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ABSTRACT

Large-scale visual recognition datasets with high-quality labels enable many com-
puter vision applications, but also come with enormous annotation costs, especially
since multiple annotators are typically queried per image to obtain a more reliable
label. Recent work in label aggregation consolidates human annotations by combin-
ing them with the predictions of an online-learned predictive model. In this work,
we devise an image labeling task sampler that actively selects image-worker pairs
to efficiently reduce the noise in the human annotations and improve the predictive
model at the same time. We propose an information-theoretic task sampler, Label
Aggregation BALD (LA-BALD), to maximize the information contributing to the
labeled dataset via human annotations and the model. The simulated experiments
on ImageNet100-sandbox show that LA-BALD reduces the number of annotations
by 19% and 12% on average compared to the two types of baselines. Our anal-
ysis shows that LA-BALD provides both more accurate annotations and better
online-learned predictive model, leading to a better labeling efficiency over the
baselines.

1 INTRODUCTION

Machine learning has led to large advances in a wide range of applications such as machine translation,
early cancer detection, virtual reality, and autonomous driving. Large-scale labeled datasets play
a vital role in the success of modern ML. The CheXNet dataset Rajpurkar et al. (2017) benefits
automatic chest radiograph interpretation by providing clinical decision support. The Waymo Open
dataset Sun et al. (2020) advances machine perception for self-driving vehicles by collecting data
from diverse geographic locations. Diverse animal datasets Beery et al. (2018); Swanson et al. (2015)
facilitate automatic animal monitoring.

Human annotators play an essential role in large-scale and high-quality dataset creation Vaughan
(2018). The level of inter-human variabilities, such as workers’ interest and familiarity with the topic,
and perceived task difficulty Kazai et al. (2012), are major factors that govern dataset quality Giuffrida
et al. (2018); Jungo et al. (2018). However, the inter-human variability is a double-edged sword for
data labeling. With an unlimited monetary budget, we can approximate true label distributions by
sampling multiple diverse workers per each example Peterson et al. (2019). On the other hand, we
might obtain high-variance noisy labels when we operate with a limited budget and thus need to trust
a single or very few annotators per example.

Given the collected human annotations, label aggregation is a common way to infer the latent true
labels Zheng et al. (2017). Usually, the aggregator captures each annotation’s quality by estimating
the data difficulty and the workers’ competencies. Recent success in label aggregation for image
labeling Branson et al. (2017); Liao et al. (2021) leverages data similarity via an online-learned
predictive model to infer the true labels, increasing the labeling efficiency by a large margin. Under
this framework, an aggregator’s label quality is blocked by the individual annotation quality and the
predictive model’s performance.

In this work, adopting the state-of-the-art label aggregator Liao et al. (2021), we propose an
information-theoretic image labeling task sampler, Label Aggregation BALD (LA-BALD), tar-
geting on both blockers: i) which image-worker pair provides the best expected quality, and ii)
which image labels benefit the predicted model the most. We formulate two different goals into an
information maximization problem. As shown in Fig. 1, each annotation provides information to the
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Figure 1: Goal of an Image Labeling Task Sampler. State-of-the-art label aggregator Liao et al.
(2021) leverages an online-learned predictive model to increase the labeling efficiency. In this frame-
work, each annotation influences the labeled dataset both locally (via individual human annotation)
and globally (via the online-learned predictive model). The image labeling task sampler needs to
maximize the information contributing to the labeled dataset via the local and global influence by
choosing image-worker pairs in an iterative fashion.

labeled dataset in two ways: local and global influences. The local influence is associated with the
individual label, and the global influence relates to the online-learned predictive model. Our proposed
task sampler maximizes the expected information contributing to the labeled dataset via both the
local and global influence by choosing relevant image-worker pairs.

