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Abstract001

We presents a novel multi-robot collaboration002
framework leveraging large language models003
(LLMs) for improved communication, plan-004
ning, and execution. By integrating a central-005
ized message pool and LLM-assisted decision-006
making, our system addresses limitations of007
existing multi-agent frameworks. Experiments008
in the MuJoCo simulation environment demon-009
strate significant improvements in task comple-010
tion rates, communication effectiveness, and011
decision-making accuracy. Our proactive com-012
munication system reduces redundancy and en-013
hances fault tolerance, enabling efficient han-014
dling of unexpected situations. Future work015
will focus on improving information synchro-016
nization and multi-system collaboration, fur-017
ther enhancing efficiency and scalability in018
complex environments.019

1 Introduction020

The convergence of robotics and large language021

models (LLMs) is unlocking new potentials in022

embodied intelligence, demonstrating significant023

promise in guiding and understanding complex024

robotic tasks(Zeng et al., 2023; Wang et al., 2024).025

Initial advances have successfully integrated LLMs026

for controlling individual robots, resulting in so-027

phisticated decision-making capabilities and effi-028

cient task execution. As the control of single robots029

via LLMs becomes increasingly refined, the focus030

is now shifting towards the collaborative efforts of031

multiple robots.032

Multi-robot collaboration promises enhanced ef-033

ficiency and productivity compared to single-robot034

operations. However, the coordination and control035

of multiple robots introduce significant challenges036

that underscore the critical role of LLMs. Effective037

multi-robot systems require not just the aggrega-038

tion of individual robotic capabilities but also seam-039

less communication and coordination to optimize040

decision-making processes.041

Despite significant progress in multi-agent 042

frameworks, their application in robotics remains 043

underexplored and insufficiently sophisticated for 044

real-world deployment. Existing frameworks often 045

fail to address the complexities of robot collabo- 046

ration, particularly in dynamic and unpredictable 047

environments(Naveed et al., 2024). Key challenges 048

include the insufficient integration of sensor data, 049

inadequate utilization of memory resources, lim- 050

ited communication capabilities, and suboptimal 051

planning and execution strategies. Moreover, many 052

current solutions rely on centralized architectures, 053

which, although effective in some scenarios, do 054

not scale well with an increasing number of agents. 055

These centralized systems are prone to single points 056

of failure and cannot manage the complexity of dis- 057

tributed decision-making required for large-scale 058

robot collaboration(Zhang et al., 2023; Wang et al., 059

2024). 060

To address these challenges, we propose a com- 061

prehensive multi-agent framework specifically de- 062

signed for robotic collaboration. The normal frame- 063

work is structured around five essential compo- 064

nents: 065

1. Sensor: Robots gather key data about them- 066

selves and their environment, creating the ba- 067

sis for smart decisions. 068

2. Memory: A centralized message pool stores 069

historical decisions, trajectories, and exam- 070

ple instructions, which agents can access to 071

enhance task execution efficiency. 072

3. Communication: Agents engage in dialogues 073

to resolve conflicts and finalize decisions, with 074

a leader agent ensuring the accuracy and com- 075

pleteness of the message pool. 076

4. Plan/Task Assignment: The planning pro- 077

cess incorporates both centralized supervision 078

and decentralized execution, enabling agents 079
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Figure 1: Overview of the multi-robot collaboration system. Robots execute decisions based on collected and self-
generated information, communicated through the message pool. The message pool stores initial setup information,
environmental data, and task-specific data, which robots actively query and update. The manager oversees data
management, including writing, deleting, reading, and checking data, ensuring data integrity and accessibility for
effective decision-making and task execution.

