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ABSTRACT

Multivariate time-series is complex and uncertain. The overall temporal patterns
change dynamically over time, and each feature is often observed to have a unique
pattern. Therefore, it is challenging to model a framework that can flexibly learn
feature-specific unique patterns as well as dynamically changing temporal patterns
simultaneously. We propose a general framework for FEature-Aware multivariate
Time-series representation learning, called FEAT. Unlike previous methods that
only focus on training the overall temporal dependencies, we focus on training
feature-specific as well as feature-agnostic representations in a data-driven man-
ner. Specifically, we introduce a feature-wise encoder to explicitly model the
feature-specific information and design an element-wise gating layer that learns
the influence of feature-specific patterns per dataset in general. FEAT outperforms
the benchmark models in average accuracy on 29 UEA multivariate time-series
classification datasets and in MSE and MAE on four multivariate time-series fore-
casting datasets.

1 INTRODUCTION

Deep learning methods have been applied to time-series data in various fields such as manufacturing,
healthcare, finance, and transportation to enhance the performance of classification or forecasting
tasks (Guo et al., 2019; Zhang et al., 2021; Essien & Giannetti, 2020). Approaches related to multi-
variate time-series data have received considerable attention for leveraging the abundant information
of features to improve the performance of downstream tasks (Rasul et al., 2020; Zhang et al., 2020).
However, effectively capturing the intrinsic complexity of multivariate time-series data is difficult
(Duan et al., 2022; Chen et al., 2022; Liu et al., 2021; Karim et al., 2019), given the complex and un-
certain characteristics of data in which features have varied changing patterns over time (Zhao et al.,
2015; Du et al., 2020). Therefore, modeling a general representation learning framework to extract
the significant information for multivariate time-series data is more challenging than for univariate
time-series data (Han et al., 2018; Du et al., 2020).

Most time-series representation learning methods have the following two limitations. First, they
mainly focus on training feature-agnostic temporal dependency. In other words, for multivariate
time-series data, the unique patterns of each feature are not given sufficient attention. Figure 1a
shows an example of a multivariate time-series sequence with similar temporal behaviors across the
features, which we define as feature-agnostic patterns referring to Cirstea et al. (2022). By contrast,
Figure 1b shows the case where the temporal behavior is different for each individual feature, which
we call feature-specific patterns. Although both types of feature characteristics should be properly
captured, current time-series representation learning methods tend to overlook the feature-specific
patterns.

Second, few time-series representation learning methods are generally applicable to multivariate
time-series data. We define general as “to be able to perform robustly on various datasets from
diverse domains with various tasks”. However, most previous methods have focused on improv-
ing classification task via representation learning (Tonekaboni et al., 2021; Eldele et al., 2021).
Franceschi et al. (2019) and Zerveas et al. (2021) conducted classification as well as regression tasks
but only a few selected datasets were used for evaluations. Yue et al. (2022) proposed a universal
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(a) Feature-agnostic patterns (b) Feature-specific patterns

Figure 1: (a) shows a multivariate time-series with feature-agnostic patterns where each feature has
similar temporal behaviors. In contrast, (b) shows a sequence with feature-specific patterns. The
former is a subset of features from FingerMovements dataset, while the latter is from PEMS-SF
dataset in the UEA archive.

representation learning framework, TS2Vec, which achieved state-of-the-art performance on 29 mul-
tivariate time-series classification datasets and four multivariate time-series forecasting benchmarks.
However, TS2Vec is designed to learn only feature-agnostic temporal representation. Specifically,
as the multivariate time-series sequence is embedded along the temporal axis, the original feature
dimension cannot be preserved any more, making it difficult to explicitly model feature-specific
information (Yang et al., 2015).

To resolve these two limitations, we propose FEAT, a general framework for FEature-Aware multi-
variate Time-series representation learning, which can be applied to datasets in various domain and
tasks. In contrast to the previous methods that focus on training feature-agnostic temporal patterns,
we also focus on training feature-aware temporal representation by leveraging a feature-wise en-
coder. Furthermore, we propose an element-wise gating layer that flexibly learns the influence of
feature-specific patterns of a given input sequence per dataset. The main contributions of this paper
are summarized as follows:

• We propose FEAT, a general representation learning framework for multivariate time-series
data that learns feature-specific patterns along with the feature-agnostic temporal patterns.

• We explicitly model the feature-specific information for the first time by introducing a
feature encoder and present an element-wise gating layer that flexibly learns the influence
of feature-specific patterns per timestamp in a data-driven manner.

• FEAT outperforms existing state-of-the-art representation learning methods on various
benchmark datasets and tasks including classification (improvement of 1.9%p on average
in terms of accuracy) and forecasting (improvement of 9.54% on average in terms of MSE).

2 METHOD

The overall architecture of FEAT is shown in Figure 2. We propose a novel self-supervised learning
framework for multivariate time-series that utilizes feature-specific patterns in addition to temporal
patterns. Specifically, FEAT learns representation for the first time in terms of three diversified
perspectives: feature-specific patterns, feature-agnostic temporal patterns, and dependency between
multiple feature-specific and temporal information. In the following subsections, we describe the
architectural details of the proposed framework.

Notations S = {X1, X2, . . . , XN} is a set of time-series data with N instances. Xi ∈ RT×F , the
ith instance in the set S, is the input of our framework. T is the sequence length, and F is the number
of features of the given input sequence. d1 and d2 are the dimension of timestamp-wise embedding
and feature-wise embedding, respectively, and D stands for the final representation dimension. Note
that we mark the notations and the output dimensions of each layer in Figure 2 to help understand
the following explanations.

