
Model-free Neural Lyapunov Control for Safe Robot Navigation

Zikang Xiong, Joe Eappen, Ahmed H. Qureshi, and Suresh Jagannathan

Abstract— Model-free Deep Reinforcement Learning (DRL)
controllers have demonstrated promising results on various
challenging non-linear control tasks. While a model-free DRL
algorithm can solve unknown dynamics and high-dimensional
problems, it lacks safety assurance. Although safety constraints
can be encoded as part of a reward function, there still exists a
large gap between an RL controller trained with this modified
reward and a safe controller. In contrast, instead of implicitly
encoding safety constraints with rewards, we explicitly co-
learn a Twin Neural Lyapunov Function (TNLF) with the
control policy in the DRL training loop and use the learned
TNLF to build a runtime monitor. Combined with the path
generated from a planner, the monitor chooses appropriate
waypoints that guide the learned controller to provide collision-
free control trajectories. Our approach inherits the scalability
advantages from DRL while enhancing safety guarantees. Our
experimental evaluation demonstrates the effectiveness of our
approach compared to DRL with augmented rewards and
constrained DRL methods over a range of high-dimensional
safety-sensitive navigation tasks.

I. INTRODUCTION

Conditioning the goal of a controller with waypoints
generated by a planner is a natural approach to combine
planning and control [1]. A low-level controller guides a
robot to follow a path generated by a high-level planner
and finally navigates a robot to achieve the desired goal.
However, such a decomposition must also take into account
the possibility that the controller may not exactly follow the
planned path. For example, when an autonomous vehicle
needs to make a U-turn, the planned path might be too
sharp to follow since the planner is usually agnostic of
the underlying controller’s capabilities. This raises safety
concerns - even if the planner can generate safe plans, it is
not always the case that the controller can follow the given
path.

Solving kinodynamic constraints [2] addresses the incon-
sistency problem between planning and control of a robot.
Recently, the application of DRL in this domain has provided
a scalable solution for addressing kinodynamic constraints.
[3], [4], [5] train DRL local controllers to reach a waypoint
while also avoiding collisions. Since these local controllers
can avoid collisions, the safety of these controllers following
the planned paths is further improved. These controllers
achieve obstacle avoidance by formulating collisions as
penalty items in the reward function. Notably, since the
avoidance capability of these controllers is only implicitly
encoded as part of the reward function, the actual avoidance
capability of these controllers remains a question. Moreover,

Authors affiliate to Computer Science Department, Purdue Univer-
sity, IN 47906, USA. (E-mail: xiong84@purdue.edu; jeappen@purdue.edu;
ahqureshi@purdue.edu; suresh@cs.purdue.edu)

Fig. 1: Level-2 Quadruped Navigation Task. Blue cylinders
represent hazardous zones, and the small green dots represent
the waypoints generated by RRT. The final goal is the large
green cylinder. We navigate the quadruped robot to achieve
the goal while avoiding any hazardous zones.

it is generally hard to decide the proportion of these penalty
items. When this proportion is too large, the controller is
likely to learn to stay in the initial position since this is
always safe and can receive a better reward compared with
exploring other regions of the space, potentially leading
to collisions. If it is too small, the controller will likely
ignore these collisions and only focus on achieving the
goal. This phenomenon, known as reward hacking, often
makes training DRL policy extremely challenging in high-
dimensional spaces.

The key idea of our approach is to explicitly place a
sequence of robot reachability boundaries around a given
plan. As long as we can ensure that no obstacle appears in
the reachability boundary, we can provide enhanced safety
guarantees when following a given plan. Lyapunov function
and its region of attraction are widely used to build reachabil-
ity boundaries. Combined with Neural Lyapunov Functions,
(NLF) [6], [7], [8] which has been extensively studied, this
approach has the potential to scale such reachability analyses
to high-dimensional problems. However, effectively learning
and analyzing the NLF is still an open question. In this
paper, we firstly propose a co-learning algorithm to build the
controller and the NLF in one training loop, which benefits
both the controller and NLF. Furthermore, we analyze the
NLF with a computationally effective approach. This allows
our algorithm to be effectively deployed to realize safety-
sensitive navigation tasks.

We evaluate our approach on the Safety Gym suite [9]
in highly cluttered environments with three levels of ob-

ar
X

iv
:2

20
3.

01
19

0v
1

 [
cs

.R
O

]
 2

 M
ar

 2
02

2

stacles complexity and each with four complex dynamical
systems, named sweeping (similar to rumba), point (a cir-
cular rigid-body), car, and a 58 DOF quadruped (Fig. 1).
These environments are challenging for traditional DRL
methods even without safety constraints. However, this paper
demonstrates that our approach can scale well to these
high-dimensional, cluttered navigation tasks while explicitly
incorporating safety constraints. Our framework effectively
co-learns a TNLF in the DRL loop and leverages the learned
TNLF in a computationally tractable manner.