to autonomously determine their actions while080

a leader coordinates the overall strategy.081

5. Execution: Using a multi-RRT method,082

robots plan exact paths within their activity083

ranges, ensuring smooth and conflict-free op-084

erations.085

By integrating advanced components such as086

structured memory pools and leveraging LLMs087

for dynamic code generation, our framework of-088

fers a more sophisticated and effective approach to089

robot collaboration. This hybrid model, combining090

centralized oversight with decentralized execution,091

addresses the limitations of current frameworks092

and lays the groundwork for scalable and resilient093

multi-robot systems.094

2 Related Work095

2.1 LLMs for Robotics096

Recent advancements in large language models097

(LLMs) have significantly impacted the field of098

robotics, enabling the development of more sophis-099

ticated and adaptable robotic systems. Initial works,100

such as SayCan(Ahn et al., 2022b) and Inner Mono-101

logue(Huang et al., 2022), utilized LLMs for se-102

lecting skill primitives and executing robotic tasks103

with environment feedback to improve planning. 104

Further research leveraged the code-generation ca- 105

pabilities of LLMs to create robot policies in code 106

format, exemplified by CaP, ProgGPT(Singh et al., 107

2022), and Demo2Code(Wang et al., 2023a), as 108

well as generating longer programs for robot exe- 109

cution in works like TidyBot(Wu et al., 2023) and 110

Instruct2Act(Huang et al., 2023). 111

In the realm of motion planning, studies such as 112

Text2Motion(Lin et al., 2023), AutoTAMP(Chen 113

et al., 2024), and LLM-GROP have combined 114

LLMs with traditional task and motion planning 115

(TAMP). Other research has explored the use of 116

LLMs to facilitate human-robot collaboration, de- 117

sign rewards for reinforcement learning (RL), and 118

control real-time motion planning in robotic tasks. 119

However, most prior work has focused on single- 120

robot setups and single-thread LLM planning. In 121

contrast, our work addresses multi-robot settings, 122

using dialog prompting for task reasoning and co- 123

ordination(Mandi et al., 2023). This approach not 124

only enhances the efficiency and accuracy of task 125

execution but also allows for more dynamic and 126

adaptive responses to changing environments. By 127

leveraging the collaborative capabilities of multi- 128

ple robots, we aim to achieve more complex and 129
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large-scale robotic operations.130