We provide rigorous empirical comparisons between LA-BALD and the baselines on ImageNet100-
sandbox Liao et al. (2021); Tian et al. (2020) and show that LA-BALD reduces the number of
annotations by 19% and 12% on average compared to two different types of baselines. Our analysis
shows that LA-BALD provides both more accurate annotations and a better online-learned predictive
model, resulting in the improvements over the baselines. 1

2 RELATED WORK

2.1 LABEL AGGREGATION

Crowdsourcing provides low-cost noisy annotations. To infer true labels from noisy annotations,
one must infer each annotation’s importance. The seminal work on this problem, dating back 40
years, is the Dawid-Skene model Dawid & Skene (1979) (DS model), optimized with EM . Many
variants Demartini et al. (2012); Kim & Ghahramani (2012); Ma et al. (2015); Van Horn et al.
(2018) adapt the DS model to different settings. GLAD Whitehill et al. (2009) additionally models
heterogeneous image difficulty. Welinder et al. (2010) uses multidimensional entities to represent
workers with different competencies and biases. EBCC Li et al. (2019) scales to larger worker cohorts
by modelling worker correlations. However, as studied in the survey by Zheng et al. (2017), there is
no dominant label aggregation algorithm across all datasets. Recent trend Branson et al. (2017) in
label aggregation combines manual labelling with automatic labelling, opening up a new research
paradigm. In this work, we adopt the label aggregator proposed by Liao et al. (2021) because of its
thorough study of the different factors and improved labelling efficiency.

2.2 ACTIVE LEARNING

Active learning aims to increase the ML model performance and to reduce the labelling cost by
actively sampling labels from the oracle Settles (2009). Recent work on active learning for neural
networks approaches the problem by core-set construction Sener & Savarese (2018), information-
theoretic scores Houlsby et al. (2011) with dropout mask Gal et al. (2017); Kirsch et al. (2019), or

1The code is released in the anonymized repository at https://anonymous.4open.science/r/LA-BALD-
8B7D/README.md
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reinforcement learning Fang et al. (2017). Unlike active learning, in image labelling, we need to
consider heterogeneous workers and data re-labelling.

Heterogeneous workers yield noisy annotations. Prior work mitigates this problem by training a
different classifier Zhang & Chaudhuri (2015) to predict where weak workers differ from strong
workers, leveraging abstention responses Yan et al. (2016) to avoid noisy observations, or filtering
them out Younesian et al. (2020). CEAL Huang et al. (2017) and ABL Gao & Saar-Tsechansky
(2020) further incorporate worker costs into consideration. Re-Labeling has been a common practice
in large-scale dataset annotation Lin et al. (2014). Prior work Ipeirotis et al. (2012) recommends
re-labelling on a selected subset when annotations are imperfect. Re-active learning Lin et al. (2016)
computes the expected error reduction to the contribution of possibly repeated annotations.

Most related work to ours are Yan et al. (2011; 2012b) which perform image-worker sampling to
increase the model accuracy via an information-theoretic acquisition function. Unlike the learning
algorithm used in prior work Yan et al. (2012b), our label aggregator learns from the worker
annotations and combines them with worker annotations in a probabilistic manner. In addition,
in image labelling, the target goal is to increase the label accuracy, not the accuracy of a novel test set.
To summarize, prior work Yan et al. (2012b) only considers the global influence described in Fig. 1.

3 BACKGROUND

In this work, we propose an information-theoretic task sampler for image labelling. In this section,
we formulate the problem and introduce the notation and the essential background knowledge of the
label aggregator in the prior work Liao et al. (2021). For more details on the label aggregator, please
refer to Liao et al. (2021).

3.1 PROBLEM FORMULATION

We target the image labelling of a K-class image classification problem. Given N images X =
{xi}i=1:N and M workers {j}j=1:M with unknown skills W = {wj}j=1:M , we infer the latent
ground truth Y = {yi}i=1:N , yi 2 [K]. We represent each worker’s skill wj as a K-class confusion
matrix.

We formulate the task sampling problem as an active learning problem over images and workers. An
acquisition function S(.) is defined over images and workers. At each step t, the task sampler samples
a batch B of image worker pairs according to the acquisition function S. For each image-worker pair
(i, j), we obtain an annotation zij . In Sec. 3.2, we explain how to infer the latent ground truth Y from
the annotations Z.

3.2 LABEL AGGREGATION

Label aggregation consolidates noisy annotations. The state-of-the-art label aggregator Liao et al.
(2021); Branson et al. (2017) follows the classic Dawid-Skene (DS) model Dawid & Skene (1979)
and performs expectation-maximization (EM) to infer latent ground truths. In the DS model, the
generation of noisy annotations Z is conditioned on both the latent ground truth Y and the latent
worker skills W , as visualized in Fig. 2. We can express the joint probability as p(Z, Y,W ) =
p(Z|Y,W )p(Y )p(W ). Let the annotations before step t as Zt and Ŷ = {ŷi}i=1:N , Ŵ = {ŵj}j=1:M

be the maximum likelihood solution. At step t, we can write down the E-step and M-step via the
Bayes rule in Eq. 1.

