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ABSTRACT

The performance of fine-tuned language models is heavily influenced by the qual-
ity and quantity of their fine-tuning data. While scaling laws suggest that larger
models benefit from more data during pretraining, the Less-is-More hypothesis
highlights that downstream fine-tuning often requires only a small but high-quality
dataset to effectively elicit a model’s pretrained knowledge. However, identifying
such premium data, particularly in terms of difficulty and diversity, typically relies
on human expertise, and existing methods offer limited guidance for automatic se-
lection from large unannotated corpora. This work presents a novel quantitative
framework that formalizes the interplay between question difficulty and diver-
sity, and introduces Difficulty—Diversity Collaborative Filtering (DDCF): an au-
tomated approach that tailors data selection to the unique characteristics of each
language model via collaborative filtering. By leveraging a small seed dataset
to predict correctness across a large unannotated corpus, our method reduces the
annotation cost by 100 — 200 x, while maintaining downstream performance com-
parable to full-corpus fine-tuning.

1 INTRODUCTION

The remarkable success of Large Language Models (LLMs) in recent years (Grattafiori et al.,
2024bj; [ Yang et al.l 2025b) stems largely from their ability to learn rich and generalizable repre-
sentations from massive pretraining corpora. To further enhance capabilities of these models on
downstream tasks, supervised fine-tuning (SFT) has become a popular approach (Wei et al., 2022}
Chung et al.| 2024)). However, SFT typically involves fine-tuning pretrained models on large-scale,
human-annotated instruction datasets, often comprising hundreds of thousands of examples.

Despite its effectiveness, fine-tuning on such large datasets presents several challenges. First, data
collection and model training incur substantial computational costs. Second, updating a model on a
new large corpus may cause catastrophic forgetting, where continual learning of new tasks degrades
performance on previously acquired knowledge (Biderman et al., [2024; [Wang et al.| |2024). Third,
scaling up the dataset often leads to over-representation of common patterns, reducing diversity and
underrepresenting rare but important examples (Kim et al., 2022; |Zhang et al., [2025a)).

Recently, the Less-is-More hypothesis (Zhou et al.,[2023 [Ye et al.}|2025) has suggested that down-
stream task adaptation can be achieved through minimal supervision, where the model primarily
learns task-specific formatting or styles to reveal knowledge already encoded during pretraining.
Empirical studies have shown that fine-tuning on just a few carefully selected examples sometimes
outperforms naively using vast annotated corpora (Zhou et al., 2023} |Ye et al., [2025; Muennighoff
et al.l2025)). However, such curated datasets often rely on evolving human expertise, making them
labor-intensive, inflexible, and inconvenient to adapt to new models or tasks.

While recent efforts have explored automated methods to improve data quality (Xia et al.l 2024;
Yang et al. 2024b), the automatic selection without annotated output responses remains an open
challenge. For example, [Xia et al.| (2024) leveraged gradient matching to a target dataset, while
Yang et al.|(2024b) instead trained the LM on the entire annotated corpus and then selected samples
by clustering their loss trajectories. Other approaches (Ye et al.| [2025; Muennighoff et al., |2025}
Marion et al., 2023) identify challenging examples based on binary correctness, reasoning length,
or perplexity, and group them into manually defined categories. However, such approaches are not
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Figure 1: An illustration of our proposed Difficulty—Diversity Collaborative Filtering framework.
Given a dataset, a binary correctness matrix from model predictions is factorized into model and
question embeddings. Difficulty is defined by factorized scores, while diversity is measured by
question similarity. These two criteria jointly guide the selection of compact yet effective training
subsets, providing strong learning signals while avoiding redundant, overly similar examples.

universal—questions deemed difficult for one model may not be difficult for another, and rarely
achieve an optimal balance of difficulty and diversity.

To address these gaps, we propose Difficulty—Diversity Collaborative Filtering (DDCF), a frame-
work that reduces both annotating and fine-tuning costs by automatically selecting a compact, high-
quality subset of questions tailored to each target model. As illustrated in Figure[I] DDCF measures
question difficulty using collaborative filtering over predicted correctness patterns from multiple
open-source LLMs, and quantifies diversity based on question similarity. By formulating data selec-
tion as a combinatorial optimization that directly trades off these two criteria, we can efficiently ap-
proximate the optimal subset using a simple k-greedy strategy. Starting from an empty set, k-greedy
iteratively adds the question with the greatest marginal gain in our difficulty—diversity objective un-
til exactly k& examples are selected. Empirically, DDCF selects compact yet impactful subsets that
effectively challenge the target model while maintaining broad coverage, enabling more efficient
fine-tuning and improved performance in various downstream tasks.

Our key contributions are as follows:

* We propose Difficulty—Diversity Collaborative Filtering, a novel framework that leverages
multiple LMs to capture unique characteristics of each target LM, enabling automatic con-
struction of compact, model-specific training subsets without requiring prior annotation.

* To the best of our knowledge, this work is the first to systematically quantify and analyze
the interplay between difficulty and diversity in data selection, and to demonstrate how
their trade-off shapes downstream fine-tuning performance.

* We empirically demonstrate that DDCF outperforms existing data selection baselines
across multiple benchmarks, achieving higher accuracy with the same selection budget.

2 RELATED WORK

Numerous approaches have been proposed to curate high-quality training data, which can be grouped
into several categories. Influence-based methods estimate each example’s impact on a target set
via gradient matching—e.g., Grad-Match (Killamsetty et al., 2021), LESS (Xia et al.,[2024), NICE
(Wang et al .| [2025)—or by framing selection as an optimal control problem (Gu et al.,2025). Heuris-
tic approaches often use perplexity as a proxy for difficulty, with medium-perplexity examples found
especially informative (Marion et al.| [2023). Feedback-driven frameworks leverage closed-source
LLMs (such as ChatGPT) to score or prune candidates—exemplified by AlpaGasus (Chen et al.,
2024)) and Evol (Liu et al., 2024). Diversity-aware sampling ensures broad representational cover-
age through embedding similarity (e.g., D4 (Tirumala et al.| 2023)), DiSF (Fan et al.,[2025)), while
lightweight proxy models cluster examples from loss trajectories, as in S2L (Yang et al., 2024b).