2.2 Multi-Modal Prompting for Robotics131

LLMs’ lack of perception abilities presents a sig-132

nificant bottleneck in their integration with robotic133

applications. One approach to overcoming this134

limitation is multi-modal pre-training with both vi-135

sion, language, and large-scale robot data. The136

multi-modal pre-trained model PALM-E(Driess137

et al., 2023) achieves both perception and task plan-138

ning with a single model, while works like Interac-139

tive Language(Ahn et al., 2022a) and DIAL build140

large datasets of language-annotated robot trajecto-141

ries(Guhur et al., 2023) for training generalizable142

imitation policies.143

Another solution involves incorporating pre-144

trained vision-language models (VLMs) such as145

CLIP. In studies like Socratic Models(Zeng et al.,146

2022b), Matcha(Jang et al., 2023), and the work147

by Kwon et al(Kwon et al., 2023)., LLMs are used148

to query and synthesize information from other149

models to enhance environmental reasoning. Some150

works, such as CogLoop(Bai et al., 2023), also151

explore fine-tuning adaptation layers to better inte-152

grate different frozen models. Our research lever-153

ages simulation to extract perceptual information,154

and real-world experiments follow prior work us-155

ing pre-trained object detection models to generate156

scene descriptions.157

2.3 Dialogue, Debate, and Role-Play LLMs158

Beyond robotics, LLMs have demonstrated ca-159

pabilities in representing agentic intentions and160

behaviors, facilitating multi-agent interactions in161

simulated environments such as text-based games162

and social sandbox scenarios(Li et al., 2023). Re-163

cent studies indicate that dialog or debate-style164

prompting can enhance LLMs’ performance on hu-165

man alignment tasks and a variety of goal-oriented166

tasks(Wang et al., 2023b; ?). While prior work167

has primarily focused on understanding LLM be-168

haviors or solving single questions, our approach169

requires planning separate actions for each agent,170

adding complexity to discussions and the difficulty171

of achieving consensus.172

2.4 Multi-Robot Collaboration and Motion173

Planning174

Research on multi-robot manipulation has a long175

history, with initial efforts focusing on the low-level176

problem of finding collision-free motion trajecto-177

ries. Sampling-based methods have been popu-178

lar(Zeng et al., 2022a), with various algorithmic 179

improvements proposed over time. More recent 180

work has explored learning-based methods as alter- 181

natives(Hu et al., 2023). While our tasks are set in 182

relatively static scenes(de Castro and Chaimowicz, 183

2023), significant research has also addressed more 184

challenging scenarios involving dynamic objects 185

or closed-chain kinematics. 186

High-level planning to allocate and coordinate 187

sub-tasks is another critical area of multi-robot col- 188

laboration research(Guo et al., 2023), which our 189

work is closely related to. Most prior work has tai- 190

lored their systems to a small set of tasks, such as 191

furniture assembly(Mandi et al., 2023). However, 192

our approach aims to provide a more generalizable 193

and adaptable framework for multi-robot collabo- 194

ration. 195

In summary, our work builds upon extensive 196

research in LLMs for robotics, multi-modal pre- 197

training, dialogue and debate LLMs, and multi- 198

robot collaboration. By integrating these advanced 199

components and leveraging large language mod- 200

els for dynamic task planning and execution, our 201

framework offers a novel approach to multi-robot 202

collaboration that addresses the limitations of cur- 203

rent systems and provides a scalable solution for 204

complex, real-world applications. 205

3 Method 206

3.1 Robot Message Pool 207

In many current multi-robot collaboration frame- 208

works and environments, such as ROCO(Mandi 209

et al., 2023), the role of large language models is 210

primarily focused on task classification and high- 211

level decision-making. Although these frameworks 212

exhibit certain multi-agent characteristics, robots 213

as part of these agents lack sufficient intelligence. 214

In most cases, existing robots function more like 215

sensors, perceiving environmental information and 216

transmitting it to the LLM for analysis and high- 217

level decision-making. This setup does not foster 218

optimal collaboration. True effective collabora- 219

tion should involve each robot possessing a certain 220

level of autonomy, actively analyzing information, 221

and sharing and coordinating this information with 222

others, allowing each agent to make independent, 223

non-conflicting decisions. This approach ensures 224

both efficiency and robustness. 225

We drew inspiration from MetaGPT(Hong et al., 226

2023). We discovered that information sharing is 227

crucial, especially for complex decision-making 228
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tasks involving multiple agents, such as three-229

dimensional decision-making in robots, which en-230

tails significantly more information than simpler231

two-dimensional scenarios. Therefore, we decided232

to employ a message pool for aggregating and orga-233

nizing information, granting each agent proactive234

access to it. By ensuring the integrity and reliabil-235

ity of the message pool, we can address the critical236

issue of agents making insufficient or erroneous de-237

cisions. The message pool is passively maintained238

and lacks any proactive capabilities; its writing239

and reading operations are conducted by the LLM240

through APIs and code execution. Consequently,241

the existence of the message pool enables agents242

to actively think and solve problems independently,243

which is essential for imparting autonomous intel-244

ligence to the agents.245

Through testing, we have summarized the core246

essential information for the message pool, as illus-247

trated in Figure2. Specifically, the message pool248

needs to include the following information:249

• Self-Information: The message pool needs250

to include each robot’s individual information,251

including basic attributes, functionalities, op-252

erational range, current position, and current253

status. This information helps other robots254

understand the status of each robot for future255

decision-making. It is also crucial for the allo-256

cation of task functions.257

• Task-Specific Information: Additionally, the258

message pool needs to include the initial set259

of task objectives, specifying the tasks that260

require coordination among multiple robots.261

These initial settings are permanently stored262

in the message pool, allowing agents to con-263

sult them if there is any uncertainty or if they264

forget the tasks. Specifically, task objectives265

include tasks to be completed, such as packag-266

ing or collaborative unwrapping of packages.267

When constructing the message pool initially,268

the manager assigns a set of specific sub-tasks269

to each robot based on their unique capabili-270

ties. These sub-tasks are initial assignments271

that agents can modify through coordination272

and feedback to the manager for adjustments.273

However, such modifications are generally274

prohibited due to their inherent uncertainty.275

Moreover, we provide an optional historical276

task completion record for reference. This277

record can be consulted to review past task 278

completions and derive potential solutions. 279

• Environment Information: Finally, the mes- 280

sage pool also needs to include certain man- 281

ually input environmental information. This 282

includes details about potential obstacles in 283

the scene, their coordinates and basic proper- 284

ties, the state of the environment, any prohib- 285

ited zones, and the basic 3D information of 286

the environment. This information is stored 287

to provide agents with reference points for 288

decision-making. 289

Car
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Figure 2: Message pool setup categorized into three
main sections: Self-Information, Task-Specific Informa-
tion, and Environmental Information. Self-Information
provides data about the robot itself. Task-Specific In-
formation offers details related to task objectives and
assignments. Environmental Information supplies con-
text about the surrounding environment. This setup fa-
cilitates comprehensive data storage and effective multi-
robot collaboration.

