

000 001 002 003 004 005 GRADCFG: GRADIENT INVERSION OF CLASSIFIER- 006 FREE GUIDANCE DIFFUSION MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Gradient inversion attacks, as a means of privacy theft, have been extensively
032 studied and applied in classifier models, yet research on gradient inversion for
033 diffusion models, particularly classifier-free guidance (CFG) diffusion models,
034 remains relatively underdeveloped. CFG models such as Stable Diffusion present
035 significant challenges for such attacks due to their complex training mechanisms,
036 including the high-dimensional search space caused by multimodal variables, the
037 non-uniqueness of the noise ϵ solution space, and the difficulty in optimizing dis-
038 crete time steps t . To address these challenges, this paper proposes a novel joint
039 inversion framework featuring two core algorithmic innovations: the **GradCFG**
040 algorithm, which integrates a four-variable co-optimization mechanism for sim-
041 taneous reconstruction of image latent variables \mathbf{x}_0 , text embeddings C_0 , noise ϵ ,
042 and reparameterized continuous time steps t , alongside a periodic restart strategy
043 for ϵ to enhance solution stability and generalization; and the **Inv-Sam** algorithm,
044 a model-difference-based generation optimization method that leverages the gener-
045 ative capability disparities between pre-fine-tuning and post-fine-tuning models to
046 restore high-resolution details through a reverse-forward diffusion editing process.
047 Systematic experiments in CFG model fine-tuning scenarios demonstrate that the
048 proposed method effectively achieves high-quality image-text joint reconstruc-
049 tion for various textual conditions ranging from concise descriptions to complex
050 semantic combinations.
051

1 INTRODUCTION

052 Diffusion models (Ho et al., 2020) have achieved remarkable breakthroughs in the field of image gener-
053 ation by transforming random noise into high-fidelity images through a progressive denoising process.
054 Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) further introduces a text-conditioning mech-
055 anism, enabling semantically controllable image synthesis. Representative CFG models such as Stable
056 Diffusion (SD) (Rombach et al., 2022) have been widely adopted in industry. With the growing
057 demand for personalized generation, users often fine-tune pre-trained models on private data (Gal
058 et al., 2022; Kumari et al., 2023; Hu et al., 2021; Bahmani et al., 2022). To protect privacy, users
059 typically share only training gradients with the server instead of the original images (Sun et al., 2021).
060 However, this process still faces severe privacy leakage risks: malicious attackers can reconstruct
061 private training samples from the gradients via Gradient Inversion Attacks. Such attacks have been
062 extensively demonstrated in classification models (Hatamizadeh et al., 2022; Zhu et al., 2019; Wei
063 et al., 2020), yet the unique training mechanism of diffusion models provides inherent defense
064 capabilities. In particular, for CFG models, the text-guided mechanism further increases the difficulty
065 of gradient inversion.
066

067 The challenge of performing gradient inversion on CFG-based diffusion models stems from their
068 multimodal and stochastic training pipeline. During training, the client samples a Gaussian noise
069 vector ϵ and a time step t independently, and computes gradients from both the image latent \mathbf{x}_0
070 and the text embedding C_0 . Consequently, the attacker must recover a coupled four-variable tuple
071 $(\mathbf{x}_0, C_0, \epsilon, t)$ instead of a single image, substantially enlarging the solution space. Our analysis further
072 shows that the sampled noise ϵ does not have a unique solution—multiple ϵ values can satisfy gradient
073 alignment when accompanied by appropriately adjusted (\mathbf{x}_0, C_0, t) . This non-uniqueness requires
074 the remaining variables to flexibly adapt to feasible noise solutions rather than converge to a single
075 fixed point. At the same time, the discrete nature of the time step t prevents direct gradient-based
076

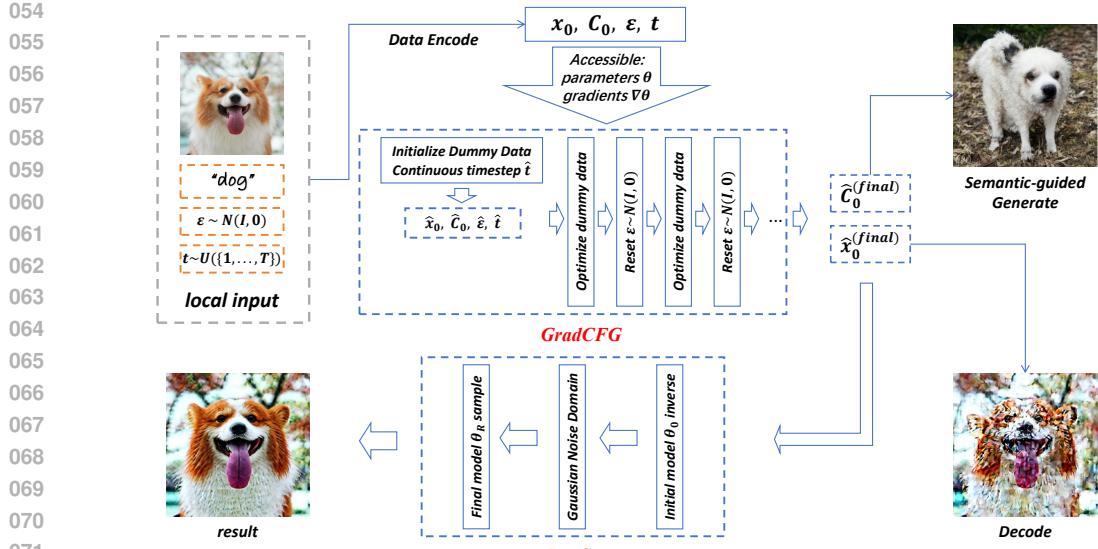


Figure 1: The GradCFG method reconstructs the original data through gradient matching, employing a time-step \hat{t} continuous strategy and a periodic $\hat{\epsilon}$ reset mechanism to mitigate variable discreteness and solution non-uniqueness. Furthermore, the Inv-Sam method refines the initially reconstructed image by leveraging the generative capability gap between the initial and final state models, thereby recovering richer image details.

updates, making the joint optimization even more challenging. Moreover, given that the CFG model is already a well-trained generative model, we are particularly interested in exploring how its inherent generative capability can be incorporated into the reconstruction process to further enhance the quality and detail of the recovered results.

To address these challenges, this paper proposes an innovative solution consisting of two interconnected algorithmic contributions, as shown in Figure 1. First, we propose the **GradCFG** algorithm, which constructs a four-variable joint optimization framework that reparameterizes the discrete time step t as a continuous variable \hat{t} , enabling simultaneous optimization of \hat{x}_0 , \hat{C}_0 , $\hat{\epsilon}$, and \hat{t} . Through periodic restart and re-optimization of $\hat{\epsilon}$, the GradCFG algorithm allows \hat{x}_0 , \hat{C}_0 , and \hat{t} to achieve gradient alignment across different $\hat{\epsilon}$ values. Second, we develop the **Inv-Sam** algorithm, a model-disparity optimization strategy that leverages the difference in generative capabilities between the pre-trained model at initial and final fine-tuning stages. This approach runs a reverse-forward diffusion process guided by the pre-trained and fine-tuned models respectively, strategically injecting model-disparity information into the reconstruction pipeline to significantly enhance textual alignment and semantic adaptation in recovered images.

Experiments are conducted under personalized fine-tuning scenarios for CFG models, employing a DREAMBOOTH-like (Ruiz et al., 2023) fine-tuning paradigm to systematically evaluate the method’s effectiveness. Our comprehensive evaluation framework encompasses both general textual prompts and specific textual prompts during fine-tuning, enabling a thorough analysis of reconstruction performance across different semantic granularities. We simultaneously assess the recovery quality of both image data and textual embeddings, providing a holistic evaluation of multimodal privacy leakage. Additionally, we conduct ablation studies to systematically investigate the specific impact of the periodic restart mechanism on reconstruction fidelity, while also designing controlled experiments to validate the non-uniqueness of solutions for the noise variable ϵ . The proposed approach is rigorously validated on multiple fine-tuning datasets containing diverse semantic categories, demonstrating robust performance across varying image contents and textual descriptions.

The core contributions of this paper are as follows:

- For the first time, we empirically demonstrate a joint image-text privacy leakage attack in text-guided diffusion models (CFG), opening a new attack surface.

108

- We propose the first joint optimization framework that simultaneously reconstructs images, text, noise, and time steps, overcoming the challenge of variable coupling under complex training mechanisms.
- We innovatively leverage the generative capability disparity of diffusion models during training to design a reconstruction optimization method, significantly enhancing the detail restoration and visual quality of high-resolution images.

110

111

112

113

114

115 **2 RELATED WORK**

116

117 **Classifier-Free Guidance (CFG) Models and Privacy.** Diffusion model variants integrating CFG
118 have become mainstream architectures in text-to-image generation (Rombach et al., 2022; Dhariwal
119 & Nichol, 2021; Saharia et al., 2022; Ramesh et al., 2022). Current research on CFG model
120 privacy primarily focuses on Membership Inference Attacks (Shokri et al., 2017), Model Inversion
121 Attacks (Zhou et al., 2024), and Training Data Extraction (Carlini et al., 2023), while privacy leakage
122 risks from **gradient inversion attacks** during training remain systematically underexplored.