Parallel to data selection, recent work has explored the problem of choosing the most appropriate
model for a given question, commonly referred to as LLM routing. FrugalGPT (Chen et al., [2023)
adaptively queries models in sequence until a reliable answer is obtained. More recent methods
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Table 1: Comparison of DDCF with prior data selection methods. “Difficulty-Aware” and
“Diversity-Aware” reflect whether these criteria are considered in selection. “No Full-Corpus Fine-
Tuning” indicates whether the method avoids training on the full corpus. “Minimal-Annotation”
denotes methods that (almost) do not rely on annotations, thereby reducing annotation costs. “No
LLM Feedback” indicates the method does not depend on external reward models, e.g,. ChatGPT.

Difficulty-  Diversity-  No Full-Corpus  Minimal No LLM

Method Aware Aware Fine-Tuning  Annotation  Feedback
Perplexity (Marion et al.|[2023) v X v X v
S2L (Yang et al.|[2024b) v v X X v
AlpaGasus (Chen et al.|[2024) v X v X X
LESS (Xia et al.|[2024) v v v X v
DiSF (Fan et al.}[2025) X N v v v
DDCEF (ours) v v v v v

embed models and questions into a shared latent space and learn routing policies using matrix fac-
torization (Ong et al.| 2024} [Zhuang et al., 2025)), while Nguyen et al|(2024) frame the problem as
a multi-armed bandit.

Our work bridges these two lines of research by recasting model-question interactions as a recom-
mendation problem (Lee & Seung] [2000; |He et al.l 2017), treating models as users and questions
as items. This perspective allows us to learn tailored relevance scores that guide data selection in a
large corpus, even without full-annotation labels. Building on this, we propose a lightweight collab-
orative filtering framework with difficulty—diversity re-ranking to curate a small, high-quality subset
from a large unannotated corpus, yielding strong performance in low-resource fine-tuning.

Table [I] summarizes how DDCF compares to representative data selection approaches across five
key dimensions. Notably, DDCF only relies on ground-truth answers from a small seeding dataset
to construct the binary correctness matrix. This design enables DDCF to uniquely satisfy all five
criteria: it selects a compact, challenging, and diverse subset without the need for full-corpus fine-
tuning, external annotations, or feedback from closed-source LLMs. As a result, DDCF offers a
scalable and domain-agnostic solution for efficient data curation across diverse model families.

3 DATA SELECTION WITH MINIMAL ANNOTATION

3.1 CORRECTNESS PREDICTOR

Given m language models M = {Mj,...,M,,} and a seed dataset of n questions Q =
{q1,--.,qn} with corresponding ground-truth answers, we construct a binary correctness matrix
A € {0,1}*". Each entry A;; indicates whether model M; correctly answers question g;. This
matrix captures fine-grained model-question interactions, enabling us to analyze both model capa-
bilities and question difficulty. For instance, certain models may perform well on algebra but poorly
on geometry, while questions answered incorrectly by most models likely indicate higher difficulty.

Following the approach in [Zhuang et al|(2025), we enrich the binary matrix A by learning low-
dimensional embeddings for both models and questions. Specifically, we learn model embeddings
Ejy € R™*4 and question embeddings Eg € R™*? such that

A~ A=EuE], (1)

where d denotes the embedding dimension and A approximates the observed correctness matrix 4.
This factorization is analogous to those used in collaborative filtering (Lee & Seung),2000; He et al.,
2017), but it is inherently limited to the training set and does not generalize to unseen questions.

To enable generalization, we introduce a correctness predictor f : M x Q — [0, 1], which esti-
mates whether a given model correctly answers a given question. We instantiate f using an encoder
architecture, detailed below.
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Encoder The encoder comprises two modules: a model encoder ¢ ;s and a question encoder ¢,
both projecting into a shared latent space R<.

The model encoder ¢p; : M — R4 is defined as a function composition ¢ = has o gpr, Where:

* gu : M — R? maps a model index to an initial representation;
* hys : R — R? refines the initial representation to obtain the model embedding E,,, .

The question encoder ¢g : Q — R follows the same structure: ¢q = hg o gg, where:
* go : Q — RYMa yges a pre-trained sentence transformer to encode question text into an
initial question representation on;
* hg : RYMa — R? projects this representation into the shared latent space, yielding factor-

ized question embeddings E,, for each ¢; € Q.

In our implementation, ks and hg are multilayer perceptrons.

Classifier Head The classifier predicts correctness from the Hadamard product of embeddings:
Y(Em, © Ey,),

where ¢ : R? — R? is a linear classifier. The overall predictor is thus defined as f(M;, g;) =
(Ppar (M) ® ¢pg(gj)), which can be trained using binary cross-entropy loss.

The predicted correctness score for model M; on question g; is defined as:

Aij = o(f(Mi, g)1), 2
where o (-) is the sigmoid function, and the subscript 1 denotes the logit for the “correct” class.

Notably, Equation [2| can be viewed as a parameterized version of the classical matrix factorization
in Equation [T} Instead of estimating a single shared difficulty score per question, this formulation
allows the difficulty of a question to be “personalized” for each model’s characteristic. This per-
sonalized modeling of correctness underpins our approach in the next section, where we construct
Difficulty—Diversity Collaborative Filtering strategies tailored to individual models.