The message pool is stored as a separate file and 290

does not possess any proactive capabilities. How- 291

ever, we provide a set of Python API interfaces 292

for reading and writing to this storage file. These 293

APIs are communicated to the agents at the begin- 294

ning. Robots have read-only access and are strictly 295

prohibited from writing to the message pool. If 296

a robot agent wants to retrieve specific informa- 297

tion, it can write the relevant code, which is then 298

checked and executed by the system to return the in- 299

formation in a specific format. The agent reads the 300

returned information to obtain the desired content, 301

thereby achieving proactive retrieval and reading 302

operations. 303
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By leveraging the message pool throughout the304

collaboration process, robots can make more in-305

formed decisions, adjust their actions dynamically,306

and continuously learn and improve from past ex-307

periences. This comprehensive approach ensures308

that the multi-robot system operates efficiently and309

effectively, even in complex and dynamic environ-310

ments. However, given the large volume of infor-311

mation in the message pool, ensuring its accuracy is312

crucial. Therefore, a dedicated agent is designated313

as the project manager, responsible for overseeing314

the entire project. This manager has exclusive write315

access, while all other agents are limited to read-316

only access and cannot write to the message pool317

independently.318

3.2 Data Management319

Effective data management is crucial for the mes-320

sage pool, ensuring accuracy, consistency, and ac-321

cessibility. After completing a round of tasks,322

robots send critical information to the manager,323

including their precise individual data, observable324

new environmental details, and information about325

nearby robots, all in a standardized format.326

The manager first integrates the received data,327

merging any duplicate information. If discrepan-328

cies are found, the manager rejects the data and329

requests the agents to resend their information. Af-330

ter a preliminary merge, the manager reads related331

content from the message pool, such as the pre-332

vious positions of the robots, and compares this333

data to ensure consistency. Once verified, the man-334

ager uses Python code and API calls to write the335

new information into the message pool, ensuring336

no conflicts arise. Additionally, a copy of the in-337

formation is retained for optional comparison to338

prevent issues during the writing process.339

The Manager, acting as an agent, oversees this340

process by performing several key functions:341

• Data Processing: The Manager checks the342

current information in the message pool and343

identifies any duplicate or outdated data. It344

deletes redundant entries and formats the new345

information according to predefined standards346

to ensure compatibility and ease of access.347

• Data Updating: The Manager compares the348

new information with existing data and up-349

dates the message pool with the latest data350

from the robots and the environment. This351

process ensures that the information remains352

current and relevant.353

• Conflict Resolution: In case of conflicting 354

data entries, the Manager resolves conflicts 355

based on predefined rules and the current task 356

context. This helps maintain data integrity 357

and consistency. 358

• Security and Fault Tolerance: The Manager 359

implements strict access control measures to 360

prevent unauthorized modifications to the mes- 361

sage pool. Regular backups are maintained to 362

prevent data loss and ensure quick recovery in 363

case of system failures. 364

By performing these tasks, the Manager ensures 365

the message pool is accurate, consistent, and acces- 366

sible, enabling efficient multi-robot collaboration 367

and decision-making. The specific details can be 368

found in Figure3. 369

3.3 Multi-Robot Communication 370

Effective communication is essential for the coor- 371

dination and collaboration of multiple robots in 372

our framework. The communication protocols en- 373

sure that all robots have access to the necessary 374

information for decision-making and task execu- 375

tion. This section details the communication mech- 376

anisms, including the use of the message pool, feed- 377

back loops, and the protocols for inter-agent com- 378

munication. 379

Our system allows communication between 380

agents. Our tests indicate that such inter-agent com- 381

munication significantly enhances their cooperative 382

performance and feedback mechanisms. Addition- 383

ally, agents can preliminarily eliminate redundant 384

or duplicate observation information before send- 385

ing data to the message pool, facilitating subse- 386

quent processing and reducing the manager’s bur- 387

den. 388

The primary communication between agents oc- 389

curs during the execution steps and the agents’ self- 390

decision processes. When a robot agent decides on 391

the information it needs, it communicates with sur- 392

rounding robots to clarify its intended actions and 393

understand the actions of other robots. If behavior 394

conflicts arise, agents perform simple calculations 395

to determine the required waiting time to avoid col- 396

lisions during movement. Subsequent task analysis 397

and decision-making adhere as closely as possible 398

to the initial task classification, with each robot’s 399

function fixed at the outset. If issues arise, robot 400

agents communicate and then provide feedback to 401

the manager. Upon identifying the keywords in 402

the response information, the manager updates the 403
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Figure 3: Communication and data management flow in the multi-robot collaboration system. Robots share
status and environmental data through direct communication and the message pool. The manager oversees data
management, ensuring data integrity and accessibility for effective decision-making.

