Scaling Down Deep Learning with MNIST-1D

Sam Greydanus ' > Dmitry Kobak **

Abstract

Although deep learning models have taken on
commercial and political relevance, key aspects
of their training and operation remain poorly un-
derstood. This has sparked interest in science of
deep learning projects, many of which require
large amounts of time, money, and electricity. But
how much of this research really needs to occur at
scale? In this paper, we introduce MNIST-1D: a
minimalist, procedurally generated, low-memory,
and low-compute alternative to classic deep learn-
ing benchmarks. Although the dimensionality of
MNIST-1D is only 40 and its default training set
size only 4000, MNIST-1D can be used to study
inductive biases of different deep architectures,
find lottery tickets, observe deep double descent,
metalearn an activation function, and demonstrate
guillotine regularization in self-supervised learn-
ing. All these experiments can be conducted on a
GPU or often even on a CPU within minutes, al-
lowing for fast prototyping, educational use cases,
and cutting-edge research on a low budget.

1. Introduction

The deep learning analogue of Drosophila melanogaster
is the MNIST dataset. Drosophila, the fruit fly, has a life
cycle that is just a few days long, its nutritional needs are
negligible, and it is easier to work with than mammals,
especially humans. Like Drosophila, MNIST is easy to
use: training a classifier on it takes only a few a minutes
whereas training full-size vision and language models can
take months of time and millions of dollars (Sharir et al.,
2020).

But in spite of their small size, both test systems have had
a major impact on their respective fields. A number of
seminal discoveries in medicine, including multiple Nobel

'Oregon State University, USA “The ML Collective *University
of Tiibingen, Germany *Heidelberg University, Germany. Corre-
spondence to: Sam Greydanus <samgreydanus @ gmail.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Original MNIST examples
label=0 label=1 label=2 label=3 label=4 label=5 label=6 label=7 label=8 label=9

ol /203171816 712]F

Represent digits as 1D patterns

IANRAEIEN PN IGIFATE S

Pad, translate & transform

Figure 1: Constructing the MNIST-1D dataset. Unlike
MNIST, each sample is a one-dimensional sequence. To
generate each sample, we begin with a hand-crafted digit
template loosely inspired by MNIST shapes. Then we ran-
domly pad, translate, and add noise to produce 1D sequences
with 40 points each. [CODE]

prizes, have been awarded for work performed with fruit
flies. Early work in genetics — work that paved the way
for the Human Genome Project, which involved billions
of dollars of funding, dozens of institutions, and over a
decade of accelerated research (Lander et al., 2001) — was
performed on fruit flies and other simple organisms. To
this day, experiments on Drosophila are a cornerstone of
biomedical research.

Meanwhile, MNIST has served as the initial proving ground
for a large number of deep learning innovations including
dropout, Adam, convolutional networks, generative adver-
sarial networks, and variational autoencoders (Srivastava
et al., 2014; Kingma and Ba, 2014; LeCun et al., 1989;
Goodfellow et al., 2014; Kingma and Welling, 2014). Once
a proof of concept was established in small-scale exper-
iments, researchers were able to justify the time and re-
sources needed for larger and more impactful applications.

However, despite its historical significance, MNIST has
three notable shortcomings. First, it is too simple. Lin-
ear classifiers, fully-connected networks, and convolutional
models all perform similarly well, obtaining above 90%
accuracy (Table 1). This makes it hard to measure the con-
tribution of a CNN’s spatial priors or to judge the relative

https://github.com/greydanus/mnist1d/blob/master/notebooks/building-mnist1d.ipynb

Scaling Down Deep Learning with MNIST-1D

Table 1: Test accuracies (in %) of common classifiers on the MNIST and MNIST-1D datasets. Most classifiers achieve
similar test accuracy on MNIST. By contrast, the MNIST-1D dataset is capable of separating different models based on
their inductive biases. The drop in CNN and GRU performance when using shuffled features indicates that spatial priors
are important on this dataset. All models except logistic regression achieve 100% accuracy on the training set. Standard

deviation is computed over three runs.