Our main contributions are as follows:
1) We propose a model-free Lyapunov method that

can provide significant safety enhancement for high-
dimensional safety-sensitive robot navigation problems
with raw sensor observations.

2) We co-learn a TNLF and controller in a manner that
improves controller performance and yields a high-
quality Lyapunov function.

3) We use the learned TNLF to build a computation-
ally effective runtime monitor for heuristically guiding
robots under safety constraints at runtime.

4) We demonstrate that the combined planner and NLF
can consistently reach the goal state in challenging
safety-sensitive navigation tasks while also providing
significantly fewer safety violations and a higher reach
rate than modern constrained RL methods.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning (RL) generates an optimal con-
troller by interacting with an environment given a scalar
reward signal. DRL scales RL to problems with high dimen-
sion state and action spaces by means of neural networks
[10]. Most DRL algorithms consider problems under the
Markov Decision Process (MDP) setting. Given a state space
S and an action space A, the MDP models interaction with
an environment using a transition function T (st, at, st+1) :
S ×A× S → P . The function T returns the probability of
transitioning from a state st to a state st+1 after taking an
action at. Meanwhile, a function R(st, at, st+1) measures
the transition reward. Given a discount factor γ ∈ [0, 1], a
controller π : S → A learns to maximize the discounted
cumulative reward function

∑T−1
t=0 γtR(st, at, st+1) where

T is the total time horizon.
Many model-free on-policy ([11], [12]) and off-policy

([13], [14], [15]) DRL algorithms appeared in recent years.
Among all these algorithms, our work is closely related
to the DDPG [10]. An important component of DDPG is
the Q function Q : S × A → R. Q(st, at) returns the
discounted cumulative reward after taking action at under
state st. A higher return of Q means a better action. Thus
knowing Q(st, at) allows us to choose the best action. In
DDPG, a learned Q function serves as the critic for actions.
An actor policy π(st) is trained to maximize Q(st, π(st)).
From the Q function we can derive the optimal policy being
π∗(st) = argmax

π
Q(st, π(st)).

B. Lyapunov Method

1) Lyapunov Function: A Lyapunov function character-
izes the stability property of a controller. It is a function
satisfying the following constraints:

V (so) = 0 (1)
V (st) > 0,∀st 6= so (2)
V (st+1)− V (st) < 0 (3)

In Eq. (1), a Lyapunov function’s value is 0 at the origin
so. so is a stabilized state of the controller. Eq. (2) enforces
that the Lyapunov function is always positive when its input
is not so. The L.H.S. of Eq. (3) is known as the lie derivative,
∇πV = V (st+1)−V (st). When the lie derivative is smaller
than 0, V (st) strictly decreases over time. The lie derivative
depends on controller π, since computing st+1 requires
action at = π(st).

2) Neural Lyapunov Function: A neural Lyapunov func-
tion V (st) : S → R models a Lyapunov function via a neural
network satisfying Eqs. (1)(2)(3). Training the NLF requires
minimizing the Lyapunov risk [6], [7]. The Lyapunov risk is
defined as

Llf (θV) = Est∼(E,π)[V
2
θV (so)

+ max (0,−VθV (st))
+ max (0,∇πVθV (st))]

(4)

Here, θV represents the parameters of the NLF with π being
a controller. The Lyapunov risk is an expectation over st
sampled from environment E and controller π. Minimizing
V 2
θV

(so) allow VθV to satisfy Eq. (1), while minimizing
max (0,−VθV (st)) and max (0,∇πVθV (st)) makes VθV sat-
isfy Eq. (2) and Eq. (3) respectively. ∇πVθV is the lie
derivative over controller π as mentioned above.

3) Region of Attraction: The Lyapunov function specifies
a Region of Attraction (RoA) as

RoA = {s|V (s) < CRoA}, (5)

where CRoA ∈ R+ is a constant. Since the Lyapunov
function strictly decreases over time, if we initialize a robot
with any state in an RoA, the robot will always stay in the
RoA in future. Since V (so) = 0, the origin so must be
included in the RoA. It is also known as the sink of the
RoA.

C. Path Planning

Sample-based planning methods like RRT [1] can be used
to find a path to reach a goal state. RRT grows a collision-
free tree from a given start state by randomly sampling the
robot’s configuration space. Once the tree finds a goal state,
a Dijkstra algorithm extracts the shortest path connecting the
given start and goal states for our navigation tasks.

D. Goal-Conditioned State Space

Goal-conditioned RL ([16]) augments the state space by
conditioning it with a static goal g ∈ G where G is the
goal space. In our problem, we consider a 2D goal space
(G ⊆ R2) representing a position in the 2D plane where a

robot operates. Suppose the position of a robot under state
s is pos(s) ∈ R2, we define a goal vector

dg(s) = g − pos(s)

The state sg ∈ Sg is a modified version of s ∈ S to contain
this goal vector dg(s), and the intrinsic state s/g of a robot.
The intrinsic state does not change as the robot position
changes. Thus, every goal and state pair (g, s) ∈ G × S
is mapped to

sg(s) = [dg(s), s/g] (6)

We train the controller and NLF in this goal-conditioned
space to provide the flexibility of generalizing the learning-
based components to different goals.