We adopt the label aggregator in Liao et al. (2021) that incorporates the predictions of an online-
learned predictive model with DS model Branson et al. (2017); Liao et al. (2021) results in drastic
improvements. The predictions p✓(Y |X) are treated as the prior for latent ground truths Y as in
Eq. 2. The online-learned predictive model is trained on the estimated labels at the previous step
p(Y |Zt�1, X). We defer the model training details to the appendix.
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Figure 2: Graphical Model in the
DS Model Dawid & Skene (1979).
We use i to index images and j to
index workers. In the DS model, the
annotation zij is conditioned on the
ground truth yi and the worker skills
wj .

Algorithm 1 Image Labeling Process
1: function TASKSAMPLER
2: Input: Unconfident set U
3: Compute S(i, j), 8(i, j), i 2 U, j 2 [M ]
4: {(i1, j1), ..., (iB , jB)} Top B (i, j) pairs in S
5: return {(i1, j1), ..., (iB , jB)}
6: end function
7: Input: Images X , threshold �
8: Z0 = ;, t = 1
9: Ŷ , Ŵ  Label Aggregator(X,Z0) // Eq. 2

10: repeat
11: U  {i| argmax

k2K
ŷi  �, 8ŷi 2 Ŷ }

12: {(i1, j1), ..., (iB , jB)} TaskSampler(U)
13: Zt  {Zt�1,Workers({(i1, j1), ..., (iB , jB)})}
14: Ŷ , Ŵ  Label Aggregator(X,Zt) // Eq. 2
15: t t+ 1
16: until |U | = 0

E-step: p(Y |Zt) / p(Y )p(Zt|Y, Ŵ )

M-step: p(W |Zt) / p(W )p(Zt|Ŷ ,W )
(1)

E-step: p(Y |Zt, X) /
⇠
p✓(Y |X)p(Zt|Y, Ŵ )

M-step: p(W |Zt) / p(W )p(Zt|Ŷ ,W )

✓  argmin
✓0

X

i

L(xi, p(yi|Zt�1, X), ✓0)

(2)

For a K-class image classification problem, at each step t, we first determine the image set that
requires annotations, the unconfident set U , constructed by �-thresholding the max probability of the
estimated labels ŷi over K classes. We sample B image-worker pairs according to the acquisition
function S overall workers and the unconfident set U . Finally, we perform label aggregation in Eq 2
with the annotations Zt. Algo 1 shows the pseudocode of the online image labelling process.

3.3 BAYESIAN ACTIVE LEARNING BY DISAGREEMENT (BALD)

In this work, we formulate the problem as an active learning problem that maximizes the information
gained from the labelled dataset. Here, we give a brief introduction to applying information-theoretic
acquisition functions in active learning. BALD Houlsby et al. (2011) is an information-theoretic
sampler for active learning, measuring the mutual information between ground truth Y and model
parameters ✓:

SBALD = I(yi; ✓) = H(yi)�H(yi|✓) (3)

where I,H denote mutual information and entropy. Applying BALD to deep neural networks is
challenging since it requires computing the distribution of millions of parameters. Prior works Gal &
Ghahramani (2016); Gal et al. (2017) use MC dropout to perform variational approximation. Recent
works Kirsch et al. (2021); Mindermann et al. (2021) extend BALD to training examples prioritization
and distribution shifts between unlabeled sets and test sets, respectively. We defer the details of MC
dropout to the appendix. In this work, we extend BALD to image labelling.

4 METHOD

Our goal is to improve labelling efficiency by actively sampling image-worker pairs. Since the label
aggregator generates labels, we need to consider how the label aggregator processes the annotations
when designing our image labelling task sampler. In particular, we target the label aggregator
discussed in Sec. 3.2. The main challenge is quantifying the improvements of the online-learned
model and the improvements through EM under the same framework.
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We devise a novel information-theoretic acquisition function, LA-BALD, to sample image-worker
pairs. LA-BALD is defined over image-worker pairs and explicitly considers the information gains to
the labelled dataset in two ways: local and global influences. In this section, we start by inspecting
how the labels change after getting a single annotation in Sec. 4.1 and propose LA-BALD in Sec. 4.2.
Finally, we analyze the bias of LA-BALD. We provide additional analysis in the appendix.