123

124 **Gradient Inversion.** Early pioneering work (e.g., DLG proposed by Zhu et al. (2019)) first demonstrated
125 the feasibility of reconstructing training data from gradients, building upon earlier recognition
126 of gradients as a primary leakage channel in collaborative learning (Podschwadt et al., 2022). The
127 attack was primarily effective for small batches (e.g., size=1) and low-resolution images. Subsequent
128 research significantly enhanced its practicality and scope: Geiping et al. (2020) improved recon-
129 struction quality on complex datasets (e.g., ImageNet) by introducing a cosine similarity loss and
130 critical regularizations like Total Variation (Zhu & Blaschko, 2021); Zhao et al. (2020) developed an
131 analytical method to deduce labels from gradients exactly; Yin et al. (2021) proposed GradInversion,
132 which leveraged Batch Normalization statistics and group consistency to tackle larger batches and
133 higher-resolution images. Recently, methodologies have diversified: Generation-based attacks (GEN-
134 GIA) (Wei et al., 2020; Jeon et al., 2021) employ pre-trained generative models (e.g., GANs, diffusion
135 models) as strong priors to produce high-fidelity reconstructions, but their reliance on external data
136 and sensitivity to architectures limit generality. Analytics-based attacks (ANA-GIA) (Gao et al.,
137 2021; He et al., 2019) derive data through maliciously altering model parameters or analyzing model
138 outputs, which is efficient but operates under a strong threat model. In addition to direct attacks, Tian
139 et al. (2025) explored reconstructing data by analyzing the weight differences between pre-training
140 and post-training states of models. Notably, Huang et al. (2025a) investigated gradient inversion in
141 diffusion models, but their approach fails to address the fundamental challenges of sampling noise ϵ
142 multiplicity and time step t discontinuity, while also being constrained by dependency on pre-trained
143 generators. Currently, research on gradient inversion attacks targeting diffusion models, particularly
144 their widely adopted CFG mechanism, remains notably scarce (Yu et al., 2024).

145

146 **3 METHODOLOGY**

147

148 This paper focuses on the fine-tuning scenario of CFG models, employing a training paradigm **similar**
149 to DREAMBOOTH (Ruiz et al., 2023). The objective is to reconstruct private training data—including
150 images and their corresponding text embeddings—from gradient information.

151

152 **3.1 CFG MODEL FINE-TUNING FRAMEWORK**

153

154 In this distributed training framework, each client (user) maintains four private data elements during
155 training round r : Raw image X , Text prompt P , Sampled time step $t \sim \mathcal{U}(\{1, \dots, T\})$, Gaussian
156 noise $\epsilon \sim \mathcal{N}(0, I)$. None of these elements are directly shared with the server. The fine-tuning
157 process is shown in Algorithm 1. The training objective minimizes the following denoising loss
158 function:

$$\mathcal{L}(\theta_r) = \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[\left\| \epsilon - \epsilon_{\theta_r}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t, C_0) \right\|^2 \right], \quad (1)$$

159 where the frozen pretrained image encoder $\text{Vae}(\cdot)$ encodes the raw image X into latent representation
160 $\mathbf{x}_0 = \text{Vae}(X)$, and the text encoder $\text{Encoder}(\cdot)$ maps the text prompt P to conditional embedding
161 $C_0 = \text{Encoder}(P)$; θ_r denotes the learnable parameters of the diffusion model at round r , $\bar{\alpha}_t$ is the
162 hyperparameter controlling the noise schedule in the forward diffusion process, and $\epsilon_{\theta_r}(\cdot)$ represents
163 the noise prediction network taking (\cdot) as input.

162 **Algorithm 1** CFG Model Training Process
163 **Input:** Training rounds R , user dataset \mathcal{X} , text prompt P , diffusion steps T , learning rate η
164 Pretrained model θ_0 , pretrained text encoder Encoder, pretrained VAE $\text{Vae}(\cdot)$
165 **for** training round $r = 1, 2, \dots, R$ **do**
166 **User execution:**
167 Encode image: $\mathbf{x}_0 \leftarrow \text{Vae}(X)$
168 Encode text: $C_0 \leftarrow \text{Encoder}(P)$
169 Sample time step: $t \sim \mathcal{U}(\{1, \dots, T\})$
170 Sample noise: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
171 Compute loss function: $\mathcal{L}(\theta_r) = \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[\|\epsilon - \epsilon_{\theta_r}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t, C_0)\|^2 \right]$
172 Compute gradient: $g^{(r)} = \nabla_{\theta_r} \mathcal{L}(\theta_r)$
173 Send $g^{(r)}$ to server
174 **Server execution:**
175 Update model: $\theta_{r+1} \leftarrow \theta_r - \eta g^{(r)}$
176
177 **Output:** Optimized model parameters θ_R

178
179 Clients locally compute the gradient $g^{(r)} = \nabla_{\theta_r} \mathcal{L}(\theta_r)$ and transmit only this gradient to the server.
180 The server coordinates R training rounds by aggregating gradients and updating global model
181 parameters.
182

183 3.2 GRADIENT INVERSION ATTACK METHODOLOGY (GRADCFG)

184 3.2.1 ATTACK MODELING

185 A malicious server can inversely reconstruct users' private data \mathbf{x}_0 and text embeddings C_0 when only
186 accessing model gradients $g^{(r)}$, where noise vector ϵ and time step t remain private user information.
187 This attack process is formalized as the following multivariate optimization problem:

188
$$\min_{\hat{\mathbf{x}}_0, \hat{C}_0, \hat{\epsilon}, \hat{t}} \mathcal{D}(\nabla_{\theta_r} \mathcal{L}(\hat{\mathbf{x}}_0, \hat{C}_0, \hat{\epsilon}, \hat{t}; \theta_r), g^{(r)}) + \eta(s) \mathcal{L}_{\text{mix}}(\hat{\mathbf{x}}_0) \quad (2)$$

189 where $\mathcal{D}(\cdot, \cdot)$ is the gradient similarity metric function (cosine similarity is adopted in this paper),
190 $g^{(r)} = \nabla_{\theta_r} \mathcal{L}(\mathbf{x}_0, C_0, \epsilon, t; \theta_r)$ represents the observed true gradient, and $\nabla_{\theta_r} \mathcal{L}(\hat{\mathbf{x}}_0, \hat{C}_0, \hat{\epsilon}, \hat{t}; \theta_r)$ is
191 the gradient based on virtual parameters. $\mathcal{L}_{\text{mix}}(\hat{\mathbf{x}}_0)$ is defined as the disentanglement regularizer,
192 implemented by computing the mean cosine similarity of all data pairs in the reconstructed image set
193 $\{\hat{\mathbf{x}}_0^{(1)}, \dots, \hat{\mathbf{x}}_0^{(k)}\}$:
194

195
$$\mathcal{L}_{\text{mix}}(\hat{\mathbf{x}}_0) = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^k \frac{\langle \hat{\mathbf{x}}_0^{(i)}, \hat{\mathbf{x}}_0^{(j)} \rangle}{\|\hat{\mathbf{x}}_0^{(i)}\|_2 \cdot \|\hat{\mathbf{x}}_0^{(j)}\|_2} \quad (3)$$

196 The regularization strength is dynamically controlled by the iteration step scheduler $\eta(s)$, where s
197 denotes the current optimization iteration count:
198

199
$$\eta(s) = \begin{cases} \eta_{\text{max}} & s < S_{\text{switch}} \\ 0 & s \geq S_{\text{switch}} \end{cases} \quad (4)$$

200 This scheduling strategy preserves the full regularizer $\eta_{\text{max}} \mathcal{L}_{\text{mix}}(\hat{\mathbf{x}}_0)$ during the early training phase
201 ($s < S_{\text{switch}}$) to enforce feature disentanglement and prevent feature mixing in reconstructed samples.
202 During the later training phase ($s \geq S_{\text{switch}}$), the regularizer constraint is completely removed,
203 allowing the optimization process to focus solely on minimizing the gradient difference $\mathcal{D}(\cdot, \cdot)$. Here,
204 S_{switch} is a preset iteration count threshold controlling the transition from the feature disentanglement
205 phase to the precision optimization phase.

206 3.2.2 QUADRUPLE COLLABORATIVE OPTIMIZATION ALGORITHM

207 Defining the pseudo-gradient objective function $\mathcal{G} = \mathcal{D}(\nabla_{\theta_r} \mathcal{L}(\hat{\mathbf{x}}_0, \hat{C}_0, \hat{\epsilon}, \hat{t}; \theta_r), g^{(r)})$ with its corre-
208 sponding gradient denoted as $\nabla \mathcal{G}$, we propose a quadruple collaborative optimization framework:

216 **Image Reconstruction (x₀ optimization):** To maintain latent space consistency, an initial point
 217 $\hat{X}_0 \sim \mathcal{N}(0, I)$ is sampled from image space and projected into latent space via the VAE encoder:
 218 $\hat{x}_0^{(0)} = \text{VAE}(\hat{X}_0)$ Update rule: $\hat{x}_0 \leftarrow \hat{x}_0 - \eta_x \nabla_{\hat{x}_0} \mathcal{G}$
 219

220 **Text Reconstruction (C₀ optimization):** Initialized with empty text $\hat{P} = \phi$, projected through the
 221 text encoder: $\hat{C}_0^{(0)} = \text{Encoder}(\hat{P})$ Update rule: $\hat{C}_0 \leftarrow \hat{C}_0 - \eta_C \nabla_{\hat{C}_0} \mathcal{G}$
 222

223 **Time Step Reconstruction (t optimization):** To optimize the originally discrete time step $\hat{t} \in$
 224 $\{1, \dots, T\}$ in continuous space, we propose a function reparameterization strategy. Addressing the
 225 discrete nature of the noise scheduler α_t , we establish a continuous mapping through mathematical
 226 transformation. Specifically, considering the definition $\alpha_t = \prod_{i=1}^t (1 - \beta_i)$ where $\beta_i = f(i)$ is a
 227 predefined discrete scheduling function (e.g., linear or cosine decay), when $\beta_i \ll 1$, we utilize the
 228 natural logarithm approximation $\ln(1 - \beta_i) \approx -\beta_i$ to transform the discrete summation $\sum_{i=1}^t \ln(1 -$
 229 $\beta_i)$ into integral form:

$$\ln \alpha_t \approx - \sum_{i=1}^t \beta_i \approx - \int_0^t f(x) dx \quad (5)$$