Since we must generalize the Lyapunov function to differ-
ent goals as well, we always set the sink position pos(so) to
the current goal g. This effectively translates the Lyapunov
function to be centered around an arbitrary goal g which
means pos(so) = g and the goal vector dg(so) = [0, 0] (when
G ⊆ R2). We choose this setting because our controller’s
objective is to arrive and be stable at the goal, while the
Lyapunov function desires that the robot is asymptotically
stabilized to so.

III. APPROACH

Fig. 2 depicts an overview of our approach. The navigation
task requires guiding a robot to reach the final goal while
avoiding collision with hazardous zones.

Quadruped Robot

Waypoint

Hazardous Zone

Sink of RoA

RoA Over-approximation

Final Goal

Fig. 2: Approach Overview: A robot is safely navigated from
start to goal in over-approximated regions of attraction.

Our approach has three steps. First, we co-learn the
controller and TNLF in a DRL loop. The controller learns to
reach a given target in the shortest time. The design of the
TNLF is introduced in Sec. III-A, and details about the co-
learning procedure are given in Sec. III-B. Second, we run
RRT on the 2D plane to build a collision-free path between
the initial and goal positions. The path is a sequence of
waypoints. Third, we use the learned controller to follow
waypoints generated by the RRT planner and provide the
safety guarantee with a runtime monitor. This runtime moni-
tor places and builds the RoAs over-approximations with the
learned TNLF, and it is introduced in Sec. III-C.

A. Twin Neural Lyapunov Function

The TNLF is a key component of our co-learning algo-
rithm. Firstly, we define a function Q(st, at) to integrate the
Lyapunov function into the DDPG training loop. Q(st, at)
predicts the Lyapunov function value V (st+1) after taking
action at. Then, similar to DDPG introduced in Sec. II-A, we
can train our policy to minimizeQ(st, π(st)). SinceQ works
similarly to the Q function in DDPG, we name Q(st, at) the
Lyapunov Q function and train Q(st, at) with a regression
loss,

Llqf (θQ) = ||QθQ(st, at)− VθV (st+1)||2 (7)

where st+1 is the state that results from taking action at in
st. Eq. (7) is only used to update θQ. The parameter θV is
fixed when updating parameters with Eq. (7). Finally, we call
V (st) and Q(st, at) together as the twin neural Lyapunov
function.

B. Co-learn the TNLF with controller

Co-learning the TNLF with the controller has significant
benefits. First, when the Lyapunov function learns to char-
acterize a controller, the controller is also adapted to the
Lyapunov function. Thus, we can learn a better NLF to
characterize stability properties. Second, the integration of
the Lyapunov function can accelerate and stabilize controller
convergence. This is because the Lyapunov function provides
an additional training signal for RL. Similar ideas have also
appeared in [14], [15], where the authors employ double Q
functions for a better training signal.

Algorithm 1: Co-learn TNLF with Control Policy
Notions: Environment E, Policy π, Q function Q,

Lyapunov Function V , Lyapunov Q
function Q, Training Network Parameter
θ[·], Target Network Parameter θ′[·], Training
Batch Size N , Polyak Constant τ

1 Initialize training network πθπ , QθQ , VθV , QθQ ;
2 Create target network πθ′π , Qθ′Q ,Qθ′Q ;
3 Initialize all target networks parameters θ′[·] ← θ[·];
4 for i = 1, . . . , Tep do
5 Replay Buffer R ← Transitions(E, πθ′π);
6 for j = 1, . . . , Tgrad do
7 Data Batch D ← Sample(R, N);
8 TrainQ(QθQ | D);
9 TrainTNLF(VθV ,QθQ | D);

10 TrainControlPolicy(πθπ | Qθ′Q ,Qθ′Q ,D);
11 PolyakUpdate(θ′[·] | θ[·], τ);
12 end
13 end

Algorithm 1 describes our co-learning framework. The
policy network πθπ , the Q function network QθQ , and their
target networks πθ′π and Qθ′Q come from the original DDPG
algorithm. We integrate our Lyapunov function network VθV
and Lyapunov Q function network QθQ into the co-learning

loop with the functions and variables highlighted in red.
The Lyapunov function network VθV will be used in our
downstream planning algorithm. The Lyapunov Q function
network Q(st, at) serves as another critic for action at. As a
critic, the Q(st, at) affects the stability of the whole training
process. Thus, we also created a target network Qθ′Q to avoid
it changing dramatically.