4.1 LABELS CHANGE FROM A SINGE ANNOTATION

We adopt the label aggregator described in Sec. 3.2. By adding an annotation zij , the annotation
likelihood is expanded to p(zij , Zt|Y,W ). Tracing the exact change of adding an arbitrary annotation
in Y,W is computationally expensive. Therefore, we make the following assumption:
Assumption 1. By adding an annotation zij , the change of the estimated worker skills are negligible.

p(W |Zt) ⇡ p(W |zij , Zt)

We only use the Assumption 1 when computing the acquisition function. We still perform standard
EM during the label aggregation to compute W as in Eq. 2.

With Assumption 1, we express the annotation likelihood by using the estimated worker skills from
the last step p(zij , Zt|Y, Ŵ ). In the DS model, every annotation is independent of each other, and the
annotation zij only depends on its latent ground truth yi and worker skills ŵj . Therefore, we have
p(zij , Zt|Y, Ŵ ) = p(zij |yi, ŵj)p(Zt|Y, Ŵ ). We refer to the additional term p(zij |yi, ŵj) as local
influence since it only affects the ith label.

The added annotation zij can lead to a larger or more accurate dataset and improve the online-learned
ML model accordingly. Since we use the predictions of the ML model as the prior for the ground
truths, the improved ML model affects all the labels Y . We refer to the change of the ML model as
global influence.

We ground the local and global influence of adding a single annotation zij in the label aggregation
step in the following:

p(Y |zij , Zt, X, Ŵ ) /
⇠

p✓(Y |X)| {z }
global influence

p(zij |yi, ŵj)| {z }
local influence

p(Zt|Y, Ŵ )

✓  argmin
✓0

L(xi, p(yi|zij , Zt, xi), ✓
0) +

X

ī 6=i

L(xī, p(yī|Zt, xī), ✓
0)

(4)

From Eq. 4, local influence only affects individual label yi, while global influence affects all labels Y .
In the next section, we propose LA-BALD, which balances local and global influences brought by
adding the annotation zij .

4.2 LA-BALD: LABEL AGGREGATION BALD

We propose an information-theoretic acquisition function to explicitly consider the local and global
influence in the label aggregator. The prior art Gal et al. (2017) measures the mutual information
between ground truth and model parameters I(yi; ✓) as the acquisition function in active learning.
In image labelling, we obtain noisy annotations from workers. Therefore, we are interested in the
mutual information between the annotation and the model parameters I(zij ; ✓|X,Zt, Ŵ ). We will
ignore the conditional variables X,Zt, Ŵ in the following for clarity.

We interpret the mutual information as the entropy reduction after conditioning on the other variable,
so I(zij ; ✓) tells us the entropy reduction of the model parameters ✓ after conditioning on the
annotation zij , corresponding to the global influence in Sec. 4.1.

As described in Sec. 4.1, adding an annotation affects both locally and globally. Therefore, we
consider an additional term measuring the mutual information between the annotation and the
individual label, I(zij ; yi). However, directly summing up I(zij ; ✓) and I(zij ; yi) overestimates the
influence gain from the annotation zij as shown in Fig. 3.a. Instead, we modify the local influence
to be I(zij ; yi|✓) which measures conditional entropy reduction of yi|✓ after conditioning on the
annotation zij . The acquisition function of LA-BALD becomes:
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Figure 3: Venn Diagram between the annotation zij , the in-
dividual label yi and the model parameters ✓. (a) Directly
summing up I(zij ; ✓) and I(zij ; yi) overestimates the informa-
tion gain from the annotation zij . (b) LA-BALD explicitly
considers the local and global influence that the annotation zij
affects to the labels. I(zij ; ✓) is in charge of the global influence,
while I(zij ; yi|✓) measures the local influence.

Dataset #classes #images Worker Acc.

Dog 19 18339 0.43

Insect+Fungus 13 13000 0.65

Vertebrate 18 18000 0.72

Commodity 16 16000 0.76

Place 15 15000 0.87

Dog+Vertebrate 37 49339 0.59

Figure 4: Statistics of
ImageNet100 sub-tasks.
ImageNet100-sandbox provides
sub-tasks with various difficulties
and a realistic worker simulation.

SLA-BALD(i, j) = I(zij ; ✓) + I(zij ; yi|✓) (5)

Later in this section, we discuss the biases introduced by I(zij ; ✓) and I(zij ; yi|✓).

