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Abstract

We presents a novel multi-robot collaboration
framework leveraging large language models
(LLMs) for improved communication, plan-
ning, and execution. By integrating a central-
ized message pool and LLM-assisted decision-
making, our system addresses limitations of
existing multi-agent frameworks. Experiments
in the MuJoCo simulation environment demon-
strate significant improvements in task comple-
tion rates, communication effectiveness, and
decision-making accuracy. Our proactive com-
munication system reduces redundancy and en-
hances fault tolerance, enabling efficient han-
dling of unexpected situations. Future work
will focus on improving information synchro-
nization and multi-system collaboration, fur-
ther enhancing efficiency and scalability in
complex environments.

1 Introduction

The convergence of robotics and large language
models (LLMs) is unlocking new potentials in
embodied intelligence, demonstrating significant
promise in guiding and understanding complex
robotic tasks(Zeng et al., 2023; Wang et al., 2024).
Initial advances have successfully integrated LLMs
for controlling individual robots, resulting in so-
phisticated decision-making capabilities and effi-
cient task execution. As the control of single robots
via LLMs becomes increasingly refined, the focus
is now shifting towards the collaborative efforts of
multiple robots.

Multi-robot collaboration promises enhanced ef-
ficiency and productivity compared to single-robot
operations. However, the coordination and control
of multiple robots introduce significant challenges
that underscore the critical role of LLMs. Effective
multi-robot systems require not just the aggrega-
tion of individual robotic capabilities but also seam-
less communication and coordination to optimize
decision-making processes.

Despite significant progress in multi-agent
frameworks, their application in robotics remains
underexplored and insufficiently sophisticated for
real-world deployment. Existing frameworks often
fail to address the complexities of robot collabo-
ration, particularly in dynamic and unpredictable
environments(Naveed et al., 2024). Key challenges
include the insufficient integration of sensor data,
inadequate utilization of memory resources, lim-
ited communication capabilities, and suboptimal
planning and execution strategies. Moreover, many
current solutions rely on centralized architectures,
which, although effective in some scenarios, do
not scale well with an increasing number of agents.
These centralized systems are prone to single points
of failure and cannot manage the complexity of dis-
tributed decision-making required for large-scale
robot collaboration(Zhang et al., 2023; Wang et al.,
2024).

To address these challenges, we propose a com-
prehensive multi-agent framework specifically de-
signed for robotic collaboration. The normal frame-
work is structured around five essential compo-
nents:

1. Sensor: Robots gather key data about them-
selves and their environment, creating the ba-
sis for smart decisions.

2. Memory: A centralized message pool stores
historical decisions, trajectories, and exam-
ple instructions, which agents can access to
enhance task execution efficiency.

3. Communication: Agents engage in dialogues
to resolve conflicts and finalize decisions, with
a leader agent ensuring the accuracy and com-
pleteness of the message pool.

4. Plan/Task Assignment: The planning pro-
cess incorporates both centralized supervision
and decentralized execution, enabling agents
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Figure 1: Overview of the multi-robot collaboration system. Robots execute decisions based on collected and self-
generated information, communicated through the message pool. The message pool stores initial setup information,
environmental data, and task-specific data, which robots actively query and update. The manager oversees data
management, including writing, deleting, reading, and checking data, ensuring data integrity and accessibility for

effective decision-making and task execution.

to autonomously determine their actions while
a leader coordinates the overall strategy.

Execution: Using a multi-RRT method,
robots plan exact paths within their activity
ranges, ensuring smooth and conflict-free op-
erations.

By integrating advanced components such as
structured memory pools and leveraging LLMs
for dynamic code generation, our framework of-
fers a more sophisticated and effective approach to
robot collaboration. This hybrid model, combining
centralized oversight with decentralized execution,
addresses the limitations of current frameworks
and lays the groundwork for scalable and resilient
multi-robot systems.

2 Related Work
2.1 LLMs for Robotics

Recent advancements in large language models
(LLMs) have significantly impacted the field of
robotics, enabling the development of more sophis-
ticated and adaptable robotic systems. Initial works,
such as SayCan(Ahn et al., 2022b) and Inner Mono-
logue(Huang et al., 2022), utilized LLMSs for se-
lecting skill primitives and executing robotic tasks

with environment feedback to improve planning.
Further research leveraged the code-generation ca-
pabilities of LLMs to create robot policies in code
format, exemplified by CaP, ProgGPT(Singh et al.,
2022), and Demo2Code(Wang et al., 2023a), as
well as generating longer programs for robot exe-
cution in works like TidyBot(Wu et al., 2023) and
Instruct2 Act(Huang et al., 2023).