234 This derivation yields the continuous time step representation: $\alpha(t) \approx \exp\left(-\int_0^t f(x) dx\right)$.
 235

236 This continuous representation enables time step \hat{t} to be updated via standard gradient descent:
 237 $\hat{t} \leftarrow \hat{t} - \eta_t \nabla_{\hat{t}} \mathcal{G}$
 238

239 **Noise Reconstruction with Dynamic Reset (ε optimization):** Initialize $\hat{\epsilon} \sim \mathcal{N}(0, I)$. We incor-
 240 porate a dynamic reset mechanism where $\hat{\epsilon}$ is randomly resampled from $\mathcal{N}(0, I)$ at fixed intervals
 241 S_{reset} :

$$\hat{\epsilon} \sim \mathcal{N}(0, I) \quad \text{when } s \equiv 0 \pmod{S_{\text{reset}}} \quad (6)$$

244 This mechanism continuously searches for new solutions within the solution space, allowing other
 245 optimization variables (\hat{x}_0 , \hat{C}_0 , and \hat{t}) to adapt to different solutions and achieve optimal performance.
 246 The update rule is: $\hat{\epsilon} \leftarrow \hat{\epsilon} - \eta_{\epsilon} \nabla_{\hat{\epsilon}} \mathcal{G}$
 247

249 3.3 BIDIRECTIONAL SAMPLING ENHANCEMENT ALGORITHM (INV-SAM)

251 The preliminary reconstruction results $(\hat{x}_0, \hat{C}_0) \in \mathbb{R}^{m \times B} \times \mathbb{R}^{77 \times 768}$ obtained through gradient
 252 inversion at round r are mapped to natural image space via the pretrained VAE decoder: $\hat{X} =$
 253 $\text{VAE}^{-1}(\hat{x}_0)$ However, \hat{X} suffers from insufficient visual fidelity and missing high-frequency details.
 254 We leverage the dynamic evolution of generative capabilities during fine-tuning: compared to the
 255 initial model θ_0 , the final model θ_R generates images with richer training-set features under text
 256 embedding C_0 guidance. This paper proposes using the generative capability difference $\theta_R - \theta_0$ as
 257 an optimization prior.

258 Inspired by reverse diffusion and forward sampling in image editing (Miyake et al., 2024; Huang
 259 et al., 2025b), we design a text-guided latent optimization method (Algorithm 2). Using the recovered
 260 condition \hat{C}_0 , we first perform inverse diffusion with θ_0 to project \hat{x}_0 into noise space, then execute
 261 sampling using the generative difference $\theta_R - \theta_0$ to reproject to latent space. Analysis of the inverse
 262 and sampling path relationship reveals that under path proximity (Miyake et al., 2024), their difference
 263 is approximately proportional to the model prediction difference:
 264

$$\mathbf{x}_t^{\text{sam}} - \mathbf{x}_t^{\text{inv}} \propto \omega_{\text{sam}} \cdot \underbrace{(\epsilon_{\theta_R}(\mathbf{x}_{t+1}^{\text{sam}}, t+1, \hat{C}_0) - \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{sam}}, t+1, \hat{C}_0))}_{\Delta \epsilon_{\theta}}$$

265 where $\Delta \epsilon_{\theta}$ quantifies the directional correction from fine-tuning. A formal proof is provided in
 266 Appendix D.
 267

270 **Algorithm 2** Inv-Sam Optimization

271 **Input:** Initial latent state $\hat{\mathbf{x}}_0 \in \mathbb{R}^m$, reconstructed text embedding $\hat{C}_0 \in \mathbb{R}^{77 \times 768}$
 272 Reverse step guidance factor $\omega_{\text{inv}} = 1$, sampling step guidance factor ω_{sam}
 273 Noise schedule $\{\bar{\alpha}_t\}_{t=0}^T$
 274 Fine-tuned model parameters θ_R , initial model parameters θ_0
 275 **Phase I: Inverse Diffusion** $\mathbf{x}_0^{\text{inv}} \leftarrow \hat{\mathbf{x}}_0$
 276 **for** $t = 0$ **to** $T - 1$ **do**
 277 $\tilde{\epsilon}^{\text{inv}} \leftarrow \epsilon_{\theta_0}(\mathbf{x}_t^{\text{inv}}, t, \hat{C}_0)$
 278 $\mathbf{x}_{t+1}^{\text{inv}} \leftarrow \sqrt{\bar{\alpha}_{t+1}} \left(\frac{\mathbf{x}_t^{\text{inv}} - \sqrt{1 - \bar{\alpha}_t} \tilde{\epsilon}^{\text{inv}}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t+1}} \tilde{\epsilon}^{\text{inv}}$
 279 **Phase II: Conditional Sampling** $\mathbf{x}_T^{\text{sam}} \leftarrow \mathbf{x}_T^{\text{inv}}$
 280 **for** $t = T - 1$ **to** 0 **do**
 281 $\epsilon_{\text{empty}} \leftarrow \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{sam}}, t + 1, \hat{C}_0)$
 282 $\epsilon_{\text{text}} \leftarrow \epsilon_{\theta_R}(\mathbf{x}_{t+1}^{\text{sam}}, t + 1, \hat{C}_0)$
 283 $\tilde{\epsilon}^{\text{sam}} \leftarrow \epsilon_{\text{empty}} + \omega_{\text{sam}}(\epsilon_{\text{text}} - \epsilon_{\text{empty}})$
 284 $\mathbf{x}_t^{\text{sam}} \leftarrow \sqrt{\bar{\alpha}_t} \left(\frac{\mathbf{x}_{t+1}^{\text{sam}} - \sqrt{1 - \bar{\alpha}_{t+1}} \tilde{\epsilon}^{\text{sam}}}{\sqrt{\bar{\alpha}_{t+1}}} \right) + \sqrt{1 - \bar{\alpha}_t} \tilde{\epsilon}^{\text{sam}}$
 285 **Output:** Optimized latent state $\hat{\mathbf{x}}_0^{\text{opt}} \leftarrow \mathbf{x}_0^{\text{sam}}$

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Experiments utilize the standard DREAMBOOTH (Ruiz et al., 2023) training dataset containing image samples at 512×512 resolution. All models are fine-tuned using the TinySD (Kim et al., 2023) framework to ensure parameter-efficient optimization. Two experimental scenarios are designed:

Gradient inversion for generic text prompt fine-tuning: Constructs a category-uniform scenario where images of similar objects (e.g., backpacks in different environments) are fine-tuned using unified text prompts (e.g., "backpack").

Gradient inversion for specific text prompt fine-tuning: Constructs a fine-grained control scenario where each image is paired with a dedicated granular prompt (e.g., "a red backpack on a mountain trail") to evaluate reconstruction performance under complex text conditions.

To the best of our knowledge, this is the first work to study gradient inversion attacks on CFG-based diffusion models. Existing approaches are unable to jointly recover both images and text prompts from gradients under this setting. While no directly comparable baselines currently exist, we still make an effort to construct several reasonable baseline variants in Appendix I. These baselines allow us to carefully analyze and contrast our method with alternative designs. Therefore, our main evaluation compares our full pipeline (GradCFG + Inv-Sam) with these constructed baselines and with its own ablated variants to isolate the contribution of each component.

4.2 EVALUATION METRICS

To comprehensively assess reconstruction quality, we employ both quantitative and qualitative evaluation frameworks. Image reconstruction quality is measured using three complementary metrics: Peak Signal-to-Noise Ratio (PSNR) (Wang et al., 2004) for pixel-level fidelity assessment, Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) for human visual perception similarity (with lower values indicating better performance), and the Structural Similarity Index Measure (SSIM) (Wang et al., 2004) for assessing the perceptual quality related to structural information, luminance, and contrast.

For semantic recovery evaluation of generic prompts, we implement a dual-modality analysis framework that computes cosine similarity between reconstructed and original prompts in embedding space to quantify semantic consistency, while also generating images guided by original and reconstructed prompts under identical initial noise conditions using the TinySD model to compute PSNR between paired images as an indirect measure of semantic recovery effectiveness.

324

5 RESULTS

325

5.1 IMAGE RECONSTRUCTION ANALYSIS

328 We conducted gradient inversion experiments under two distinct fine-tuning scenarios: generic text
 329 prompts and detailed text prompts. The reconstruction process employed a two-stage approach: initial
 330 image reconstruction was performed using the GradCFG method, followed by detail enhancement
 331 via the Inv-Sam algorithm.

332 Table 1 presents comparative reconstruction results under different text prompts. Experimental
 333 results demonstrate that baseline gradient inversion achieves preliminary reconstruction for both
 334 prompt types, with comparable quantitative metrics (structural similarity SSIM \sim 0.12, peak signal-to-
 335 noise ratio PSNR \sim 10.6 dB, perceptual similarity LPIPS \sim 0.78). Inv-Sam optimization significantly
 336 enhances reconstruction quality: under generic prompts, SSIM increases by 77% to 0.219 while
 337 LPIPS decreases by 24% to 0.591. For specific prompts, SSIM improvement reaches 55% with a
 338 20% reduction in LPIPS.