2.1 INPUT EMBEDDING

Timestamp-wise embedding and feature-wise embedding We use two learnable input embedding
matrices, W1 ∈ RF×d1 and W2 ∈ RT×d2 , to learn the timestamp-wise embedding E1 and the
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Figure 2: Overall architecture of FEAT. The input time-series is randomly shifted along the hori-
zontal axis to construct an augmented pair for contrastive learning. The temporal encoder learns
feature-agnostic temporal representation through hierarchical temporal contrasting. The feature en-
coder learns feature-specific representation by feature contrasting, which is then aligned to the tem-
poral axis by a projection layer to construct the feature-specific temporal representation. The final
representation is derived by integrating feature-specific as well as feature-agnostic temporal repre-
sentations by an element-wise gating layer. The decoder reconstructs the input time-series from the
final representation for the auxiliary task. The dashed line indicates the stream of the augmented
context pair by random shifting.

feature-wise embedding E2 respectively, as shown in Figure 2b. The timestamp-wise embedding
has a limitation in that the embedded vector of size T × d1 cannot preserve the dimension of F as
the identity of each feature is entangled after the projection. This makes it difficult to model the
feature-specific patterns in the upper layer. Therefore, we introduce a feature-wise input embedding
matrix W2 to utilize the feature-specific patterns explicitly. Without using any meta-information or
manual preprocessing, we embed each feature by projecting the transposed raw input sequence XT .

2.2 TIME-SERIES DATA AUGMENTATION

Masking Input Embedding We randomly mask the input embedding as a data augmentation for
contrastive learning inspired by TS2Vec (Yue et al., 2022). In our experiment, random binomial
masking is applied to the timestamp-wise embedding and no masking is applied to the feature-wise
embedding. The detailed experiment is presented in Appendix A.1. Note that the masking is only
applied during training.
Random Shifting We also introduce random shifting (Figure 2a), which is applied to the raw input
time-series to produce randomly augmented contexts. Yue et al. (2022) proposed random cropping
to generate two overlapping segments in contexts with random lengths for contextual consistency.
However, for the feature-wise embedding, the size of T in the transposed input with the size of
F × T must be fixed. To mitigate this concern, we propose random shifting, which can maintain
the effect of random cropping while keeping the dimension T fixed. As shown in Figure 2a, we
shift the raw input time-series along the horizontal axis (where the shift size is randomly chosen as
a hyper-parameter) and pad or trim the sequence to preserve the context length. Maximum shift size
is used to impose constraints to prevent the distribution of each feature from the shifted context from
getting distorted from the original distribution.

2.3 LAYERS

Encoder Layer We design two encoders, temporal encoder (Figure 2c) and feature encoder (Fig-
ure 2d), to extract feature-agnostic temporal representation and feature-specific representation, re-
spectively. We use a dilated convolutional neural network as the temporal encoder to extract the
feature-agnostic temporal representation R1. Dilated convolutional neural networks have been ac-
tively used for time-series data because of their ability to capture multi-scale temporal dependency
(Tonekaboni et al., 2021; Franceschi et al., 2019; Yue et al., 2022; Bai et al., 2018; Oord et al., 2016).
The temporal encoder takes the timestamp-wise embedding as an input, and it focuses on learning
dynamic feature-agnostic temporal dependencies rather than the specific patterns of each feature.
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To complement the loss of feature-specific information, we design an additional MLP-based feature
encoder network, which focuses on learning feature-wise specific representation R2 by receiving
feature-wise embedding.

Element-wise Gating Layer The main goal of time-series representation learning is to represent
each timestamp of a given sequence in the hidden dimension space. This means that the length
of input sequence and that of the final output representation should be the same. Concerns might
arise if the output of the feature encoder (Figure 2d) and the output of temporal encoder (Figure
2c) have different lengths; the former is F while the latter is T in the above structure. To address
such concerns, we first align the feature-specific representation R2 along the temporal axis, learning
feature-temporal dependency by a projection layer in Figure 2e. The aligned feature representation
R′

2 is regarded as feature-specific temporal representation while the representation R1 from the
temporal encoder is regarded as feature-agnostic temporal representation. Once these two types
of temporal representations R1 and R′

2 are obtained, we aggregate them using an element-wise
gating module in the layer shown in Figure 2e. We assume that each timestamp can be strongly
influenced by inter-dependencies with other timestamps that are inherently shared between features,
while some timestamps can be influenced by the representative patterns that uniquely appear in each
feature (Li et al., 2021; Cirstea et al., 2022). Consequently, we adopt a gating mechanism to allow the
model to learn the influence of each characteristic flexibly in a data-driven manner. Through this, the
model can more adaptively learn each representation compared to a model with a simple aggregation
function such as concatenation or mean. The final representation is R = {r1, r2, . . . , rT }, where
rt = at ∗R1(t) + bt ∗ R′

2(t) ∈ RD. at is the weight of tth feature-agnostic temporal representation
in R1, and bt is the weight of tth feature-specific temporal representation in R′

2. The sum of scalar
pair at and bt is equal to 1. The sets of T gating weights, A = {a1, . . . , aT } and B = {b1, . . . , bT },
are computed as follows:

[A;B] = softmax(g([R1;R
′
2])). (1)

We use a linear projection layer for g(·). Detailed analysis of the gating module is given in Section
3.3.
All components of the encoder layer enable FEAT to model the representations into three different
perspectives sophisticatedly – feature-agnostic temporal representation R1, feature-specific repre-
sentation R2, feature-specific temporal representation R′

2. Unlike previous architectures, we first
focus on learning the beneficial feature-level representation as well as how the features are dynam-
ically aligned on the temporal axis. Specifically, through the proposed gating layer, the model can
automatically control the usage of feature-specific information at each timestamp.

