Ĉ0)) (12)

Expanding the sampling noise ϵ̃sam:

δt ≈ Bt

[
ϵθ0(x

sam
t+1, t+ 1, Ĉ0) + ωsam∆ϵθ − ϵθ0(x

inv
t+1, t+ 1, Ĉ0)

]
(13)

By path proximity, the denoising outputs are similar:

ϵθ0(x
sam
t+1, t+ 1, Ĉ0) ≈ ϵθ0(x

inv
t+1, t+ 1, Ĉ0) (14)

Thus the terms cancel, yielding the final result:

δt ≈ Btωsam∆ϵθ (15)

This establishes the proportionality with schedule-dependent constant Bt.

The interpretation reveals that Bt represents the time-dependent scaling from the noise schedule,
while ωsam directly controls the amplification of model corrections. This proportionality demonstrates
that our latent optimization algorithm effectively translates fine-tuning improvements into controlled
path deviations, maintaining the delicate balance between faithfulness to the input and incorporation
of desired model enhancements.

E FURTHER EXPERIMENTAL DETAILS

All experiments were conducted using the pre-trained TinySD model as the base architecture (a
lightweight version of Stable Diffusion with 3× 108 parameters) on NVIDIA A800 80GB PCIe GPU
platforms. The optimization process employed the Adam optimizer (β1 = 0.8, β2 = 0.9) with the
following learning rate configuration: 0.1 for image latent variables x̂0, 0.001 for text embeddings
Ĉ0, and 0.1 for both noise parameters ϵ̂ and timesteps t̂. The total number of iterations was fixed at
4000, with periodic reset of noise parameters ϵ̂ implemented every 100 steps. To prevent vanishing
gradients during optimization, we constrained the temporal range of t̂ to values between 400 and
600 throughout the reconstruction process. A default batch size of B = 5 was used throughout, with
gradient alignment measured using a cosine similarity-based distance function D(·) = 1− cos(·).
The feature decoupling regularization term S(·) was activated during the first 100 iterations to
enhance initial convergence stability. All experiments were performed under identical configuration
environments to ensure result comparability and reproducibility.

F DETAILED EXPERIMENTAL RESULTS OF GRADCFG

F.1 DETAILED RESULTS FOR FINETUNING EXPERIMENTS WITH GENERIC TEXT PROMPTS

This section provides the complete experimental results for the finetuning experiments using generic
text prompts, serving as supplementary data to Section 5.1. Table 3 presents the comprehensive
performance comparison between baseline GradCFG and our Inv-Sam enhanced approach across all
object categories.

Table 4 provides the detailed semantic recovery metrics, including embedding similarity scores and
image similarity measurements for each category.
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Table 3: GradCFG results using generic text prompts for fine-tuning.
Category GradCFG + Inv-Sam

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
Backpack 0.1267 10.84 0.7222 0.2441 11.97 0.5672
Can 0.1706 10.10 0.8073 0.3984 11.70 0.5813
Candle 0.0684 10.43 0.8096 0.1251 12.16 0.5640
Cat 0.1710 12.20 0.6745 0.2259 13.76 0.5321
Sneaker 0.0555 9.97 0.9142 0.1024 11.48 0.6376
Dog 0.2095 10.98 0.7446 0.3271 12.53 0.5690
Monster Toy 0.1298 10.43 0.7705 0.2706 11.78 0.5770
Robot Toy 0.0692 9.28 0.7801 0.1165 10.20 0.6102
Race Car 0.1170 10.15 0.7702 0.1623 10.87 0.6635

Average 0.1240 10.60 0.7778 0.2189 11.65 0.5911

Table 4: Evaluation of semantic recovery for text prompts
Category Similarity PSNR

Backpack 0.7538 14.94
Can 0.9228 16.69
Candle 0.8000 17.52
Cat 0.8457 18.08
Sneaker 0.7010 13.06
Dog 0.8766 19.49
Monster Toy 0.7330 13.10
Robot Toy 0.7368 15.30
Race Car 0.7878 17.32

Avg. 0.7953 16.28

F.2 DETAILED RESULTS FOR FINETUNING EXPERIMENTS WITH SPECIFIC TEXT PROMPTS

This section provides the complete experimental results for finetuning experiments using specific
text prompts, serving as supplementary data to Section 5.1. Table 5 presents the comprehensive
performance comparison between baseline GradCFG and our Inv-Sam enhanced approach under
complex textual conditions.