[CODE]

Dataset Logistic regression ~ MLP CNN GRU Human expert

MNIST 944+ 0.5 > 99 > 99 > 99 > 99

MNIST-1D 32+1 68+2 94+2 91+2 96 + 1

MNIST-1D (shuffled) 32+1 68+2 5H6+2 5742 ~30+£10
effectiveness of different regularization schemes. Second, 2. Related work

it is too large. Each sample in MNIST is a 28 x 28 image,
resulting in 784 input dimensions. Together with its sample
size n = 70 000, this requires an unnecessarily large amount
of computation to perform a hyperparameter search or de-
bug a metalearning loop. Third, it is hard to hack. MNIST is
a fixed dataset and it is difficult to increase the sample size
or to change the noise distribution. The ideal toy dataset
should be procedurally generated to allow researchers to
vary its parameters at will.

In order to address these shortcomings, we propose the
MNIST-1D dataset (Figure 1). It is a minimalist, low-
memory, and low-compute alternative to MNIST, designed
for exploratory deep learning research where rapid proto-
typing and short latency are a priority. MNIST-1D has 40
dimensions, many fewer than MNIST’s 784 or CIFAR’s
3,072. The sample size can be arbitrarily large, but the
frozen default dataset contains 4000 training and 1000 test
samples, many fewer than the 70,000 in MNIST and 60,000
in CIFAR-10/100. Although our dataset is procedurally gen-
erated, its samples are intuitive enough for a human expert
to match or even outperform a CNN.

MNIST-1D does a much better job than the original MNIST
at differentiating between model architectures: a linear clas-
sifier can only achieve 32% accuracy (Table 1), while a
CNN reaches 94%. Below we show that MNIST-1D can be
used to study phenomena ranging from deep double descent
to self-supervised learning. Crucially, the experiments we
present in this paper take only a few minutes to run on a
single GPU (in some cases just a CPU) whereas they would
require multiple GPU hours or even GPU days when using
MNIST or CIFAR. This makes MNIST-1D valuable as a
playground for quick initial experiments and invaluable for
researchers without access to powerful GPUs.

All our experiments are in Jupyter notebooks and
are available at https://github.com/greydanus/
mnist1ld, with direct links from figure captions. We pro-
vide a mnist1d package that can be installed via pip
install mnistld.

There are a number of small-scale datasets that are com-
monly used to investigate science of deep learning questions.
We have already alluded to MNIST (LeCun et al., 1998),
CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). The
CIFAR datasets consist of 32 x 32 colored natural images
and have sample sizes similar to MNIST. They are better
at discriminating between MLP and CNN architectures and
also between different types of CNNs: for example, vanilla
CNNs versus ResNets (He et al., 2016). The FashionM-
NIST dataset (Xiao et al., 2017) has the same size as MNIST
and is somewhat more difficult. It aims to rectify some of
the most serious problems with MNIST: in particular, that
MNIST is too easy and thus all neural network models attain
roughly the same test accuracy. None of these datasets is
substantially smaller than MNIST and this hampers their
use in fast-paced exploratory research or compute-heavy
applications such as metalearning.

There are very few datasets smaller than MNIST that are
of interest for deep learning research. Toy datasets pro-
vided by Scikit-learn (Pedregosa et al., 2011), such as the
two_moons dataset, can be useful for studying clustering
or training very simple classifiers, but are not sufficiently
complex for deep learning investigations. Indeed, these
datasets are just 2D point clouds, devoid of spatial or tem-
poral correlations between features and lacking manifold
structures that a deep nonlinear classifier could use to escape
the curse of dimensionality (Bellman and Kalaba, 1959).

To the best of our knowledge, the MNIST-1D dataset is
unique in that it is over two orders of magnitude smaller
than MNIST but can be used just as effectively — and
in a number of important cases, more effectively — for
studying fundamental deep learning questions. This may be
why MNIST-1D was used as a teaching tool in the recent
Understanding Deep Learning textbook (Prince, 2023)".

MNIST-1D bears philosophical similarities to the Synthetic
Petri Dish by Rawal et al. (2020). The authors make similar

'The initial preprint of this manuscript was released on arXiv
in November 2020.

https://github.com/greydanus/mnist1d/blob/master/notebooks/mnist1d-classification.ipynb
https://github.com/greydanus/mnist1d
https://github.com/greydanus/mnist1d

Scaling Down Deep Learning with MNIST-1D

Table 2: Default parameters for MNIST-1D generation.