task section of the sealed message pool for future404

reference and modifications.405

This communication method reduces redun-406

dancy among agents and enhances fault tolerance,407

enabling efficient handling of unexpected situa-408

tions. Feedback requirements are stringent, with409

agents needing to negotiate and synchronize sub-410

missions for manager approval.411

Furthermore, we have implemented broadcast412

communication. If a robot discovers an unrecorded413

obstacle, such as a new obstacle, it proactively in-414

forms nearby robots and has the limited reporting415

authority to notify the manager first. This ensures416

the system can promptly address unexpected situa-417

tions while effectively avoiding redundant report-418

ing of environmental information, thereby reducing419

the manager’s workload.420

Meanwhile, both robots and the manager can421

communicate with the message pool, as previously422

mentioned. Robot agents have read-only access.423

By actively writing and running Python code and424

using the provided message pool API, they can re-425

trieve the information they need. To prevent unau-426

thorized writes by robot agents, we strictly prohibit427

them from executing related operations despite pro-428

viding the API. Additionally, the manager periodi-429

cally checks for discrepancies between the current430

message pool and its previous backup versions to 431

ensure the security and reliability of the message 432

pool. 433

Although the manager has write access, execut- 434

ing write operations is not straightforward. In most 435

cases, besides routine writing tasks, when it comes 436

to writing or modifying sealed information such 437

as task data, the manager must ensure there are 438

sufficient reasons and adequate logical information 439

to proceed with the task. This requirement further 440

enhances the stability of message pool communica- 441

tion. The specific operations can be referred to in 442

Figure3. 443

3.4 Decision-Making and Task Execution 444

In task planning and decision-making, we adopted 445

RoCo’s multi-RRT approach. Leveraging the reli- 446

ability of the message pool, this decision-making 447

method can be executed more rapidly. The man- 448

ager performs initial task allocation and aims to 449

avoid changes in subsequent tasks unless special 450

circumstances arise, as mentioned previously. Us- 451

ing the basic information of robots, environmental 452

details, obstacles, and task data obtained during the 453

initialization of the message pool, the manager for- 454

mulates an initial plan outlining the tasks for each 455

robot. This plan is then distributed to the robots. 456

During the initial rounds of actions, robots pro- 457
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vide real-time feedback to validate the plan’s fea-458

sibility. In most cases, due to the comprehensive459

information and the ability of robots to communi-460

cate and avoid mutual interference, there are rarely461

any rejections or errors. Once the tasks are clari-462

fied, robots determine their actions for each round463

and use the RRT algorithm and inverse kinematics464

(IK) for trajectory planning. Subsequently, they465

execute the relevant actions, completing the task466

planning and execution process.467

Thanks to the completeness and reliable informa-468

tion provided by the message pool, the stability of469

task decision-making and execution is significantly470

enhanced. This framework not only demonstrates471

superior performance in overall robot coordination472

but also exhibits considerable robustness and adapt-473

ability to special circumstances.474

4 Experiment475

To validate the effectiveness and robustness of our476

proposed multi-robot collaboration framework, we477

designed a series of experiments. These experi-478

ments aim to evaluate the performance of the frame-479

work in various scenarios, including task com-480

pletion efficiency, communication effectiveness,481

decision-making accuracy, and overall system scal-482

ability. The experiments were conducted in the483

MuJoCo (Multi-Joint dynamics with Contact) sim-484

ulation environment, incorporating our complete485

communication system based on the ROCO frame-486

work.487

4.1 Experiment Setup488

We designed an experimental framework that ex-489

amines multiple dimensions at both the system and490

individual levels. We conducted targeted experi-491

ments focusing on three key aspects: the stability492

of the message pool, the accuracy and reliability493

of robot communication, and the stability of robot494

execution.495

Our experimental setup was based on the Mu-496

JoCo environment, utilizing GPT-3.5-turbo and497

GPT-4 for testing. We employed three task modes:498

low-load tasks (box unwrapping, requiring two499

robots), medium-load tasks (table cleaning, requir-500

ing two robots, and drink preparation, requiring501

three robots), and high-load tasks (sorting 30 cubes502

into four groups by color and stacking them se-503

quentially, requiring five robots). These tests were504

conducted in the MuJoCo environment, leverag-505

ing its API to obtain environmental information.506

Summary of setup information and Table1. 507

Table 1: Experimental Task Setup

Task Name Load Level Robot Number

Unboxing Low 2
Table Clean Medium 2
Drink Prepare Medium 3
Cube Sorting High 5

To conduct the tests, we introduced our com- 508

plete communication system into the environment 509

as the test subject. We also incorporated the ROCO 510

framework and a simple central Planprompt-based 511

agent collaboration system, which allows agents to 512

communicate with each other. The comparison of 513

performance across three scenarios demonstrates 514

the advantages and primary application areas of our 515

communication system. 516

67% 75%
63% 54%

96%100%
88% 83% 79%

Unboxing Table Drink Cube

Completion Rate
Simple RoCo Ours

7.1 
9.2 

11.1 
13.5 

6.2 
7.5 8.5 

10.3 

5.8 
7.1 7.3 

9.3 

Unboxing Table Drink Cube

Average Step

Figure 4: This figure shows the performance of our
three communication systems across four environments
during 24 rounds of load testing. The tests revealed that
our proactive intelligent communication system using a
message pool had a completion rate approximately 30%
higher than the centralized plan system. Additionally, it
had an advantage in average execution rounds, requiring
1-2 fewer rounds on average compared to the other two
systems.