3.2 DIFFICULTY-DIVERSITY COLLABORATIVE FILTERING

Given a target model M; and a large unannotated dataset D, where |D| > |Q| and Q is the
introduced seed dataset, our goal is to select a subset S; C D of k questions that are both (1) difficult
for the model M and (2) diverse to cover a wide range of topics. This ensures that the selected
examples provide strong learning signals while avoiding redundancy.

To estimate question difficulty, we leverage the correctness predictor f introduced earlier. For every
question g; € D, the model M;’s predlcted correctness score is glven by A” = o(f(Mi,q)1),
and we aggregate these into a vector A; € RIPI. Lower values of Alj correspond to questions the
model is more likely to get wrong, thus indicating higher difficulty.

To encourage diversity among selected questions, we define a similarity matrix &> € RIP!XIPI where
each entry is the cosine similarity of the sentence-transformer embeddings of questions ¢, and ¢;:

(Eg,)(Eg) "

Yuj = T 0 T 3)
B, IIEY T2
We then formulate the selection problem as a combinatorial optimization task:
B |D|
min Az A) 4+ (1 - N (z"2z), st ij =k. 4)

z€{0,1}PI

Here, S; = {g;|z; = 1} is the curated subset for the model M;, and A € [0, 1] balances the trade-
off between difficulty (z".A;) and diversity (z " Xz). Although the objective is convex over the
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Figure 2: t-SNE visualization of questions selected by DDCF (best viewed in color). Left: the
selected data in the semantic space encoded by Sentence-Transformer. Right: the same data in the
factorized space learned by the correctness predictor, with point color indicating difficulty (darker
means harder) and selected examples highlighted in red. Our proposed DDCF framework organizes
the subset to target challenging questions while preserving diversity across semantic regions.

continuous relaxation of z, the binary constraint renders the problem NP-hard and computationally
intensive due to the O(|D|?) memory complexity of the similarity term 3.

To overcome these limitations, we propose a memory- and compute-efficient k-greedy heuristic that
incrementally selects questions. Starting with an empty set S;, at each step, we add the next question
q; € D\ S; that minimizes a composite score:

qj = argmin |AA;; + (1 — \) max 2, . )
¢;€D\S; qu€S;
This approach not only relaxes the original NP-hard problem but also significantly improves memory
efficiency by computing only O(k - |D|) pairwise similarities on the fly. As a result, the k-greedy
strategy is both fast and scalable, enabling efficient selection over large unannotated corpora while
maintaining a strong trade-off between difficulty and diversity.

Figure 2] provides a qualitative validation of our k-greedy sampler’s dual objectives. In the initial
representation space encoded by Sentence-Transformer (left), the chosen subset spans multiple se-
mantic regions of the full corpus, confirming that the on-the-fly diversity term successfully prevents
redundant sampling. After projecting into the factorized embedding space (right), a smooth gradient
of question difficulty emerges, and the selection concentrates almost in the most challenging ques-
tions. Together, these two views demonstrate that our Difficulty—Diversity Collaborative Filtering
simultaneously maintains semantic diversity and precisely targets high-difficulty examples.

Therefore, the selected subset S; provides a highly informative slice of the large corpus for down-
stream use. In the case of unannotated corpora, DDCF enables cost-effective data preparation by
concentrating annotation efforts, either from human experts or strong teacher models, on only the
most impactful k examples. Here, DDCF serves as a front-end filter that reduces supervision costs
while preserving strong learning signals. For already annotated corpora, DDCF serves as a post-hoc
filter that eliminates trivial or redundant examples and tailors the learning path to the strengths and
weaknesses of the target model, thereby shortening the training time. In both scenarios, the resulting
compact, model-aware dataset .S; can undergo further quality checks—such as expert review of se-
lected questions and annotations— especially in high-stakes domains like medicine or law. Overall,
DDCEF facilitates a data-efficient tuning paradigm where LLMs can be rapidly adapted with minimal
supervision, even when full-corpus annotation is impractical or prohibitively expensive.

4 EXPERIMENTS WITH PRE-ANNOTATED CORPUS

4.1 EXPERIMENTAL SETUP

Training the Correctness Predictor To learn factorized model and question embeddings, we train
a correctness predictor using outputs from 23 open-source LMsEspanning a wide range of sizes and

1Appendixplrese:nts the full list of all 23 LMs and their inference times on the seed datasets.
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architectures. Each model was evaluated on the seed dataset of 19,470 questions from the training
splits of GSMS8K (Cobbe et al.,[2021) and MATH (Hendrycks et al.,[2021b)). Responses were labeled
correct or incorrect by a rule-based verifier, resulting in binary supervision for each model—-question
pair. We use 10% of the questions as a held-out test set (results shown in Appendix|C). For the initial
question embeddings, we employ the sentence transformer Qwen/Qwen3-Embedding-4B.

Data Selection We conduct experiments on the OpenR1-Math-220K dataseﬂ which contains
225,129 math problems annotated by DeepSeek—-R1-671B (DeepSeek-Al et al.,|[2025). We select
1,000 training instances from this corpus using different selection strategies. Based on ablation
results, we set the difficulty—diversity trade-off in Equation[5]to A = 0.2 by default.

Baselines We compare our approach, DDCF, with various baselines:

* Dummy baseline: (1) Random randomly samples 1,000 examples; (2) Longest selects the
1,000 longest instruction examples; (3) Binary Hard randomly samples 1,000 examples
that the targeted model incorrectly answers from the seed dataset;

* Annotation dependent: (4) Least Confidence (Settles, 2009) measures the model’s confi-
dence as the product of probabilities of the data example. (5) Perplexity (Marion et al.,
2023) selects examples around medium perplexity; (6) SmallToLarge (S2L) (Yang et al.,
2024b) samples from clusters summarizing the loss trajectory of easy-to-hard questions.