339 Table 1: Experimental results of GradCFG and Inv-Sam under different prompt settings (Values in
 340 parentheses indicate metric changes after applying Inv-Sam)

Setting	GradCFG			+ Inv-Sam		
	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow
Generic prompts	0.1240	10.60	0.7778	0.2189 (+77%)	11.65 (+10%)	0.5911 (-24%)
Specific prompts	0.1213	10.65	0.7789	0.1875 (+55%)	11.51 (+8%)	0.6226 (-20%)

348 Visual results are presented in Figure 2 (generic prompts) and Figure 3 (specific prompts). The
 349 gradient inversion stage effectively captures object contours and base colors, establishing structural
 350 frameworks. Subsequently, Inv-Sam refinement enhances textural details, enabling reconstruction of
 351 fine-grained features.

368 Figure 2: Reconstruction workflow under generic prompts: GradCFG results (left), Inv-Sam
 369 optimized results (middle), Original picture (right)

370 Comprehensive analysis confirms the effective synergy: gradient inversion recovers structural frame-
 371 works, while Inv-Sam enhances texture details. This mechanism achieves greater metric improve-
 372 ments under generic prompts while maintaining robustness for specific prompt scenarios.

374

5.2 TEXT EMBEDDING RECOVERY ANALYSIS

375 In the fine-tuning scenario with generic text prompts, we conducted a systematic analysis of text
 376 encoding embeddings. The evaluation procedure consisted of three sequential steps: First, we com-
 377 puted the cosine similarity between the recovered text embeddings and the original text embeddings.

Figure 3: Reconstruction results for backpack category images under various scenes.

Subsequently, both the recovered and original embeddings were separately employed as conditional guidance inputs to a pre-trained CFG model to generate corresponding images. Finally, we quantified the similarity between these generated image pairs using PSNR, thereby validating the semantic consistency of the recovered embeddings.

Quantitative results presented in Table 2 demonstrate that the gradient inversion method effectively recovers generic text embeddings while maintaining high semantic fidelity (cosine similarity: 0.7953; PSNR: 16.28 dB). Visual comparisons in Figure 4 further confirm that images generated from recovered embeddings exhibit strong semantic alignment with those produced from original embeddings, validating the method’s effectiveness in preserving semantic information integrity.

Table 2: Recovery Performance for Generic Embeddings

Similarity	PSNR
0.7953	16.28

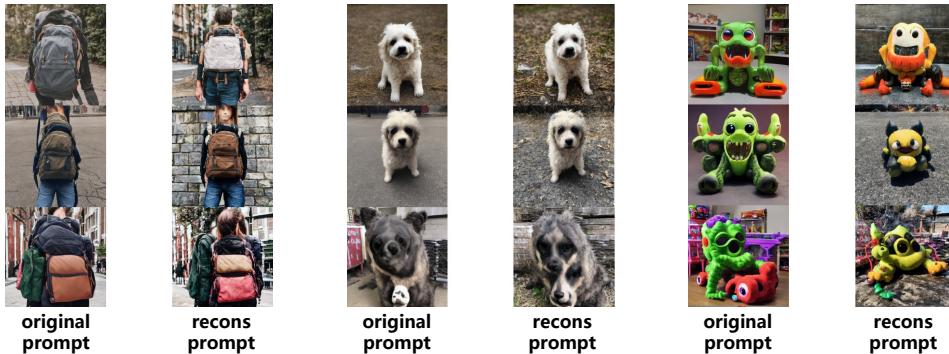


Figure 4: Generated image comparison based on text embeddings (left to right: backpack, dog, monster toy). For each group: left image generated from original prompt embedding, right image from reconstructed text embedding.

5.3 IMPACT OF ϵ RESET CYCLE ON RECONSTRUCTION QUALITY

This experiment systematically investigates the influence of different ϵ reset cycles on image reconstruction quality in gradient inversion attacks. As shown in Figure 5, under a fixed total optimization budget of 4000 iterations, we evaluated reconstruction performance at reset cycles of 1, 10, 100, 1000, and 4000 (no reset). Experimental results reveal significant performance variations based on reset cycle selection. When the reset cycle is too short (e.g., 1 or 10), the ϵ parameter cannot sufficiently optimize to convergence regions, causing estimation bias in latent variables. This manifests as reconstructed images with clear pixel-level details but noticeable structural misalignments and semantic inconsistencies. Conversely, excessively long reset cycles (e.g., 1000) or no reset (4000) prevent

adequate exploration of diversity within the ϵ solution space, causing optimization to stagnate in local minima. This results in reconstructed images with blurred details and lacking texture features.

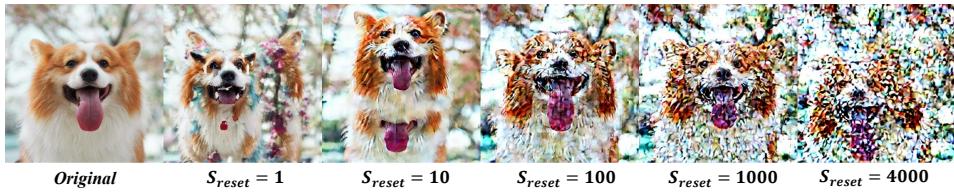


Figure 5: Impact of ϵ reset cycles on image reconstruction quality. From left to right: reset cycles = 1, 10, 100, 1000, 4000 (no reset). Experimental results demonstrate that a moderate reset cycle (100) optimally balances optimization stability and solution space exploration capability.

In conclusion, the ϵ reset cycle requires careful balancing between optimization stability and solution space exploration capacity. Our experimental findings indicate that a reset cycle of 100 achieves optimal reconstruction quality, ensuring sufficient ϵ parameter optimization while maintaining effective solution space exploration.

5.4 ANALYSIS OF NON-UNIQUENESS IN ϵ SOLUTIONS

In this experiment, we use both the SD 1.4 model and the Tiny-SD model. For each model, we select 100 different random initializations of the noise ϵ and independently optimize them under known \mathbf{x}_0 , C_0 , and t . During optimization, we track two quantities: (1) the average similarity between the recovered noise $\hat{\epsilon}$ and the ground-truth noise ϵ , and (2) the average similarity between the simulated gradient g and the original gradient g_0 . Figure 6 shows the evolution of these two curves for both models.

We observe that, for both SD 1.4 and Tiny-SD, the simulated gradient g can become highly aligned with g_0 (similarity > 0.9), while the similarity between $\hat{\epsilon}$ and ϵ remains low (around 0.2). This indicates that strict noise-level alignment is not required to achieve strong gradient alignment: multiple distinct ϵ configurations can induce nearly identical gradients, implying non-uniqueness of feasible ϵ . Therefore, our reconstruction method is designed so that the recovered variables remain valid across many possible ϵ solutions. Concretely, we periodically reinitialize ϵ during optimization, encouraging the remaining variables to satisfy gradient alignment under diverse, plausible noise realizations.

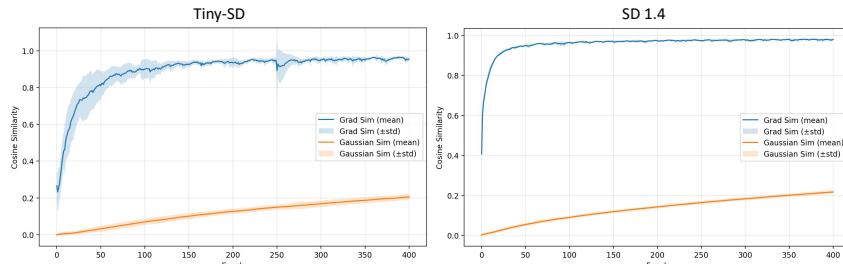


Figure 6: Optimization of randomly sampled noise ϵ under fixed \mathbf{x}_0 , C_0 , and t , while monitoring gradient alignment and noise similarity relative to the original data. Left: Tiny-SD model; right: SD 1.4 model.

6 CONCLUSION

This study introduces a novel gradient inversion technique for reconstructing high-resolution images and their corresponding text prompts during CFG-based model training. The proposed GradCFG method enables, for the first time, simultaneous recovery of both training images and associated text prompts, overcoming a key limitation of prior approaches that struggle with joint visual and semantic reconstruction. An enhancement module, Inv-Sam, leverages the generative gap between fine-tuned and initial models as prior knowledge, substantially improving image quality and semantic accuracy. Experiments conducted under a DREAMBOOTH-like fine-tuning setup using TinySD models demonstrate high-fidelity reconstruction of 512×512 complex scenes and accurate text recovery. The method performs robustly across both generic and specific prompts, regardless of complexity.

486 REFERENCES
487

488 Shervin Bahmani, Andrea Park, Daniel Kappler, Bernt Schiele, and Vladislav Golyanik. Prompt
489 tuning for text-based image editing. *arXiv preprint arXiv:2212.09608*, 2022.

490 Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr,
491 Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models,
492 2023. URL <https://arxiv.org/abs/2301.13188>.

493 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
494 <https://arxiv.org/abs/2105.05233>.

495 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
496 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
497 inversion. In *The Eleventh International Conference on Learning Representations*, 2022.

498 Wei Gao, Shangwei Guo, Tianwei Zhang, Han Qiu, Yonggang Wen, and Yang Liu. Privacy-
499 preserving collaborative learning with automatic transformation search, 2021. URL <https://arxiv.org/abs/2011.12505>.

500 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients
501 – how easy is it to break privacy in federated learning?, 2020. URL <https://arxiv.org/abs/2003.14053>.

502 Ali Hatamizadeh, Hongxu Yin, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, and Pavlo Molchanov.
503 Gradvit: Gradient inversion of vision transformers, 2022. URL <https://arxiv.org/abs/2203.11894>.

504 Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model inversion attacks against collaborative
505 inference. In *Proceedings of the 35th Annual Computer Security Applications Conference, AC-*
506 *SAC '19*, pp. 148–162, New York, NY, USA, 2019. Association for Computing Machinery.
507 ISBN 9781450376280. doi: 10.1145/3359789.3359824. URL <https://doi.org/10.1145/3359789.3359824>.

