
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT ACTION-CONSTRAINED REINFORCEMENT
LEARNING VIA ACCEPTANCE-REJECTION METHOD
AND AUGMENTED MDPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Action-constrained reinforcement learning (ACRL) is a generic framework for
learning control policies with zero action constraint violation, which is required by
various safety-critical and resource-constrained applications. The existing ACRL
methods can typically achieve favorable constraint satisfaction but at the cost of
either a high computational burden incurred by the quadratic programs (QP) or
increased architectural complexity due to the use of sophisticated generative mod-
els. In this paper, we propose a generic and computationally efficient framework
that can adapt a standard unconstrained RL method to ACRL through two modifi-
cations: (i) To enforce the action constraints, we leverage the classic acceptance-
rejection method, where we treat the unconstrained policy as the proposal distribu-
tion and derive a modified policy with feasible actions. (ii) To improve the accep-
tance rate of the proposal distribution, we construct an augmented two-objective
Markov decision process (MDP), which includes additional self-loop state tran-
sitions and a penalty signal for the rejected actions. This augmented MDP in-
centivizes the learned policy to stay close to the feasible action sets. Through
extensive experiments in both robot control and resource allocation domains, we
demonstrate that the proposed framework enjoys faster training progress, better
constraint satisfaction, and a lower action inference time simultaneously than the
state-of-the-art ACRL methods.

1 INTRODUCTION

Action-constrained reinforcement learning (ACRL) aims to find an optimal policy maximizing ex-
pected cumulative return while satisfying constraints posed imposed on action space and has served
as a generic framework for learning sequential decision making in both safety-critical and resource-
constrained applications. As a classic example, robot control is usually subject to the inherent kine-
matic constraints of the robots, e.g., torque or output power, which need to be satisfied throughout the
training and the inference stages to avoid damages to physical components (Singletary et al., 2021;
Tang et al., 2024; Liu et al., 2024). Another example is dynamic resource allocation for networked
systems (Chen et al., 2023; Jay et al., 2019; Chen et al., 2021), such as communication networks
and bike sharing systems (Zhang et al., 2022; 2021), which involve the capacity constraints on the
communication links and the docking facilities, respectively. To prevent network congestion and
resource over-utilization, these constraints must be considered at each step of training and deploy-
ment. Given its wide applicability, developing practical ACRL algorithms that can learn policies
accruing high returns with minimal constraint violation is essential.

Existing ACRL methods have explored the following techniques: (i) Action projection: As a con-
ceptually simple and widely-used technique, action projection finds a feasible action closest to the
original unconstrained action produced by the policy. The projection step can be used in action
post-processing (Kasaura et al., 2023) or implemented by a differentiable projection layer (Amos
& Kolter, 2017) as part of the policy network of a standard deep RL algorithm for end-to-end
training (Pham et al., 2018; Dalal et al., 2018; Bhatia et al., 2019). Despite the simplicity, to find
close feasible actions, action projection needs to solve a quadratic program (QP), which is compu-
tationally costly and scales poorly to high-dimensional action spaces (Ichnowski et al., 2021). (ii)
Frank-Wolfe search: Lin et al. (2021) propose to decouple policy updates from action constraints

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

by a Frank-Wolfe search subroutine. Despite its effectiveness, Frank-Wolfe method requires solv-
ing multiple QPs per training iteration and therefore suffers from substantially higher training time.
(iii) Generative models: To replace the projection step, generative models, such as Normalizing
Flows (Kobyzev et al., 2020), have been employed as a learnable projection layer that is trained to
satisfy the constraints (Brahmanage et al., 2023; Chen et al., 2023).

Despite the recent advancement in ACRL, existing algorithms suffer from significant computational
overhead induced by solving QPs or learning sophisticated models, such as Normalizing Flows.
Table 1 summarizes the limitations of existing methods in interaction time, training load, and action
violation rate. This motivates us to develop a more efficient ACRL approach.

Table 1: A qualitative comparison of ACRL Algorithms.

Algorithm Action
violation
rate

Generative
model

Interaction
time

Training
load

Remarks

OptLayer (Pham et al., 2018) High ✗ High Low Zero-gradient issue
ApprOpt (Bhatia et al., 2019) High ✗ High Low Zero-gradient issue
NFWPO (Lin et al., 2021) Low ✗ Low High Rely heavily on QPs
FlowPG (Brahmanage et al., 2023) Low ✓ Low High Require pre-training
DPre+ (Kasaura et al., 2023) High ✗ High Low -
SPre+ (Kasaura et al., 2023) High ✗ High Low -
IAR-A2C (Chen et al., 2023) Low ✓ Low High Support only discrete actions
ARAM (Ours) Low ✗ Low Low -

We propose a framework called ARAM, which augments a standard deep RL algorithm with two
modifications: Acceptance-Rejection method and Augmented MDPs. (i) Acceptance-rejection
method: Given a policy network, ARAM enforces the action constraints by rethinking ACRL
through acceptance-rejection sampling, i.e., first sampling actions from the unconstrained policy
and then only accepting those that are in the feasible action set. This sampling strategy can substan-
tially reduce the need for solving QPs, compared to the methods built on the action projection step
or the Frank-Wolfe search. (ii) Augmented unconstrained two-objective Markov decision process:
One technical issue of the acceptance-rejection method is the possibly low acceptance rate, which is
likely to occur in the early training stage. Under a low acceptance rate, the sampling process could
take excessively long and thereby incur a high training overhead. To improve the acceptance rate,
we augment the original MDP with additional self-loop transitions and a penalty function induced
by the event whether the action is accepted. Through this augmented MDP, we leverage the penalty
induced by constraint violation to guide the policy distribution towards regions of higher acceptance
rate. Notably, these two modifications can be combined with any standard deep RL algorithm. In
this paper, we take the Soft Actor Critic (SAC) as the base RL algorithm. Moreover, to obviate
the need for hyperparameter tuning of the penalty weight, we directly leverage the multi-objective
extension of SAC that can learn policies under all the penalty weights.

We evaluate the proposed ARAM in various ACRL benchmarks, including the MuJoCo locomotion
tasks and resource allocation of communication networks and bike sharing systems. The experi-
mental results show that: (i) ARAM enjoys faster learning progress than the state-of-the-art ACRL
methods, measured either in environment steps or wall clock time. Moreover, the difference is par-
ticularly significant under wall clock time thanks to the low training time of our design. (ii) ARAM
requires significantly fewer QP operations than the other ACRL benchmark methods, mostly by 2-5
orders of magnitude fewer. (iii) ARAM indeed achieves high action acceptance rate through the
guidance of the augmented MDP. (iv) ARAM also enjoys the lowest per-action inference time as it
largely obviates the need for QP operations and learns without using a generative model.