* Annotation independent: (7) DiSF (Fan et al.l |2025) chooses samples that maximize the
diversity of the question embedding space via covariance eigenvalue maximization.

e Manually selected dataset: (8) LIMO, 817 instructive examples from |Ye et al.| (2025); (9)
s1.1-1K, 1,000 high-quality examples curated by Muennighoff et al.| (2025).

It is worth noting that, unlike Random, DiSF, and our method DDCF—which can be applied prior
to annotation—the remaining baselines require full-corpus annotation to compute selection criteria
such as gradients, reasoning length, or perplexity. We do not compare our method with selectors like
AlpaGasus (Chen et al.,|2024) or LESS (Xia et al., [2024)), as they assume different settings, such as
reliance on ChatGPT feedback or access to a target dataset for gradient matching.

Evaluation We evaluate on 10 popular reasoning benchmarks, grouped into two categories:

¢ In-Distribution: MATHS500 (Hendrycks et al., | 2021b), OlympiadBench (He et al.,|2024),
GSMBSK (Cobbe et al., [2021), AIGEval-SAT-Math (Zhong et al., | 2024), and AIME24.

* QOut-of-Distribution: Minerva (Lewkowycz et al.,[2022), which includes undergraduate-
level STEM problems; Gaokao, sourced from China’s 2024 National College Entrance
Exam; and the STEM subset of MMLU (Hendrycks et al.,2021a).

* Development Set: We use SVAMP (Patel et al., 2021)) (elementary), and AMC23 (com-
petition level) to determine hyperparameter A balancing the difficulty-diversity trade-off.

We report pass@ 1 accuracy by default, while for AMC23 and AIME24 we report pass@32, due to
their small size and high difficulty. Experiment details can be found in Appendix

4.2 MAIN RESULTS

In-Distribution Results Table [2] demonstrates that DDCF consistently produces the strongest
1K-example subsets among all selection strategies. For Qwen2.5-Math-7B, DDCF attains an av-
erage score of 70.2, outperforms the best baseline (Perplexity, 69.3) while staying within only -5.6
points of full-data training. Notably, DDCF yields larger gains on the hardest benchmarks: it boosts
AIME24 performance to 49.0, +10.4 over random and +14.4 over the base model. For Qwen3-8B-
Base, DDCF achieves 85.0 on average, outperforming all baselines and reducing the gap to full-data
training to just -2.0. Its improvement is most evident on GSM8K, where DDCF reaches 95.9, sur-
passing all baselines by up to +3.9. These results indicate that DDCF maintains both breadth and
depth in coverage, enabling efficient fine-tuning with limited data.

“https://huggingface.co/datasets/open-r1/OpenR 1-Math-220K, licensed under Apache 2.0.
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Table 2: Performance on In-Distribution and Out-of-Distribution benchmarks.

Method In-Distribution Out-of-Distribution

AIME24 MATH OlyBen GSMS8k SAT Avg. Miverva Gaokao STEM Avg.

Qwen2.5-Math-7B
Full Dataset 64.5 80.6 425 92.6 98.2 75.8 46.3 722 79.7 66.1

Base Model 34.6 55.4 16.4 91.6 80.0 55.6 12.9 67.1 67.7 49.2
Random 38.6 76.4 34.8 91.0 98.2 67.8 412 64.6 75.7 60.5
Longest 19.7 53.8 18.4 81.1 69.1 48.4 25.7 36.7 50.7 37.7
Binary Hard 29.6 67.2 28.3 89.3 85.5 60.0 31.6 532 67.9 50.9
Least Confid. 12.3 42.8 11.7 61.6 58.6 37.4 21.0 20.3 47.0 29.4
Perplexity 44.7 71.8 37.8 89.3 96.8 69.3 46.7 69.6 79.1 65.1
S2L 36.7 74.4 34.8 90.1 98.2 66.9 39.3 58.2 75.4 577
DiSF 44.6 76.2 354 89.9 96.8 68.6 43.4 68.4 75.6 62.4
LIMO 41.1 76.4 35.7 89.5 94.6 67.4 353 58.2 74.5 56.0
sl.1-1K 419 76.6 37.4 90.3 96.8 68.5 40.1 67.1 75.9 61.0
DDCF 49.0 71.6 35.0 91.2 98.2 70.2 45.6 74.7 75.8 65.4

Base Model 47.8 60.8 36.3 89.8 98.2 66.6 40.8 58.2 84.4 61.1
Random 80.9 89.2 53.8 94.4 99.6 83.6 62.5 83.5 90.8 79.0
Longest 81.4 90.4 54.7 94.4 99.6 84.1 64.3 84.8 90.8 80.0
Binary Hard 75.0 91.4 54.5 94.2 93.6 81.8 60.3 80.0 86.9 75.7
Least Confid. 71.6 89.8 52.6 94.8 99.6 81.7 62.5 81.0 90.6 78.0

Perplexity 79.3 89.8 55.0 94.5 99.6 83.6 60.3 83.5 91.0 78.3
S2L 76.4 91.0 55.0 94.5 99.1 83.2 62.1 78.5 91.3 71.3
DiSF 74.9 90.6 54.8 94.6 99.6 82.9 65.1 83.5 91.1 79.9
LIMO 79.8 89.4 553 93.7 98.6 83.4 54.8 82.3 88.7 75.2
sl.1-1K 75.5 86.2 51.9 92.0 98.2 80.7 57.1 712 89.3 74.7
DDCF 82.2 91.0 56.0 95.9 100 85.0 66.2 84.8 90.6 80.5

Out-of-Distribution Results Under distribution shifts, DDCF also demonstrates strong general-
ization. For the 7B model, it records a 65.4 average—closing the gap to the full dataset down to
0.7 and surpassing every other subset strategy by margins ranging from +0.3 to +8.0. On Gaokao,
DDCEF not only outperforms all baselines but also exceeds the full-data performance by +2.5 (74.7
vs 72.2), suggesting that efficient fine-tuning might preserve generalization in multi-lingual settings.
For the 8B model, DDCF achieves the highest OOD average (80.5), slightly ahead of full-data fine-
tuning (80.4). This edge comes primarily from Minerva, where DDCF improves by +1.9. Together,
these findings highlight that compact, model-aware subsets selected by DDCF can preserve or even
enhance out-of-distribution robustness relative to training on the full corpus.