Line 1 to 3 of Algorithm 1 initialize all the networks’
parameters. Line 5 samples the transitions with target policy
network πθ′ and store these transitions to replay buffer R.
The loop starting from line 5 updates the parameters of each
network. Line 7 samples training data batch D from replay
buffer R. Line 8 updates θQ with sampled data D with the
approach in [10]. Line 9 trains the VθV ,QθQ with D. The loss
function for VθV is the Lyapunov risk defined in Eq. (4), and
QθQ is trained with loss in Eq. (7). Line 10 trains controller
πθπ with Qθ′Q ,Qθ′Q ,D. The controller πθπ is trained with
the loss

Lπθπ = Est [−Qθ′Q(st, πθπ (st)) + αQθ′Q(st, πθπ (st))] (8)

The training goal is to minimize Lπθπ via optimizing
policy πθπ . Minimizing the −Qθ′Q term leads to maximizing
the cumulative reward predicted by Qθ′Q . When minimizing
Qθ′Q , the controller is learning to minimize the value of
the Lyapunov function in the next step, which adapts the
controller to satisfy Eq. 3. Here, α is a hyperparameter
that controls the Q impact on the update of policy π. Line
11 conducts a Polyak update on the target networks for
enhanced learning stability [10]. It updates all the target
parameters with

θ′[·] = (1− τ)θ′[·] + τθ[·]

where τ ∈ (0, 1], and [·] can be π,Q or Q.

C. Runtime Monitor

Algorithm 1 provides us with a controller π and an NLF
V characterizing π. We then run the RRT planner to generate
a collision-free path to reach the final goal. A robot follows
this path with the controller π, while its safety is ensured
by a sequence of RoAs placed over the path. How to build
these RoAs and where to place them are the two problems
we address.

Exact RoA Projection

Over-approximation

Max

(a) RoA Over-approximation (b) Search Sink

Fig. 3: Our runtime monitor builds and aligns over-
approximated RoAs around planner’s waypoints.

a) Building RoA over-approximations: The runtime
monitor builds the RoA over-approximation for the exact
RoA projection on the 2D path plane. Given an NLF V , we
can build an RoA in the state space S . Because we only care
about the collision in the 2D path plane, we project the RoA
to the path plane. If this projection does not collide with a
hazardous zone, the RoA inside must not collide with this
hazardous zone. However, computing the exact projection
can be hard. Instead, we propose an approach to compute the
over-approximation of this projection with a demonstration
provided in Fig. 3a. Given a NLF V and a constant CRoA,
the RoA is specified as {s | V (s) < CRoA}. The over-
approximation we build is a circle around the projected RoA
in the 2D path plane. If we place the center of this circle
in the position of the sink (the current robot goal g), the
radius we need to compute is the max L2-norm of the goal
vector dg(s) for all the states in this RoA. We search the max
||dg(s)||2 by maximizing the objective function in Eq. (9).

Lap(s) = ||dg(s)||2 + βmin(CRoA − V (s), 0) (9)

When β ∈ R+ is a large positive constant, βmin(CRoA −
V (s), 0) is a constraint which forces the search to stay in the
RoA {s | V (s) < CRoA}. When s is in the RoA specified
by V and so, then CRoA ≥ V (s) and min(CRoA− V (s), 0)
will be 0. Otherwise, min(CRoA−V (s), 0) will be negative
and penalizes the objective function. We optimize

s∗ = argmax
s∈S

Lap(s) (10)

where we choose a large β to enforce min(CRoA −
V (s), 0) = 0. We sample a batch of initial optimization
states from S and optimize them with projected gradient
descent [17] to estimate a solution to Eq. (10). Since s∗ =
[dg(s

∗), s∗/g], we can compute the radius as ||dg(s∗)||2.
b) Placing RoA over-approximation: Fig. 3b shows

how the runtime monitor places the sink and RoA over-
approximations along the planned path. We prefer a larger
RoA over-approximation because smaller regions usually
result in more conservative behavior and make the robot
move slower. However, if these RoA over-approximations
intersect with the hazardous zones, the robot may violate
safety properties. Therefore, our goal is to find the largest
over-approximation that has no intersection with the haz-
ardous zones. Given a vector v = g2 − g1 ∈ R2 from one
waypoint g1 ∈ G to the next waypoint g2 ∈ G, we search
the positions of sinks between g1 and g2 using a line search.
The position of a sink is given by

pos(sio) = g1 + iδv

where i ∈ N+, δ is a number controlling the granularity of
the search, δ ∈ (0, 1]. Given a state st, we build the smallest
RoA, denoted as RoA∗, which includes st.