2 RELATED WORK

Action-Constrained RL. The first category focuses on ensuring that the actions meet the constraints
at each step of the training and evaluation processes. To ensure zero constraint violation, one nat-
ural and commonly-used technique is action projection, which finds a feasible action closest to the
original unconstrained action produced by the policy. To enable end-to-end training, multiple ACRL
methods have incorporated the differentiable projection layer (Amos & Kolter, 2017) as the output
layer of the policy network, such as OptLayer (Pham et al., 2018), Safety Layer (Dalal et al., 2018),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and Approximate OptLayer (Bhatia et al., 2019). However, these projection layers are known to
suffer from slow learning in ACRL due to the zero-gradient issue (Lin et al., 2021).

To address the zero-gradient issue, several approaches have been adopted recently: (i) Frank-Wolfe
search: Lin et al. (2021) propose Neural Frank-Wolfe Policy Optimization (NFWPO), which de-
couples policy updates from action constraints by a Frank-Wolfe search subroutine. Despite its
effectiveness, Frank-Wolfe search involves solving multiple quadratic programs (QP) per training
iteration, and this is computationally very costly and is known to scale poorly to high-dimensional
action spaces (Ichnowski et al., 2021). (ii) Removing projection layers and using pre-projected
actions for critic learning: Without using differentiable projection layers, Kasaura et al. (2023) pro-
pose DDPG-based DPre+ and SAC-based SPre+, which use a QP-based projection step for action
post-processing, train the critic with pre-projected actions, and apply a penalty term to reduce con-
straint violation. Notably, DPre+ and SPre+ achieve fairly strong reward performance but still at
the cost of high computational overhead incurred by QPs. (iii) Generative models: To replace the
projection layer, generative models, e.g., normalizing flow, have been integrated into the policy net-
work, such as FlowPG for continuous control (Brahmanage et al., 2023) and IAR-A2C for discrete
control (Chen et al., 2023), to generate multi-modal action distributions that can better satisfy the
constraints. Despite the effectiveness, learning a sophisticated generative model adds substantial de-
sign complexity to ACRL. By contrast, the proposed ARAM largely removes the overhead of QPs
and completely obviates the need for generative models.

RL for Constrained MDPs. The other class of methods focuses on ensuring the long-term av-
erage action safety by defining a cost function and modeling the problem as a Constrained MDP
(CMDP) (Altman, 2021). For example, Constrained Policy Optimization (CPO) (Achiam et al.,
2017) is the first policy gradient method developed to solve CMDPs. It uses the Fisher informa-
tion matrix and second-order Taylor expansion to ensure safety constraints, but it is computation-
ally expensive and requires more samples, potentially reducing efficiency. To address these, Tessler
et al. (2019) propose Reward Constrained Policy Optimization (RCPO), which leverages primal-dual
methods to improve both the efficiency and effectiveness of policy optimization under constraints.
Building on similar goals of improving efficiency, FOCOPS (Zhang et al., 2020) takes a different
approach by using a first-order approximation for policy optimization. This reduces computational
complexity but introduces convergence issues due to approximation errors in the first-order con-
straints. The above list is by no means exhaustive and is only meant to provide an overview of this
line of research. Please refer to (Liu et al., 2021) for more related prior works. While these methods
can ensure that the long-term expected cost remains under a certain threshold, they fail to enforce
action constraints at every environment step needed in ACRL throughout training and deployment.

Augmented Safety Mechanisms in RL. To improve safety in exploration, Eysenbach et al. (2018)
introduced a reset framework, which detects when the agent enters unsafe states and resets it, thereby
improving both safety and sampling efficiency. Building on this, Thananjeyan et al. (2021) intro-
duced the concept of learned recovery zones, ensuring that when the agent deviates from safe limits,
it can autonomously return to a safe state, providing more robust safety guarantees during explo-
ration. In parallel, Thomas et al. (2021) proposed a specialized Markov Decision Process (MDP) to
constrain the training process, helping to further avoid unsafe actions during exploration. In addition
to mechanisms that correct unsafe actions, Safety Augmented Value Estimation from Demonstra-
tions (SAVED) (Thananjeyan et al., 2020) employs model predictive control (MPC) to proactively
avoid unsafe actions by updating the policy, specifically preventing infeasible actions that could lead
to dangerous situations. Complementing this, Yu et al. (2022) proposed Safety Editor (SEditor), a
mechanism that transforms actions produced by a utility maximizer into safe alternatives, preventing
violations of safety constraints during execution. While these methods can not fully guarantee that
the policy’s actions always remain within safe regions, they offer an effective approach to signifi-
cantly reduce unsafe behaviors, laying a foundation to develop more robust safety mechanisms.

3 PRELIMINARIES: ACTION-CONSTRAINED REINFORCEMENT LEARNING

In ACRL, we consider an action-constrained Markov Decision Process (MDP). Given a set X , let
∆(X) denote the set of all probability distributions on X . An action-constrained MDP is defined
by a tuple M := (S,A,P, γ, r, C), where S denotes the state space, A denotes the action space,
P : S ×A → ∆(S) serves as the transition kernel, γ ∈ (0, 1) is the discount factor, r : S ×A → R

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

denotes the bounded reward function. Without loss of generality, we presume the reward r(s, a) to
lie in the [0, 1] interval since we can rescale a bounded reward function to the range of [0, 1] given
the maximum and minimum possible reward values. For each s ∈ S, there is a non-empty feasible
action set C(s) ⊆ A induced by the underlying collection of action constraints. Notably, we make
no assumption on the structure of C(s) (and hence C(s) needs not be convex).

At each time t ∈ N ∪ {0}, the learner observes the current state st ∈ S of the environment, selects
a feasible action at ∈ C(s), and receives reward rt. We use π : S → ∆(A) to denote a Markov
stationary stochastic policy, which is updated iteratively by the learner. Given a policy π, the Q
functions Q(·, ·;π) : S × A → R is defined as Q(s, a;π) := E

[∑∞
t=0 γ

trt|s0 = s, a0 = a;π
]
,

which can be characterized as the unique solution to the following Bellman equation:

Q(s, a;π) = r(s, a) + γEs′∼P,a′∼π(·|s′)[Q(s′, a′;π)]. (1)

To learn a policy and the corresponding Q function under large state and action spaces, we use the
parameterized functions πϕ : S → ∆(A) and Qθ : S × A → R as function approximators, where
ϕ and θ typically denote the parameters of neural networks in the deep RL literature. Our goal
is to learn an optimal policy π∗ such that Q(s, a;π∗) ≥ Q(s, a;π), for all s ∈ S, a ∈ C(s) and
π ∈ ΠC , where ΠC := {π : S → ∆(C)}, which denotes the set of all feasible policies. We also use
ΠA := {π : S → ∆(A)} to denote the set of all unconstrained Markov stationary policies.

Notations. Throughout the paper, we use ⟨x,y⟩ to denote the inner product of two real vectors x,y.
Moreover, we use 1d to denote the d-dimensional vector of all ones.

4 ALGORITHM

To address ACRL, we devise and introduce two main modifications to existing deep RL algorithms:
the acceptance-rejection method (Section 4.1) and the augmented two-objective MDP (Section 4.2).
Then, we describe a practical multi-objective RL implementation of ARAM in Section 4.3.