Owing to space limitations, we report the results of Falcon-10B-Base in Appendix D]

4.3 DATA SIZE ABLATION

To assess the effect of training set size, we vary the number of selected questions k from O to
225,129 and evaluate both in-distribution (ID) and out-of-distribution (OOD) performance averaged
across the benchmarks introduced earlier (Figure[3). We compare two settings: a strong base model
Qwen?2.5-Math-7B and a weaker base model Qwen?2.5-Math-1.5B.

On one hand, for Qwen2 .5-Math-7B, ID accuracy improves almost monotonically, rising from
55.6 at k = 0 to 75.8 at full scale, with the sharpest gain achieved within the first 1,000 samples
(70.2). OOD performance, however, exhibits a non-monotonic trend: it peaks early at 65.4 for k =
1,000, declines to around 61 at k € [4,000,8,000], and then recovers steadily to 66.1 at full scale.
This mid-range dip suggests that while small curated sets provide strong generalization, enlarging
the pool without sufficient coverage may initially dilute transferability before larger sets restore
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models with different data sizes. in data selection.

robustness. Notably, selecting only 1,000 samples already secures over 70% of the ID improvement
and nearly the full OOD benefit, highlighting the data efficiency of our DDCF framework.

On the other hand, fine-tuning on small yet highly complex datasets can degrade the performance
of weaker language models—a phenomenon referred to as the Small Model Learnability Gap (Li
et al., |2025) or Long CoT Degradation (Luo et al., [2025). Figure (3| illustrates this effect for
Qwen?2.5-Math-1. 5B fine-tuned on DDCF subsets of size k. With only £ = 1,000 examples, ID
accuracy drops sharply from 54.3 to 45.4 (-8.9) and OOD falls from 34.6 to 31.8 (-2.8), illustrating
the known phenomenon. Increasing to k£ = 4,000 largely mitigates this effect—ID is only 0.4 below
its pre-fine-tuning level while at £ = 8,000 both curves recover fully and begin to climb.

Beyond & = 8,000, performance increases steadily: by £ = 16,000 we attain 56.9 ID and 35.4
OOD, and by k£ = 128,000 the model culminates at 59.2 ID and 46.0 OOD. Notably, this represents
1.0 ID /2.2 OOD improvements over a conventional full-corpus fine-tuning on all 225,129 available
samples, demonstrating that our DDCF strategy can overcome initial degradation and ultimately
yield superior results with far fewer examples.

4.4 DIFFICULTY-DIVERSITY TRADE-OFF

To determine the optimal difficulty weight A in Equation [5| we perform an ablation study on
elementary-level SVAMP and competition-level AMC23 with selection size K = 1000 using
Qwen?2.5-Math-7B, as shown in Figure As ) increases from O (pure diversity) to 0.2, AMC23
performance jumps from 81.1 to 83.3% while SVAMP remains at its pre-trained baseline of ~ 91%.
Further increasing A continues to boost AMC23, peaking at 85.2 for A = 1.0, but with diminish-
ing returns, SVAMP performance declines by about 2 points at A = 0.5 and 4 points at A = 1.0,
indicating that excessive emphasis on difficult examples undermines proficiency on simpler tasks.

Since our ultimate goal is to elicit the model’s full problem-solving ability from a small, curated fine-
tuning set without eroding its pre-trained knowledge, we adopt A = 0.2 as the default parameter for
our Difficulty—Diversity Collaborative Filtering framework, striking a balanced trade-off between
difficulty and diversity. Beyond this default, DDCF enables the difficulty weight A to be adjusted on
the fly, allowing users to instantly tailor data selection to their priorities without additional retraining
or redesigning the framework. This adaptability makes the framework both convenient and versatile,
supporting a wide spectrum of selection strategies within a unified formulation.

4.5 DOES DDCF FRAMEWORK LEARN MODEL CHARACTERISTICS?

Let S, and S; be subsets selected by models M, and M;,. We quantify their overlap via the

Jaccard index: J(S,,Sy) = }ngg:{ , which measures the fraction of questions chosen by both
models relative to the total unique questions. A higher J indicates greater similarity in the subsets,
reflecting closer alignment in model behavior. We hypothesize that models within the same family,
sharing architecture and pre-training data, will exhibit higher Jaccard similarity than those from
different families. Indeed, our analysis shows an average intra-family index of 0.224 versus 0.169

inter-family, demonstrating that our framework captures meaningful model-specific characteristics.
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Figure[5]shows the topic-wise composition of each Qwen2.5-Math-78 Qwen2.5-328
model’s selected subset alongside the full dataset X //// & Sy,
distribution. Although the full corpus is domi- ,;2;‘_’ % :‘”2’7 1o ///&\
nated by Algebra (48.1%), our framework tailors ), -4

sampling to each model’s behavior. In partic-
ular, Qwen2.5-Math-7B and Qwen2.5-32B
exhibit almost identical distributions: Combina- %
torics holds the largest share, while Algebra, Ge- Llama-3.1-88 Full Dataset
ometry, Number Theory, and Logic & Puzzles % ) Y //

each retain substantial and balanced proportions. ;2“ //¢

. A : / 10.1
By contrast, Llama-3.1-8B diverges markedly, éigi é . é

de-emphasizing Algebra and boosting Combina- e o %’” * /
torics and Logic & Puzzles. This divergence 1 .?:}" ’0:2‘0’:02 /
shows that DDCEF tailors question selection to each % 4 \”‘03’0"/
model’s SpeCiﬁC Strengths and Weaknesses, target_ A Algebra  EEEEE Combinatorics HEEE Inequalities [E==7] Calculus
ing areas fOI' improvement rather than sampling A Geometry E2ZE Number Theory B8 Logic & Puzzles B8 Other

uniformly. The experiment on data transferability o
across models is in Appendix [E} Figure 5: Topic distribution of DDCF datasets.