RoA∗(st) = {s | V (s) ≤ V (st)} (11)

The state st depends on the position of sink pos(sio) (i.e. goal
of a goal-conditioned state space). Hence, choosing different
sink positions results in different RoA over-approximation

as demonstrated in Fig. 3b. To find the largest over-
approximation that has no intersection with hazardous zones,
we need to compute the radius of over-approximation for
every sink position via optimizing Eq. 9. Finally, we select
the sink position with the largest radius and set it as the goal
of the robot. We repeat this line searching in every step.
Intuitively, this makes the RoA over-approximation change
adaptively based on surrounding hazardous zones.

c) Pre-computed RoA-overapproximations: Because
computing the over-approximation in real-time can be com-
putationally expensive, in practice, we pre-compute and
reference the radius of over-approximation via a lookup
table. Eq.(5) tells us that the shape of the RoA only depends
on CRoA when given a trained NLF V . Thus, one CRoA can
only correspond to one minimal circle over-approximation.
We pre-compute a lookup table that maps the CRoA to its cor-
responding radius of the minimal circle over-approximation.
According to Eq. (11), the CRoA of RoA∗(st) is determined
by V (st). However, because the lookup table is finite and
cannot capture all possible CRoAs, we over-approximate the
RoA with a larger circle, instead of the minimal one.

Theorem 1: Suppose the lookup table has keys
C1
RoA, · · ·CNRoA in increasing order, given a state st,

and CiRoA < V (st) ≤ Ci+1
RoA, the lookup table returns the

radius corresponding to Ci+1
RoA. The over-approximation built

with the returned radius must over-approximate RoA∗(st).
Proof:

RoA∗(st) = {s | V (s) ≤ V (st)}
RoA = {s | V (s) ≤ Ci+1

RoA}

V (st) ≤ Ci+1
RoA =⇒ RoA∗(st) ⊆ RoA. Suppose a

point p ∈ RoA∗(st) has the largest L2-norm to the sink
so. ||p − pos(so)||2 is the over-approximation radius of
RoA∗(st). RoA∗(st) ⊆ RoA =⇒ p ∈ RoA. Thus,
the over-approximation radius of RoA is at least ||p −
pos(so)||2. Hence, the over-approximation of RoA must
over-approximates RoA∗(st).

According to Theorem 1, the lookup table can always
return the radius corresponding to Ci+1

RoA for building a
circle over-approximation of RoA∗(st). The pre-computed
over-approximation can boost computational speed. Over-
approximating an RoA will only require one forward com-
puting on the neural network model V and a query in the
lookup table. In this way, our algorithm can be effectively
deployed online.

IV. EXPERIMENTS

Our experiments aim to answer the following questions:

• Is co-learning a viable way to learn a performant policy
while gaining a high-quality Lyapunov function?

• Can we leverage the learned Lyapunov function for
more safety-oriented tasks?

• Does our safety-oriented framework sacrifice the com-
pletion of the objective and the speed of reaching the
goal in favor of safety?

A. Setup

We show results on both a custom 2D sweeping robot
environment as well as robotic environments in Safety Gym
[9] with continuous state and action spaces.

(a) Level-1 Map (b) Level-3 Map

Fig. 4: Difficulty Levels of Navigation Tasks

The benchmarks for each robot were classified into three
levels of difficulty based on the number of hazardous zones
and map size as shown in Fig.1 and Fig.4. The initial and
goal positions are placed on the map’s lower-left corner
and upper-right corner, respectively. The hazardous zone
positions are initialized randomly for each run. The map size
for difficulty level-1 to level-3 are 4× 4, 8× 8 and 16× 16,
respectively. Level-1 has 8 hazardous zones, and level-2 and
level-3 have 32 and 128 hazardous zones, respectively.

(a) Sweeping (b) Point (c) Car (d) Quadruped

Fig. 5: Our dynamical systems include sweeping, point, car,
and quadruped. Their corresponding state and action space
dimensions, denoted as (state dim, action dim), from (a)-(d)
are (2,2), (14,2), (26,2) and (58,12), respectively.

Fig.5 depicts our dynamical models with their state and
action space dimensions. Sweeping is a customized environ-
ment for moving the position of a sweeping robot in a 2-
D plane. Point models a robot restricted to the 2-D plane
with actuators to rotate and move forward. Car has two
independently operated parallel wheels with a rear-wheel
for balance. Quadruped models a quadrupedal robot with
each leg having torque controls in the hip and knee joints.
All agents obtain their state information from the joints,
accelerometer, gyroscope, magnetometer, velocimeter, and a
2D vector toward the goal.

B. Co-learning

The low level controller and TLCF are trained in an
environment without hazardous zones. Fig. 6 shows the
learning progress for each of our robots in this hazardous

zone-free environment. The reward used for training the
controller is defined as

rt = ||g − pos(st)||2 − ||g − pos(st+1)||2 (12)

where rt is the reward at time t, g is the goal position
the controller should achieve, pos(st) and pos(st+1) are the
positions of robot at time t and t+1, respectively. This reward
is positive when pos(st+1) is closer to goal than pos(st).

Fig. 6: Training performance depicting total accumulated
rewards over number of interaction steps.

Fig. 6 compares the training reward between our co-
learning algorithm with the off-policy TD3 [14] and on-
policy PPO [12]. Our co-learning algorithm can reach higher
reward in fewer simulation steps, while it is also more
stable after the reward converges on all four robots. The
experiments show that the training signal from the Lyapunov
Q function critic can benefit the controller’s training process.