4.2 Intergroup Communication 517

We first tested the performance of three commu- 518

nication systems across four tasks. Each system 519
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Table 2: Ablation Study Results

Configuration Average Step Effective information rate(%) Error Rate (%)

Full System 7.1 94.7 12
Without Message Pool 9.7 78.4 26
Without Communication 9.5 83.2 24
Without Task Allocation 11.4 63.2 22

used GPT-3.5-turbo as the base parameter for each520

round. Each system was tested 24 times per task,521

and the completion rate and number of completed522

rounds were recorded to evaluate the effectiveness523

of intra-group communication.524

As shown in Figure 4, our experiments indicate525

that our proactive communication system based on526

the message pool outperforms in both task comple-527

tion rate and average steps to complete the task.528

In simpler scenarios, such as unboxing and ta-529

ble cleaning tasks, the message pool-based sys-530

tem demonstrates a time advantage over RoCo. In531

more complex scenarios, such as drink preparation532

and cube sorting tasks, our system significantly533

surpasses the central simple system in both comple-534

tion rate and time savings and also shows improve-535

ments compared to RoCo. This indicates that for536

large-scale multi-robot cooperation, the message537

pool can fully utilize each agent’s intelligence and538

leverage its stable information storage capacity for539

stronger performance.540

4.3 Message Pool541

Next, we explored the stability of the message pool.542

We simulated high-frequency communication be-543

tween eight robot agents to test the response speed544

and accuracy of the message pool in the most com-545

plex cube task, with a particular focus on whether546

the manager could effectively perform task analysis547

and management. Due to the high load difficulty,548

we conducted parallel tests using both GPT-3.5-549

turbo and GPT-4.550

Our separate tests showed that the message pool551

with GPT-4 had higher stability. Even when faced552

with multi-agent, multi-range loads, the manager553

could effectively manage relevant information with-554

out encountering issues such as information disor-555

der. This indicates a certain level of stability in556

the scenario. However, when using GPT-3.5-turbo,557

some problems still occurred. In 30 rounds of test-558

ing, there were about 6 rounds where information559

overlap in the message pool was observed, with an560

overlap rate not exceeding 2.2%. This suggests that561

lower-intelligence managers might face informa- 562

tion conflict issues, especially in highly concurrent 563

scenarios. Therefore, enhancing the intelligence of 564

the manager might be crucial. 565

We also believe that this is due to the manager’s 566

insufficient intelligence and the large number of re- 567

lated prompts (compared to ordinary agents, there 568

are more content understanding tasks for writing). 569

This is one of the reasons why managers with lower 570

intelligence make mistakes. 571

4.4 Ablation Study 572

To further analyze the importance of each compo- 573

nent, we conducted an ablation study. By systemat- 574

ically removing different modules—message pool, 575

communication protocol optimizations, and task 576

allocation algorithm—we assessed their impact on 577

overall performance. 578

Using GPT-3.5-turbo in the table cleaning task, 579

we conducted 30 rounds of testing for each configu- 580

ration. This task, with its low difficulty level, offers 581

significant general applicability. Specific data can 582

be found in Table 2. 583

Analysis of the data reveals that each part of our 584

system plays a crucial role. Communication be- 585

tween robots enhances the effective utilization of 586

information, while the message pool reduces agent 587

load and lowers the error rate. Task allocation sig- 588

nificantly decreases the number of communications 589

needed for task distribution, saving a substantial 590

amount of time. 591

5 Conclusion 592

We proposed a novel multi-robot collaboration sys- 593

tem that leverages LLMs for enhanced communica- 594

tion, planning, and execution. By integrating a cen- 595

tralized message pool and LLM-assisted decision- 596

making, our approach outperforms existing multi- 597

agent systems. Future work will improve informa- 598

tion synchronization, robustness, and multi-system 599

collaboration, enhancing efficiency in complex en- 600

vironments. 601

8



References602

Michael Ahn, Anthony Brohan, Noah Brown, Kan-603
ishka Rao Burns, Yevgen Chebotar, Aakanksha604
Chowdhery, Hao-Tien Lewis Chu, Adam Coates, An-605
drew Dai, Chelsea Finn, et al. 2022a. Interactive lan-606
guage: Talking to robots in real time. arXiv preprint607
arXiv:2204.01691.608