4.1 ACCEPTANCE-REJECTION METHOD

To adapt a standard deep RL method to ACRL, we need to convert an unconstrained policy πϕ ∈ ΠA

into a feasible policy π†
ϕ ∈ ΠC . Notably, the action constraints, in general, can be complex and

take arbitrary forms of expression. As a result, the feasible action sets C(s) are likely to be rather
unstructured. To tackle this, we propose to rethink the constraint satisfaction in ACRL through the
classic acceptance-rejection method (ARM), which is a generic algorithm for sampling from general
distributions (Kroese et al., 2013).

Using ARM in the context of ACRL. For didactic purposes, here we focus on the continuous
control and assume that the action space A is a compact convex set despite that the same argument
can work seamlessly under discrete action spaces. Let f and g be two probability density functions
over A. ARM can generate random variables that follow the target distribution f while drawing
samples from another proposal distribution g. To put ARM in the context of ACRL, let us fix a state
s and take the constrained and the unconstrained policies as the target and the proposal distributions,
respectively, i.e., f ≡ π†

ϕ(s) ∈ ∆(C(s)), g ≡ πϕ(s) ∈ ∆(A). Clearly, we have π†
ϕ(a|s) = 0 for all

a /∈ C(s). Let M > 0 be some constant such that M · πϕ(a|s) ≥ π†
ϕ(a|s), for all a ∈ A. ARM can

generate an action that follows π†
ϕ(s):

1. Generate a′ ∈ A from the unconstrained πϕ(s).

2. If a′ ∈ C(s), accept a′ with probability π†
ϕ(a

′|s)/(M · πϕ(a′|s)); otherwise, if a′ /∈ C(s),
reject a′ and return to the first step.

Choices of target distribution π†
ϕ. Note that we have the freedom to configure the desired π†

ϕ for
specific purposes, e.g., exploration. One convenient choice is to simply set π†

ϕ(a|s) ∝ πϕ(a|s), for
all a ∈ C(s). In this case, we can always accept an action a′ ∈ C(s) in the above step 2 if we set
M = 1/(

∫
a∈C(s) πϕ(a|s)da).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Salient features of ARM. The advantages of using ARM in ACRL are two-fold: (i) Efficiency:
ARM is computationally efficient as it only requires checking if an action satisfies the constraints.
As a result, ARM largely obviates the need to solve QPs or learn a generative model. (ii) Generality:
ARM is very general, i.e., can be integrated with any standard unconstrained RL method.

Issues of low acceptance rate under ARM. Despite the efficiency and generality of ARM, solely
naively adopting ARM in ACRL can lead to keeping sampling invalid actions and getting stuck
when the policy has a low action acceptance rate. The issues are two-fold: (i) The ARM procedure
could repeat indefinitely with a near-zero acceptance probability. In ACRL, this scenario is likely to
happen at the early training stage since the randomly initialized action distribution can be drastically
different from the feasible action set. (ii) A low acceptance rate typically implies a poor action
coverage of the policy over C(s). This would significantly affect the performance in the cumulative
reward. To address this issue by increasing the action acceptance rate through the course of learning,
we present our solution in Section 4.2.

4.2 AUGMENTED UNCONSTRAINED TWO-OBJECTIVE MDP

To mitigate this issue of low ARM acceptance rate, we propose to apply ARM on an augmented
unconstrained MDP, which guides the policy updates towards the feasible action set by a penalty
signal induced by the action acceptance events of ARM, instead of on the original action-constrained
MDP. Moreover, we show that these two MDPs are equivalent with respect to optimal policies.

Figure 1: An illustration of AUTO-
MDP, where a ∈ C(s) and ã /∈ C(s).

Constructing an augmented MDP. Based on the origi-
nal action-constrained MDPM = (S,A,P, γ, r, C), we
propose to construct an Augmented Unconstrained Two-
Objective MDP (AUTO-MDP) M̃ := (S,A, P̃, γ, r̃) by
adding additional self-loop state transitions and penalty
signal for those actions a ∈ C(s):

• The AUTO-MDP M̃ shares the same state and action
spaces with the original MDPM.

• The augmented reward function r̃ : S × A → R2

returns a 2-dimensional reward vector [r(s, a), c(s, a)]
and is defined as: Let K > 0 be a constant penalty.
Then, we construct (i) For any (s, a) with a /∈ C(s), r̃(s, a) := [0,−K]. (ii) For any (s, a) with
a ∈ C(s), r̃(s, a) := [r(s, a), 0].

• The augmented transition kernel P̃ is defined as follows: For any (s, a, s′) with a ∈ C(s), let
P̃(s′|s, a) = P(s′|s, a). For any (s, a, s′) with a /∈ C(s), let

P̃(s′|s, a) =
{

1, s = s′

0, otherwise (2)

The idea of AUTO-MDP is illustrated in Figure 1.

Moreover, for any policy π ∈ ΠA, we define the vector-valued Q function Q : S × A → R2 of
π as Q(s, a;π) := E

[∑∞
t=0 γ

trt|s0 = s, a0 = a;π
]
, which is a natural extension of the standard

scalar-valued Q function. Clearly, the vector-valued Q function also satisfies the Bellman equation

Q(s, a;π) = r(s, a) + γEs′∼P̃,a′∼π[Q(s′, a′;π)]. (3)

As in the standard multi-objective MDPs (MOMDP), the set of optimal policies depend on the
preference over the objectives. In the MOMDP literature (Abels et al., 2019; Yang et al., 2019), this
is typically characterized by using linear scalarization with a preference vector λ = [λr, λc] such
that the scalarized Q value of a policy π is defined as Qλ(s, a;π) := ⟨λ,Q(s, a;π)⟩. Without loss
of generality, we presume that λ lies in a two-dimensional probability simplex, i.e., λr ≥ 0, λc ≥ 0,
and λr + λc = 1.

With such a design, to obtain a policy with a sufficiently high acceptance rate under ARM, the
learner shall find a policy that maximizes cumulative reward while minimizing violation penalty.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Equivalence of AUTO-MDP and original MDP in terms of optimal policies. We show that the
constructed AUTO-MDP and the original MDP are equivalent in the sense that they share the same
set of optimal policies. This property can be formally stated in the following proposition.
Proposition 1 (Equivalence in optimality). Let π∗ ∈ ΠC be an optimal policy among all the
policies in ΠC under the original action-constrained MDPM. Then, for any λ ∈ Λ, the policy π∗

remains an optimal policy among all the policies in ΠA under the AUTO-MDP M̃.

Algorithm 1: Practical Implementation of
ARAM
Input : Initial parameters ϕ, θ, preference

sampling distribution ρλ, actor and
critic learning rates ξπ, ξQ

1 Initialize the replay buffer Dr;
2 Initialize the augmented replay buffer Da;
3 for each iteration j do
4 Sample λ ∈ Λ according to ρλ;
5 for each environment step t do
6 Sample at ∼ π†

ϕ(st;λ) by ARM;
7 Obtain augmented reward

rt = [rt, ct] and next state st+1;
8 if at ∈ C(st) then
9 Store (st, at, rt, ct, st+1) in Dr

10 else
11 Store (st, at, rt, ct, st+1) in Da;

12 for each gradient step τ do
13 Draw a mini-batch of samples from

Dr and Da;
14 Critic update by (4):

θ ← θ − ξQ∇θ̂JQ(θ);
15 Policy update by (5):

ϕ← ϕ− ξπ∇ϕ̂Jπ(ϕ);

The proof of Proposition 1 is provided in Ap-
pendix A. This result suggests that solv-
ing AUTO-MDP can achieve the same maxi-
mum cumulative reward as the original action-
constrained MDP while providing incentives
for a higher action acceptance rate.