TABLE I: Eq. (2) (3) Satisfaction Rate of NLF

Phase Sweeping Point Car Quadruped

Co-learn 99.67 % 98.97 % 97.06 % 97.59 %
Post-learn [7], [18] 99.42% 96.77 % 94.54% 93.47 %

The quality of NLF is measured with Eq. (1) (2) (3).
For Eq. (1), all the sinks have |V (so)| < 10−3 on the
four robots. We generated 100,000 sampled state transitions
(st, st+1) for each robot. These transitions are generated
with the trained controller π. We evaluated these transitions
with Eq. (2) (3). The results are reported in Table I. For
any transition, (st, st+1), Eq. (2) requires that V (st) and
V (st+1) should be greater than 0. Eq. (3) requires that the
lie derivative should be smaller than 0. A desired NLF should
make all the transitions sampled from π satisfy Eq. (2) (3).
We compared the NLF trained by our co-learning algorithm
with the NLF trained in the post-learning phase [7], [18].
Because the co-learning algorithm can adapt the controller to
the NLF during training, the NLFs trained by the co-learning
algorithm have better quality with respect to satisfaction rate.

C. Baselines
Our approach explicitly avoids a robot entering a haz-

ardous zone through the use of a runtime monitor. We

compare two other existing model-free approaches that only
implicitly encode avoidance behavior. We further evaluate
these two algorithms with the RRT guidance for a fair
comparison.

a) End-to-End (E2E): These RL controllers are trained
with TD3 [14]. Here safety violations are encoded into the
reward via a penalty term. The reward at time t is given by
re2et = rt−C1haz , where rt is defined in Eq. (12), and 1haz
is an indicator that shows whether a robot is in the hazardous
zone. C ∈ R+ is a hyperparameter requiring tuning. The
E2E is not guided by a planner and cannot avoid hazardous
zones by following the planned path. Hence, we need to
augment its observations with a vector vhaz ∈ R16 that
provides position information of hazardous zones, allowing
the controller to learn to avoid them. vhaz contains 8 vectors
that point toward the 8 closest hazardous zones. The input
of the E2E controller is [vhaz, st].

b) Constrained Policy Optimization: Constrained Pol-
icy Optimization (CPO) [19] is a trust-region method for
solving the constrained MDP problem. By constraining
safety violations, [19] trains controllers in Safety Gym
environments. However, the number of hazardous zones and
map size described in the original CPO paper is limited
compared with our approach. We observe that CPO can
result in increasingly conservative behaviors as the number
of hazardous zones and map sizes increase. CPO also needs
to learn avoidance behaviors from information on hazardous
zones directly. Thus, the input of the CPO controller is also
[vhaz, st].

c) Integrating Trained Controller with Planning: Both
the E2E and CPO are trained in the goal-conditioned state
space, and as a consequence, we can also guide them with
a sequence of waypoints to reach the final goal. We use the
same RRT algorithm to generate the waypoints to guide the
controllers trained with E2E and CPO. All the algorithms
combined with the RRT planner are named H-XYZ, where
XYZ is the algorithm used to train the controller.

D. Safety, Reach Rate, and Performance

We evaluate the trained controllers for the four robots on
all difficulty levels. The max simulation steps for level-1 is
1,000; level-2 and level-3 are limited to 4,000 and 16,000
steps before termination, resp. When a robot enters any
hazardous zone, we terminate the simulation immediately
and report a safety violation.

By comparing the fraction of episodes with safety viola-
tions on deployment (Table II), we observe a clear safety
and reach rate benefit of our approach. In most cases, the
safety violation ratios of all these algorithms are significantly
higher than our approach. However, there also exist cases
with low safety violations on other algorithms. Nevertheless,
one should note that a low violation rate is independent of
the policy’s performance and goal reach rate. A low safety
violation rate may also mean a non-performant or inactive
controller. For example, the Quadruped E2E controller under
level-2 has a 0.04 safety violation ratio, while it also cannot
reach the goal in all the 100 episodes simulations. The

TABLE II: Safety Violation and Reach Rate
E2E : End-to-End, CPO : Constrained Policy Optimization [19], H: Hierarchical Planner

Safety violation and reach rate are fraction of 100 evaluation episodes with collisions and goal reachability, respectively.