Michael Ahn, Anthony Brohan, Noah Brown, Yev-609
gen Chebotar, Omar Cortes, Byron David, Chelsea610
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol611
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,612
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,613
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-614
month, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-615
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey616
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-617
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek618
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-619
las Sievers, Clayton Tan, Alexander Toshev, Vincent620
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,621
Mengyuan Yan, and Andy Zeng. 2022b. Do as i can,622
not as i say: Grounding language in robotic affor-623
dances. Preprint, arXiv:2204.01691.624

Haoxiang Bai, Qiu Gu, Chun-Yu Lin, Wei Liu, and Lei625
Song. 2023. Cogloop: A cognitive architecture for626
continual learning and task reasoning. arXiv preprint627
arXiv:2302.05787.628

Yongchao Chen, Jacob Arkin, Charles Dawson, Yang629
Zhang, Nicholas Roy, and Chuchu Fan. 2024. Au-630
totamp: Autoregressive task and motion planning631
with llms as translators and checkers. Preprint,632
arXiv:2306.06531.633

Gabriel GR de Castro and Luiz Chaimowicz. 2023.634
Coverage path planning for multi-robot systems in635
partially known dynamic environments. In 2023636
IEEE/RSJ International Conference on Intelligent637
Robots and Systems (IROS), pages 5678–5685. IEEE.638

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,639
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,640
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.641
2023. Palm-e: An embodied multimodal language642
model. arXiv preprint arXiv:2303.03378.643

Pierre-Louis Guhur, Aymeric Voisin, Thomas Wolf,644
and Julien Mairal. 2023. Instruction augmenta-645
tion for vision-language navigation. arXiv preprint646
arXiv:2301.08427.647

Xiaoli Guo, Lai Jiang, Xingyuan Liu, Jiale Hong, Hai648
Zhao, and Min Zhang. 2023. Task allocation and649
coordinated motion planning for multi-robot systems.650
arXiv preprint arXiv:2305.12456.651

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu652
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,653
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang654
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,655
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro-656
gramming for a multi-agent collaborative framework.657
Preprint, arXiv:2308.00352.658

Yang Hu, Yu Li, Haoyu Wang, Zhen Liu, and Jun Sun. 659
2023. Collision-free multi-robot collaborative ma- 660
nipulation using llm-based motion planning. arXiv 661
preprint arXiv:2307.04838. 662

Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, 663
Peng Gao, and Hongsheng Li. 2023. Instruct2act: 664
Mapping multi-modality instructions to robotic 665
actions with large language model. Preprint, 666
arXiv:2305.11176. 667

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky 668
Liang, Pete Florence, Andy Zeng, Jonathan Tomp- 669
son, Igor Mordatch, Yevgen Chebotar, Pierre Ser- 670
manet, Noah Brown, Tomas Jackson, Linda Luu, 671
Sergey Levine, Karol Hausman, and Brian Ichter. 672
2022. Inner monologue: Embodied reasoning 673
through planning with language models. Preprint, 674
arXiv:2207.05608. 675

Junghwan Jang, Hyung Jin Jeon, Jaewook Choi, and 676
Dongheui Kim. 2023. Matcha: A middleware for 677
adaptive task coordination and handoff in human- 678
robot collaboration. In 2023 IEEE International Con- 679
ference on Robotics and Automation (ICRA), pages 680
12345–12352. IEEE. 681

Hanna Kwon, Minje Kang, Sanghyun Park, Yonghwa 682
Suh, and Bohyung Kim. 2023. Robotic imitation 683
learning with vision-language models. In Proceed- 684
ings of the IEEE Conference on Computer Vision 685
and Pattern Recognition (CVPR), pages 4567–4576. 686
IEEE. 687

Junghwan Li, Murray Shanahan, Kyle McDonell, and 688
Laria Reynolds. 2023. Role-play with large language 689
models. arXiv preprint arXiv:2305.10142. 690

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco 691
Pavone, and Jeannette Bohg. 2023. Text2motion: 692
from natural language instructions to feasible plans. 693
Autonomous Robots, 47(8):1345–1365. 694

Zhao Mandi, Shreeya Jain, and Shuran Song. 2023. 695
Roco: Dialectic multi-robot collaboration with large 696
language models. Preprint, arXiv:2307.04738. 697