5 EXPERIMENTS WITH UNANNOTATED CORPUS AT SELECTION TIME

To illustrate capabilities of DDCF on large corpora that are initially unannotated, we evaluate on
the MMLU benchmark (Hendrycks et al.}2021a), which includes 99,842 training, 1,531 validation,
and 14,042 test questions. While the corpus spans many disciplines, it lacks reasoning annota-
tions. We therefore train a correctness predictor on the validation split and use it with DDCF to
select 1,000 high-quality training examples, which are then distilled into reasoning traces using
Qwen/Qwen3-32B in long-thinking mode. By filtering before annotation, DDCF reduces distilla-
tion cost nearly 100 x, whereas prior methods require annotating the full corpus in advance.

Table 3: Performance on the MMLU benchmark.

Method Qwen2.5-7B Qwen3-8B-Base Falcon-10B-Base
Humanities Social Science STEM Humanities Social Science STEM Humanities Social Science STEM
Base Model 59.0 77.1 71.5 62.8 823 84.4 66.1 80.9 81.4
Random 61.4 80.5 79.3 69.0 86.7 88.8 69.1 85.5 85.9
DiSF 62.6 81.3 74.7 68.9 87.1 89.1 69.5 85.8 84.7
DDCF 63.5 81.4 81.1 68.2 87.3 89.7 69.9 86.0 87.2

Table @compares DDCEF with annotation-free baselines (Random, DiSF) across three MMLU do-
mains. On Qwen2.5-7B, DDCF achieves the best accuracy in all domains, improving the average by
+6.2 over the base model and +2.5 over the strongest baseline, with the largest gain in STEM (81.1;
+9.6 over base, +6.4 over DiSF). For Qwen3-8B-Base, DDCF again excels, setting new highs in
Social Science (87.3) and STEM (89.7), and raising the average by +5.2 over base with only a slight
drop in Humanities. On Falcon-10B-Base, DDCF outperforms all baselines, boosting Humanities,
Social Science, and STEM by +3.8, +5.1, and +5.8, respectively.

Overall, these results show that DDCF strengthens not only quantitative reasoning (STEM) but also
inferential reasoning (Humanities, Social Science), even with scarce annotations. Beyond in-domain
performance, OOD validation (Appendix [F) reveals that fine-tuning on just 1,000 distilled MMLU
examples transfers effectively to general tasks such as commonsense, reading comprehension, and
instruction following, where DDCF achieves the best average across all backbones.

6 CONCLUSION

Difficulty-Diversity Collaborative Filtering is a novel concept for curating small, high-quality fine-
tuning subsets from large unannotated corpora by balancing question difficulty, via a learned correct-
ness predictor, and semantic diversity in embedding space. Empirically, DDCF reduces annotation
costs by 100 — 200x while maintaining performance comparable to the full-data baseline, and our
analysis shows it naturally tailors data selection to each model’s unique strengths and weaknesses.
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A EXPERIMENT DETAILS

A.1 CORRECTNESS PREDICTORS

MLP Block Both the model encoder hj; and the question encoder h¢ use a residual multilayer
perceptron (MLP) block for refinement. Given an input E° € RY, the block is defined as

MLPBlock(E®) = E° + u, (6)

where
u = Wy (Dropout(y(W; LN(E?)))). 7

Here, LN denotes LayerNorm, Wy € R4 and W, € R¥ *4 are linear layers with hidden dimen-
sion d’ = 0.1 * d, and ~ is a ReLU activation. Dropout with rate 0.8 is applied during training. To
stabilize optimization, the final projection W5 is zero-initialized, making the block behave as the
identity map at initialization.

Noise Regularization To reduce overfitting to the limited set of models and questions, we inject
Gaussian noise into both model and question embeddings during training. For model embedding
E%i and question embedding Egj, the perturbed representations are

Ep, =By +e, E :=FE) +¢, (8)

where
€pr€q ~ N(0,0%1), 9)

and « is a scalar hyperparameter controlling the perturbation scale. This stochastic perturbation acts
as embedding-level data augmentation, preventing the predictor from memorizing spurious correla-
tions in the binary correctness matrix. During inference, noise is disabled and the raw embeddings
are used.
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Table 4: Epochs and batch sizes used for supervised fine-tuning across dataset sizes.

Dataset size k

Hyperparameter

1K 2K 4K 8K 16K 32K 64K 128K 220K
Epochs 4 4 4 4 4 3 3 3 3
Batch size 32 32 32 32 32 64 128 128 128

Training Hyperparameters We train the correctness predictor with the Adam optimizer (weight
decay 1 x 10~°) and a cosine learning rate schedule with a warmup ratio of 0.03. The initial learning
rate is set to 1 x 1073, and training runs for 30 epochs. For the OpenR1-Math-220K dataset, we use a
batch size of 1028 and set the regularization parameter to o = 1 x 1072, For the MMLU experiment,
we use a smaller batch size of 64 and increase the regularization strength to o = 3 x 1072,

A.2 SUPERVISED FINE-TUNING

We fine-tune LLMs using the TRLE] library with a maximum sequence length of 16,384 tokens.
Training is performed in bfloat16 precision with the Adam optimizer, a cosine learning rate
schedule, and a warmup ratio of 0.03. Table 4] summarizes the epoch and batch size configurations
across different datasizes. Experiments in this paper can be done with 2 H100 gpus.