Difficulty Robot Safety Violation ↓ Reach Rate ↑

E2E CPO H-E2E H-CPO H-Lyapunov E2E CPO H-E2E H-CPO H-Lyapunov

level-1

Sweeping 0.13 0.05 0.27 0.32 0.01 0.87 0.75 0.73 0.68 0.99
Point 0.66 0.05 0.08 0.21 0.04 0.25 0.07 0.72 0 0.96
Car 0.27 0.19 0.41 0.18 0.00 0.73 0 0.59 0.22 1

Quadruped 0.44 0.09 0.18 0.36 0.05 0.44 0 0.77 0.04 0.95

level-2

Sweeping 0.51 0.12 0.67 0.51 0.01 0.49 0.48 0.33 0.49 0.99
Point 0.42 0.1 0.33 0.25 0.05 0.02 0 0.41 0 0.95
Car 0.61 0.21 0.82 0.36 0.00 0.26 0 0.18 0.12 1

Quadruped 0.04 0.06 0.35 0.53 0.04 0 0 0.41 0 0.96

level-3

Sweeping 0.88 0.23 0.83 0.84 0.03 0.12 0.17 0.15 0.14 0.97
Point 0.09 0.12 0.45 0.33 0.06 0 0 0.09 0 0.94
Car 0.79 0.28 0.98 0.38 0.02 0.02 0 0.02 0 0.98

Quadruped 0.09 0.09 0.44 0.59 0.08 0 0 0.1 0 0.92

point H-E2E controller has a 0.08 safety violation ratio
with 0.72 reach rate under level-1. However, as difficulty
increases, its safety violation ratio dramatically increases,
and its reach rate decreases as well. Our method is safer
and has a significantly greater goal-reach rate than any of
the baselines.

Although combining RRT with the controller can sig-
nificantly benefit certain scenarios (e.g., for the E2E point
controller under level-1, the reach rate boosts from 0.25
to 0.72), Table II also shows that this is not a generally
exploitable principle. Guided by the waypoints generated by
RRT, the robot may have to visit more places before reaching
the goal. These additional explorations can expose the robot
to more hazardous zones. For example, for all the CPO
Quadruped controllers, the safety violation ratio increases
significantly after combining them with RRT.

TABLE III: Average Number of Steps to Reach Goal
’-’ indicates complete failure in task achievement.

Difficulty Robot Steps to Reach

level E2E CPO H-E2E H-CPO H-Lyapunov

1

Sweeping 120.7 121.4 201.7 192.1 234.7
Point 403.6 793.8 409.6 - 521.9
Car 381.1 - 444.2 765.5 417.0

Quadruped 99.4 - 117.7 478.2 252.0

2

Sweeping 325.8 298.7 505.9 503.7 584.4
Point 528.0 - 887.1 - 1015.2
Car 720.7 - 858.7 2297.6 812.1

Quadruped - - 242.1 - 500.5

3

Sweeping 764.0 675.4 1080.9 1097.9 1226.9
Point - - 1498.4 - 1948.7
Car 1212.5 - 1678.0 - 1573.8

Quadruped - - 504.9 - 880.5

We evaluate the performance of algorithms with the steps-
to-goal in Table III. While our method yields an enhanced
safety and goal reach rate, we pay the price of having a larger
mean of the number of steps to reach in most environments.
This is expected as a more reckless controller may reach
the goal faster, but this would be at the cost of safety. Our
algorithm has larger steps to reach because of the small RoA
over-approximations when a robot passes narrow tunnels.
These small over-approximations cause cautious behaviors
and make the robot move slower than usual. We also find

that after combining with RRT, the robot needs more steps
to reach the goal when compared with its non-hierarchical
counterpart. This is normal because the paths generated with
RRT are not guaranteed to be the shortest. This problem
can be alleviated with algorithms like RRT ∗ [1]. However,
since this paper only focuses on safety when a robot follows
a planned path, the choice of planning algorithm is not our
primary focus, and we leave this question for future work.

V. RELATED WORK

Planning under kinodynamic constraints [2] addresses the
inconsistency problem between planning and control. How-
ever, most previous works ([20], [21], [22], [23]) suffer from
issues in scalability and generalization. Notably, compared
with our work, [20] has a similar idea that combines stability
region and planning. However, this approach only works for
linearized known dynamics, and computing the LQR-tree is
computationally expensive for deployment. More recently,
[24] introduces a learning-based path planner and follows
the planned path with MPC solved by Cross-Entropy Method
(CEM) [25]. However, explicitly providing safety assurance
is still challenging because the CEM avoids potential colli-
sions via optimizing penalty terms encoded implicitly.

Integrating path planning with a DRL controller has been
extensively explored recently ([3], [4], [5], [26]). For in-
stance, [3] and [4] train a local point-to-point controller
with DRL and employ probabilistic roadmaps and rapidly-
exploring random trees as the high-level planner, respec-
tively. [5] applies a convolutional neural network planner
and trains the reach-avoidance controller with DRL. [26]
learns end-to-end point-to-point and path-following naviga-
tion behaviors with DRL while it also enhances the DRL
with an automatic parameter tuner. These approaches can
work with unknown dynamics and high-dimensional raw
sensor observations. However, the desired behaviors of these
controllers are only specified in the reward functions and also
inherit the limitations of standard RL.