Decoder Layer We used a reconstruction decoder (Figure 2f) to help train the gating parameters by
upstream gradients and learn a richer representation. An MLP decoder is employed, which is only
for the auxiliary loss during training.

2.4 OBJECTIVE FUNCTION

We design the objective function as follows:

Ltotal = Lcontrastt + Lcontrastf + Lrecon, (2)

where Lcontrastt is the hierarchical temporal contrasting loss, Lcontrastf is the feature contrasting
loss, and Lrecon is the reconstruction loss. The hierarchical temporal contrasting loss Lcontrastt ,
adopted from Yue et al. (2022), is calculated from the overlapping segments of randomly shifted
pairs described in Section 2.2. The main strategy is to set the same timestamps from the two overlap-
ping representations as positive pairs and set the different timestamps to be negative pairs. Lcontrastt
can be formulated as follows:

ℓ
(i,t)
temp = − log

exp
(
ri,t · r′i,t

)
∑

t′∈Ω

(
exp

(
ri,t · r′i,t′

)
+ 1[t ̸=t′] exp (ri,t · ri,t′)

) , (3)

ℓ
(i,t)
inst = − log

exp
(
ri,t · r′i,t

)∑B
j=1

(
exp

(
ri,t · r′j,t

)
+ 1[i ̸=j] exp (ri,t · rj,t)

) , (4)

4



Under review as a conference paper at ICLR 2023

Lcontrastt =
1

NT

∑
i

∑
t

(
ℓ
(i,t)
temp + ℓ

(i,t)
inst

)
. (5)

ℓ
(i,t)
temp in Eq. (3) is the temporal contrasting loss, where ri,t and r′i,t are the ith augmented pair

of feature-agnostic temporal representation at timestamp t, Ω is the set of overlapped timestamps
from each context pair, and 1 is the indicator function. It induces the network to represent the
same timestamps from different contexts as similar and every different timestamp to be unique.
Specifically, the model can focus more on learning position-agnostic temporal representation under
the contextual consistency (Yue et al., 2022). In addition to temporal contrasting loss, instance-wise
contrastive loss ℓ(i,t)inst of Eq. (4) is applied, where the positive pair is the same timestamp from the
augmented instance while the negative pair is the same timestamp from different instances in batch
B. The two losses from Eq. (3) and Eq. (4) are computed for every timestamp and instance in a
batch as formulated in Eq. (5), and they are also computed on the max-pooled representations along
the temporal axis by hierarchical procedures. This enables the model to learn the representation that
reflects the multi-scale granularities through the hierarchical structure.

In addition to temporal contrasting, we propose the feature contrasting loss Lcontrastf to force the
model to learn the unique representation of each feature. Assuming that the distribution of each
feature sequence from the shifted pairs is similar to each other as described in Section 2.2, we take
two augmented feature-specific representations of feature f , the output of the feature encoder in
Figure 2d, as a positive pair. Lcontrastf can be formulated as follows:

ℓ
(i,f)
feat = − log

exp
(
ri,f · r′i,f

)
∑F

f ′=1

(
exp

(
ri,f · r′i,f ′

)
+ 1[f ̸=f ′] exp (ri,f · ri,f ′)

) , (6)

ℓ
(i,f)
inst = − log

exp
(
ri,f · r′i,f

)
∑B

j=1

(
exp

(
ri,f · r′j,f

)
+ 1[i ̸=j] exp (ri,f · rj,f )

) , (7)

Lcontrastf =
1

NF

∑
i

∑
f

(
ℓ
(i,f)
feat + ℓ

(i,f)
inst

)
. (8)

The main difference of Lcontrastf from Lcontrastt is that it is applied to the feature-specific rep-
resentation R2 ∈ RF×D and not applied hierarchically, where ri,f and r′i,f are the representations
of feature f from the ith augmented pair. The feature contrasting loss helps the model to represent
each feature with its own patterns to a vector by referring to different feature patterns in the same
instance as well as different feature patterns from other instances.

Additionally, we employed the reconstruction error Lrecon for the loss function of as an auxiliary
task. An MSE score between the input sequence X and the reconstructed sequence X̂ is calculated
on the overlapped timestamps from the shifted pair.

3 EXPERIMENTS

We verified the effectiveness of our representation learning framework by evaluating the perfor-
mance improvements in classification as well as forecasting tasks. To conduct the downstream
tasks, we trained traditional machine learning models on the learned representations following Yue
et al. (2022) and Franceschi et al. (2019). For a fair comparison, we fixed the representation di-
mension as 320 for all the baseline models for representation learning. The results of FEAT were
calculated by averaging the results of five repeated runs, and we report the performances of the base-
line models from their original papers and from TS2Vec. All the experiments were conducted on a
single NVIDIA Titan RTX GPU. Details of the experimental settings and datasets are described in
Appendix A.1 and Appendix A.2.
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Table 1: Multivariate time-series classification results in terms of average accuracy and average rank
with 95% confidence interval. Note that as there is no official result of InsectWingbeat from DTW
in the UEA archive, we excluded it when computing the average accuracy and rank. The best and
second-best results are highlighted in bold and underlined, respectively.