Remarks on the preference vector λ. Given
the equivalence property in Proposition 1, to
solve the AUTO-MDP, one could select a pref-
erence vector λ ∈ Λ and find a corresponding
optimal policy π∗

λ such that λ⊤Q(s, a;π∗
λ) ≥

λ⊤Q(s, a;π), for all s ∈ S, a ∈ A, and
π ∈ ΠA. In practice, different choices of λ
lead to distinct learning behaviors: (i) If λr is
much larger than λc, then the violation penalty
could be too small to enhance the acceptance
rate of ARM. (ii) If λr is much smaller than
λc, then high violation penalty could make the
policy very conservative and lead to low cu-
mulative reward.

To find a proper λ, one straightforward ap-
proach is to employ hyperparameter tuning
over λ, at the cost of several times more of en-
vironment steps. To address this, we propose
a practical implementation of ARAM based
on multi-objective RL, which can learn well-
performing policies for all preferences simul-
taneously, as described below.

4.3 A MULTI-OBJECTIVE RL IMPLEMENTATION OF ARAM

This introduces a practical multi-objective RL implementation of ARAM. As described earlier, the
two modifications ARM and AUTO-MDP are general in that they can be employed to adapt any
standard deep RL algorithm to ACRL. This work adopts SAC (Haarnoja et al., 2018) as the base
algorithm to showcase how to integrate the proposed modifications into an existing deep RL algo-
rithm.

Solving AUTO-MDP via multi-objective RL. To learn policies for all preferences simultaneously,
we adapt the multi-objective SAC (MOSAC) presented in (Hung et al., 2023) to the AUTO-MDP:

• Policy loss and critic loss. MOSAC also adopts an actor-critic architecture as in vanilla
SAC. Let ϕ and θ denote the parameters of the policy and the critic. MOSAC learns a
preference-dependent policy πϕ(a|s;λ) and the corresponding vector-valued Q function
by a preference-dependent critic network Qθ(s, a;λ). Given a state-action sampling distri-
bution µ, the critic network is updated iteratively by minimizing the following loss function

JQ(θ;λ) = E(s,a)∼µ

[(
⟨λ,Qθ (s, a;πϕ,λ)−

(
r (s, a) + γEs′∼P(·|s,a) [Vθ̄ (s

′;πϕ,λ)]
)
⟩
)2

]
,

(4)

where Vθ(s;πϕ,λ) := Ea∼πϕ(·|·;λ)[Qθ(s, a;πϕ,λ)− α log πϕ(a|s;λ)1] with entropy co-
efficient α, θ̄ denotes the parameters of the target critic network. Regarding the policy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: ARAM is composed of three components: (1) ARM: Use an oracle to verify whether the
sampled action is in the feasible action set. (2) AUTO-MDP: Assign penalties to invalid actions
within an augmented MDP framework, thereby reducing the rate of action violations. (3) MORL:
Use MORL to discover well-performing policies under all penalty weights simultaneously.

update, the policy πϕ is updated by minimizing

Jπ(ϕ;λ) = Es∼µ
[
Ea∼πϕ

[
α log (πϕ (a | s;λ))− ⟨λ,Q (s, a;πϕ,λ)⟩

]]
. (5)

Notably, Equation (4) and Equation (5) can be viewed as the critic loss and the policy loss
of vanilla SAC under the scalarized Q function.

• Dual-buffer design. Like vanilla SAC, MOSAC is an off-policy algorithm and makes
policy and critic updates based on the samples from experience replay buffers. To better
address the augmented transitions in AUTO-MDP, we propose a dual-buffer design, where
we store the feasible transitions and the augmented infeasible transitions in two separate
replay buffers, namely a real replay buffer Dr and an augmented replay buffer Da. This
design offers more flexibility in balancing the number of updates by feasible and infeasible
transitions, especially at the initial training stage when the action violation rate is high.

• Preference distribution. To update the policy and the critic for different preferences,
the preference λ is drawn from some distribution ρλ. One natural choice is to set ρλ
as a uniform distribution over the two-dimensional probability simplex, or essentially a
Dirichlet distribution with concentration parameter equal to 1.

The training process is illustrated in Figure 2, and the pseudo code is provided in Algorithm 1.

5 EXPERIMENTS

Benchmark Methods. We compare ARAM with various recent benchmark ACRL algorithms,
including NFWPO, DPre+, SPre+, and FlowPG. NFWPO (Lin et al., 2021) achieves favorable con-
straint satisfaction at the cost of high QP overhead as it enforces action constraints by Frank-Wolfe
search. DPre+ and SPre+, proposed by (Kasaura et al., 2023), adapt the vanilla DDPG (Lillicrap
et al., 2016) and SAC (Haarnoja et al., 2018) to ACRL by using a QP-based projection step for
action post-processing, learning the critic with pre-projected actions, and applying a penalty term
to guide the policy updates. For a fair comparison, we use the official implementation and the hy-
perparameter settings of DPre+, SPre+, and NFWPO provided by (Kasaura et al., 2023). FlowPG
enforces action constraints via a pre-trained Normalizing Flow model, and we use the official source
code provided by (Brahmanage et al., 2023). For the testing of ARAM, we set λ = [0.9, 0.1] as the
default input preference of the policy network πϕ(·|λ). Moreover, during the testing of all the above
algorithms, an auxiliary projection step is employed to guarantee that actions used for environment
interaction always satisfy the action constraints.

Evaluation Domains. We evaluate the algorithms in various benchmark domains widely used in the
ACRL literature (Lin et al., 2021; Kasaura et al., 2023; Brahmanage et al., 2023): (i) MuJoCo loco-
motion tasks (Todorov et al., 2012): These tasks involve training robots to achieve specified goals,
such as running forward and controlling their speed within certain limits. (ii) Resource allocation
for networked systems: These tasks involve properly allocating resource under capacity constraints,
including NSFnet and Bike Sharing System (BSS) (Ghosh & Varakantham, 2017). For NSFnet, the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HopperVel (c) Reacher (d) HalfCheetah

(e) Ant (f) NSFnet (g) BSS3z (h) BSS5z

Figure 3: Learning curves of ARAM and other benchmark methods in various ACRL environments.

learner needs to allocate packets of different flows to multiple communication links. The action
constraints are induced by the per-link maximum total assigned packet arrival rate. We follow the
configuration provided by (Lin et al., 2021) and use the open-source network simulator from PCC-
RL (Jay et al., 2019). For BSS, the environment consists of m bikes and n stations, each with a
capacity limit of c. The learner needs to reallocate bikes to different stations based on the current
situation. We follow the experimental scenario of (Lin et al., 2021) and evaluate our approach on
two tasks: BSS3z with n = 3 and m = 90 and BSS5z with n = 5 and m = 150. Their capacities
are both set to 40. A detailed description about these tasks is provided in Appendix D.1.