Safe reinforcement learning approaches ([19], [27], [28],
[29], [30], [31]) aim at learning controllers that causes
limited constraint violations. [19], [27], [28] can reduce
violation numbers but also results in more conservative
behaviors, which can affect performance. [29], [30], [31] can

avoid all violations. However, they require a safe controller
and the dynamics to be known, which is a strong requirement
compared to our model-free setting. Moreover, since these
approaches are not integrated with any planner, they usually
do not perform well for long-time-horizon navigation tasks.

The Lyapunov method is also applied in [28], [29], [30],
[31]. However, [28] does not build an explicit Lyapunov
function. [30], [31] compute the Lyapunov function with
analytic approaches instead of learning it. Hence, they suffer
from scalability issues and require knowing the controller’s
dynamics. In contrast, modern approaches [7], [8], [32],
[6] models the Lyapunov function with a neural network,
training it with the transitions sampled from the environment
and controller. [7], [32], [6] build the NLF with a fixed
controller, and thus unlike our work, cannot be used to
improve the quality of the controller. [8] also co-learns
the Lyapunov function and controller, but with supervised
learning, requiring a training dataset in advance.

VI. CONCLUSION

In this paper, we firstly introduced the TNLF and subse-
quently, using information derived by modeling this function
for a DRL controller, demonstrate a clear enhancement to
the aspects of safety when following plans. Additionally, we
prove that learning these controllers along with the TNLF can
be done via a novel co-learning procedure yielding benefits to
both components. We show that general planning algorithms
albeit capable, are in themselves inherently lacking in their
ability to avoid safety violations, and the execution strategies
for these plans must also take into account the capabilities
of the underlying controller. Our use of RoAs and runtime
monitors is a significant leap towards realizing this synergy
between safety and planning.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[2] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[3] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser,
and J. Davidson, “Prm-rl: Long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 5113–5120.

[4] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt:
Kinodynamic motion planning via learning reachability estimators
from rl policies,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4298–4305, 2019.

[5] K. Ota, Y. Sasaki, D. K. Jha, Y. Yoshiyasu, and A. Kanezaki, “Efficient
exploration in constrained environments with goal-oriented reference
path,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 6061–6068.

[6] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Conference on Robot Learning, 2018.

[7] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” arXiv
preprint arXiv:2005.00611, 2020.

[8] D. Sun, S. Jha, and C. Fan, “Learning certified control using contrac-
tion metric,” arXiv preprint arXiv:2011.12569, 2020.

[9] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration
in deep reinforcement learning,” 2019.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning.” in ICLR (Poster), 2016.

[11] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning, 2018.

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, 2018.

[16] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba,
“Hindsight experience replay,” in Advances in Neural Information
Processing Systems, vol. 30, 2017.

[17] Y. Chen and M. J. Wainwright, “Fast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees,” arXiv
preprint arXiv:1509.03025, 2015.

[18] Z. Xiong, I. Agarwal, and S. Jagannathan, “Hisarl: A hierarchical
framework for safe reinforcement learning,” AAAI SafeAI Workshop,
2022.

[19] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proceedings of the 34th International Conference on
Machine Learning, vol. 70, 06–11 Aug 2017.

[20] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[21] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.

[22] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based
optimal kinodynamic planning with motion primitives,” Autonomous
Robots, vol. 43, no. 7, pp. 1715–1732, 2019.

[23] C. Xie, J. van den Berg, S. Patil, and P. Abbeel, “Toward asymp-
totically optimal motion planning for kinodynamic systems using a
two-point boundary value problem solver,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
4187–4194.

[24] L. Li, Y. Miao, A. H. Qureshi, and M. C. Yip, “Mpc-mpnet: Model-
predictive motion planning networks for fast, near-optimal planning
under kinodynamic constraints,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 3, pp. 4496–4503, 2021.

[25] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The
cross-entropy method for optimization,” in Handbook of statistics.
Elsevier, 2013, vol. 31, pp. 35–59.

[26] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[27] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6070–6120,
2017.

[28] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” Advances in
neural information processing systems, vol. 31, 2018.

[29] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[30] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[31] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan, “An inductive synthe-
sis framework for verifiable reinforcement learning,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2019, pp. 686–701.

[32] V. Petridis and S. Petridis, “Construction of neural network based
lyapunov functions,” in The 2006 IEEE International Joint Conference
on Neural Network Proceedings. IEEE, 2006, pp. 5059–5065.

	I Introduction
	II Background
	II-A Reinforcement Learning
	II-B Lyapunov Method
	II-B.1 Lyapunov Function
	II-B.2 Neural Lyapunov Function
	II-B.3 Region of Attraction

	II-C Path Planning
	II-D Goal-Conditioned State Space

	III Approach
	III-A Twin Neural Lyapunov Function
	III-B Co-learn the TNLF with controller
	III-C Runtime Monitor

	IV Experiments
	IV-A Setup
	IV-B Co-learning
	IV-C Baselines
	IV-D Safety, Reach Rate, and Performance

	V Related Work
	VI Conclusion
	References