Table 5: GradCFG results using specific text prompts for fine-tuning
Category GradCFG + Inv-Sam

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
Backpack 0.1381 10.81 0.7252 0.2277 11.52 0.6253
Can 0.1626 10.03 0.8099 0.2037 10.62 0.7403
Candle 0.0743 10.28 0.8037 0.1222 11.73 0.5836
Cat 0.1553 11.78 0.7028 0.1840 13.28 0.5539
Sneaker 0.0627 10.35 0.9303 0.1272 12.43 0.6155
Dog 0.1861 10.43 0.7619 0.2583 11.33 0.6520
Monster Toy 0.1134 10.20 0.7913 0.2346 11.28 0.6251
Robot Toy 0.1142 10.61 0.7786 0.2230 11.36 0.6168
Race Car 0.0836 10.38 0.7546 0.1215 11.07 0.5652

Avg. 0.1213 10.65 0.7789 0.1875 11.51 0.6226

For complex text recovery tasks, this experiment first analyzes the text reconstruction performance
using backpack-related prompts as a detailed case study, followed by a comprehensive analysis across
all text categories. It is important to note that complete reconstruction of all textual information is not
our primary objective, as full recovery of complex semantic content presents significant challenges.
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Instead, we focus on evaluating the improvement in similarity between recovered text embeddings
and original data compared to null text embeddings. As demonstrated in Table 6, our method
achieves significant improvements in this measured similarity for specific prompt examples. Table 7
further presents the overall performance across all categories, showing that our approach substantially
enhances text embedding recovery quality by this metric, effectively demonstrating the utility of our
method without requiring complete semantic reconstruction.

Table 6: Semantic similarity comparison between reconstructed text embeddings and original prompts
Original Prompt Null Text Sim. Recon. Sim. Improv. (%)

A backpack sitting on top of a rock with
mountains in the background

0.244 0.375 53.7

A red backpack sitting on a tree branch 0.269 0.477 77.2
A woman with a backpack looking up at
the sky

0.302 0.351 16.5

A red backpack sitting on the ground in
the woods

0.326 0.480 47.5

A red backpack hanging on a tree branch 0.274 0.463 69.1

Avg. 0.283 0.429 52.8

Table 7: Overall text embedding recovery performance
Null Text Sim. Recon. Sim. Improv. (%)

0.3178 0.4536 42.7

G VISUAL COMPARISON OF INV-SAM GUIDANCE SCALES

In this experiment, we systematically investigate the optimization effects of different guidance scales
ωsam in the Inv-Sam Algorithm. 2 on preliminary reconstruction results. As shown in Figure 7, the
visual quality of reconstructed images progressively improves with increasing ωsam values. Notably,
when ωsam = 0, the reconstruction maintains the structural integrity and content fidelity of the
initial recovery without introducing distortion or artifacts. This demonstrates that our algorithm
can effectively enhance local details while preserving the fundamental framework of preliminary
reconstructions, highlighting its robustness and controllability during detail refinement.

GradCFG + Inv-Sam

���� = � ���� = ����� = ����� = �. ����� = �. ��

Figure 7: Visual comparison of reconstructed images using different ωsam values. From left to right:
Original image, GradCFG baseline and Inv-Sam with ωsam = 0, 0.25, 0.5, 1.0, 2.0. Higher guidance
scales generally produce sharper details and better semantic alignment with the original prompt.

H GENERALIZATION EXPERIMENTS ON LARGER MODELS

To validate the generalization of GradCFG to larger diffusion models, we evaluate the method on the
sd1.4 model. For each object category, we set the batch size to 2 and apply GradCFG and Inv-Sam
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to recover both images and text, thereby assessing the performance of our approach on a large-scale
CFG model.

H.1 IMAGE RECONSTRUCTION

We apply GradCFG and Inv-Sam to reconstruct images and report SSIM, PSNR and LPIPS as
quantitative metrics. Table 8 presents the per-category metric results; Figure 8 shows two-stage
reconstruction examples (recovered results alongside the ground-truth) for the categories dog and
robot toy. Overall, GradCFG achieves comparable quantitative scores and satisfactory visual quality
on sd1.4, indicating robustness of the method across CFG models of different scales.

Table 8: Image reconstruction performance of GradCFG and Inv-Sam on sd1.4 (SSIM / PSNR /
LPIPS)

Category GradCFG + Inv-Sam

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
Backpack 0.1568 10.120 0.7645 0.4511 12.110 0.5011
Cat 0.1219 10.860 0.6761 0.2367 11.590 0.5165
Dog 0.2137 11.180 0.6995 0.2652 11.250 0.6071
Monster Toy 0.1388 10.550 0.7541 0.3440 13.320 0.5120
Robot Toy 0.0821 9.120 0.7400 0.1415 10.370 0.5623

Avg. 0.1427 10.366 0.7268 0.2877 11.728 0.5398

      GradCFG              +Inv-Sam              Original       GradCFG              +Inv-Sam              Original

Figure 8: Example image reconstructions on sd1.4 using GradCFG and GradCFG + Inv-Sam
(categories: dog, robot toy). From left to right: ground-truth, GradCFG reconstruction, GradCFG +
Inv-Sam refinement.