Performance Metrics. We evaluate the performance in the following aspects:

• Training efficiency: We record the evaluation returns at different training stages, in terms of both
the wall clock time and the environment steps. To ensure fair measurements of wall clock time,
we run each algorithm independently using the same computing device. Moreover, we report the
cumulative number of QP operations as an indicator of the training computational overhead.

• Valid action rate: At the testing phase, we evaluate the valid action rate by sampling 100 actions
from the policy network at each step of an episode. This metric reflects how effectively each
method enforces the action constraints throughout the evaluation phase.

• Per-action inference time: The efficiency of action inference reflects the design complexity, such
as the need for generative models and QP operations, of each ACRL method. During evaluation,
we measure the per-action inference time for 1 million actions. This inference time serves as a
critical metric for ACRL deployment.

Unless stated otherwise, all the results reported below are averaged over five random seeds.

5.1 EXPERIMENTAL RESULTS

Our proposed method effectively reduces the use of costly QP operations, allowing us to address
ACRL with a more lightweight framework. This subsection demonstrates the effectiveness of our
method in training efficiency, valid action rate, and per-action inference time.

Does the proposed method outperform other ACRL benchmark methods in cumulative re-
wards? Figure 3 shows the evaluation reward versus wall clock time, and Table 2 and Figure 8

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HopperVel (c) Reacher (d) HalfCheetah

(e) Ant (f) NSFnet (g) BSS3z (h) BSS5z

Figure 4: Cumulative number of QP operations of the ACRL algorithms in various environments
with the y-axis on a log scale. Results are averaged over five seeds.

(in Appendix C) show the valid action rates. We observe that ARAM enjoys fast learning progress
and high valid action rates simultaneously. On the other hand, due to the reliance on the projection
layer, the projection-based methods like DPre+ and SPre+ have relatively very low valid action rates,
which require a large number of QP operations and hence lead to a longer training time. Addition-
ally, they perform poorly in resource allocation environments since the optimal solutions for these
problems cannot be directly found through projection. Regarding NFWPO and FlowPG, these two
methods can both effectively learn policies that satisfy the constraints but not necessarily achieve a
high average return. Moreover, the results regarding sample efficiency, measured by the evaluation
return versus environment steps, can be found in Appendix C.

Table 2: A comparison of ARAM and other benchmark algorithms in terms of valid action rate
across different domains.

Environment DPre+ SPre+ NFWPO FlowPG ARAM (Ours)

Hopper 0.97 ± 0.03 0.40± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01
HopperVel 0.38± 0.30 0.60± 0.09 0.94 ± 0.03 0.71± 0.19 0.80± 0.09

Reacher 0.25± 0.16 0.93± 0.03 0.97 ± 0.02 0.95 ± 0.01 0.98 ± 0.01
HalfCheetah 0.35± 0.06 0.78± 0.19 0.97 ± 0.01 0.78± 0.17 0.78± 0.29

Ant 0.41± 0.38 0.29± 0.07 0.99 ± 0.01 0.83± 0.17 1.00 ± 0.00
NSFnet 0.00± 0.00 0.04± 0.01 0.92± 0.05 0.98 ± 0.01 0.94 ± 0.04
BSS3z 0.25± 0.02 0.28± 0.24 0.73 ± 0.18 0.59± 0.20 0.72 ± 0.24
BSS5z 0.13± 0.11 0.31± 0.16 0.84 ± 0.14 0.68± 0.17 0.77 ± 0.16

Does our proposed method achieve a lower training and inference overhead? QP operations are
known to be computationally costly and thereby account for a substantial fraction of training time in
many ACRL methods. Figure 4 presents the log-scale plot of QP usage under different algorithms.
It is evident that ARAM exhibits significantly lower QP computation compared to others. Due to its
reduced dependency on QP operations, ARAM achieves higher training efficiency.

Moreover, Table 3 shows the average per-action inference time during evaluation. ARAM benefits
from computationally efficient action inference due to its almost QP-free design, as only a minimal
subset of policy output actions that violate constraints requires the QP operator. By contrast, the
projection-based methods like DPre+ and SPre+ and the flow-based FlowPG all suffer from much
higher per-action inference time.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Comparison: ARAM versus RL for constrained MDPs with projection. To make the compari-
son even more comprehensive, we also adapt FOCOPS (Zhang et al., 2020), which is a popular RL
approach designed for constrained MDPs to address long-term discounted cost, to ACRL by adding
a projection step. Table 4 and Table 5 present a comparison of ARAM and FOCOPS in the eval-
uation rewards and the valid action rates. These results suggest that ACRL requires fundamentally
different solutions from RL for constrained MDPs.

Table 3: Comparison of ARAM and other benchmark algorithms in terms of the evaluation time
across different domains. The evaluation times are calculated through 100K evaluation steps under
5 seeds.

Environment DPre+ (s) SPre+ (s) NFWPO (s) FlowPG (s) ARAM (Ours) (s)

Reacher 71.47± 5.63 303.01± 60.81 67.43± 5.02 71.47± 3.12 44.72 ± 0.93
HalfCheetah 211.67± 48.70 253.53± 30.48 180.41± 10.57 210.63± 7.51 57.14 ± 8.13

Hopper 99.43± 6.71 175.43± 9.47 88.71± 11.41 103.12± 5.13 61.72 ± 2.15
HopperVel 177.31± 15.73 97.12± 7.95 82.63± 7.13 91.43± 5.17 63.81 ± 10.04

Ablation study on MORL. To investigate the benefits of using MORL, we perform an ablation
study that compares the MORL implementation with a single-objective variant with a fixed prefer-
ence (termed SOSAC below). From Figure 5, MORL can discover policies with both competitive
final forward reward and favorable constraint satisfaction due to the implicit knowledge sharing
across preferences during training. By contrast, SOSAC under a fixed preference fails to meet both
criteria simultaneously, and this suggests that direct hyperparameter tuning can be rather ineffective.
We also provide the learning curves in Figure 11 in Appendix C.

(a) HalfCheetah (b) Ant

Figure 5: Ablation study of MORL: We plot the tuples of forward reward and valid action rate of
ARAM and the three single-objective variants with fixed preferences λ = [0.9, 0.1], [0.5, 0.5], and
[0.1, 0.9] in HalfCheetah and Ant. The five markers of each color refer to the results of the same
algorithm over five distinct random seeds.

Table 4: A comparison between FOCOPS
and ARAM in Evaluation Return.