In the realm of motion planning, studies such as
Text2Motion(Lin et al., 2023), AutoTAMP(Chen
et al., 2024), and LLM-GROP have combined
LLMs with traditional task and motion planning
(TAMP). Other research has explored the use of
LLMs to facilitate human-robot collaboration, de-
sign rewards for reinforcement learning (RL), and
control real-time motion planning in robotic tasks.
However, most prior work has focused on single-
robot setups and single-thread LLM planning. In
contrast, our work addresses multi-robot settings,
using dialog prompting for task reasoning and co-
ordination(Mandi et al., 2023). This approach not
only enhances the efficiency and accuracy of task
execution but also allows for more dynamic and
adaptive responses to changing environments. By
leveraging the collaborative capabilities of multi-
ple robots, we aim to achieve more complex and



large-scale robotic operations.

2.2 Multi-Modal Prompting for Robotics

LLMs’ lack of perception abilities presents a sig-
nificant bottleneck in their integration with robotic
applications. One approach to overcoming this
limitation is multi-modal pre-training with both vi-
sion, language, and large-scale robot data. The
multi-modal pre-trained model PALM-E(Driess
et al., 2023) achieves both perception and task plan-
ning with a single model, while works like Interac-
tive Language(Ahn et al., 2022a) and DIAL build
large datasets of language-annotated robot trajecto-
ries(Guhur et al., 2023) for training generalizable
imitation policies.

Another solution involves incorporating pre-
trained vision-language models (VLMs) such as
CLIP. In studies like Socratic Models(Zeng et al.,
2022b), Matcha(Jang et al., 2023), and the work
by Kwon et al(Kwon et al., 2023)., LLMs are used
to query and synthesize information from other
models to enhance environmental reasoning. Some
works, such as Cogl.oop(Bai et al., 2023), also
explore fine-tuning adaptation layers to better inte-
grate different frozen models. Our research lever-
ages simulation to extract perceptual information,
and real-world experiments follow prior work us-
ing pre-trained object detection models to generate
scene descriptions.

2.3 Dialogue, Debate, and Role-Play L1.Ms

Beyond robotics, LLMs have demonstrated ca-
pabilities in representing agentic intentions and
behaviors, facilitating multi-agent interactions in
simulated environments such as text-based games
and social sandbox scenarios(Li et al., 2023). Re-
cent studies indicate that dialog or debate-style
prompting can enhance LLMs’ performance on hu-
man alignment tasks and a variety of goal-oriented
tasks(Wang et al., 2023b; ?). While prior work
has primarily focused on understanding LL.M be-
haviors or solving single questions, our approach
requires planning separate actions for each agent,
adding complexity to discussions and the difficulty
of achieving consensus.

2.4 Multi-Robot Collaboration and Motion
Planning

Research on multi-robot manipulation has a long
history, with initial efforts focusing on the low-level
problem of finding collision-free motion trajecto-
ries. Sampling-based methods have been popu-

lar(Zeng et al., 2022a), with various algorithmic
improvements proposed over time. More recent
work has explored learning-based methods as alter-
natives(Hu et al., 2023). While our tasks are set in
relatively static scenes(de Castro and Chaimowicz,
2023), significant research has also addressed more
challenging scenarios involving dynamic objects
or closed-chain kinematics.

High-level planning to allocate and coordinate
sub-tasks is another critical area of multi-robot col-
laboration research(Guo et al., 2023), which our
work is closely related to. Most prior work has tai-
lored their systems to a small set of tasks, such as
furniture assembly(Mandi et al., 2023). However,
our approach aims to provide a more generalizable
and adaptable framework for multi-robot collabo-
ration.

In summary, our work builds upon extensive
research in LLMs for robotics, multi-modal pre-
training, dialogue and debate LLMs, and multi-
robot collaboration. By integrating these advanced
components and leveraging large language mod-
els for dynamic task planning and execution, our
framework offers a novel approach to multi-robot
collaboration that addresses the limitations of cur-
rent systems and provides a scalable solution for
complex, real-world applications.