Dataset FEAT (Ours) TS2Vec T-Loss TNC TS-TCC TST DTW
ArticularyWordRecognition 0.991 0.987 0.943 0.973 0.953 0.977 0.987
AtrialFibrillation 0.293 0.200 0.133 0.133 0.267 0.067 0.200
BasicMotions 1.000 0.975 1.000 0.975 1.000 0.975 0.975
CharacterTrajectories 0.993 0.995 0.993 0.967 0.985 0.975 0.989
Cricket 0.969 0.972 0.972 0.958 0.917 1.000 1.000
DuckDuckGeese 0.564 0.680 0.650 0.460 0.380 0.620 0.600
EigenWorms 0.811 0.847 0.840 0.840 0.779 0.748 0.618
Epilepsy 0.948 0.964 0.971 0.957 0.957 0.949 0.964
ERing 0.896 0.874 0.133 0.852 0.904 0.874 0.133
EthanolConcentration 0.322 0.308 0.205 0.297 0.285 0.262 0.323
FaceDetection 0.530 0.501 0.513 0.536 0.544 0.534 0.529
FingerMovements 0.488 0.480 0.580 0.470 0.460 0.560 0.530
HandMovementDirection 0.378 0.338 0.351 0.324 0.243 0.243 0.231
Handwriting 0.542 0.515 0.451 0.249 0.498 0.225 0.286
Heartbeat 0.746 0.683 0.741 0.746 0.751 0.746 0.717
JapaneseVowels 0.983 0.984 0.989 0.978 0.930 0.978 0.949
Libras 0.889 0.867 0.883 0.817 0.822 0.656 0.870
LSST 0.548 0.537 0.509 0.595 0.474 0.408 0.551
MotorImagery 0.562 0.510 0.580 0.500 0.610 0.500 0.500
NATOPS 0.921 0.928 0.917 0.911 0.822 0.850 0.883
PEMS-SF 0.874 0.682 0.676 0.699 0.734 0.740 0.711
PenDigits 0.989 0.989 0.981 0.979 0.974 0.560 0.977
PhonemeSpectra 0.216 0.233 0.222 0.207 0.252 0.085 0.151
RacketSports 0.888 0.855 0.855 0.776 0.816 0.809 0.803
SelfRegulationSCP1 0.852 0.812 0.843 0.799 0.823 0.754 0.775
SelfRegulationSCP2 0.562 0.578 0.539 0.550 0.533 0.550 0.539
SpokenArabicDigits 0.986 0.988 0.905 0.934 0.970 0.923 0.963
StandWalkJump 0.533 0.467 0.333 0.400 0.333 0.267 0.200
UWaveGestureLibrary 0.929 0.906 0.875 0.759 0.753 0.575 0.903
InsectWingbeat 0.462 0.466 0.156 0.469 0.264 0.105 -
On the first 29 datasets:
Avg. Acc. 0.731(+1.9%) 0.712 0.675 0.677 0.682 0.635 0.650
Avg. Rank 2.448 3.034 3.759 4.690 4.328 5.172 4.569

95% Confidence Interval [1.857, 3.040] [2.360, 3.709] [2.997, 4.520] [4.144, 5.236] [3.506, 5.149] [4.499, 5.845] [3.913, 5.225]

3.1 MULTIVARIATE TIME-SERIES CLASSIFICATION

For the multivariate time-series classification task, experiments were conducted on 30 UEA archive1

datasets (Bagnall et al., 2018). We compared the performance of FEAT against six well-known time-
series representation learning methodologies: TS2Vec (Yue et al., 2022), T-Loss (Franceschi et al.,
2019), TS-TCC (Eldele et al., 2021), TST (Zerveas et al., 2021), TNC (Tonekaboni et al., 2021),
and a distance-based algorithm DTW (Chen et al., 2013). Following the same evaluation protocol
as TS2Vec, we trained an SVM classifier with RBF kernel on a max-pooled representation along the
temporal axis.

Table 1 presents the summarized results of the classification task. We can observe that FEAT resulted
in the best average accuracy with 1.9%p improvement on 29 UEA datasets over the second-best
model TS2Vec. We can also observe that the average accuracy is not a biased result on account of
a part of datasets, in that the average rank also outperforms the other baselines. The results in Table
1 imply that feature-aware representation learning benefits the performance compared to methods
that only learn feature-agnostic temporal dependencies. We also analyzed the efficiency of FEAT in
terms of total training time in Appendix A.3.

3.2 MULTIVARIATE TIME-SERIES FORECASTING

For the multivariate time-series forecasting task, experiments were conducted on the four benchmark
datasets: ETTh1, ETTh2, ETTm1, and ECL. We compared the performance of FEAT against the
representation learning model TS2Vec (Yue et al., 2022) and five end-to-end forecasting models
(Zhou et al., 2021; Cao et al., 2020; Bai et al., 2018; Li et al., 2019; Lai et al., 2018). For a fair
comparison, we followed the same protocol as TS2Vec and trained a ridge regression on the final

1https://www.timeseriesclassification.com/index.php
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Table 2: Multivariate time-series forecasting results. The bold and underlined numbers indicate the
best and second-best performances, respectively.