Environment FOCOPS ARAM (Ours)

Hopper (×103) 2.27± 0.41 3.07 ± 0.24
HopperVel (×102) 0.07± 3.13 6.49 ± 2.31

Reacher (×100) −5.80± 1.14 -4.78 ± 0.33
HalfCheetah (×103) 6.08± 1.87 8.38 ± 1.11

Ant (×103) 3.06± 1.11 5.00 ± 0.32
NSFnet (×104) 0.68± 0.16 1.32 ± 0.08
BSS3z (×103) −1.93± 0.20 -1.65 ± 0.04
BSS5z (×104) −1.61± 0.05 -1.51 ± 0.02

Table 5: A comparison between FOCOPS
and ARAM in Valid Action Rate.

Environment FOCOPS ARAM (Ours)

Hopper 0.22± 0.15 0.99 ± 0.01
HopperVel 0.32± 0.11 0.80 ± 0.09

Reacher 0.87± 0.10 0.98 ± 0.01
HalfCheetah 0.59± 0.13 0.78 ± 0.29

Ant 0.26± 0.09 1.00 ± 0.00
NSFnet 0.46± 0.28 0.94 ± 0.04
BSS3z 0.45± 0.19 0.72 ± 0.24
BSS5z 0.16± 0.13 0.77 ± 0.16

6 CONCLUSION

In this paper, we introduced ARAM, a novel framework designed to address ACRL problems by
augmenting standard deep RL algorithms. By employing the acceptance-rejection method and an
augmented MDP, ARAM effectively reduces the need for costly QP operations and improves valid
action rates. Our experimental results demonstrate that ARAM can simultaneously achieve faster
learning progress and require significantly fewer QP operations than the existing ACRL methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
weights in multi-objective deep reinforcement learning. In International Conference on Machine
Learning, 2019.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, 2017.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Brandon Amos and J Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, 2017.

Abhinav Bhatia, Pradeep Varakantham, and Akshat Kumar. Resource constrained deep reinforce-
ment learning. In International Conference on Automated Planning and Scheduling, 2019.

Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. FlowPG: Action-constrained Policy Gradient
with Normalizing Flows. Advances in Neural Information Processing Systems, 2023.

Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing policy feasi-
bility constraints through differentiable projection for energy optimization. In ACM International
Conference on Future Energy Systems, 2021.

Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
Advances in Neural Information Processing Systems, 2023.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning
to Reset for Safe and Autonomous Reinforcement Learning. In International Conference on
Learning, 2018.

Supriyo Ghosh and Pradeep Varakantham. Incentivizing the use of bike trailers for dynamic reposi-
tioning in bike sharing systems. In International Conference on Automated Planning and Schedul-
ing, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Wei Hung, Bo Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-Pensieve: Boosting sample efficiency
of multi-objective RL through memory sharing of Q-snapshots. In International Conference on
Learning Representations, 2023.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph E Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with
reinforcement learning. Advances in Neural Information Processing Systems, 2021.

Nathan Jay, Noga H Rotman, P Godfrey, Michael Schapira, and Aviv Tamar. A deep reinforce-
ment learning perspective on internet congestion control. International Conference on Machine
Learning, 2019.

Kazumi Kasaura, Shuwa Miura, Tadashi Kozuno, Ryo Yonetani, Kenta Hoshino, and Yohei Hosoe.
Benchmarking actor-critic deep reinforcement learning algorithms for robotics control with action
constraints. Robotics and Automation Letters, 2023.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing Flows: An introduction and
review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dirk P Kroese, Thomas Taimre, and Zdravko I Botev. Handbook of monte carlo methods. John
Wiley & Sons, 2013.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations, 2016.

Jyun-Li Lin, Wei Hung, Shang-Hsuan Yang, Ping-Chun Hsieh, and Xi Liu. Escaping from zero gra-
dient: Revisiting action-constrained reinforcement learning via Frank-Wolfe policy optimization.
In Uncertainty in Artificial Intelligence, 2021.

Guanghui Liu, Qiang Li, Bohan Yang, Hualiang Zhang, and Lijin Fang. An efficient linear
programming-based time-optimal feedrate planning considering kinematic and dynamics con-
straints of robots. IEEE Robotics and Automation Letters, 2024.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free rein-
forcement learning: A survey. In International Joint Conference on Artificial Intelligence, 2021.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical constrained op-
timization for deep reinforcement learning in the real world. In International Conference on
Robotics and Automation, 2018.

Andrew Singletary, Shishir Kolathaya, and Aaron D Ames. Safety-critical kinematic control of
robotic systems. IEEE Control Systems Letters, 2021.

Richard S Sutton. Reinforcement learning: an introduction. A Bradford Book, 2018.

Yunxi Tang, Xiangyu Chu, Jing Huang, and KW Samuel Au. Learning-based MPC with safety filter
for constrained deformable linear object manipulation. IEEE Robotics and Automation Letters,
2024.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
International Conference on Learning Representations, 2019.

Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister, Joseph E Gon-
zalez, Sergey Levine, Francesco Borrelli, and Ken Goldberg. Safety augmented value estimation
from demonstrations (SAVED): Safe deep model-based rl for sparse cost robotic tasks. Robotics
and Automation Letters, 2020.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery RL: Safe
reinforcement learning with learned recovery zones. Robotics and Automation Letters, 2021.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
future. Advances in Neural Information Processing Systems, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In International Conference On Intelligent Robots and Systems, 2012.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in Neural Information Processing Sys-
tems, 2019.

Haonan Yu, Wei Xu, and Haichao Zhang. Towards safe reinforcement learning with a safety editor
policy. Advances in Neural Information Processing Systems, 2022.

Cong Zhang, Fan Wu, He Wang, Bihua Tang, Wenhao Fan, and Yuanan Liu. A meta-learning
algorithm for rebalancing the bike-sharing system in IoT smart city. IEEE Internet of Things
Journal, 2022.

Jie Zhang, Meng Meng, Yiik Diew Wong, Petros Ieromonachou, and David ZW Wang. A data-
driven dynamic repositioning model in bicycle-sharing systems. International Journal of Produc-
tion Economics, 2021.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDICES

Table of Contents
A Proof of Proposition 1 13

B Detailed Architecture of ARAM 14

C Additional Experimental Results 15
C.1 Sample Efficiency . 15
C.2 Comparison: ARAM versus RL for constrained MDPs with projection. 16
C.3 Ablation Study: The learning curves of ARAM versus SOSAC 17

D Detailed Experimental Configurations 18
D.1 Environments and Action Constraints . 18
D.2 Hyperparameters of ARAM . 18

E Detailed introduction to the existing ACRL methods 18
E.1 Action Projection . 18
E.2 Frank-Wolfe Policy Optimization (FWPO) . 19
E.3 FlowPG . 19

A PROOF OF PROPOSITION 1

For ease of exposition, we restate the proposition as follows.
Proposition 1 (Equivalence in optimality). Let π∗ ∈ ΠC be an optimal policy among all the
policies in ΠC under the original action-constrained MDPM. Then, for any λ ∈ Λ, the policy π∗

remains an optimal policy among all the policies in ΠA under the AUTO-MDP M̃.