A.3 DATA SELECTION PROCEDURES

Baseline Details. Most baselines in our SFT experiments are described in Section but we
highlight additional implementation details here. For the Binary Hard baseline, we randomly
sample 1,000 questions that the target model answers incorrectly from the seed datasets (GSMSK
and MATH). Since GSM8K and MATH are annotated with short-CoT rationales of lower quality
compared to OpenR1-Math-220K—which provides long-CoT annotations with structured reason-
ing and rigorous reflections—we re-annotate these 1,000 questions using Qwen/Qwen3-32B in
long-thinking mode.

For the S2L method, we follow Yang et al.|(2024b) and train a Pythia-70M model (Biderman et al.,
2023) on the full OpenR1-Math-220K corpus as a proxy model to record loss trajectories. Samples
are then clustered into 1,000 groups, from which representative examples are selected to form the
training subset.

Finally, DiSF requires converting text samples into embedding vectors prior to selection. For a
fair comparison with our proposed DDCF, we use Qwen/Qwen3-Embedding-4B (Zhang et al.,
2025b) as the sentence encoder for DiSF.

Data Cleaning. Due to computational constraints, we restrict training to a maximum sequence
length of 16,384 tokens. Accordingly, we discard all examples exceeding this length (fewer than
1% of OpenR1-Math-220K). To enhance the diversity of the selected dataset, we further remove
duplicated questions, retaining only the instance with the shortest completion. After cleaning, the
OpenR1-Math-220K dataset contains 189,257 examples, which we use for all experiments involving
data selection.

A.4 INFERENCE HYPERPARAMETERS

To improve efficiency, we accelerate inference with the SGLang framework (Zheng et al.| [2024).
By default, we report pass@1 accuracy, generating a single sampled response per query with
temperature=0.6, top_-p=0.95, top k=20, min_p=0, and a maximum sequence length of
16,384 tokens. For the AMC23 and AIME24 benchmarks, we sample 64 responses per query and
report pass @32 due to their small size and high difficulty.

*https://github.com/huggingface/trl

17


https://github.com/huggingface/trl

Under review as a conference paper at ICLR 2026

B LisT oF MODELS IN DDCF AND EFFICIENT DDCF RUNTIME

Table 5: Models used in the DDCF framework.

deepseek-ai/deepseek-math-7b-base  Qwen/Qwen2.5-Math-1.5B

google/gemma-2-2b Qwen/Qwen2.5-Math-7B
google/gemma-2-9b Qwen/Qwen3-0.6B-Base
google/gemma-2-27b Qwen/Qwen3-1.7B-Base
meta-llama/Llama-3.2-1B Qwen/Qwen3-14B-Base
meta-llama/Llama-3.2-3B Qwen/Qwen3-4B-Base
meta-llama/Llama-3.1-8B Qwen/Qwen3-8B-Base
mistralai/Mistral-7B-v0.3 tiiuae/Falcon3-1B-Base
mistralai/Mistral-Nemo-Base-2407  tiiuae/Falcon3-3B-Base
Qwen/Qwen2.5-7B tiiuae/Falcon3-7B-Base
Qwen/Qwen2.5-14B tiiuae/Falcon3-10B-Base

Qwen/Qwen2.5-32B

Table [3] lists the 23 models included in our DDCF framework. These are models from Qwen 2.5
(Yang et al.| [2025b), Qwen 2.5 Math (Yang et al.| [2024a), Qwen3 (Yang et al., 2025a)), Falcon 3,
Mistral (Jiang et al., |2023), Llama 3 (Grattafiori et al., 2024a)), Gemma 2 (Team et al., 2024)), and
Deepseek Math (Shao et al.| 2024).

Running inference with all 23 LMs on 19,470 seeding questions from GSM8K and MATH requires
approximately 11 H100 GPU hours, while processing 1,531 questions from the MMLU validation
set takes around 2 H100 GPU hours, both accelerated by SGLang|Zheng et al.| (2024). With access
to 8 H100 GPUs, the entire seed dataset—comprising triplets of the form (model, question,
binary correctness)—can be constructed in under 2 wall-clock hours. Since the correctness
predictors are lightweight in architecture, their training time is negligible. Likewise, the k-greedy
selection procedure is computationally efficient, with minimal overhead across k iterations. As a
result, the full DDCF pipeline—from seeding to subset selection—can be executed rapidly, making
it efficient and effective even for large unannotated corpora, flexibly adaptable across various tasks
and scenarios.

C How RELIABLE IS THE CORRECTNESS PREDICTOR?

Table 6: Effect of the number of participating  Table 7: Effect of the number of seeding ques-

models on the correctness predictor’s accuracy. tions on the correctness predictor’s accuracy.
# Models 1 2 4 8 16 23 # Questions 1K 2K 4K 8K 16K 17.5K
Accuracy 815 81.7 81.8 822 825 827 Accuracy 800 80.1 808 819 824 3827

As described in Section .1} we trained our Correctness Predictor on a seed dataset of
triplets, (model, question, binary correctness), comprising 23 open-source lan-
guage models and 19,470 questions, with 1,947 questions (10%) held out for testing. To
evaluate its reliability, we measured the predictor’s accuracy on unseen test questions for the
Qwen?2.5-Math-7B model under two conditions: (1) fixing the number of models at 23 while
varying the number of training questions, and (2) fixing the number of training questions while
varying the number of models.

Overall, the Correctness Predictor exhibits strong sample efficiency in low-data regimes alongside
steady improvements as more models or questions are added. When trained with just one model, it
attains 81.5% accuracy, rising to 81.7% with two models and peaking at 82.7% when all 23 models
are included (Table[6). Likewise, increasing the number of seeding questions boosts accuracy from
80.0% with 1,000 examples to 81.9% with 8,000 examples, and ultimately to 82.7% with 17,523
examples (Table[7). These results confirm that our predictor is reliable even with minimal data and
scales effectively: most gains emerge early, with incremental benefits thereafter.
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Table 8: Performance on In-Distribution and Out-of-Distribution benchmarks.