FEAT (Ours) TS2Vec Informer StemGNN TCN LogTrans LSTnet
Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 24 0.569 0.517 0.599 0.534 0.577 0.549 0.614 0.571 0.767 0.612 0.686 0.604 1.293 0.901

48 0.612 0.547 0.629 0.555 0.685 0.625 0.748 0.618 0.713 0.617 0.766 0.757 1.456 0.96
168 0.751 0.636 0.755 0.636 0.931 0.752 0.663 0.608 0.995 0.738 1.002 0.846 1.997 1.214
336 0.887 0.718 0.907 0.717 1.128 0.873 0.927 0.73 1.175 0.8 1.362 0.952 2.655 1.369
720 1.031 0.796 1.048 0.79 1.215 0.896 - - 1.453 1.311 1.397 1.291 2.143 1.38

ETTh2 24 0.403 0.481 0.398 0.461 0.72 0.665 1.292 0.883 1.365 0.888 0.828 0.75 2.742 1.457
48 0.608 0.602 0.58 0.573 1.457 1.001 1.099 0.847 1.395 0.96 1.806 1.034 3.567 1.687

168 1.686 1.011 1.901 1.065 3.489 1.515 2.282 1.228 3.166 1.407 4.07 1.681 3.242 2.513
336 1.973 1.145 2.304 1.215 2.723 1.34 3.086 1.351 3.256 1.481 3.875 1.763 2.544 2.591
720 2.21 1.238 2.65 1.373 3.467 1.473 - - 3.69 1.588 3.913 1.552 4.625 3.709

ETTm1 24 0.37 0.395 0.443 0.436 0.323 0.369 0.62 0.57 0.324 0.374 0.419 0.412 1.968 1.17
48 0.497 0.467 0.582 0.515 0.494 0.503 0.744 0.628 0.477 0.45 0.507 0.583 1.999 1.215
96 0.548 0.503 0.622 0.549 0.678 0.614 0.709 0.624 0.636 0.602 0.768 0.792 2.762 1.542

288 0.636 0.563 0.709 0.609 1.056 0.786 0.843 0.683 1.27 1.351 1.462 1.32 1.257 2.076
672 0.741 0.629 0.786 0.655 1.192 0.926 - - 1.381 1.467 1.669 1.461 1.917 2.941

ECL 24 0.247 0.345 0.287 0.374 0.312 0.387 0.439 0.388 0.305 0.384 0.297 0.374 0.356 0.419
48 0.266 0.361 0.307 0.388 0.392 0.431 0.413 0.455 0.317 0.392 0.316 0.389 0.429 0.456

168 0.292 0.38 0.332 0.407 0.515 0.509 0.506 0.518 0.358 0.423 0.426 0.466 0.372 0.425
336 0.309 0.394 0.349 0.42 0.759 0.625 0.647 0.596 0.349 0.416 0.365 0.417 0.352 0.409
720 0.336 0.413 0.375 0.438 0.969 0.788 - - 0.447 0.486 0.344 0.403 0.38 0.443

Avg. 0.749 0.607 0.828 0.636 1.154 0.781 - - 1.192 0.837 1.314 0.892 1.903 1.444

Table 3: Summary of ablation study results of multivariate time-series classification on 30 UEA
datasets. We recorded the average accuracy of five repetitions with the standard deviation of total
average accuracy per seed and the average standard deviation of accuracy per dataset. The second
column denotes the amount of performance degradation compare to the best performance.

Avg. Acc. Std.
(per seed)

Avg. Std.
(per dataset)

FEAT 0.722 0.004 0.014
Loss w/o temporal contrasting 0.674 (-4.9%) 0.002 0.019

w/o feature contrasting 0.711 (-1.1%) 0.002 0.019
w/o temporal & feature contrasting 0.668 (-5.5%) 0.006 0.025
w/o reconstruction 0.684 (-3.8%) 0.006 0.025

Module MLP feature encoder
→ Depth-wise dilated CNN 0.683 (-3.9%) 0.002 0.020

Gating
→ concatenation + projection 0.686 (-3.6%) 0.005 0.018
→ mean 0.698 (-2.4%) 0.007 0.018

w/o random shifting 0.713 (-1.0%) 0.006 0.017
w/o random masking 0.708 (-1.4%) 0.005 0.016

representation with 320 dimensions. Specifically, the regression model is trained to predict H future
timestamps from the representation of the last timestamp of the given input sequence.

The evaluation results of multivariate time-series forecasting in terms of MSE and MAE are summa-
rized in Table 2. FEAT generally outperforms both types of baselines models (time-series representa-
tion learning-based models and end-to-end forecasting models). FEAT is placed best or second-best
in most dataset-time horizon cases. The average improvements of FEAT compared to TS2Vec are
9.54% in terms of MSE and 4.56% in terms of MAE. We provide additional analysis of training time
and present forecasting plots in Appendix A.4.

3.3 ANALYSIS

3.3.1 ABLATION STUDY

The following ablation studies were conducted to verify the effectiveness of each component in
FEAT. First, we investigated the effect of each term in our objective function in Eq. (2). As sum-
marized in Table 3, the model without the hierarchical temporal contrasting loss degraded the per-
formance in 4.9%p. Furthermore, the performance without feature contrasting loss shows 1.1%p
degradation. Without using either hierarchical temporal contrasting or feature contrasting loss, there
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Figure 3: T-SNE visualization of representations from FEAT (first row) and TS2Vec (second row).
Four datasets from UEA archive were plotted from the left column. The numbers located at the
bottom of the plots are the Silhouette scores.

(a) PhonemeSpectra (b) NATOPS (c) UWaveGestureLibrary

Figure 4: Histograms for the distribution of element-wise gating parameters from three UEA
datasets. The blue bins indicate the proportion of weights for the feature-agnostic temporal rep-
resentation, and the orange bins are for the feature-specific temporal representation.

was 5.5%p performance degradation with larger standard deviations. It can be concluded that the
hierarchical temporal contrasting loss and the feature contrasting loss both significantly contribute to
the performance improvement. We also investigated the effect of the reconstruction loss by remov-
ing the reconstruction decoder. Consequently, substantial performance degradation occurred with
larger standard deviations per seed and dataset. This implies that the decoder helps the model to
learn more stable and effective representations by upstream gradient flows, as discussed in Section
2.3.