508 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
509 2022. Introduces the Classifier-Free Guidance (CFG) technique for diffusion models.

510 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *CoRR*,
511 [abs/2006.11239](https://arxiv.org/abs/2006.11239), 2020. URL <https://arxiv.org/abs/2006.11239>.

512 Edward J Hu, Yelong Shen, Phillip Wallis, Zeb Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
513 Chen. Lora: Low-rank adaptation of large language models. In *International Conference on*
514 *Learning Representations*, 2021.

515 Jiyue Huang, Chi Hong, Stefanie Roos, and Lydia Y. Chen. Gidm: Gradient inversion of federated
516 diffusion models. In Mila Dalla Preda, Sebastian Schrittwieser, Vincent Naessens, and Bjorn
517 De Sutter (eds.), *Availability, Reliability and Security*, pp. 380–401, Cham, 2025a. Springer Nature
518 Switzerland. ISBN 978-3-032-00624-0.

519 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang,
520 Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey. *IEEE Trans-*
521 *actions on Pattern Analysis and Machine Intelligence*, 47(6):4409–4437, June 2025b. ISSN 1939-
522 3539. doi: 10.1109/tpami.2025.3541625. URL <http://dx.doi.org/10.1109/TPAMI.2025.3541625>.

523 Jinwoo Jeon, Jaechang Kim, Kangwook Lee, Sewoong Oh, and Jungseul Ok. Gradient inversion with
524 generative image prior, 2021. URL <https://arxiv.org/abs/2110.14962>.

525 Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: Architecturally
526 compressed stable diffusion for efficient text-to-image generation. *ICML Workshop on Efficient Sys-*
527 *tems for Foundation Models (ES-FoMo)*, 2023. URL <https://openreview.net/forum?id=bOVydU0XKC>.

540 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 541 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF Conference on Computer*
 542 *Vision and Pattern Recognition*, pp. 9461–9471, 2023.

543 Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast
 544 image inversion for editing with text-guided diffusion models, 2024. URL <https://arxiv.org/abs/2305.16807>.

545 Robert Podschwadt, Daniel Takabi, and Peizhao Hu. Sok: Privacy-preserving deep learning with
 546 homomorphic encryption, 2022. URL <https://arxiv.org/abs/2112.12855>.

547 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 548 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

549 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 550 resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer*
 551 *Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp.
 552 10674–10685. IEEE, 2022.

553 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 554 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023. URL
 555 <https://arxiv.org/abs/2208.12242>.

556 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
 557 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
 558 Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
 559 diffusion models with deep language understanding, 2022. URL <https://arxiv.org/abs/2205.11487>.

560 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 561 against machine learning models, 2017. URL <https://arxiv.org/abs/1610.05820>.

562 Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging, 2021. URL <https://arxiv.org/abs/2104.11375>.

563 Hanling Tian, Yuhang Liu, Mingzhen He, Zhengbao He, Zhehao Huang, Ruikai Yang, and Xiaolin
 564 Huang. Simulating training dynamics to reconstruct training data from deep neural networks.
 565 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ZJftXKy12x>.

566 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
 567 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
 568 doi: 10.1109/TIP.2003.819861.

569 Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
 570 Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning, 2020.
 571 URL <https://arxiv.org/abs/2004.10397>.

572 Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. See
 573 through gradients: Image batch recovery via gradinversion, 2021. URL <https://arxiv.org/abs/2104.07586>.

574 Lei Yu, Meng Han, Yiming Li, Changting Lin, Yao Zhang, Mingyang Zhang, Yan Liu, Haiqin Weng,
 575 Yuseok Jeon, Ka-Ho Chow, and Stacy Patterson. A survey of privacy threats and defense in vertical
 576 federated learning: From model life cycle perspective, 2024. URL <https://arxiv.org/abs/2402.03688>.

577 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 578 effectiveness of deep features as a perceptual metric, 2018. URL <https://arxiv.org/abs/1801.03924>.

579 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients, 2020.
 580 URL <https://arxiv.org/abs/2001.02610>.

594 Zhanke Zhou, Jianing Zhu, Fengfei Yu, Xuan Li, Xiong Peng, Tongliang Liu, and Bo Han. Model
595 inversion attacks: A survey of approaches and countermeasures, 2024. URL <https://arxiv.org/abs/2411.10023>.
596

597 Junyi Zhu and Matthew Blaschko. R-gap: Recursive gradient attack on privacy, 2021. URL
598 <https://arxiv.org/abs/2010.07733>.
599

600 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients, 2019. URL <https://arxiv.org/abs/1906.08935>.
601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A ETHICS STATEMENT
649

650 This work investigates potential privacy vulnerabilities in classifier-free guidance (CFG) diffusion
651 models during personalized fine-tuning. We strictly adhere to the ICLR Code of Ethics and are
652 fully aware of the dual-use implications of our research. To mitigate potential risks, all experiments
653 exclusively utilize publicly available benchmark datasets (DREAMBOOTH), ensuring no private
654 or sensitive data is involved. The fundamental objective of this research is to raise community
655 awareness about privacy leakage threats in distributed learning scenarios, with the ultimate goal of
656 contributing to more secure federated learning frameworks. We emphasize that the defensive value
657 of understanding these vulnerabilities significantly outweighs any offensive potential. While our
658 method demonstrates reconstruction capabilities, we strongly oppose any malicious application of
659 this technique and believe transparent analysis of such attack vectors is essential for developing robust
660 defenses.

661 B REPRODUCIBILITY STATEMENT
662

664 To ensure the reproducibility of this research, comprehensive efforts have been made to provide com-
665 plete implementation details and resources. Full implementation code, pretrained model weights, and
666 evaluation scripts are available in the supplementary materials. The core methodologies (GradCFG
667 and Inv-Sam algorithms) are thoroughly described in Sec. 3, including optimization objectives, loss
668 functions, and key reparameterization strategies. Complete hyperparameter configurations (learning
669 rates, reset period S_{reset} , etc.) are documented in Appendix E.

671 C ON THE USE OF LARGE LANGUAGE MODELS
672

673 Large language models (LLMs) were employed solely for writing assistance, including surface-level
674 text editing (grammar correction, clarity improvement), document formatting, and experimental code
675 comment generation. LLMs did not contribute to originating research ideas, claims, or conclusions.
676 The authors take full responsibility for all intellectual content. All LLM-assisted text was carefully
677 reviewed and rewritten by the authors to ensure accurate expression of the research.

679 D PROOF OF INV-SAM
680

681 **Why path proximity implies proportional correction.** We formalize this relationship as the
682 following Prop. D.1 and provide a dimension-free proof based on linear operator analysis.

684 **Proposition D.1** (Proportionality of sampling-inverse path difference to model prediction difference).
685 *Consider the DDIM framework with linear update function $g_t(\mathbf{x}, \epsilon) = A_t \mathbf{x} + B_t \epsilon$, where*

$$686 \quad A_t = \frac{\sqrt{\bar{\alpha}_t}}{\sqrt{\bar{\alpha}_{t+1}}}, \quad B_t = \sqrt{1 - \bar{\alpha}_t} - \frac{\sqrt{\bar{\alpha}_t} \sqrt{1 - \bar{\alpha}_{t+1}}}{\sqrt{\bar{\alpha}_{t+1}}}. \quad (7)$$

689 Define the path difference $\delta_t = \mathbf{x}_t^{sam} - \mathbf{x}_t^{inv}$, model prediction difference $\Delta\epsilon_\theta = \epsilon_{\theta_R}(\mathbf{x}_{t+1}^{sam}, t+1, \hat{C}_0) -$
690 $\epsilon_{\theta_0}(\mathbf{x}_{t+1}^{sam}, t+1, \hat{C}_0)$, and sampling noise $\tilde{\epsilon}^{sam} = \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{sam}, t+1, \hat{C}_0) + \omega_{sam} \Delta\epsilon_\theta$. Under the path
691 proximity assumption $\mathbf{x}_{t+1}^{sam} \approx \mathbf{x}_{t+1}^{inv}$ (implying $\delta_{t+1} \approx 0$ and similar denoising outputs), we have

$$692 \quad \delta_t \approx B_t \omega_{sam} \Delta\epsilon_\theta. \quad (8)$$

694 In particular, the path difference is proportional to the guidance-weighted model prediction difference:

$$696 \quad \mathbf{x}_t^{sam} - \mathbf{x}_t^{inv} \propto \omega_{sam} \cdot \Delta\epsilon_\theta \quad (9)$$

697 with proportionality constant B_t depending only on the noise schedule.

699 **Proof of Prop. D.1.** Starting from the definition of the path difference and substituting the update
700 operations:

$$701 \quad \delta_t = g_t(\mathbf{x}_{t+1}^{sam}, \tilde{\epsilon}^{sam}) - g_t(\mathbf{x}_{t+1}^{inv}, \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{inv}, t+1, \hat{C}_0)) \quad (10)$$

702 Exploiting the linearity of the update function g_t :
 703

$$704 \quad \delta_t = A_t(\mathbf{x}_{t+1}^{\text{sam}} - \mathbf{x}_{t+1}^{\text{inv}}) + B_t(\tilde{\epsilon}^{\text{sam}} - \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{inv}}, t+1, \hat{C}_0)) \quad (11)$$

706 Substituting δ_{t+1} and applying the path proximity assumption ($\delta_{t+1} \approx 0$):
 707

$$708 \quad \delta_t \approx B_t(\tilde{\epsilon}^{\text{sam}} - \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{inv}}, t+1, \hat{C}_0)) \quad (12)$$

710 Expanding the sampling noise $\tilde{\epsilon}^{\text{sam}}$:
 711

$$712 \quad \delta_t \approx B_t \left[\epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{sam}}, t+1, \hat{C}_0) + \omega_{\text{sam}} \Delta \epsilon_{\theta} - \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{inv}}, t+1, \hat{C}_0) \right] \quad (13)$$

714 By path proximity, the denoising outputs are similar:
 715

$$716 \quad \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{sam}}, t+1, \hat{C}_0) \approx \epsilon_{\theta_0}(\mathbf{x}_{t+1}^{\text{inv}}, t+1, \hat{C}_0) \quad (14)$$

718 Thus the terms cancel, yielding the final result:
 719

$$720 \quad \delta_t \approx B_t \omega_{\text{sam}} \Delta \epsilon_{\theta} \quad (15)$$

722 This establishes the proportionality with schedule-dependent constant B_t . \square
 723

725 The interpretation reveals that B_t represents the time-dependent scaling from the noise schedule,
 726 while ω_{sam} directly controls the amplification of model corrections. This proportionality demonstrates
 727 that our latent optimization algorithm effectively translates fine-tuning improvements into controlled
 728 path deviations, maintaining the delicate balance between faithfulness to the input and incorporation
 729 of desired model enhancements.