3 Method

3.1 Robot Message Pool

In many current multi-robot collaboration frame-
works and environments, such as ROCO(Mandi
et al., 2023), the role of large language models is
primarily focused on task classification and high-
level decision-making. Although these frameworks
exhibit certain multi-agent characteristics, robots
as part of these agents lack sufficient intelligence.
In most cases, existing robots function more like
sensors, perceiving environmental information and
transmitting it to the LLM for analysis and high-
level decision-making. This setup does not foster
optimal collaboration. True effective collabora-
tion should involve each robot possessing a certain
level of autonomy, actively analyzing information,
and sharing and coordinating this information with
others, allowing each agent to make independent,
non-conflicting decisions. This approach ensures
both efficiency and robustness.

We drew inspiration from MetaGPT(Hong et al.,
2023). We discovered that information sharing is
crucial, especially for complex decision-making



tasks involving multiple agents, such as three-
dimensional decision-making in robots, which en-
tails significantly more information than simpler
two-dimensional scenarios. Therefore, we decided
to employ a message pool for aggregating and orga-
nizing information, granting each agent proactive
access to it. By ensuring the integrity and reliabil-
ity of the message pool, we can address the critical
issue of agents making insufficient or erroneous de-
cisions. The message pool is passively maintained
and lacks any proactive capabilities; its writing
and reading operations are conducted by the LLM
through APIs and code execution. Consequently,
the existence of the message pool enables agents
to actively think and solve problems independently,
which is essential for imparting autonomous intel-
ligence to the agents.

Through testing, we have summarized the core
essential information for the message pool, as illus-
trated in Figure2. Specifically, the message pool
needs to include the following information:

* Self-Information: The message pool needs
to include each robot’s individual information,
including basic attributes, functionalities, op-
erational range, current position, and current
status. This information helps other robots
understand the status of each robot for future
decision-making. It is also crucial for the allo-
cation of task functions.

¢ Task-Specific Information: Additionally, the
message pool needs to include the initial set
of task objectives, specifying the tasks that
require coordination among multiple robots.
These initial settings are permanently stored
in the message pool, allowing agents to con-
sult them if there is any uncertainty or if they
forget the tasks. Specifically, task objectives
include tasks to be completed, such as packag-
ing or collaborative unwrapping of packages.

When constructing the message pool initially,
the manager assigns a set of specific sub-tasks
to each robot based on their unique capabili-
ties. These sub-tasks are initial assignments
that agents can modify through coordination
and feedback to the manager for adjustments.
However, such modifications are generally
prohibited due to their inherent uncertainty.

Moreover, we provide an optional historical
task completion record for reference. This

record can be consulted to review past task
completions and derive potential solutions.

* Environment Information: Finally, the mes-
sage pool also needs to include certain man-
ually input environmental information. This
includes details about potential obstacles in
the scene, their coordinates and basic proper-
ties, the state of the environment, any prohib-
ited zones, and the basic 3D information of
the environment. This information is stored
to provide agents with reference points for
decision-making.
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Figure 2: Message pool setup categorized into three
main sections: Self-Information, Task-Specific Informa-
tion, and Environmental Information. Self-Information
provides data about the robot itself. Task-Specific In-
formation offers details related to task objectives and
assignments. Environmental Information supplies con-
text about the surrounding environment. This setup fa-
cilitates comprehensive data storage and effective multi-
robot collaboration.

The message pool is stored as a separate file and
does not possess any proactive capabilities. How-
ever, we provide a set of Python API interfaces
for reading and writing to this storage file. These
APIs are communicated to the agents at the begin-
ning. Robots have read-only access and are strictly
prohibited from writing to the message pool. If
a robot agent wants to retrieve specific informa-
tion, it can write the relevant code, which is then
checked and executed by the system to return the in-
formation in a specific format. The agent reads the
returned information to obtain the desired content,
thereby achieving proactive retrieval and reading
operations.



By leveraging the message pool throughout the
collaboration process, robots can make more in-
formed decisions, adjust their actions dynamically,
and continuously learn and improve from past ex-
periences. This comprehensive approach ensures
that the multi-robot system operates efficiently and
effectively, even in complex and dynamic environ-
ments. However, given the large volume of infor-
mation in the message pool, ensuring its accuracy is
crucial. Therefore, a dedicated agent is designated
as the project manager, responsible for overseeing
the entire project. This manager has exclusive write
access, while all other agents are limited to read-
only access and cannot write to the message pool
independently.