Second, we investigated the module-level performance changes. For demonstrating the effectiveness
of the MLP-based feature encoder in FEAT (Figure 2d), we evaluated the performance by replacing
MLP network with depth-wise dilated convolution, which can also explicitly model the feature-wise
patterns. Consequently, 3.9%p performance degradation occurred. Furthermore, we validated the
effectiveness of learnable element-wise gating layer in Figure 2e. When we replaced the gating
layer with a simple aggregation module such as concatenation or mean, there were 3.6%p or 2.4%p
respective performance degradations. In addition, FEAT without random masking and random shift-
ing showed lower performances as well. Among the modules, the MLP-based feature encoder seems
to be the most significant module in our feature-aware representation learning framework, followed
by the element-wise gating module and the two augmentation techniques. Further analysis of how
the feature encoder works is presented in Appendix A.5.1.

3.3.2 QUALITATIVE STUDY

We performed t-SNE visualization to demonstrate that the proposed framework FEAT generally
learns the rich representation. Specifically, we compared FEAT with TS2Vec, which only focuses
on learning feature-agnostic temporal dependency. The t-SNE plots in Figure 3 demonstrate that the
instances belonging to the same class are clustered more densely as well as more clearly separated
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from the other classes compared to TS2Vec. We also calculated the Silhouette scores in Figure
3 by applying K-means clustering on learned representations with the number of clusters equal to
the number of classes. Along with the t-SNE plots, the Silhouette scores support that the learned
representations from FEAT were indeed clustered better than TS2Vec as the scores based on our
representations were higher than TS2Vec. The overall t-SNE plots and Silhouette scores of all 30
UEA datasets are provided in Appendix A.5.2.

Furthermore, we analyzed the element-wise gating layer in Figure 2e to demonstrate that it can
flexibly learn the influence of feature-specific patterns on the various datasets in general. In Figure
4a, the weights for feature-agnostic representation are distributed above 0.8. This means that the
temporal dependency highly influences the final representation. Indeed, PhonemeSpectra has similar
patterns between features along the temporal axis. By contrast, in Figure 4b and Figure 4c, plotted
from datasets having diverse patterns among the features, the distributions appear to be more spread
out than in Figure 4a. Although the feature-agnostic temporal representation has a more significant
influence than the feature-specific temporal representation because of the fundamental characteristic
of time-series data, Figure 4 shows that the gating layer can automatically capture the importance of
feature-specific patterns in a data-driven manner.

4 RELATED WORK

As large amounts of unlabeled data have been accumulated, extensive self-supervised learning meth-
ods have been studied to extract rich representation leveraging these data (Chen et al., 2020; Gao
et al., 2021; Devlin et al., 2018). In particular, in natural language processing and computer vi-
sion, many representation learning methods have been studied by introducing various pretext tasks
or techniques like contrasting and augmentation (Chen et al., 2020; Gidaris et al., 2018; He et al.,
2022; Oord et al., 2018). In contrast, studies on time-series representation learning are limited.

A few methodologies of representation learning on time-series data have been proposed to effec-
tively extract rich representations from complex temporal patterns (Yue et al., 2022; Tonekaboni
et al., 2021; Franceschi et al., 2019; Eldele et al., 2021; Zerveas et al., 2021; Woo et al., 2022).
Yue et al. (2022) proposes a universal framework that learns contextual representations by hier-
archical contrastive learning over two overlapping segments from random contexts. Tonekaboni
et al. (2021) proposes a framework for learning generalizable time-series representations for non-
stationary time-series via defining neighborhoods considering stationarity properties to design a
debiased contrastive objective. Franceschi et al. (2019) employs triplet loss to learn scalable repre-
sentations for multivariate time-series. Eldele et al. (2021) introduces a contrastive learning frame-
work using a tough cross-view prediction task on the augmented sequences. Zerveas et al. (2021)
employs a transformer-based architecture for multivariate time-series representation learning using
a reconstruction loss. Woo et al. (2022) proposes contrastive learning methods to learn disentangled
seasonal-trend representations for forecasting. Most of the aforementioned works propose methods
based on temporal dependency, and none have focused on learning multivariate time-series represen-
tations through utilizing feature-specific information. We propose a general framework that learns
representations with feature-specific information. Notably, our framework can capture the feature-
specific information in a data-driven manner for the various datasets, which does not require any
additional data preprocessing or expert knowledges.

5 CONCLUSION

This paper presents a general framework for feature-aware multivariate time-series representation
learning, called FEAT. This framework is designed to model the feature-wise specific patterns and
to leverage this information for learning rich representation. The evaluation of our framework was
conducted on classification as well as forecasting tasks, and the results demonstrate its effectiveness.
FEAT achieved the best performances on 30 classification datasets and four forecasting datasets on
average among the existing time-series representation learning models. Furthermore, we show that
the learnable gating layer in FEAT is flexible enough to learn the feature-specific patterns depending
on the datasets. As our framework explicitly models each feature and aligns it to the timestamps,
future work can focus on utilizing external features that can enrich the output representations. FEAT
can also take advantage of its reconstruction structure in anomaly detection tasks.
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A APPENDIX

A.1 REPRODUCTION DETAILS

Table 4: Ablation over different feature masking ratios of multivariate time-series classification on
30 UEA datasets. We recorded the average accuracy of five repetitions with the standard deviation of
total average accuracy per seed and the average standard deviation of accuracy per dataset. Random
ratio means that the masking ratio is chosen at random under the maximum ratio given in the second
column. Fixed ratio means that the given proportion of feature subset is masked.