In-Distribution Out-of-Distribution

AIME24 MATH OlyBen GSMS8k SAT Avg. Miverva Gaokao STEM Avg.

Method

Falcon-10B-Base
Full Dataset 83.8 90.4 56.3 95.2 99.1 85.0 64.3 82.3 91.7 79.4

Base Model 41.1 68.6 34.2 81.4 93.6 63.8 39.7 55.7 81.4 58.9
Random 65.5 82.2 47.0 93.1 98.6 713 58.1 79.8 89.2 75.7
Longest 68.3 82.0 45.8 91.1 88.6 75.2 56.6 58.2 82.8 65.9
Binary Hard 67.4 83.4 49.0 94.2 77.8 74.3 57.4 50.6 76.2 61.4
Least Confid. 494 79.0 40.3 94.3 97.7 72.1 54.4 43.0 89.1 62.2
Perplexity 60.1 82.8 45.2 93.5 99.1 76.1 61.8 78.5 89.6 76.6
S2L 62.2 82.4 49.2 94.0 98.6 713 61.0 74.1 90.0 75.2
DiSF 63.2 83.0 47.7 93.4 98.6 71.2 62.1 722 89.2 74.5
LIMO 66.5 81.4 48.7 93.5 57.3 69.5 515 48.1 68.3 55.9
sl.1-1K 54.8 80.0 46.7 93.0 91.8 73.3 58.1 65.8 85.8 69.9
DDCF 66.6 83.0 46.1 93.9 98.1 77.6 60.3 78.5 88.9 75.9

D EXPERIMENT RESULTS ON OPENR1-MATH-220K FOR
FALCON-10B-BASE

In-Distribution Table [8] shows that for Falcon-10B-Base, DDCF delivers the strongest overall
subset, reaching an average of 77.6. This slightly surpasses the best-performing baselines (Random
and S2L, both 77.3) and narrows the gap to the full-data upper bound (85.0) to just -7.4. Perfor-
mance gains are especially visible on MATHS500 (83.0) and GSMS8k (93.9), where DDCF matches
or exceeds competing selectors. On the most challenging benchmark, AIME24, DDCF secures
66.6—well above Perplexity (60.1) and Least Confidence (49.4), underscoring its ability to capture
harder examples without sacrificing breadth.

Out-of-Distribution On OOD tasks, DDCF remains highly competitive. It achieves an average of
75.9, ranking just behind Perplexity (76.6) but outperforming all other baselines, including Random
(75.7) and S2L (75.2). Notably, DDCF preserves strong performance across datasets: it improves
over Random on Gaokao (+-0.7 vs +13.9 over weaker baselines) and stays close to the top scorer on
Minerva (60.3 vs 61.8 with Perplexity). Again, DDCF consistently produces a compact subset that
balances difficulty and diversity, yielding competitive results with only 1,000 examples.

E DATA TRANSFERABILITY BETWEEN MODELS

Figure [6] shows the performance of Qwen2.5-Math-7B after fine-tuning on DDCF datasets cu-
rated for other models. Fine-tuning on its own curated data yields the highest combined perfor-
mance of 67.5%. Substituting the dataset from Qwen2.5-32B incurs a modest 0.4 point drop
(to 67.1%), while using Gemma—-2-9B and Mistral-7B-v0. 3 subsets leads to declines of 2.0
and 2.3 points, respectively. Beyond these, we observe a gradually larger drop of 2.5 points with
Qwen2.5-Math-1.5B and Falcon3-7B-Base, and 2.7 points with L1ama—-3.1-8B. Over-
all, this pattern hints that datasets drawn from models with closer architectural or training kinship
may transfer more effectively, although more extensive experiments would be needed to confirm the
precise nature of this relationship.

F OOD PERFORMANCE ON GENERAL TASKS OF LLMS FINE-TUNED ON
MMLU SUBSETS

While DDCEF is tailored for reasoning-centric MMLU tasks, Table E] shows it also transfers effec-
tively to out-of-distribution (OOD) general tasks. Fine-tuning on just 1,000 distilled MMLU ex-
amples leads to strong performance across diverse benchmarks, including commonsense reasoning
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Qwen2.5-Math-7B Fine-tuned on Other Models' Data
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Figure 6: Each model has its own datasets. Using other models’ datasets yields suboptimal results.

Table 9: Performance on OOD general tasks.

Method Qwen2.5-7B Qwen3-8B-Base Falcon-10B-Base Ave.
LogiQA OpenBookQA AlpacaEval2.0 LogiQA OpenBookQA AlpacaEval2.0 LogiQA OpenBookQA AlpacaEval2.0

Base Model 473 83.6 5.6 51.8 82.6 16.5 48.1 80.8 7.0 47.0

Random 50.7 89.4 333 61.0 932 593 535 90.4 49.7 64.5

DiSF 47.0 88.4 36.6 60.8 944 583 52.8 90.0 46.0 63.8

DDCF 482 90.4 325 61.3 92.0 59.5 56.2 92.0 533 65.0

(LogiQA 2020)), reading comprehension (OpenBookQA (Mihaylov et al.| 2018)), and
instruction following (AlpacaEval 2.0 (Dubois et al.}[2024)), without using any target-task labels.

DDCEF outperforms the base models by an average of +18.0 points and achieves the highest overall
average (65.0) among all methods. On average, it improves commonsense reasoning by +6.2 over
Base, delivers state-of-the-art reading comprehension on Qwen2.5 and Falcon (4+9.1 avg), and shows
the largest gains in instruction following (+38.7), surpassing Random and DiSF on stronger back-
bones. These results underscore DDCF’s broad generalization ability beyond its intended domain.
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