3.2 Data Management

Effective data management is crucial for the mes-
sage pool, ensuring accuracy, consistency, and ac-
cessibility. After completing a round of tasks,
robots send critical information to the manager,
including their precise individual data, observable
new environmental details, and information about
nearby robots, all in a standardized format.

The manager first integrates the received data,
merging any duplicate information. If discrepan-
cies are found, the manager rejects the data and
requests the agents to resend their information. Af-
ter a preliminary merge, the manager reads related
content from the message pool, such as the pre-
vious positions of the robots, and compares this
data to ensure consistency. Once verified, the man-
ager uses Python code and API calls to write the
new information into the message pool, ensuring
no conflicts arise. Additionally, a copy of the in-
formation is retained for optional comparison to
prevent issues during the writing process.

The Manager, acting as an agent, oversees this
process by performing several key functions:

* Data Processing: The Manager checks the
current information in the message pool and
identifies any duplicate or outdated data. It
deletes redundant entries and formats the new
information according to predefined standards
to ensure compatibility and ease of access.

* Data Updating: The Manager compares the
new information with existing data and up-
dates the message pool with the latest data
from the robots and the environment. This
process ensures that the information remains
current and relevant.

* Conflict Resolution: In case of conflicting
data entries, the Manager resolves conflicts
based on predefined rules and the current task
context. This helps maintain data integrity
and consistency.

* Security and Fault Tolerance: The Manager
implements strict access control measures to
prevent unauthorized modifications to the mes-
sage pool. Regular backups are maintained to
prevent data loss and ensure quick recovery in
case of system failures.

By performing these tasks, the Manager ensures
the message pool is accurate, consistent, and acces-
sible, enabling efficient multi-robot collaboration
and decision-making. The specific details can be
found in Figure3.

3.3 Multi-Robot Communication

Effective communication is essential for the coor-
dination and collaboration of multiple robots in
our framework. The communication protocols en-
sure that all robots have access to the necessary
information for decision-making and task execu-
tion. This section details the communication mech-
anisms, including the use of the message pool, feed-
back loops, and the protocols for inter-agent com-
munication.

Our system allows communication between
agents. Our tests indicate that such inter-agent com-
munication significantly enhances their cooperative
performance and feedback mechanisms. Addition-
ally, agents can preliminarily eliminate redundant
or duplicate observation information before send-
ing data to the message pool, facilitating subse-
quent processing and reducing the manager’s bur-
den.

The primary communication between agents oc-
curs during the execution steps and the agents’ self-
decision processes. When a robot agent decides on
the information it needs, it communicates with sur-
rounding robots to clarify its intended actions and
understand the actions of other robots. If behavior
conflicts arise, agents perform simple calculations
to determine the required waiting time to avoid col-
lisions during movement. Subsequent task analysis
and decision-making adhere as closely as possible
to the initial task classification, with each robot’s
function fixed at the outset. If issues arise, robot
agents communicate and then provide feedback to
the manager. Upon identifying the keywords in
the response information, the manager updates the



Here’s my Current Position:{robot2_cur_pos} and my
Target Position:{robot2_tar_pos}. What about you?
Here is mine:{robotl_cur_pos} & {robotl_tar_pos}.

No conflict. Start deciding routes. Here is my moving routes:
{[robot2_tar_pointl, speed21],[robot2_tar_point2, speed22]}

Here is mine:{[robotl_tar_pointl, speedll], [robotl_tar_point2

speed12], [robotl_tar_point3, speed13]}.

Find the robotl_routine_2to3 is conflicted with robot2_routine_lto2. Robotl will wait 5
seconds when start moving from pointl2 to pointl3. Conflict solved. Start moving.

Conflict solved. Start moving. Updated
IZ> Robots
Finish moving. Here is my current status and surrounding information: Information
{robot2_new_status} & {robot2_new_surroundinfo}
Delete

Here is mine: {robotl_new_status} & {robotl_new_surroundinfo}.
Robotl delete duplicate information from robot2.
Start sending Manager: {robotl_new_status} & {robotl-robot2_new_surroundinfo}
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Figure 3: Communication and data management flow in the multi-robot collaboration system. Robots share
status and environmental data through direct communication and the message pool. The manager oversees data
management, ensuring data integrity and accessibility for effective decision-making.

task section of the sealed message pool for future
reference and modifications.