Parameter Value
Train/test split 4000/1000
Template length 12
Padding points 36-60
Max. translation 48
Gaussian filter width 2
Gaussian noise scale 0.25
White noise scale 0.02
Shear scale 0.75
Final seq. length 40
Random seed 42

references to biology in order to motivate the use of small
synthetic datasets for exploratory research. Their work dif-
fers from ours in that they use metalearning to obtain their
datasets whereas we construct ours by hand. In doing so, we
are able to control various causal factors such as the amount
of noise, translation, and padding. Our dataset is more in-
tuitive to humans: an experienced human can outperform a
strong CNN on the MNIST-1D classification task. This is
not possible on the Synthetic Petri Dish dataset.

3. The MNIST-1D dataset

Dimensionality. Our first design choice was to use
one-dimensional time series instead of two-dimensional
grayscale images or three-dimensional tensors correspond-
ing to colored images. Our rationale was that one-
dimensional signals require far less computation to train
on but can be designed to have many of the same biases,
distortions, and distribution shifts that are of interest to
researchers studying fundamental deep learning questions.

Constructing the dataset. We began with ten one-
dimensional template patterns which resemble the digits
0-9 when plotted as in Figure 1. Each of these templates
consisted of 12 hand-crafted = coordinates. Next we padded
the end of each sequence with 36-60 additional zero values,
did a random circular shift by up to 48 indices, applied a
random scaling, added Gaussian noise, and added a con-
stant linear signal. We used Gaussian smoothing with 0 = 2
to induce spatial correlations. Finally, we downsampled
the sequences to 40 data points that play the role of pix-
els in the resulting MNIST-1D (Figure 1). Table 2 gives
the values of all the default hyperparameters used in these
transformations.

Implementation. Our goal was to make the code as simple,
modular, and extensible as possible. The code for generating
the dataset occupies two Python files and fits in a total of
150 lines. The get _dataset method has a simple API for

a Training accuracy b Test accuracy

100 — 100

Human
/_/\,/’V

801 801

2 60 601 L e
L>)‘ ,r r\l M.

E) |

3 ' |

S 401 | 40 |

< — Logistic |

201 — CNN 204
| GRU

---After shuffling

0 S 2000 4000 6000 © 2000 4000 6000
Training step Training step

Figure 2: Train and test accuracy of common classification
models on MNIST-1D. The logistic regression model fares
worse than the MLP. Meanwhile, the MLP fares worse than
the CNN and GRU, which use translation invariance and
local connectivity to bias optimization towards solutions
that generalize well. When local spatial correlations are de-
stroyed by shuffling feature indices (dashed lines), the MLP
performs the best. CPU runtime: ~10 minutes. [CODE]

changing dataset features such as maximum digit translation,
correlated noise scale, shear scale, final sequence length,
and more (Table 2). The following code snippet shows how
to install the mnist 1d package, choose a custom number
of samples, and generate a dataset:

install the package from PyPI
pip install mnistld

from mnistld.data import make_dataset
from mnistld.data import get_dataset_args

args = get_dataset_args () # default params
args.num_samples = 10_000
data = make_dataset (args)

x, y = data["x"], datal["y"]
The frozen dataset with 4000 + 1000 samples can be found
on GitHub as mnistld_data.pkl.

4. Classification

We used PyTorch to implement and train simple logistic,
MLP (fully-connected), CNN (with 1D convolutions), and
GRU (gated recurrent unit) models. We used the Adam opti-
mizer and early stopping for model selection and evaluation.
We obtained 32% accuracy with logistic regression, 68%
using an MLP, 91% using a GRU, and 94% using a CNN
(Table 1). Even though the test performance was markedly
different between MLP, GRU, and CNN, all of them eas-
ily achieved 100% accuracy on the training set (Figure 2).
While for the MLP this is a manifestation of overfitting, for

https://github.com/greydanus/mnist1d/blob/master/notebooks/mnist1d-classification.ipynb

Scaling Down Deep Learning with MNIST-1D

a MNIST b

MNIST-1D

Figure 3: Visualizing the MNIST and MNIST-1D datasets
with ¢-SNE. The well-defined clusters in the MNIST em-
bedding indicate that the classes are separable via a simple
kNN classifier in pixel space. The MNIST-1D plot reveals
little structure and a lack of clusters, indicating that nearest
neighbors in pixel space are not semantically meaningful,
as is the case with natural image datasets. [CODE]

the CNN this is an example of benign overfitting.