731 E FURTHER EXPERIMENTAL DETAILS

733 All experiments were conducted using the pre-trained TinySD model as the base architecture (a
 734 lightweight version of Stable Diffusion with 3×10^8 parameters) on NVIDIA A800 80GB PCIe GPU
 735 platforms. The optimization process employed the Adam optimizer ($\beta_1 = 0.8, \beta_2 = 0.9$) with the
 736 following learning rate configuration: 0.1 for image latent variables $\hat{\mathbf{x}}_0$, 0.001 for text embeddings
 737 \hat{C}_0 , and 0.1 for both noise parameters $\hat{\epsilon}$ and timesteps \hat{t} . The total number of iterations was fixed at
 738 4000, with periodic reset of noise parameters $\hat{\epsilon}$ implemented every 100 steps. To prevent vanishing
 739 gradients during optimization, we constrained the temporal range of \hat{t} to values between 400 and
 740 600 throughout the reconstruction process. A default batch size of $B = 5$ was used throughout, with
 741 gradient alignment measured using a cosine similarity-based distance function $\mathcal{D}(\cdot) = 1 - \cos(\cdot)$.
 742 The feature decoupling regularization term $\mathcal{S}(\cdot)$ was activated during the first 100 iterations to
 743 enhance initial convergence stability. All experiments were performed under identical configuration
 744 environments to ensure result comparability and reproducibility.

746 F DETAILED EXPERIMENTAL RESULTS OF GRADCFG

749 F.1 DETAILED RESULTS FOR FINETUNING EXPERIMENTS WITH GENERIC TEXT PROMPTS

750 This section provides the complete experimental results for the finetuning experiments using generic
 751 text prompts, serving as supplementary data to Section 5.1. Table 3 presents the comprehensive
 752 performance comparison between baseline GradCFG and our Inv-Sam enhanced approach across all
 753 object categories.

754 Table 4 provides the detailed semantic recovery metrics, including embedding similarity scores and
 755 image similarity measurements for each category.

756

757 Table 3: GradCFG results using generic text prompts for fine-tuning.

Category	GradCFG			+ Inv-Sam		
	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow
Backpack	0.1267	10.84	0.7222	0.2441	11.97	0.5672
Can	0.1706	10.10	0.8073	0.3984	11.70	0.5813
Candle	0.0684	10.43	0.8096	0.1251	12.16	0.5640
Cat	0.1710	12.20	0.6745	0.2259	13.76	0.5321
Sneaker	0.0555	9.97	0.9142	0.1024	11.48	0.6376
Dog	0.2095	10.98	0.7446	0.3271	12.53	0.5690
Monster Toy	0.1298	10.43	0.7705	0.2706	11.78	0.5770
Robot Toy	0.0692	9.28	0.7801	0.1165	10.20	0.6102
Race Car	0.1170	10.15	0.7702	0.1623	10.87	0.6635
Average	0.1240	10.60	0.7778	0.2189	11.65	0.5911

768

769

770 Table 4: Evaluation of semantic recovery for text prompts

Category	Similarity	PSNR
Backpack	0.7538	14.94
Can	0.9228	16.69
Candle	0.8000	17.52
Cat	0.8457	18.08
Sneaker	0.7010	13.06
Dog	0.8766	19.49
Monster Toy	0.7330	13.10
Robot Toy	0.7368	15.30
Race Car	0.7878	17.32
Avg.	0.7953	16.28

784

785 F.2 DETAILED RESULTS FOR FINETUNING EXPERIMENTS WITH SPECIFIC TEXT PROMPTS

786
787 This section provides the complete experimental results for finetuning experiments using specific
788 text prompts, serving as supplementary data to Section 5.1. Table 5 presents the comprehensive
789 performance comparison between baseline GradCFG and our Inv-Sam enhanced approach under
790 complex textual conditions.

791

792

793 Table 5: GradCFG results using specific text prompts for fine-tuning

Category	GradCFG			+ Inv-Sam		
	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow
Backpack	0.1381	10.81	0.7252	0.2277	11.52	0.6253
Can	0.1626	10.03	0.8099	0.2037	10.62	0.7403
Candle	0.0743	10.28	0.8037	0.1222	11.73	0.5836
Cat	0.1553	11.78	0.7028	0.1840	13.28	0.5539
Sneaker	0.0627	10.35	0.9303	0.1272	12.43	0.6155
Dog	0.1861	10.43	0.7619	0.2583	11.33	0.6520
Monster Toy	0.1134	10.20	0.7913	0.2346	11.28	0.6251
Robot Toy	0.1142	10.61	0.7786	0.2230	11.36	0.6168
Race Car	0.0836	10.38	0.7546	0.1215	11.07	0.5652
Avg.	0.1213	10.65	0.7789	0.1875	11.51	0.6226

805

806

807 For complex text recovery tasks, this experiment first analyzes the text reconstruction performance
808 using backpack-related prompts as a detailed case study, followed by a comprehensive analysis across
809 all text categories. It is important to note that complete reconstruction of all textual information is not
our primary objective, as full recovery of complex semantic content presents significant challenges.

Instead, we focus on evaluating the improvement in similarity between recovered text embeddings and original data compared to null text embeddings. As demonstrated in Table 6, our method achieves significant improvements in this measured similarity for specific prompt examples. Table 7 further presents the overall performance across all categories, showing that our approach substantially enhances text embedding recovery quality by this metric, effectively demonstrating the utility of our method without requiring complete semantic reconstruction.

Table 6: Semantic similarity comparison between reconstructed text embeddings and original prompts

Original Prompt	Null Text Sim.	Recon. Sim.	Improv. (%)
A backpack sitting on top of a rock with mountains in the background	0.244	0.375	53.7
A red backpack sitting on a tree branch	0.269	0.477	77.2
A woman with a backpack looking up at the sky	0.302	0.351	16.5
A red backpack sitting on the ground in the woods	0.326	0.480	47.5
A red backpack hanging on a tree branch	0.274	0.463	69.1
Avg.	0.283	0.429	52.8

Table 7: Overall text embedding recovery performance

Null Text Sim.	Recon. Sim.	Improv. (%)
0.3178	0.4536	42.7

G VISUAL COMPARISON OF INV-SAM GUIDANCE SCALES

In this experiment, we systematically investigate the optimization effects of different guidance scales ω_{sam} in the Inv-Sam Algorithm. 2 on preliminary reconstruction results. As shown in Figure 7, the visual quality of reconstructed images progressively improves with increasing ω_{sam} values. Notably, when $\omega_{\text{sam}} = 0$, the reconstruction maintains the structural integrity and content fidelity of the initial recovery without introducing distortion or artifacts. This demonstrates that our algorithm can effectively enhance local details while preserving the fundamental framework of preliminary reconstructions, highlighting its robustness and controllability during detail refinement.

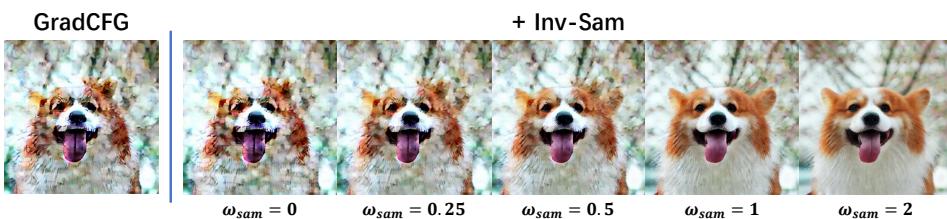


Figure 7: Visual comparison of reconstructed images using different ω_{sam} values. From left to right: Original image, GradCFG baseline and Inv-Sam with $\omega_{\text{sam}} = 0, 0.25, 0.5, 1.0, 2.0$. Higher guidance scales generally produce sharper details and better semantic alignment with the original prompt.

H GENERALIZATION EXPERIMENTS ON LARGER MODELS

To validate the generalization of GradCFG to larger diffusion models, we evaluate the method on the `sd1.4` model. For each object category, we set the batch size to 2 and apply GradCFG and Inv-Sam

864 to recover both images and text, thereby assessing the performance of our approach on a large-scale
 865 CFG model.

867 H.1 IMAGE RECONSTRUCTION

870 We apply GradCFG and Inv-Sam to reconstruct images and report SSIM, PSNR and LPIPS as
 871 quantitative metrics. Table 8 presents the per-category metric results; Figure 8 shows two-stage
 872 reconstruction examples (recovered results alongside the ground-truth) for the categories dog and
 873 robot toy. Overall, GradCFG achieves comparable quantitative scores and satisfactory visual quality
 874 on `sd1.4`, indicating robustness of the method across CFG models of different scales.