This communication method reduces redun-
dancy among agents and enhances fault tolerance,
enabling efficient handling of unexpected situa-
tions. Feedback requirements are stringent, with
agents needing to negotiate and synchronize sub-
missions for manager approval.

Furthermore, we have implemented broadcast
communication. If a robot discovers an unrecorded
obstacle, such as a new obstacle, it proactively in-
forms nearby robots and has the limited reporting
authority to notify the manager first. This ensures
the system can promptly address unexpected situa-
tions while effectively avoiding redundant report-
ing of environmental information, thereby reducing
the manager’s workload.

Meanwhile, both robots and the manager can
communicate with the message pool, as previously
mentioned. Robot agents have read-only access.
By actively writing and running Python code and
using the provided message pool API, they can re-
trieve the information they need. To prevent unau-
thorized writes by robot agents, we strictly prohibit
them from executing related operations despite pro-
viding the API. Additionally, the manager periodi-
cally checks for discrepancies between the current

message pool and its previous backup versions to
ensure the security and reliability of the message
pool.

Although the manager has write access, execut-
ing write operations is not straightforward. In most
cases, besides routine writing tasks, when it comes
to writing or modifying sealed information such
as task data, the manager must ensure there are
sufficient reasons and adequate logical information
to proceed with the task. This requirement further
enhances the stability of message pool communica-
tion. The specific operations can be referred to in
Figure3.

3.4 Decision-Making and Task Execution

In task planning and decision-making, we adopted
RoCo’s multi-RRT approach. Leveraging the reli-
ability of the message pool, this decision-making
method can be executed more rapidly. The man-
ager performs initial task allocation and aims to
avoid changes in subsequent tasks unless special
circumstances arise, as mentioned previously. Us-
ing the basic information of robots, environmental
details, obstacles, and task data obtained during the
initialization of the message pool, the manager for-
mulates an initial plan outlining the tasks for each
robot. This plan is then distributed to the robots.
During the initial rounds of actions, robots pro-



vide real-time feedback to validate the plan’s fea-
sibility. In most cases, due to the comprehensive
information and the ability of robots to communi-
cate and avoid mutual interference, there are rarely
any rejections or errors. Once the tasks are clari-
fied, robots determine their actions for each round
and use the RRT algorithm and inverse kinematics
(IK) for trajectory planning. Subsequently, they
execute the relevant actions, completing the task
planning and execution process.

Thanks to the completeness and reliable informa-
tion provided by the message pool, the stability of
task decision-making and execution is significantly
enhanced. This framework not only demonstrates
superior performance in overall robot coordination
but also exhibits considerable robustness and adapt-
ability to special circumstances.

4 Experiment

To validate the effectiveness and robustness of our
proposed multi-robot collaboration framework, we
designed a series of experiments. These experi-
ments aim to evaluate the performance of the frame-
work in various scenarios, including task com-
pletion efficiency, communication effectiveness,
decision-making accuracy, and overall system scal-
ability. The experiments were conducted in the
MuJoCo (Multi-Joint dynamics with Contact) sim-
ulation environment, incorporating our complete
communication system based on the ROCO frame-
work.

4.1 Experiment Setup

We designed an experimental framework that ex-
amines multiple dimensions at both the system and
individual levels. We conducted targeted experi-
ments focusing on three key aspects: the stability
of the message pool, the accuracy and reliability
of robot communication, and the stability of robot
execution.

Our experimental setup was based on the Mu-
JoCo environment, utilizing GPT-3.5-turbo and
GPT-4 for testing. We employed three task modes:
low-load tasks (box unwrapping, requiring two
robots), medium-load tasks (table cleaning, requir-
ing two robots, and drink preparation, requiring
three robots), and high-load tasks (sorting 30 cubes
into four groups by color and stacking them se-
quentially, requiring five robots). These tests were
conducted in the MuJoCo environment, leverag-
ing its API to obtain environmental information.

Summary of setup information and Tablel.