4.3 BIAS INTRODUCED BY I(zij ; ✓)

Dissecting the bias introduced in I(zij ; ✓) and I(zij ; yi|✓) helps us understand the interactions between
local and global influence. To investigate which image-worker pairs are preferred by I(zij ; ✓), we
compare it with BALD scores in Eq. 3. I(yi; ✓) measures the entropy reduction of the parameters ✓
after conditioning on the ground truth yi.
Proposition 1. I(yi; ✓) is the upper bound of I(zij ; ✓), if zij = w>

j yi, where wj is the confusion
matrix representing the jth worker skills.

Proof. With slight overloaded notations, yi is an one-hot vector over K classes and zij is a probability
distribution over K class. With zij = w>

j yi, from the data process inequality Beaudry & Renner
(2011), we have the following inequality:

I(zij ; ✓) = I(w>
j yi; ✓)  I(yi; ✓)

The equality holds if wj is an invertible function.

Proposition 1 tells us that I(zij ; ✓) is maximized when I(yi; ✓) is maximized and wj is invertible.
I(yi; ✓) tells us how much information gain we can have when obtaining the ground truth of the ith

image, and an invertible worker wj provides noiseless annotations. These two elements are aligned
with the intuition to have more valuable and reliable annotations in image labelling.

4.4 BIAS INTRODUCED BY I(zij ; yi|✓)

To investigate which image-worker pairs are preferred by I(zij ; yi|✓), we first bring back the ignored
conditional variables Zt, Ŵ and we have:

Proposition 2. If the label prior p(yi) is a uniform distribution, I(zij ; yi|✓, Zt, Ŵ ) can be expressed
as follow:

I(zij ; yi|✓, Zt, Ŵ )

= Ezij [
X

yi

p(yi|zij , ✓, Zt, Ŵ ) log p(zij |yi, ŵj)�
1

K
log p(zij |yi, ŵj)]

Proof. We provide the full derivation in the appendix.
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From proposition 2, we express I(zij ; yi|✓, Zt, Ŵ ) into two terms i) minus cross entropy between
the annotation likelihood p(zij |yi, ŵj) and the label posteiror p(yi|zij , ✓, Zt, Ŵ ) ii) cross entropy
between the annotation likelihood p(zij |yi, ŵj) and the uniform prior. The image-worker pairs (i, j)
provides higher local influences when 1) the annotation zij is different from the current posterior
belief and 2) the jth worker has a higher probability of providing the annotation with higher certainty.

5 EXPERIMENTS

In this section, we show the efficacy of LA-BALD compared to the baselines and analyze the behavior
of LA-BALD. We first introduce the image annotation benchmark, ImageNet100-sandbox, in Sec. 5.1
and detail the baselines in Sec. 5.2. Then, in Sec. 5.3, we show that LA-BALD outperforms the
baselines on most datasets, showing the importance of the additional term I(zij ; yi|✓). In Sec. 5.4,
we dissect if the improvements of LA-BALD come from having more accurate annotations or a
better model. We provide additional analysis visualizing the interactions between the local and global
influence through the annotation time in the appendix.

5.1 IMAGENET100-SANDBOX

Evaluating and ablating multi-class image annotation efficiency at scale requires large-scale datasets
with diverse and relatively clean labels. We adopt the image annotation benchmark, ImageNet100-
sandbox 2 Liao et al. (2021). Some image classification datasets, e.g., Snapshot Serengeti Swanson
et al. (2015), provide raw annotations of each worker, potentially allowing us to simulate the labelling
process. However, most of the workers in Snapshot Serengeti only provide less than 10 annotations,
making it hard to fit into our experimental setting.

ImageNet100-sandbox uses 100 classes sampled from the ImageNet label set Tian et al. (2020)
and constructs smaller sub-tasks of varying difficulty. In addition, ImageNet100-sandbox provides
realistic worker simulations initialized by the offline crowdsourced worker information. We simulate
50 crowd workers and 10 domain experts. Each worker is represented as a confusion matrix over the
label space. The annotation zij is drawn from the ythi row of the jth worker’s confusion matrix. We
summarize ImageNet100-sandbox in Table 4.2 and provide more simulation detail in the appendix.