H.2 TEXT RECONSTRUCTION

To evaluate semantic fidelity of the recovered text, we first compute cosine similarity between
embeddings of recovered and ground-truth prompts. Then we use both recovered and ground-truth
text embeddings to condition sd1.4 and generate images; the PSNR between generated images
serves as a proxy for semantic consistency. Table 9 reports per-category embedding similarity
and mean PSNR; Figure 9 shows sample generations conditioned on recovered vs. ground-truth
embeddings for dog and robot toy. Results indicate that GradCFG recovers meaningful textual
semantics on sd1.4 and preserves semantic consistency in downstream generation.
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Table 9: Embedding similarity and generated-image PSNR comparison per category on sd1.4.
Category Similarity PSNR

Backpack 0.6538 13.47
Cat 0.8174 15.60
Dog 0.8641 17.20
Monster Toy 0.6311 12.45
Robot Toy 0.6201 15.34

Avg. 0.7173 14.012

original
prompt

recons
prompt

original
prompt

recons
prompt

Figure 9: Sample generations conditioned on recovered vs. ground-truth text embeddings on sd1.4
(categories: dog, robot toy).

In summary, these experiments demonstrate that GradCFG can recover both image details and
meaningful textual semantics on the larger sd1.4 model, supporting the method’s transferability
and robustness across CFG model scales.

I COMPARISON WITH EXISTING METHODS

Implementing gradient inversion attacks on CFG (Classifier-Free Guidance) models is particularly
challenging because these models are larger in scale and their training involves multimodal data
(image and text). Consequently, there is currently no prior work that directly provides a gradient
inversion method operating on CFG models. We identified a line of diffusion-model inversion
methods designed for prompt-free settings, such as GIDM, but their original designs do not support
recovery of text prompts and thus cannot be directly applied to CFG text recovery.

To construct a fair and informative baseline, we adapt GIDM to our setting by explicitly supplying the
ground-truth prompt as a prior during image reconstruction (i.e., we inject the textual information into
GIDM in the experiments) to approximate its upper-bound performance when prompt information is
available. Table 10 reports GIDM’s per-category reconstruction metrics under the “known prompt”
condition; Table 11 summarizes the overall comparison between GIDM (given prompt) and GradCFG
(no prompt); Figure 10 provides a visual comparison of the two methods’ reconstructions.
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Table 10: Image reconstruction results of GIDM under known-prompt condition (per-category).
Category SSIM ↑ PSNR ↑ LPIPS ↓
Backpack 0.0559 8.547 0.8276
Can 0.0658 8.029 0.9089
Candle 0.0461 7.959 0.8365
Cat 0.0435 8.012 0.8534
Sneaker 0.0377 8.610 0.9566
Dog 0.1245 9.012 0.8112
Monster Toy 0.0506 7.930 0.8485
Robot Toy 0.0356 8.151 0.8228
Race Car 0.0477 8.213 0.8539

Avg. 0.0564 8.273 0.8566

Table 11: Overall comparison between GIDM (given prompt) and GradCFG (no prompt) on image
reconstruction.

Method SSIM ↑ PSNR ↑ LPIPS ↓
GIDM (given prompt) 0.0564 8.273 0.8566
GradCFG (no prompt) 0.1240 10.60 0.7778

GIDM
(Given Prompt)

GIDM
(Given Prompt)

GIDM
(Given Prompt)

Original OriginalOriginalGradCFG
(No Prompt)

GradCFG
(No Prompt)

GradCFG
(No Prompt)

Figure 10: Visual comparison between GIDM and GradCFG (reconstructions vs. ground-truth).