For comparison, we also report the accuracy of a human
expert (one of the authors) trained on the training set and
evaluated (one-shot) on the test set. His accuracy was 96%.
The purpose of this comparison was to show that MNIST-1D
is a task that is as intuitive for humans as it is for machine
learning models with spatial priors. This suggests that the
models are not achieving high performance by exploiting
some unintuitive statistical artifacts. Rather, they are using
the relative position of various features associated with each
1-D digit. Interestingly, the CNN and the human expert had
similar per-digit error rates (Figure S1).

Shuffling sanity check. We also trained the same models
on a version of the dataset which was permuted along the
spatial dimension. This ‘shuffled’ version measured each
of the models’ performances in the absence of local spatial
structure (Zhang et al., 2017; Li et al., 2018). The test accu-
racy of CNNs and GRUs decreased by about 35 percentage
points after shuffling whereas the MLP and logistic models
performed about the same (Table 1, Figure 2). This makes
sense, as the former two models have spatial and temporal
locality priors whereas the latter two do not.

Dimensionality reduction. We used ¢-SNE (Van der
Maaten and Hinton, 2008) to visualize MNIST and MNIST-
1D in two dimensions. We observed ten well-defined clus-
ters in the MNIST dataset, suggesting that the classes are
separable with a kNN classifier in pixel space (Figure 3a). In
contrast, there were few well-defined clusters in the MNIST-
1D visualization, suggesting that the nearest neighbors in
pixel space are not semantically meaningful (Figure 3b).
This is well known to be the case for natural image datasets
such as CIFAR-10/100, and is therefore a benefit of MNIST-

1D, making it more interesting.

5. Science of deep learning with MNIST-1D

In this section we show how MNIST-1D can be used to
explore empirical science of deep learning topics.

5.1. Lottery tickets and spatial inductive biases

It is not unusual for deep learning models to have many
times more parameters than necessary to perfectly fit the
training set (Prince, 2023). This overparameterization helps
training but increases computational overhead. One solu-
tion is to progressively prune weights from a model during
training so that the final network is just a fraction of its
original size. Although this approach works, conventional
wisdom holds that sparse networks do not train well from
scratch. Recent work by Frankle and Carbin (2019) chal-
lenges this conventional wisdom. The authors report finding
sparse subnetworks inside of larger networks that can be
trained in isolation to equivalent or even higher accuracies.
These lottery ticket subnetworks can be found through a sim-
ple iterative procedure: train a network, prune the smallest
weights, reset the remaining weights to their original values
at initialization, and then retrain and repeat the process until
the desired sparsity threshold is reached.

Since the original paper was published, many works have
sought to explain this phenomenon and then harness it on
larger datasets and models. However, very few works have
attempted to isolate a minimal working example of this ef-
fect so as to investigate it more carefully. We were able to
demonstrate the existence of lottery tickets in a MLP clas-
sifier trained on MNIST-1D (Figure 4a-b). Lottery ticket
subnetworks that we found performed better than random
subnetworks with the same level of sparsity. Remarkably,
even at high (>95%) rates of sparsity, the lottery tickets we
found performed better than the original dense network.

The asymptotic performance of lottery tickets with 92%
sparsity was around 70% (Figure 4c). When we reversed all
the 1D patterns in the dataset, effectively preserving the spa-
tial structure but changing the actual locations of all features
(analogous to flipping an image upside down), the original
lottery tickets continued to perform at around 70% accuracy
(Figure 4d). This suggests that the lottery tickets did not
overfit to the original dataset; instead, something about their
connectivity and initial weights gave them an inherent ad-
vantage over random sparse networks. This reproduces the
findings of Morcos et al. (2019), which showed that lottery
tickets can transfer between datasets.

Next, we asked whether spatial inductive biases were a fac-
tor in the high performance of the lottery tickets we had
found. To answer this question, we trained the same tick-
ets on a feature-shuffled version of the MNIST-1D dataset.

https://github.com/greydanus/mnist1d/blob/master/notebooks/tsne-mnist-vs-mnist1d.ipynb