5.2 BASELINES

We categorize our baselines into sequential samplers (SS) and joint samplers (JS). SS compute the
scores of images and workers separately, i.e., Simage(i) and Sworker(j), while JS treat them as a whole
S(i, j). Depending on which dimension gets sampled first, we categorize SS into image-centric SS
and worker-centric SS.

For SS, we adopt image-centric SS (image! worker) since worker-centric SS (worker! image)
might overlook specific hard images. We use the following as our JS baselines: Rand-I+Rand-W.
Randomly select the image and worker. Rand-I+Greedy-W. Randomly select an image and choose
greedily the worker based on the estimated worker skills. Ent-I+Rand-W. Select the image with
the highest entropy in label distribution and randomly select the worker.‘’ Ent-I+Greedy-W. Select
the image with the highest entropy in label distribution and greedily select the worker based on the
estimated worker skills.

For JS, we adopt the BALD Gal et al. (2017); Houlsby et al. (2011) in Eq. 3, originally proposed in
active learning, to image labelling. The acquisition function of J-BALD is SJ-BALD(i, j) = I(zij ; ✓),
which only considers the global influence. A similar idea resonates around a decade ago in Yan et al.
(2012a), but they do not consider the label aggregator with both local and global influence.

5.3 LABELING EFFICIENCY IN IMAGENET100-SANDBOX

For all experiments, we refer to “label accuracy” as the final labels accuracy, “machine accuracy” as
the accuracy of the online learning model in Eq. 2, and “annotation accuracy” as zij accuracy. We

2https://github.com/fidler-lab/efficient-annotation-cookbook
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Figure 5: Image Labeling Efficiency on ImageNet100-sandbox. We compare LA-BALD with
J-BALD, inspired by Gal et al. (2017); Houlsby et al. (2011). LA-BALD reduces the number of
annotatiosn by 5% to 37% compared to J-BALD.

run 3 different random seeds in all experiments. We use high-opacity lines to represent the average of
different runs and low-opacity lines to represent each run.

We first compare LA-BALD with the JS baseline in Fig. 5 and compare LA-BALD with the SS
baselines in Fig. 6. We run over three random seeds for every run and report the average. We show
each run with lower opacity at the back. If the different runs end at different annotations, we only
report the average when all runs have sample points.

LA-BALD vs. J-BALD. As demonstrated in Sec. 4.2, J-BALD considers the change of the ML
model but ignores the change of the individual annotation likelihood. In Fig. 5, we show that
LA-BALD outperforms J-BALD in Dog. To be more specific, LA-BALD reduces the number of
annotations by 26% compared to J-BALD when reaching 85.2% label accuracy. LA-BALD also
gives consistent improvements in other sub-tasks, reducing the number of annotations by 5% to
37% compared to J-BALD, Vertebrate (-37%), Insect+Fungus (-21%), Commodity (-5%), and Place
(-6%).

To further understand when we can expect more significant improvements, we compute the average
of the top 10 pairs of worker confusion in each task and find that LA-BALD provides more significant
improvements in the sub-tasks with higher average confusions, e.g., Dog (0.31), Vertebrate (0.28)
and Insect+Fungus (0.24). On the other hand, the improvements are smaller in the sub-tasks with
lower average confusions, e.g., Commodity (0.16) and Place (0.12).

Another reason for the superiority of LA-BALD is that LA-BALD tends to sample the images with
higher worker confusion later in the labelling process. Image classes with higher worker confusions,
e.g., fiddler crab and rock crab, tend to confuse the online-learned ML model since the ML model
is trained on the worker annotations. When the number of annotations is small, the noises from
the worker confusion lead to overconfident model predictions and therefore decrease the labelling
efficiency. To validate if J-BALD tends to sample the images with high confusion in the early stage
of the labelling process, we compute the probability that the images from the most confusing class in
each sub-task are sampled in the first half of the labelling process. We find that J-BALD is on average
6% more probable to sample images from the most confusing class than LA-BALD in Dog (+2%),
Vertebrate (+11%) and Insect+Fungus (+6%).

LA-BALD vs. SS. We show that LA-BALD brings consistent improvements compared to the SS
baselines across different sub-tasks. Fig. 6 shows that LA-BALD reduces the number of annotations
by 12% on average compared to the second-best SS baselines in each sub-task, ranging from 3% to
20%, Dog (-5%), Vertebrate (-18%), Insect+Fungus (-20%), Commodity (-2%), and Place (-13%).
Note that prior work Liao et al. (2021) adopts Rand-I+Rand-W (black curves in Fig. 6). LA-BALD
almost halves the number of annotations required in Liao et al. (2021).