From the quantitative and visual comparisons we observe that, even when GIDM is given the
true prompt (a favorable condition for the baseline), GradCFG—operating without access to the
prompt—still substantially outperforms GIDM across all three metrics (SSIM increases from 0.0564
to 0.1240, ≈ +120%; PSNR increases from 8.273 to 10.60, ≈ +28%; LPIPS decreases from 0.8566
to 0.7778,≈ −10%). This comparison highlights two points: (i) directly ported prompt-free diffusion
inversion methods have a limited performance ceiling on CFG multimodal tasks, and (ii) GradCFG
demonstrates stronger recovery capability and robustness when dealing with higher uncertainty and
multimodal coupling.
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J ABLATION STUDY ON Lmix

To investigate the role of Lmix in suppressing feature mixing and promoting feature disentanglement,
we perform an ablation study on its activation schedule. We introduce the indicator Sswitch, defined
as the iteration after which Lmix is no longer included in the loss (i.e., Lmix is applied only during
the first Sswitch optimization steps). Table 12 reports GradCFG’s quantitative performance under
different Sswitch settings, and Figure 11 provides the corresponding visual comparisons.

Table 12: Effect of different Sswitch settings on reconstruction performance
Sswitch SSIM ↑ PSNR ↑ LPIPS ↓
0 0.2486 11.210 0.7021
100 0.2655 11.280 0.6877
1000 0.2639 11.380 0.6940
4000 0.2522 11.170 0.6828

������� = � ������� = ����������� = ����������� = ���Original

Figure 11: Visual comparison under different Sswitch settings. Sswitch = 0 indicates that Lmix is
never activated, while larger values correspond to longer activation periods.

The results demonstrate a consistent pattern. When Lmix is disabled entirely (Sswitch = 0), recon-
structed images display pronounced feature mixing and reduced structural coherence, indicating
that Lmix effectively suppresses cross-sample feature interference. If Lmix remains active for the
entire optimization (e.g., Sswitch = 4000), feature disentanglement is stronger but some fine-grained
details—such as textures and local contrast—tend to be muted, which can degrade certain metrics.
Intermediate activation durations (e.g., Sswitch = 100 or 1000) strike a favorable balance, preserving
both feature separation and detail recovery and yielding more robust overall results.

In summary, Lmix primarily serves as a regularizer that reduces feature mixing and improves visual
separability between samples rather than uniformly boosting all quantitative metrics. Empirically,
setting Sswitch to a moderate value offers a practical trade-off between feature disentanglement and
detail preservation, leading to improved perceptual quality.
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K RECOVERY UNDER DIFFERENT RANDOM SEEDS

To evaluate the robustness of our pipeline to different random initializations, we test both the first-stage
method (GradCFG) and the complete two-stage pipeline (GradCFG + Inv-Sam) on the backpack
category using multiple random seeds. For each seed we measure image reconstruction quality (SSIM
/ PSNR / LPIPS) and text-recovery consistency (embedding similarity and PSNR of images generated
from recovered embeddings). Table 13 reports per-seed image reconstruction metrics for the two
configurations, while Table 14 summarizes text-recovery stability.

Table 13: Image reconstruction under different seeds.
GradCFG + Inv-Sam

Seed SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
seed 1 0.1933 11.780 0.7024 0.2862 12.770 0.5781
seed 2 0.1895 11.230 0.7145 0.3149 12.190 0.5646
seed 3 0.1834 11.390 0.7134 0.2732 12.000 0.6027

Avg. 0.1887 11.467 0.7101 0.2914 12.320 0.5818

Table 14: Stability of text recovery under different seeds (embedding similarity and generated-image
PSNR).

Seed Similarity ↑ PSNR ↑
seed 1 0.7555 16.73
seed 2 0.7542 16.52
seed 3 0.7556 16.87

Avg. 0.7551 16.707

The per-seed results indicate that GradCFG (stage 1) produces stable reconstructions across different
random seeds: SSIM varies by about 0.0099 (0.1834–0.1933), PSNR by ≈0.55 dB, and LPIPS by
≈0.0121. The full two-stage method (GradCFG + Inv-Sam) yields higher average metrics but exhibits
slightly larger sensitivity to the initialization: SSIM spans ≈0.0417, PSNR ≈0.77 dB, and LPIPS
≈0.0381 across the three seeds. This behavior is consistent with the pipeline design—Inv-Sam refines
the stage-1 result to improve visual fidelity, but the additional refinement steps increase dependence
on initialization and optimization trajectory, leading to somewhat greater variance.

Text-recovery metrics are highly stable: the recovered prompt embeddings vary negligibly across
seeds (embedding similarity differs by only ≈0.0014), and the PSNR of images generated from those
embeddings varies by about 0.35 dB. These observations suggest that the textual semantics recovered
by our method are largely seed-insensitive and, when used to condition generation, produce consistent
downstream images.

In summary, GradCFG provides a robust and repeatable stage-1 reconstruction across seeds, while the
full two-stage pipeline consistently improves visual fidelity at the cost of slightly increased sensitivity
to initialization.