Scaling Down Deep Learning with MNIST-1D

a) Final test loss b) Final test accuracy c) Original dataset of 1D signals d) Flip signals (keep spatial structure)
80
— random — lottery == dense — random —— lottery == dense 75 — dense — random — lottery 75 — Gense — random — lottery
4x10°
75 A 70 4 70
> >
3x10° 9 9
70 4 S 65 S 65
- 5 5
o o
8 g
2x10° 65 1 = 60 % 60
S e
60 1 55 55
T T T T T — 55 T T T T T 50 1 - - - - - - 50 1 v - - v v -
00 02 04 06 08 1.0 00 02 04 06 08 1.0 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Sparsity Sparsity Train step Train step
e) Shuffle signals (remove spatial structure)) Reinit weights (keep sparsity pattem) g) p(two adjacent weights) p(three adjacent weights) p(four adjacent weights)
75 e — rdom — ey 75 — e — andom — ey | 0010 :I: 0.0030 0.0005
0.0025
70 70 0.008
> > 0.0004
£ . g .. 0008 0.0020
3 3% - 0.0003
S S 0.0015
= 2 0.004
= 60 4 60 -
i i 0.0010 0.0002
55 55 0.002 0.0005 0.0001 I ‘
50 . . 50 1 - - - - - - 0.000 T T 0.0000 T T 0.0000 T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 random lottery random lottery random lottery
Train step Train step

Figure 4: Finding and analyzing lottery tickets. (a—b) The test loss and test accuracy of lottery tickets at different levels of
sparsity, compared to randomly selected subnetworks and to the original dense network. (¢) Performance of lottery tickets
with 92% sparsity. (d) Performance of the same lottery tickets when trained on flipped data. (e) Performance of the same
lottery tickets when trained on data with shuffled features. (f) Performance of the same lottery tickets but with randomly
initialized weights, when trained on original data. (g) Lottery tickets had more adjacent non-zero weights in the first layer
compared to random subnetworks. Runtime: ~30 minutes. [CODE]

In other words, we permuted the feature indices in order a No Iam-lpnoise b Labg’lll-:oise c Labglf\lr':loise
to remove any spatial structure from the data. Shuffling 70+ 1 -

greatly reduced the performance of the lottery tickets: they 60 _ If:ltn -

performed appreciably worse — worse, in fact, than the § 5o | |

original dense network (Figure 4e). This suggests that part = s0. |]

of the lottery tickets’ performance can be attributed to a 5

spatial inductive bias in their sparse connectivity structure. § 301 1]

Furthermore, on the original (non-shuffled) MNIST-1D, § 2] | |

when we froze the sparsity patterns of lottery tickets but 107] 1

initialized them with different random weights, they still 0-6 TR T -6 T 00 -6 p =
continued to outperform the original dense network (Fig- Hidden layer size Hidden layer size NUM. of channels

ure 4f). This suggests that not the weight values but rather

the sparsity patterns represent the spatial inductive bias of Figure 5: Deep double descent in MNIST-1D classification.
lottery tickets. We verified this hypothesis by measuring Here the test set had 12000 samples. (a) MLP classifier
how often non-zero weights in a lottery ticket were adjacent with one hidden layer. (b) MLP classifier; 15% label noise.
to each other in the first layer of the model. The lottery ~ (¢) CNN classifier with three convolutional layers; 15%
tickets had more adjacent weights than expected by chance label noise. Adapted with permission from Prince (2023,

(Figure 4g), implying a bias towards local connectivity. See Section 8.4). CPU runtime: ~60 minutes. [CODE]
Figure S2 for a visualization of the actual sparsity patterns

of several lottery tickets.

The original lottery ticket paper (Frankle and Carbin, 2019),
as well as some of the follow-up studies (Morcos et al.,
2019), required a large number of GPUs and multiple days ~ An intriguing property of neural networks is the double de-
of runtime. By contrast, all the experiments we presented scent phenomenon. This phrase refers to a training regime
here took around ~30 minutes to complete on a single GPU. where more data, more model parameters, or more gradient
descent steps can reduce the test accuracy before it increases
again (Trunk, 1979; Belkin et al., 2019; Geiger et al., 2019;
Nakkiran et al., 2020). This happens around the so-called

5.2. Deep double descent

https://github.com/greydanus/mnist1d/blob/master/notebooks/lottery-tickets.ipynb
https://github.com/greydanus/mnist1d/blob/master/notebooks/deep-double-descent.ipynb

Scaling Down Deep Learning with MNIST-1D

interpolation threshold where the learning procedure, con-
sisting of a model and an optimization algorithm, is just
barely able to fit the entire training set. At this threshold
there is effectively just a single model that can fit the data
and this model is very sensitive to label noise and model
mis-specification, resulting in overfitting and poor test per-
formance. In contrast, larger models tend to exhibit benign
overfitting wherein SGD selects a smooth model out of
the many possible models fitting the training set (implicit
regularization).