Proof. Let us first fix a preference vector λ ∈ Λ. Recall that λ = [λr, λc]. Let π∗
λ ∈ ΠA be

a deterministic optimal policy of the AUTO-MDP under the preference vector λ. By the classic
literature of MDPs, we know such a π∗

λ must exist. Then, we have

⟨λ,Q(s, a;π∗
λ)⟩ ≥ ⟨λ,Q(s, a;π)⟩, (6)

for all s ∈ S , for all a ∈ A, and for all π ∈ ΠA. In the sequel, we slightly abuse the notation and
use π(s) to denote the deterministic action taken at state s by a deterministic policy π.

To prove the proposition, we just need to show that such a π∗
λ must also be in the set of feasible

policies ΠC . We prove this by contradiction. Suppose π∗
λ /∈ ΠC . Then, there must exist a state

s̄ ∈ S such that π∗
λ(s̄) /∈ C(s). Then, we know

⟨λ,Q(s̄, π∗
λ(s̄);π

∗
λ)⟩ = ⟨λ, [0,−K]⊤ + γQ(s̄, π∗

λ(s̄);π
∗
λ)⟩ (7)

= λc ·
−K
1− γ

, (8)

where Equation (7) follows from the Bellman equation and the self-loop transitions of AUTO-MDP,
and Equation (8) holds by recursively rolling out the self-loop transitions. Let us pick a feasible
action a ∈ C(s). We know such an action a must exist as C(s) is assumed non-empty. Then, we
have

⟨λ,Q(s̄, a;π∗
λ)⟩ = ⟨λ, [r(s̄, a), 0]⊤ + γEs′∼P̃(·|s̄,a)

[
Q(s′, π∗

λ(s
′);π∗

λ)
]
⟩ (9)

≥ λr · r(s̄, a) + γλc ·
−K
1− γ

(10)

> λc ·
−K
1− γ

, (11)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where Equation (9) follows from the Bellman equation, Equation (10) holds by considering the
worst-case reward and penalty, and Equation (11) holds due to the non-negativity of the reward
function and that γ < 1. Therefore, by combining Equation (8) and Equation (11), we know
Qλ(s̄, a;π

∗
λ) ≡ ⟨λ,Q(s̄, a;π∗

λ)⟩ > ⟨λ,Q(s̄, π∗
λ(s̄);π

∗
λ)⟩ ≡ Qλ(s̄, π

∗
λ(s̄);π

∗
λ). Then, by the argu-

ment of the standard one-step greedy policy improvement, we know π∗
λ can be improved by taking

action a at state s̄ instead. Hence, π∗
λ cannot be an optimal policy. This completes the proof.

B DETAILED ARCHITECTURE OF ARAM

Figure 6 illustrates the complete training process of ARAM.

Figure 6: The complete training process of ARAM.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we compare ARAM with other baselines, including action-constrained RL and RL for
Constrained MDPs. The learning curves demonstrate that ARAM achieves better sample efficiency.
Additionally, we conduct an ablation study on the MORL framework, investigating how varying
preferences within MORL impact the performance of ARAM.

C.1 SAMPLE EFFICIENCY

Does ARAM have better sample efficiency? Figure 7 shows the evaluation rewards, and Figure 8
displays the action acceptance rates. We can observe that ARAM achieves consistently the best
reward performance while maintaining a low action violation rate. On the other hand, FlowPG and
NFWPO can effectively control the actions within the feasible set, but their reward performance
appears lower. In contrast, QP-based methods exhibit a significantly higher rate of action violations.

(a) Hopper (b) HopperVel (c) Reacher (d) HalfCheetah

(e) Ant (f) NSFnet (g) BSS3z (h) BSS5z

Figure 7: Performance comparison of different reinforcement learning algorithms across various en-
vironments. The evaluation reward was measured across five seeds, representing the environment’s
forward reward.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HopperVel (c) Reacher (d) HalfCheetah

(e) Ant (f) NSFnet (g) BSS3z (h) BSS5z

Figure 8: Valid action rate of the ACRL methods across various environments.

(a) Hopper (b) HopperVel (c) Reacher (d) HalfCheetah

(e) Ant (f) NSFnet (g) BSS3z (h) BSS5z

Figure 9: Performance comparison of FOCOPS and ARAM across various environments. The
evaluation reward was measured across five seeds, representing the environment’s forward reward.

C.2 COMPARISON: ARAM VERSUS RL FOR CONSTRAINED MDPS WITH PROJECTION.

Does ARAM more effectively reduce the number of action violations while achieving better
performance? Figure 9 and Figure 10 present the training curves of total return and valid action
rate, respectively. From these curves, we observe that ARAM consistently outperforms FOCOPS
in both return and valid action rate, indicating its superior ability to handle action constraints while
optimizing performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HopperVel (c) Reacher (d) HalfCheetah

(e) Ant (f) NSFnet (g) BSS3z (h) BSS5z

Figure 10: Valid action rates of FOCOPS and ARAM across various environments.

C.3 ABLATION STUDY: THE LEARNING CURVES OF ARAM VERSUS SOSAC

We present the learning curves of the total return and the valid action rate in Figure 11. We can
observe that the ARAM consistently achieves higher returns compared to the SOSAC variant with
fixed preferences.

(a) HalfCheetah (b) Ant (c) HalfCheetah (d) Ant

Figure 11: Ablation study on MORL: Figures 11a and 11b shows the learning curves of MORL and
the SOSAC variant with various fixed preferences in HalfCheetah and Ant; Figures 11c and 11d
displays the valid action rates in HalfCheetah and Ant environments.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D DETAILED EXPERIMENTAL CONFIGURATIONS

D.1 ENVIRONMENTS AND ACTION CONSTRAINTS

In this section, we provide the details about the experimental setups and the action constraints con-
sidered in different environments.

• MuJoCo: The action is defined as a vector (a1, a2, · · · , ak), with each element representing the
torque applied to a specific joint, and (w1, w2, · · · , wk) denotes the angular velocities of the joints.
The tasks considered in our experiments include:

– Reacher, HalfCheetah, Hopper, and Ant: We use the experimental settings and objectives
provided by OpenAI Gym V3 to control the agents in these environments. Each environment
presents unique challenges and objectives, such as reaching a target location, maintaining
balance, or achieving high-speed movement.

– HopperVel: This task is specifically designed to control the robot to maintain a target hori-
zontal velocity of 3 m/s, differing from the standard Hopper’s goal of forward hopping.

• NSFnet: Based on the T3 NSFNET Backbone as discussed in (Lin et al., 2021), this network
consists of 9 different packet flows, each with distinct routing paths. There are 8 communication
links shared by different flows. The action is defined as the rate allocation of each flow along each
candidate path. The action constraint is to check if the distribution of packets on these shared links
stays within the bandwidth limits, defined as 50 units for each link. To define action constraints,
we described the eight-tuple (link1, ..., link8), each containing the total amount of flow that pass
through that specific link.

• BSS: The action is to allocate bikes to stations under random demands.
– BSS3z: There are 3 stations with a total of 90 bikes (m = 90, n = 3), and each station has a

capacity of 40 bikes.
– BSS5z: This system comprises 5 stations with a total of 150 bikes (m = 150, n = 5), and

each station also has a capacity of 40 bikes.