876 **Table 8: Image reconstruction performance of GradCFG and Inv-Sam on `sd1.4` (SSIM / PSNR /**
 877 **LPIPS)**

879 Category	880 GradCFG			881 + Inv-Sam		
	882 SSIM \uparrow	883 PSNR \uparrow	884 LPIPS \downarrow	885 SSIM \uparrow	886 PSNR \uparrow	887 LPIPS \downarrow
888 Backpack	0.1568	10.120	0.7645	0.4511	12.110	0.5011
889 Cat	0.1219	10.860	0.6761	0.2367	11.590	0.5165
890 Dog	0.2137	11.180	0.6995	0.2652	11.250	0.6071
891 Monster Toy	0.1388	10.550	0.7541	0.3440	13.320	0.5120
892 Robot Toy	0.0821	9.120	0.7400	0.1415	10.370	0.5623
893 Avg.	0.1427	10.366	0.7268	0.2877	11.728	0.5398

903 **Figure 8: Example image reconstructions on `sd1.4` using GradCFG and GradCFG + Inv-Sam**
 904 **(categories: dog, robot toy).** From left to right: ground-truth, GradCFG reconstruction, GradCFG +
 905 Inv-Sam refinement.

910 H.2 TEXT RECONSTRUCTION

912 To evaluate semantic fidelity of the recovered text, we first compute cosine similarity between
 913 embeddings of recovered and ground-truth prompts. Then we use both recovered and ground-truth
 914 text embeddings to condition `sd1.4` and generate images; the PSNR between generated images
 915 serves as a proxy for semantic consistency. Table 9 reports per-category embedding similarity
 916 and mean PSNR; Figure 9 shows sample generations conditioned on recovered vs. ground-truth
 917 embeddings for dog and robot toy. Results indicate that GradCFG recovers meaningful textual
 918 semantics on `sd1.4` and preserves semantic consistency in downstream generation.

918

919

Table 9: Embedding similarity and generated-image PSNR comparison per category on `sd1.4`.

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

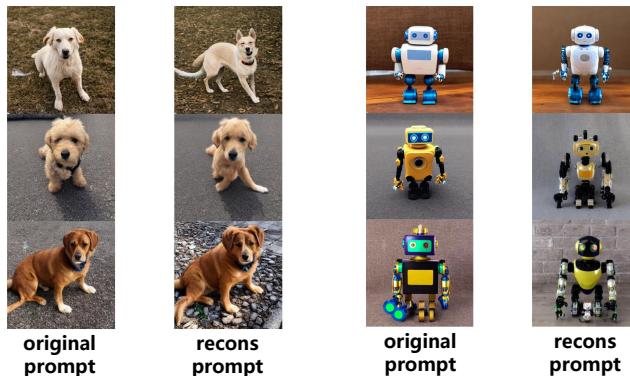
941

942

943

944

Category	Similarity	PSNR
Backpack	0.6538	13.47
Cat	0.8174	15.60
Dog	0.8641	17.20
Monster Toy	0.6311	12.45
Robot Toy	0.6201	15.34
Avg.	0.7173	14.012

Figure 9: Sample generations conditioned on recovered vs. ground-truth text embeddings on `sd1.4` (categories: dog, robot toy).

In summary, these experiments demonstrate that GradCFG can recover both image details and meaningful textual semantics on the larger `sd1.4` model, supporting the method’s transferability and robustness across CFG model scales.

I COMPARISON WITH EXISTING METHODS

Implementing gradient inversion attacks on CFG (Classifier-Free Guidance) models is particularly challenging because these models are larger in scale and their training involves multimodal data (image and text). Consequently, there is currently no prior work that directly provides a gradient inversion method operating on CFG models. We identified a line of diffusion-model inversion methods designed for prompt-free settings, such as GIDM, but their original designs do not support recovery of text prompts and thus cannot be directly applied to CFG text recovery.

To construct a fair and informative baseline, we adapt GIDM to our setting by explicitly supplying the ground-truth prompt as a prior during image reconstruction (i.e., we inject the textual information into GIDM in the experiments) to approximate its upper-bound performance when prompt information is available. Table 10 reports GIDM’s per-category reconstruction metrics under the “known prompt” condition; Table 11 summarizes the overall comparison between GIDM (given prompt) and GradCFG (no prompt); Figure 10 provides a visual comparison of the two methods’ reconstructions.

972

973

Table 10: Image reconstruction results of GIDM under known-prompt condition (per-category).

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Table 11: Overall comparison between GIDM (given prompt) and GradCFG (no prompt) on image reconstruction.

988

989

990

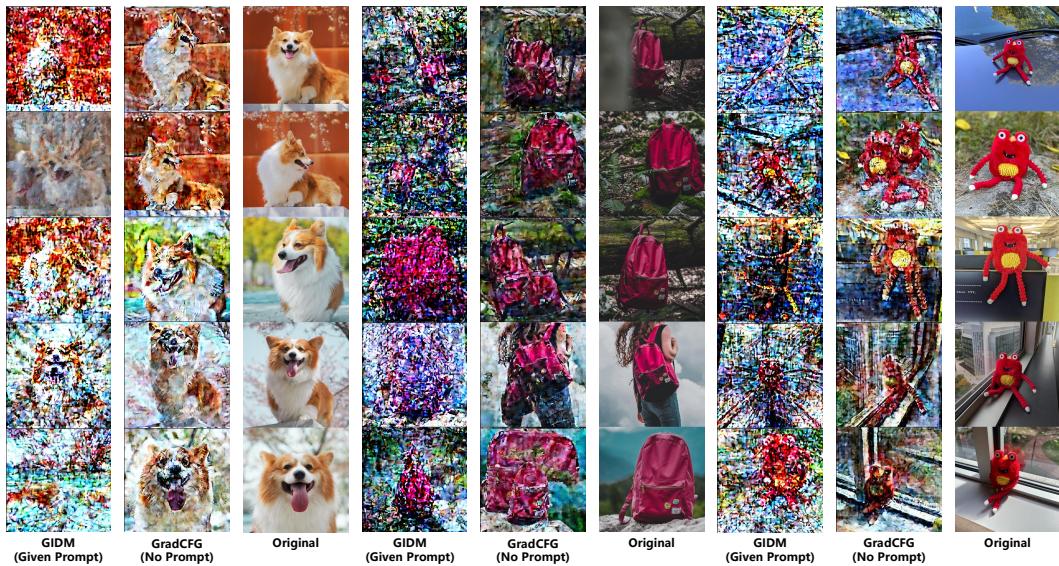
991

992

993

994

995



1014

1015

1016

1017

Figure 10: Visual comparison between GIDM and GradCFG (reconstructions vs. ground-truth).

1018

1019

1020

1021

1022

1023

1024

1025

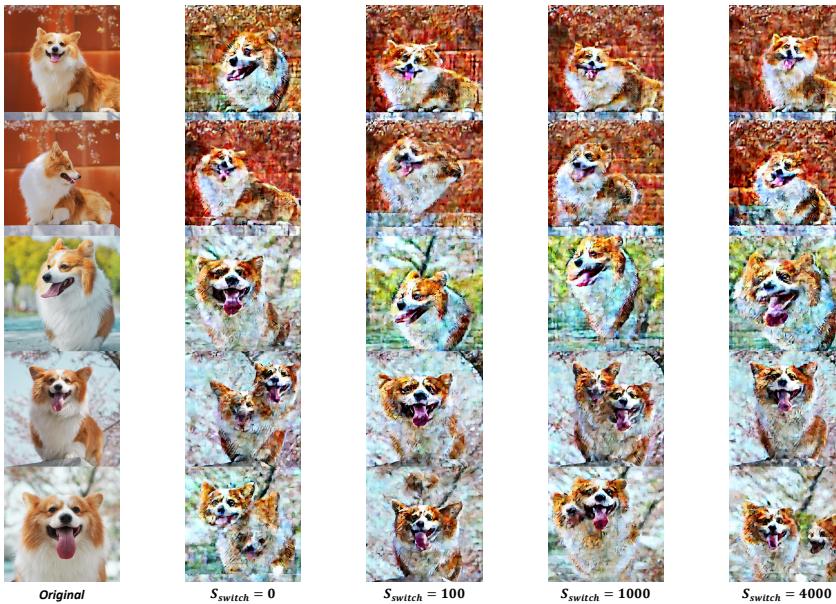
From the quantitative and visual comparisons we observe that, even when GIDM is given the true prompt (a favorable condition for the baseline), GradCFG—operating without access to the prompt—still substantially outperforms GIDM across all three metrics (SSIM increases from 0.0564 to 0.1240, $\approx +120\%$; PSNR increases from 8.273 to 10.60, $\approx +28\%$; LPIPS decreases from 0.8566 to 0.7778, $\approx -10\%$). This comparison highlights two points: (i) directly ported prompt-free diffusion inversion methods have a limited performance ceiling on CFG multimodal tasks, and (ii) GradCFG demonstrates stronger recovery capability and robustness when dealing with higher uncertainty and multimodal coupling.