Avg. Acc. Std.
(per seed)

Avg. Std.
(per dataset)

FEAT 0.722 0.004 0.014
random

ratio 10% 0.718 0.004 0.016

30% 0.717 0.003 0.017
50% 0.717 0.004 0.015

fixed
ratio 10% 0.723 0.003 0.021

30% 0.722 0.006 0.019
50% 0.719 0.002 0.020

We used the default fixed set of hyper-parameters following TS2Vec (Yue et al., 2022) regardless of
the dataset or the downstream task. The only difference is that the number of optimization iterations
was increased approximately 1.5 times on average. The batch size B is set to 8. The learning rate
is 0.001. The final representation dimension D is set to 320, and the dimensions of timestamp-
wise and feature-wise embedding, d1 and d2, were set to 64. The hidden dimension for encoders
and element-wise gating layer was set to 320, equal to D. In addition, we fixed the maximum
shift size as three for random shifting. Random binomial masking was applied to the timestamp-
wise embedding but no masking for feature-wise embedding was applied by the ablation results
in Table 4. According to Table 4, no significant improvements in terms of average accuracy or
standard deviation were observed at every condition. The average accuracy decreases when the
feature masking ratio increases, showing that each feature embedding contains helpful information.

We used ten blocks consisting of two dilated CNN layers for the temporal encoder with kernel size
three and dilation size 2l for the lth block. A two-layer MLP network for feature encoder as well
as reconstruction decoder was employed. A single linear layer was used for projecting feature-
specific representation to the temporal axis. These architectural settings were fixed to all datasets
and downstream tasks.

Table 5: Hyper-parameter sensitivity analysis results.

Batch Size Learning Rate Representation Dim. Recon. Loss
4 8(*) 16 0.005 0.001(*) 0.0005 0.0001 64 128 320(*) 512 L1 L2(*)

0.719 0.722 0.722 0.708 0.722 0.720 0.711 0.703 0.710 0.722 0.721 0.725 0.722

Additionally, we explored the hyper-parameter sensitivity by evaluating each hyper-parameter’s ef-
fectiveness. In Table 5, we evaluated the model performance in terms of variation in batch size,
learning rate, representation dimension, and reconstruction loss function. The numbers marked
with * are the fixed hyper-parameters used for all our experiments. Considering the overall per-
formance on 30 classification datasets, no harmful degradation occurs around the default settings.
Based on this sensitivity analysis, we found the FEAT is not very sensitive to a slight change of
hyper-parameters, which can be another advantage of practical implementation.
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A.2 DATASET

UEA archive datasets UEA archive provides various types of datasets such as Human Activity,
Audio Spectra, Electrocardiogram (ECG), Electroencephalogram (EEG), and Magnetoencephalog-
raphy (MEG). The datasets are labeled per observed sequence.

Electricity Transformer Temperature (ETT) dataset ETT dataset2 contains data collected by an
electricity transformer over two years. In this study, we use three distinct datasets - ETTh1, ETTh2
and ETTm1. ETTh1 and ETTh2 are 1-hour-level datasets observed from different counties in China,
while ETTm1 is a 15-minute-level dataset. As they have different granularities, we can also validate
the robustness of our learned representations on the various granularities. The train/validation/test
for the ETT datasets is 12/4/4 months.

Electricity Consuming Load (ECL) dataset ECL3 is the electricity consumption dataset of
321 clients. It is preprocessed into 1-hour-level dataset following Zhou et al. (2021). The
train/validation/test for the ECL dataset is 60%/20%/20%.

A.3 SUPPLEMENTARY ANALYSIS FOR MULTIVARIATE TIME-SERIES CLASSIFICATION

Table 6: Total training time of FEAT, TS2Vec, and TS-TCC on 30 UEA datasets. The bold and
underlined numbers indicate the best and second-best performances, respectively.

Training Time (hours)
FEAT (Ours) TS2Vec TS-TCC

Training representation 0.62 0.28 3.15
Training classifier 0.17 0.18 1.12

Total 0.79 0.46 4.27

For further analysis, we compared the total training time in Table 6 on 30 UEA datasets of the top
three best models in terms of the average accuracy. We reimplemented TS-TCC4 and TS2Vec5 based
on the code from their official repositories. We followed their default settings, except for unifying
the representation dimension and evaluation protocol for a fair comparison. As FEAT is a more
sophisticated model than TS2Vec owing to its feature encoder and reconstruction decoder, TS2Vec
records the shortest time on training representation. However, FEAT achieves the shortest time for
training the classifier on the learned representation. It can be understood that although a longer time
is required to learn time-series representation through our proposed framework, sufficiently rich
representation is learnt so that the following classifier can converge earlier than the other methods.
In comparison to TS-TCC, which is the transformer-based representation learning framework, the
proposed FEAT, the Dilated CNN and MLP-based model, is found to be much lighter. FEAT is
approximately 5.08 times faster on training representation and 6.59 times faster on converging SVM
classifier compared to TS-TCC.