Table 1: Experimental Task Setup

Task Name Load Level Robot Number
Unboxing Low 2
Table Clean Medium 2
Drink Prepare ~ Medium 3
Cube Sorting High 5

To conduct the tests, we introduced our com-
plete communication system into the environment
as the test subject. We also incorporated the ROCO
framework and a simple central Planprompt-based
agent collaboration system, which allows agents to
communicate with each other. The comparison of
performance across three scenarios demonstrates
the advantages and primary application areas of our
communication system.

Completion Rate

Unboxing Table Drink

Average Step
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Figure 4: This figure shows the performance of our
three communication systems across four environments
during 24 rounds of load testing. The tests revealed that
our proactive intelligent communication system using a
message pool had a completion rate approximately 30%
higher than the centralized plan system. Additionally, it
had an advantage in average execution rounds, requiring
1-2 fewer rounds on average compared to the other two
systems.

4.2 Intergroup Communication

We first tested the performance of three commu-
nication systems across four tasks. Each system



Table 2: Ablation Study Results

Configuration Average Step Effective information rate(%) Error Rate (%)
Full System 7.1 94.7 12
Without Message Pool 9.7 78.4 26
Without Communication 9.5 83.2 24
Without Task Allocation 114 63.2 22

used GPT-3.5-turbo as the base parameter for each
round. Each system was tested 24 times per task,
and the completion rate and number of completed
rounds were recorded to evaluate the effectiveness
of intra-group communication.

As shown in Figure 4, our experiments indicate
that our proactive communication system based on
the message pool outperforms in both task comple-
tion rate and average steps to complete the task.
In simpler scenarios, such as unboxing and ta-
ble cleaning tasks, the message pool-based sys-
tem demonstrates a time advantage over RoCo. In
more complex scenarios, such as drink preparation
and cube sorting tasks, our system significantly
surpasses the central simple system in both comple-
tion rate and time savings and also shows improve-
ments compared to RoCo. This indicates that for
large-scale multi-robot cooperation, the message
pool can fully utilize each agent’s intelligence and
leverage its stable information storage capacity for
stronger performance.

4.3 Message Pool

Next, we explored the stability of the message pool.
We simulated high-frequency communication be-
tween eight robot agents to test the response speed
and accuracy of the message pool in the most com-
plex cube task, with a particular focus on whether
the manager could effectively perform task analysis
and management. Due to the high load difficulty,
we conducted parallel tests using both GPT-3.5-
turbo and GPT-4.

Our separate tests showed that the message pool
with GPT-4 had higher stability. Even when faced
with multi-agent, multi-range loads, the manager
could effectively manage relevant information with-
out encountering issues such as information disor-
der. This indicates a certain level of stability in
the scenario. However, when using GPT-3.5-turbo,
some problems still occurred. In 30 rounds of test-
ing, there were about 6 rounds where information
overlap in the message pool was observed, with an
overlap rate not exceeding 2.2%. This suggests that

lower-intelligence managers might face informa-
tion conflict issues, especially in highly concurrent
scenarios. Therefore, enhancing the intelligence of
the manager might be crucial.

We also believe that this is due to the manager’s
insufficient intelligence and the large number of re-
lated prompts (compared to ordinary agents, there
are more content understanding tasks for writing).
This is one of the reasons why managers with lower
intelligence make mistakes.

4.4 Ablation Study

To further analyze the importance of each compo-
nent, we conducted an ablation study. By systemat-
ically removing different modules—message pool,
communication protocol optimizations, and task
allocation algorithm—we assessed their impact on
overall performance.

Using GPT-3.5-turbo in the table cleaning task,
we conducted 30 rounds of testing for each configu-
ration. This task, with its low difficulty level, offers
significant general applicability. Specific data can
be found in Table 2.

Analysis of the data reveals that each part of our
system plays a crucial role. Communication be-
tween robots enhances the effective utilization of
information, while the message pool reduces agent
load and lowers the error rate. Task allocation sig-
nificantly decreases the number of communications
needed for task distribution, saving a substantial
amount of time.

5 Conclusion

We proposed a novel multi-robot collaboration sys-
tem that leverages LLMs for enhanced communica-
tion, planning, and execution. By integrating a cen-
tralized message pool and LL.M-assisted decision-
making, our approach outperforms existing multi-
agent systems. Future work will improve informa-
tion synchronization, robustness, and multi-system
collaboration, enhancing efficiency in complex en-
vironments.
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