Larger Datasets. To see if LA-BALD can scale to larger datasets, we conduct experiments on a
larger dataset containing 37 classes, Dog+Vertebrate. Fig. 7 shows that LA-BALD outperforms all
the baselines in terms of labelling efficiency, reducing the number of annotations by 30% compared
to J-BALD and 14% compared to Ent-I+Greedy-W.
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Figure 6: Comparison of LA-BALD and Sequential Samplers. LA-
BALD outperforms the sequential samplers (SS) in every sub-task, reducing
12% number of annotations compared to the second-best SS baselines in
each sub-task.
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Figure 7: Comparison
on larger sub-task. We
compare the labeling ef-
ficiency of LA-BALD
and the baselines.
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Figure 8: Annotations Accuracy of J-
BALD and LA-BALD. With similar costs,
the accuracy of the annotations sampled by
LA-BALD is 6% on average better than that
sampled by J-BALD.
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Figure 9: Comparison of the ML Model Accuracy.
The model trained on the annotations collected from
LA-BALD learns quicker than the models trained on
the annotations sampled from SS.

5.4 MORE ACCURATE ANNOTATIONS OR BETTER MODEL?

We analyze if the improvement of LA-BALD comes from having more accurate annotations or a
better model.

LA-BALD vs. J-BALD. Fig. 8 shows that the annotations sampled by LA-BALD are 6% better
than the annotations sampled by J-BALD on average, showing that LA-BALD is better at choosing
relevant image-worker pairs compared to J-BALD. On the other hand, both of them achieve similar
ML model performances. To summarize, LA-BALD obtains similar performant ML models compared
to J-BALD but is better at choosing relevant image-worker pairs, leading to better label accuracy.

LA-BALD vs. SS. Since most sequential samplers tend to stop at early steps and, therefore, only
annotate a small set of images, comparing the average annotation accuracy does not provide a fair
comparison. Instead, we compare the ML model performance along the time axis in Fig. 9. We
ignore the SS baselines with random worker selection for clarity. The model learns quickly in the
early stage when trained on the annotations collected from LA-BALD. Please refer to the appendix
for a complete comparison of the model accuracy. To summarize, LA-BALD quickly obtains better
ML models, leading to better label accuracy.

6 CONCLUSION

This work presents LA-BALD, which explicitly considers the local and global influences identified
in the state-of-the-art label aggregator. Our studies find that LA-BALD reduces the number of
annotations by 19% compared to the common sampler baseline, J-BALD, and 12% compared to the
sequential sampler baselines. Our analysis shows that LA-BALD provides more accurate annotations
and a better online-learned predictive model, leading to better labelling efficiency over the baselines.
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7 REPRODUCIBILITY STATEMENT

To implement LA-BALD, we heavily rely on MC dropout (explained in Sec. refbackground:bald
and the appendix). For the additional term I(zij ; yi|✓), we follows the BatchBALD Kirsch et al.
(2019) implementation. We first separate the second term into I(zij ; yi|✓) = H(zij |✓)�H(zij |yi, ✓).
The challenge is to sample p(zij |yi, ✓) = p(zij |yi)p(yi|theta). Following the prior work Kirsch
et al. (2019), we sample the second term via MC dropout. We release the code in the anonymized
repository at https://anonymous.4open.science/r/LA-BALD-8B7D/README.md

8 ETHICS STATEMENT

Our work could be applied to many computer vision applications, especially image classification
problems requiring high expertise. For example, it could reduce the number of annotations required
to train a fine-grained bird classification model used in mobile apps. Our method actively allocates
different images to workers, favouring workers with higher expertise. Many reasons lead to the lack of
expertise, such as lack of background knowledge, motivations, and familiarity with the tool. However,
expertise change over time. Since our proposed method favours workers with higher expertise, it
could fail to assign the tasks to new incoming workers, who show low expertise due to the lack of
familiarity with the tool. This leads to an imbalanced workload between workers. Expert workers
overwork, while workers with low expertise lose their jobs.

Encouraging a balanced workload is essential in practice since it implies fair job recruitment and
better parallelism. We can adopt a ✏-greedy sampling strategy to encourage a balanced workload with
LA-BALD. For each step, the task sampler performs random sampling with probability ✏; otherwise,
it performs greedy sampling.
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