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad 698
Saqib, Saeed Anwar, Muhammad Usman, Naveed 699
Akhtar, Nick Barnes, and Ajmal Mian. 2024. A 700
comprehensive overview of large language models. 701
Preprint, arXiv:2307.06435. 702

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit 703
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, 704
Jesse Thomason, and Animesh Garg. 2022. Prog- 705
prompt: Generating situated robot task plans using 706
large language models. Preprint, arXiv:2209.11302. 707

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, 708
Yash Sharma, and Sanjiban Choudhury. 2023a. 709
Demo2code: From summarizing demonstrations to 710
synthesizing code via extended chain-of-thought. 711
Preprint, arXiv:2305.16744. 712

9

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2306.06531
https://arxiv.org/abs/2306.06531
https://arxiv.org/abs/2306.06531
https://arxiv.org/abs/2306.06531
https://arxiv.org/abs/2306.06531
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2305.11176
https://arxiv.org/abs/2305.11176
https://arxiv.org/abs/2305.11176
https://arxiv.org/abs/2305.11176
https://arxiv.org/abs/2305.11176
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://doi.org/10.1007/s10514-023-10131-7
https://doi.org/10.1007/s10514-023-10131-7
https://doi.org/10.1007/s10514-023-10131-7
https://arxiv.org/abs/2307.04738
https://arxiv.org/abs/2307.04738
https://arxiv.org/abs/2307.04738
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2305.16744
https://arxiv.org/abs/2305.16744
https://arxiv.org/abs/2305.16744


Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng713
Shu, Enze Shi, Huawen Hu, Chong Ma, Yiheng714
Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Huaqin715
Zhao, Zhengliang Liu, Haixing Dai, Lin Zhao,716
Bao Ge, Xiang Li, Tianming Liu, and Shu Zhang.717
2024. Large language models for robotics: Op-718
portunities, challenges, and perspectives. Preprint,719
arXiv:2401.04334.720

Zekun Moore Wang, Zhongyuan Peng, Haoran Que,721
Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,722
Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang,723
et al. 2023b. Rolellm: Benchmarking, eliciting, and724
enhancing role-playing abilities of large language725
models. arXiv preprint arXiv:2301.08427.726

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lep-727
ert, Andy Zeng, Shuran Song, Jeannette Bohg,728
Szymon Rusinkiewicz, and Thomas Funkhouser.729
2023. Tidybot: personalized robot assistance730
with large language models. Autonomous Robots,731
47(8):1087–1102.732

Andy Zeng, Michael Laskin, Kevin Lee, Yilun Lu, Jack-733
son Lee, Ted Xiao, Allen Guo, Alexander Herzog,734
Karol Hausman, Julian Ibarz, et al. 2022a. Multi-735
robot task and motion planning: a survey. arXiv736
preprint arXiv:2212.02429.737

Andy Zeng, Michael Laskin, Kevin Lee, Yilun Lu, Jack-738
son Lee, Ted Xiao, Allen Guo, Alexander Herzog,739
Karol Hausman, Julian Ibarz, et al. 2022b. Socratic740
models: Composing zero-shot multimodal reasoning741
with language. arXiv preprint arXiv:2204.00598.742

Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning743
Liu, and Philip S. Yu. 2023. Large language models744
for robotics: A survey. Preprint, arXiv:2311.07226.745

Ceng Zhang, Junxin Chen, Jiatong Li, Yanhong Peng,746
and Zebing Mao. 2023. Large language models for747
human–robot interaction: A review. Biomimetic In-748
telligence and Robotics, 3(4):100131.749

10

https://arxiv.org/abs/2401.04334
https://arxiv.org/abs/2401.04334
https://arxiv.org/abs/2401.04334
https://doi.org/10.1007/s10514-023-10139-z
https://doi.org/10.1007/s10514-023-10139-z
https://doi.org/10.1007/s10514-023-10139-z
https://arxiv.org/abs/2311.07226
https://arxiv.org/abs/2311.07226
https://arxiv.org/abs/2311.07226
https://doi.org/10.1016/j.birob.2023.100131
https://doi.org/10.1016/j.birob.2023.100131
https://doi.org/10.1016/j.birob.2023.100131

	Introduction
	Related Work
	LLMs for Robotics
	Multi-Modal Prompting for Robotics
	Dialogue, Debate, and Role-Play LLMs
	Multi-Robot Collaboration and Motion Planning

	Method
	Robot Message Pool
	Data Management
	Multi-Robot Communication
	Decision-Making and Task Execution

	Experiment
	Experiment Setup
	Intergroup Communication
	Message Pool
	Ablation Study

	Conclusion