1026 **J ABLATION STUDY ON L_{mix}**
1027

1028 To investigate the role of L_{mix} in suppressing feature mixing and promoting feature disentanglement,
1029 we perform an ablation study on its activation schedule. We introduce the indicator S_{switch} , defined
1030 as the iteration after which L_{mix} is no longer included in the loss (i.e., L_{mix} is applied only during
1031 the first S_{switch} optimization steps). Table 12 reports GradCFG’s quantitative performance under
1032 different S_{switch} settings, and Figure 11 provides the corresponding visual comparisons.
1033

1034 1035 **Table 12: Effect of different S_{switch} settings on reconstruction performance**

S_{switch}	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow
0	0.2486	11.210	0.7021
100	0.2655	11.280	0.6877
1000	0.2639	11.380	0.6940
4000	0.2522	11.170	0.6828

1064 **Figure 11: Visual comparison under different S_{switch} settings. $S_{switch} = 0$ indicates that L_{mix} is
1065 never activated, while larger values correspond to longer activation periods.**

1066 The results demonstrate a consistent pattern. When L_{mix} is disabled entirely ($S_{switch} = 0$), recon-
1067 structed images display pronounced feature mixing and reduced structural coherence, indicating
1068 that L_{mix} effectively suppresses cross-sample feature interference. If L_{mix} remains active for the
1069 entire optimization (e.g., $S_{switch} = 4000$), feature disentanglement is stronger but some fine-grained
1070 details—such as textures and local contrast—tend to be muted, which can degrade certain metrics.
1071 Intermediate activation durations (e.g., $S_{switch} = 100$ or 1000) strike a favorable balance, preserving
1072 both feature separation and detail recovery and yielding more robust overall results.
1073

1074 In summary, L_{mix} primarily serves as a regularizer that reduces feature mixing and improves visual
1075 separability between samples rather than uniformly boosting all quantitative metrics. Empirically,
1076 setting S_{switch} to a moderate value offers a practical trade-off between feature disentanglement and
1077 detail preservation, leading to improved perceptual quality.
1078

1080 K RECOVERY UNDER DIFFERENT RANDOM SEEDS 1081

1082 To evaluate the robustness of our pipeline to different random initializations, we test both the first-stage
1083 method (GradCFG) and the complete two-stage pipeline (GradCFG + Inv-Sam) on the backpack
1084 category using multiple random seeds. For each seed we measure image reconstruction quality (SSIM
1085 / PSNR / LPIPS) and text-recovery consistency (embedding similarity and PSNR of images generated
1086 from recovered embeddings). Table 13 reports per-seed image reconstruction metrics for the two
1087 configurations, while Table 14 summarizes text-recovery stability.

1088
1089 **Table 13: Image reconstruction under different seeds.**

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	GradCFG			+ Inv-Sam		
	Seed	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	SSIM \uparrow	PSNR \uparrow
seed 1	0.1933	11.780	0.7024	0.2862	12.770	0.5781
seed 2	0.1895	11.230	0.7145	0.3149	12.190	0.5646
seed 3	0.1834	11.390	0.7134	0.2732	12.000	0.6027
Avg.	0.1887	11.467	0.7101	0.2914	12.320	0.5818

1100 **Table 14: Stability of text recovery under different seeds (embedding similarity and generated-image
1101 PSNR).**

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	Seed	Similarity \uparrow	PSNR \uparrow
seed 1	0.7555	16.73	
seed 2	0.7542	16.52	
seed 3	0.7556	16.87	
Avg.	0.7551	16.707	

1109 The per-seed results indicate that GradCFG (stage 1) produces stable reconstructions across different
1110 random seeds: SSIM varies by about 0.0099 (0.1834–0.1933), PSNR by ≈ 0.55 dB, and LPIPS by
1111 ≈ 0.0121 . The full two-stage method (GradCFG + Inv-Sam) yields higher average metrics but exhibits
1112 slightly larger sensitivity to the initialization: SSIM spans ≈ 0.0417 , PSNR ≈ 0.77 dB, and LPIPS
1113 ≈ 0.0381 across the three seeds. This behavior is consistent with the pipeline design—Inv-Sam refines
1114 the stage-1 result to improve visual fidelity, but the additional refinement steps increase dependence
1115 on initialization and optimization trajectory, leading to somewhat greater variance.

1116 Text-recovery metrics are highly stable: the recovered prompt embeddings vary negligibly across
1117 seeds (embedding similarity differs by only ≈ 0.0014), and the PSNR of images generated from those
1118 embeddings varies by about 0.35 dB. These observations suggest that the textual semantics recovered
1119 by our method are largely seed-insensitive and, when used to condition generation, produce consistent
1120 downstream images.

1121 In summary, GradCFG provides a robust and repeatable stage-1 reconstruction across seeds, while the
1122 full two-stage pipeline consistently improves visual fidelity at the cost of slightly increased sensitivity
1123 to initialization.

1124 1125 L INV-SAM WITHOUT ACCESS TO THE FINE-TUNED MODEL

1126 In practical scenarios, an attacker or researcher may not have access to the parameters of the fine-
1127 tuned target model θ_R . To handle this more challenging setting, we further develop a variant of
1128 Inv-Sam that does not rely on the fine-tuned model. Instead, the method only uses the available
1129 model parameters θ_r (i.e., the base model before fine-tuning) to perform a post-hoc refinement step.
1130 The key idea is to leverage the generative capability of the base model itself to enhance the initially
1131 recovered image x_0 and text prompt C_0 produced by GradCFG, thereby improving visual fidelity and
1132 text-image consistency even in the absence of fine-tuned model priors.

1134 Concretely, the procedure first performs a reverse diffusion process guided by an empty text prompt
 1135 C_ϕ to remove artifacts and map the recovered image back into a more semantically stable latent region.
 1136 It then performs a forward conditional sampling step guided by the recovered text C_0 to reinforce
 1137 semantic content. Algorithm 3 summarizes the full procedure of Inv-Sam when the fine-tuned model
 1138 is unavailable.

Algorithm 3 Inv-Sam Optimization Using Only θ_r

Input: Initial recovered latent $\hat{\mathbf{x}}_0 \in \mathbb{R}^m$; recovered text embedding $\hat{C}_0 \in \mathbb{R}^{77 \times 768}$

sampling-guidance scale ω_{sam}

Noise schedule $\{\bar{\alpha}_t\}_{t=0}^T$

Available model parameters θ_r

Phase I: Reverse Diffusion (Artifact Removal) $\mathbf{x}_0^{\text{inv}} \leftarrow \hat{\mathbf{x}}_0$

for $t = 0$ **to** $T - 1$ **do**

$$\mathbf{x}_{t+1}^{\text{inv}} \leftarrow \sqrt{\bar{\alpha}_{t+1}} \left(\frac{\mathbf{x}_t^{\text{inv}} - \sqrt{1-\bar{\alpha}_t} \tilde{\epsilon}^{\text{inv}}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1-\bar{\alpha}_{t+1}} \tilde{\epsilon}^{\text{inv}}$$

Phase II: Conditional Sampling (Semantic Reinforcement) $\mathbf{x}_T^{\text{sam}} \leftarrow \mathbf{x}_T^{\text{inv}}$

for $t = T - 1$ **to** 0 **do**

$$\begin{aligned}\epsilon_{\text{empty}} &\leftarrow \epsilon_{\theta_r}(\mathbf{x}_{t+1}^{\text{sam}}, t+1, C_\phi) \\ \epsilon_{\text{text}} &\leftarrow \epsilon_{\theta_r}(\mathbf{x}_{t+1}^{\text{sam}}, t+1, \hat{C}_0) \\ \tilde{\epsilon}^{\text{sam}} &\leftarrow \epsilon_{\text{empty}} + \omega_{\text{sam}}(\epsilon_{\text{text}} - \epsilon_{\text{empty}}) \\ \mathbf{x}_t^{\text{sam}} &\leftarrow \sqrt{\bar{\alpha}_t} \left(\frac{\mathbf{x}_{t+1}^{\text{sam}} - \sqrt{1-\bar{\alpha}_{t+1}} \tilde{\epsilon}^{\text{sam}}}{\sqrt{\bar{\alpha}_{t+1}}} \right) + \sqrt{1-\bar{\alpha}_t} \tilde{\epsilon}^{\text{sam}}\end{aligned}$$

Output: Final refined latent $\hat{\mathbf{x}}_0^{\text{opt}} \leftarrow \mathbf{x}_0^{\text{sam}}$

Figure 12 compares the enhancement effects of Inv-Sam under two settings: when the fine-tuned model is available, and when the fine-tuned model is unknown.

Figure 12: Comparison of Inv-Sam with and without access to the fine-tuned model.

The results show that even without the fine-tuned model, Inv-Sam can still noticeably improve visual fidelity and local detail. Although the enhancement is less pronounced compared to using the fine-tuned model, this further confirms that the discrepancy between the fine-tuned and base models indeed provides additional useful priors for reconstructing the original training data.

1188

1189

1190

1191

M GRADCFG UNDER MULTI-CLASS FINE-TUNING

1192

1193 In this experiment, we evaluate the effectiveness of our method in a more challenging multi-class
 1194 fine-tuning setting. Concretely, we fine-tune the diffusion model on several distinct object categories
 1195 and then apply both GradCFG and Inv-Sam to reconstruct the underlying image and text data from
 1196 gradients. For each method, we report three standard image similarity metrics (SSIM, PSNR, LPIPS)
 1197 together with the cosine similarity between the reconstructed and original text embeddings.
 1198

1199 Table 15 summarizes the quantitative reconstruction performance under this multi-category fine-
 1200 tuning scenario, while Figure 13 presents visual examples of the recovered images. We observe that
 1201 our approach can consistently recover meaningful images and texts across different object categories,
 1202 and Inv-Sam further improves reconstruction quality over GradCFG alone. These results indicate that
 1203 our gradient inversion attack is not restricted to single-category personalization, but remains effective
 1204 and robust in more realistic multi-class fine-tuning scenarios.
 1205

1206

1205 **Table 15: Image reconstruction performance of GradCFG and Inv-Sam under multi-class fine-tuning,
 1206 evaluated at a given text embedding similarity.**

Text similarity	GradCFG			+ Inv-Sam		
	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow
0.7795	0.1364	10.460	0.7762	0.2033	11.520	0.6461

1238 **Figure 13: Qualitative results of gradient inversion attacks under multi-class fine-tuning.**
 1239

1240

1241