L INV-SAM WITHOUT ACCESS TO THE FINE-TUNED MODEL

In practical scenarios, an attacker or researcher may not have access to the parameters of the fine-
tuned target model θR. To handle this more challenging setting, we further develop a variant of
Inv-Sam that does not rely on the fine-tuned model. Instead, the method only uses the available
model parameters θr (i.e., the base model before fine-tuning) to perform a post-hoc refinement step.
The key idea is to leverage the generative capability of the base model itself to enhance the initially
recovered image x0 and text prompt C0 produced by GradCFG, thereby improving visual fidelity and
text–image consistency even in the absence of fine-tuned model priors.
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Concretely, the procedure first performs a reverse diffusion process guided by an empty text prompt
Cϕ to remove artifacts and map the recovered image back into a more semantically stable latent region.
It then performs a forward conditional sampling step guided by the recovered text C0 to reinforce
semantic content. Algorithm 3 summarizes the full procedure of Inv-Sam when the fine-tuned model
is unavailable.

Algorithm 3 Inv-Sam Optimization Using Only θr

Input: Initial recovered latent x̂0 ∈ Rm; recovered text embedding Ĉ0 ∈ R77×768

sampling-guidance scale ωsam
Noise schedule {ᾱt}Tt=0
Available model parameters θr
Phase I: Reverse Diffusion (Artifact Removal) xinv

0 ← x̂0

for t = 0 to T − 1 do
ϵempty ← ϵθr (x

inv
t , t, Cϕ) ϵ̃

inv ← ϵempty

xinv
t+1 ←

√
ᾱt+1

(
xinv
t −

√
1−ᾱt ϵ̃

inv

√
ᾱt

)
+
√
1− ᾱt+1 ϵ̃

inv

Phase II: Conditional Sampling (Semantic Reinforcement) xsam
T ← xinv

T
for t = T − 1 to 0 do

ϵempty ← ϵθr (x
sam
t+1 , t+ 1, Cϕ)

ϵtext ← ϵθr (x
sam
t+1 , t+ 1, Ĉ0)

ϵ̃sam ← ϵempty + ωsam(ϵtext − ϵempty)

xsam
t ←

√
ᾱt

(
xsam
t+1−
√

1−ᾱt+1 ϵ̃sam
√
ᾱt+1

)
+
√
1− ᾱt ϵ̃

sam

Output: Final refined latent x̂opt
0 ← xsam

0

Figure 12 compares the enhancement effects of Inv-Sam under two settings: when the fine-tuned
model is available, and when the fine-tuned model is unknown.

   GradCFG         + Inv-Sam        + Inv-Sam          Original
                         (no fine-tune)

   GradCFG         + Inv-Sam        + Inv-Sam          Original
                         (no fine-tune)

Figure 12: Comparison of Inv-Sam with and without access to the fine-tuned model.

The results show that even without the fine-tuned model, Inv-Sam can still noticeably improve
visual fidelity and local detail. Although the enhancement is less pronounced compared to using the
fine-tuned model, this further confirms that the discrepancy between the fine-tuned and base models
indeed provides additional useful priors for reconstructing the original training data.
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M GRADCFG UNDER MULTI-CLASS FINE-TUNING

In this experiment, we evaluate the effectiveness of our method in a more challenging multi-class
fine-tuning setting. Concretely, we fine-tune the diffusion model on several distinct object categories
and then apply both GradCFG and Inv-Sam to reconstruct the underlying image and text data from
gradients. For each method, we report three standard image similarity metrics (SSIM, PSNR, LPIPS)
together with the cosine similarity between the reconstructed and original text embeddings.

Table 15 summarizes the quantitative reconstruction performance under this multi-category fine-
tuning scenario, while Figure 13 presents visual examples of the recovered images. We observe that
our approach can consistently recover meaningful images and texts across different object categories,
and Inv-Sam further improves reconstruction quality over GradCFG alone. These results indicate that
our gradient inversion attack is not restricted to single-category personalization, but remains effective
and robust in more realistic multi-class fine-tuning scenarios.

Table 15: Image reconstruction performance of GradCFG and Inv-Sam under multi-class fine-tuning,
evaluated at a given text embedding similarity.

Text similarity GradCFG + Inv-Sam

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
0.7795 0.1364 10.460 0.7762 0.2033 11.520 0.6461

GradCFG  +Inv-Sam   Original

“can”

“candle”

“cat”

“dog”

“backpack”

Figure 13: Qualitative results of gradient inversion attacks under multi-class fine-tuning.
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