A.4 SUPPLEMENTARY ANALYSIS FOR MULTIVARIATE TIME-SERIES FORECASTING

Table 7 summarizes the time for training and inference of the top three best models on the ETTm1
dataset in Table 2. We reimplemented Informer6 and TS2Vec from the official code from their of-
ficial repositories. We followed the default setting for Informer and TS2Vec except for the number
of epochs; the number of epochs in TS2Vec was set to that of FEAT. Like the analysis mentioned
in Appendix A.3, TS2Vec resulted in the shortest time in training and inference on the representa-
tion learning framework. In contrast, Informer, a transformer-based end-to-end forecasting model,
resulted in the longest time in training as well as inference phases. Although FEAT resulted in a
longer total running time than TS2Vec, the difference is not as significant as that between FEAT and
Informer. Notably, FEAT is 7.22 times more efficient in total training time and 4.30 times faster in
total inference time for all horizons on average compared to Informer.

2https://github.com/zhouhaoyi/ETDataset.
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://github.com/emadeldeen24/TS-TCC
5https://github.com/yuezhihan/ts2vec
6https://github.com/zhouhaoyi/Informer2020
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Table 7: Training and inference time (seconds) of FEAT, TS2Vec, and Informer on the ETTm1
dataset. For the representation learning models, FEAT and TS2Vec, we report separate elapsed time
for learning time-series representations and (with + signs) training a linear regressor on top of the
learned representations. Inference time is the total elapsed time for encoding representations from
the frozen network and regression predictions.

Phase H FEAT TS2Vec Informer
Training 24 101.66 + 2.74 86.74 + 2.88 724.4

48 101.66 + 3.35 86.74 + 4.17 212.6
96 101.66 + 4.56 86.74 + 5.04 712.88

288 101.66 + 9.77 86.74 + 9.82 1039.56
672 101.66 + 19.34 86.74 + 19.16 1342.78

Inference 24 5.26 + 0.02 4.02 + 0.01 20.72
48 5.26 + 0.02 4.02 + 0.02 4.85
96 5.26 + 0.03 4.02 + 0.03 19.94

288 5.26 + 0.08 4.02 + 0.08 29.95
672 5.26 + 0.15 4.02 + 0.13 39.43

Figure 5: Prediction slice (H=336) of FEAT (left column) and TS2Vec (right column) on ETTh2.
Each prediction was plotted from the best epoch model. The blue lines stand for the ground truth
while the orange lines stand for the prediction.

Table 8: Summary of ablation study results of multivariate time-series forecasting on 3 ETT datasets.
We recorded the average MSE and MAE scores of five repetitions. The second and fourth columns
denote the amount of performance degradation compared to each metric’s best performance.

Avg. MSE Avg. MAE
FEAT 0.901 0.683

Loss w/o temporal contrasting 1.165 (+0.264) 0.787 (+0.104)
w/o feature contrasting 0.909 (+0.008) 0.688 (+0.005)
w/o temporal & feature contrasting 1.168 (+0.267) 0.786 (+0.103)
w/o reconstruction 0.978 (+0.077) 0.708 (+0.025)

Module MLP feature encoder
→ Depth-wise dilated CNN 1.017 (+0.116) 0.715 (+0.032)

Gating
→ concatenation + projection 0.944 (+0.043) 0.700 (+0.017)
→ mean 0.943 (+0.042) 0.699 (+0.016)

w/o random shifting 0.910 (+0.009) 0.686 (+0.003)
w/o random masking 0.981 (+0.080) 0.703 (+0.020)

Figure 5 shows a slice of the target values and forecasting results of FEAT and TS2Vec on the ETTh2
test dataset with a length of 336. It shows that the predictions from our proposed model are better
fitted to the ground truths with trends and seasonal patterns rather than the TS2Vec representation
learning framework.

In addition, Table 8 summarizes ablation study results on multivariate times-series forecasting task.
It was performed on three ETT datasets (ETTh1, ETTh2, and ETTm1), and the results are the av-
eraged MSE and MAE scores of the five repetitions at all forecasting horizons. In terms of both
metrics, all ablations exhibit degradation, and the full model achieved the best, which supports that
each component of FEAT contributes to performance improvement.
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A.5 SUPPLEMENTARY FIGURE

A.5.1 FEATURE-SPECIFIC REPRESENTATION
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(a) Original data (b) Feature-specific representation

Figure 6: Heatmap visualizations of feature-specific representation from FEAT. Instances with dif-
ferent classes were sampled from NATOPS dataset and displayed by row. Sampled subset features
of each class are plotted from the original time-series data in the first column, while the feature-
specific representations by FEAT are displayed in the second column. Note that we undersampled
feature-specific representation dimensions from 320 to 32.

Figure 6 presents the heatmap visualizations of feature-specific representation from FEAT. For com-
parison, we selected the sample sequences with different classes having different feature patterns.
Specifically, as shown in Figure 6a, these two sequences have similar temporal patterns for the or-
ange and green line, but opposite patterns for the red and blue line. We verified that our feature
encoder can learn these unique characteristics by visualizing the feature-specific representations in
Figure 6b. Feature contrasting, as well as feature encoder, helps FEAT to model the feature-specific
patterns explicitly. Specifically, the two opposite patterns of the red and blue line in Figure 6a were
represented in opposite manners for each class.
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A.5.2 T-SNE PLOTS WITH THE SILHOUETTE SCORES FOR 30 UEA DATASETS
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Figure 7: T-SNE visualization of representations from FEAT (first column) and TS2Vec (second
column) and original data (third column). Thirty datasets from the UEA archive were plotted from
the first row. The numbers located at the bottom of the plots are the Silhouette scores. The silhouette
scores are calculated with the Euclidean distance metric, where the number of clusters equals the
number of classes.
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