Table 6: Action constraint of experiment environment

Environment Action Constraint

HopperVel
∑3
i=1 max(wiai, 0) ≤ 10

Hopper
∑3
i=1 max(wiai, 0) ≤ 10

Reacher a21 + a22 ≤ 0.05

HalfCheetah
∑6
i=1 |wiai| ≤ 20

Ant
∑8
i=1 a

2
i ≤ 2

NSFnet
∑
i∈linkj ai ≤ 50, ∀j ∈ {1, 2, . . . , 8}

BSS3z
∣∣∣∑3

i=1 ai − 90
∣∣∣ ≤ 5, ai <= 40

BSS5z
∣∣∣∑5

i=1 ai − 150
∣∣∣ ≤ 5, ai <= 40

D.2 HYPERPARAMETERS OF ARAM

We conduct all the experiments with the following hyperparameters.

E DETAILED INTRODUCTION TO THE EXISTING ACRL METHODS

E.1 ACTION PROJECTION

An action produced by the neural network is not guaranteed to remain within the feasible action
set. To address this, there are various frameworks to map the output action to one that satisfies the
constraints. An intuitive approach is through a QP operation to find the closest feasible action to the
original one within the acceptable action space. We refer to this as the QP-Solver:

QP-Solver(s, a, C(s)) = argmina′∈C(s)||a′ − a||2. (12)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters of ARAM

Parameter ARAM
Optimizer Adam
Learning Rate 0.0003
Discount Factor 0.99
Replay Buffer Size 1000000
Number of Hidden Units per Layer [256, 256]
Number of Samples per Minibatch 256
Nonlinearity ReLU
Target Smoothing Coefficient 0.005
Target Update Interval 1
Gradient Steps 1
Sample Ratio for Augmented Replay Buffer (η) 0.2
Decay Interval for η 10,000
Decay Factor for η 0.9

Table 8: Hyperparameters of other baselines

Parameter DPre+ SPre+ NFWPO FlowPG
Learning Rate 0.001 0.001 0.001 0.001
FW Learning Rate - - 0.01 -
Discount Factor 0.99 0.99 0.99 0.99
Replay Buffer Size 1000000 1000000 1000000 1000000
Number of Hidden Units [256, 256] [256, 256] [256, 256] [400, 300]
Number of Samples per Minibatch 256 256 256 100
Target Smoothing Coefficient 0.005 0.005 0.005 0.005
Target Update Interval 1 1 1 1
Gradient Steps 1 1 1 1

Kasaura et al. (2023) describe a family of algorithms based on the QP-Solver. However, as the
complexity of the action space increases, the computation time for this type of approach can become
lengthy. If we cannot eliminate the dependency on the QP-Solver, we will be unable to obtain a
policy within an acceptable timeframe.

E.2 FRANK-WOLFE POLICY OPTIMIZATION (FWPO)

Aside from the QP-Solver, Lin et al. (2021) employ the Frank-Wolfe (FW) method to update the
policy and propose Frank-Wolfe Policy Optimization (FWPO). To describe the different policy pa-
rameters, FWPO uses ϕk to denote the policy parameters in the k-th iteration. To update the policy
with the action constraints, FWPO adopts a generalized policy iteration framework (Sutton, 2018),
which consists of two subroutines:

(i) Policy update via state-wise FW: For each state s and the corresponding learning rate αk(s),
search for feasible action, then guide the current policy parameters update.

ck(s) = arg max
c∈C(s)

⟨c,∇aQθ(s, a;πϕk)|a=πϕk (s)⟩, (13)

πϕk+1
(s)← πϕk(s) + αk(s)(ck(s)− πϕk(s)), (14)

(ii) Evaluation of the current policy: Use any policy evaluation algorithm to obtain Qθ(s, a;πϕk+1
).

Where ck(s)− πϕk(s) is the update direction.

E.3 FLOWPG

Brahmanage et al. (2023) adopt normalizing to create an invertible mapping between the support
of a simple distribution and the space of valid actions. Specifically, the focus is on the conditional
RealNVP model, which is well-suited for the general ACRL setting where the set of valid actions
depends on the state variable. The conditional RealNVP extends the original RealNVP by incorpo-
rating a conditioning variable in both the prior distribution and the transformation functions. These

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

transformation functions, implemented as affine coupling layers, enable efficient forward and back-
ward propagation during model learning and sample generation.

Algorithm 2: FlowPG Algorithm
Input : Initial parameter vectors θ, ϕ, ψ

1 Initialize replay buffer B;
2 for episode = 1, ..., M do
3 Initialize the random noise generator N for action exploration;
4 for t = 1, ..., T do
5 Select action ãt = πϕ(st) +Nt based on current policy and exploration noise;
6 Apply flow and get the environment action at = fψ(ãt, st);
7 if at is invalid then
8 at ← QPSolver(st, at, C(st));
9 Update actor policy using the sampled policy gradient:

∇ϕJ(πϕ) = ∇aQθ(st, a;π)∇ãfψ(ã, st)∇θπϕ(st)
∣∣
ã=πϕ(st),a=fψ(ã,st)

Learning the RL-Model. Integrating DDPG with normalizing flows involves using the learned
mapping directly in the original policy network, which improves training speed and stability. The
architecture of the policy network consists of the original DDPG policy network and the learned
mapping function fψ . The objective is to learn a deterministic policy fψ(πϕ(s), s) that gives the
action a given a state s, maximizing J(πϕ):

max
ϕ

J(πϕ) = Es∼B[Qθ(s, fψ(πϕ(s), s);πϕ)] (15)

where B is the replay buffer and ϕ represents the Q-function parameters, treated as constants dur-
ing policy update. The policy update involves gradient ascent with respect to the policy network
parameters ϕ:

∇ϕJ(πϕ) = Es∼B[∇aQθ(s, a;πϕ)∇ãfψ(ã, s)∇ϕπϕ(s)
∣∣
ã=πϕ(s),a=fψ(ã,s)

] (16)

The critic update follows the same rule as in DDPG, with actions stored in the replay buffer being
either the flow model output or projected actions. The proposed method can be extended to other
RL algorithms like SAC or PPO, as normalizing flows enable the computation of log probabilities
of actions required during training. The pseudo code of FlowPG is provided in Algorithm 2.

20

	Introduction
	Related Work
	Preliminaries: Action-Constrained Reinforcement Learning
	Algorithm
	Acceptance-Rejection Method
	Augmented Unconstrained Two-Objective MDP
	A Multi-Objective RL implementation of ARAM

	Experiments
	Experimental results

	Conclusion
	References
	
	Proof of prop:equiv
	Detailed Architecture of ARAM
	Additional Experimental Results
	Sample Efficiency
	Comparison: ARAM versus RL for constrained MDPs with projection.
	Ablation Study: The learning curves of ARAM versus SOSAC

	Detailed Experimental Configurations
	Environments and Action Constraints
	Hyperparameters of ARAM

	Detailed introduction to the existing ACRL methods
	Action Projection
	Frank-Wolfe Policy Optimization (FWPO)
	FlowPG