Despite the above intuition, many aspects of double descent,
such as what factors affect its width and location, are not
well understood. We argue that MNIST-1D is well suited
for exploring these questions. We observed double descent
when training a MLP classifier on MNIST-1D, varying the
size of the single hidden layer. In the presence of 15% label
noise, the test error peaked at the interpolation threshold
(training error reaching zero), at around 50 neurons in the
hidden layer (Figure 5b). Further increasing the model size
led to the test error dropping again. Without label noise, the
test error did not peak (Figure 5a). We observed qualitatively
similar behavior using the CNN architecture (Figure 5c).
The runtime of this experiment was ~60 minutes on a CPU.

5.3. Gradient-based metalearning

The goal of metalearning is to learn how to learn. This can
be implemented by having two levels of optimization: a fast
inner optimization loop which corresponds to a traditional
learning objective and a slow outer loop which updates some
meta properties of the learning process. One of the simplest
examples of metalearning is gradient-based hyperparameter
optimization. This concept was proposed in Bengio (2000)
and then scaled to deep learning models by Maclaurin et al.
(2015). The basic idea is to implement a fully differentiable
training loop and then backpropagate through the entire
process in order to optimize hyperparameters such as the
learning rate or the weight decay.

Metalearning is a promising line of research but it is very
difficult to scale. Metalearning algorithms can consume
enormous amounts of time and compute due to their nested
optimization, and tend to grow complex because most deep
learning frameworks are not well suited for them. This
places an especially high incentive on developing and de-
bugging metalearning algorithms on small-scale datasets
such as MNIST-1D.

We implemented a metalearning optimization for an MLP
classifier on MNIST-1D with an explicitly written inner
optimization loop using SGD. The gradient-based hyper-
parameter optimization converges to the optimal learning
rate to be 0.62 regardless of whether the initial learning rate
is too high or too low (Figure 6). The whole optimization
process took only one minute on a CPU.

Outer objective (mean inner loss)

1.75
= Trial 1: init_Ir=1.5
= Trial 2: init_Ir=0.15
1.74 A
1.73 A
1.72 A
1.71 T T
0 20 40
Outer training step
Metalearned learning rate
1.4 - —e— Trial 1: init_Ir=1.5

—e— Trial 2: init_Ir=0.15

0 20 40
Outer training step

Figure 6: Metalearning the learning rate of SGD optimiza-
tion of an MLP classifier on MNIST-1D. The outer training
converges to the optimal learning rate of 0.62 regardless
of whether the initial learning rate is too high or too low.
Runtime: ~1 minute. [CODE]

5.4. Metalearning an activation function

The small size of MNIST-1D allows researchers to perform
more challenging metalearning optimizations. For exam-
ple, it permits the metalearning of an activation function —
something that to the best of our knowledge has not been
studied before. We parameterized our classifier’s activa-
tion function with a separate neural network (MLP with
layer dimensionalities 1 — 100 — 100 — 1 using tanh
activations, with outputs added to an ELU function such
that it could be trained to produce perturbations to the ELU
shape) and then learned its weights using meta-gradients.
The learned activation function substantially outperformed
common nonlinearities such as ReLU, Elu, and Swish (Fig-
ure 7), achieving over 5 percentage points higher test accu-
racy. The resulting activation function had a non-monotonic
shape with two local extrema (Figure 7).

There has been work on optimizing activation functions
(Clevert et al., 2016; Ramachandran et al., 2018; Vercellino
and Wang), but none has used analytical gradients computed

https://github.com/greydanus/mnist1d/blob/master/notebooks/metalearn-learn-rate.ipynb

Scaling Down Deep Learning with MNIST-1D

MNIST-1D test accuracy

80
relu — el e tanh = learned
Swish ~ memmm softplus — mes= sigmoid
70 A
60 A
501171
40 A
T T T T T
0 50 100 150 200
Outer training step
Learned activation function
4 T
— step 0 = step 80 step 160
—— step20 —— step 100 step 180
3 o = step40 = step 120 step 200
m— step 60 = step 140
2 4
>
14

|
-4 =2 0 2 4
X

Figure 7: Metalearning an activation function. Starting from
an ELU shape, we use gradient-based metalearning to find
the optimal activation function for a neural network trained
on the MNIST-1D dataset. The activation function itself is
parameterized by a second (meta) neural network. Note that
the ELU baseline (red) is obscured by the t anh baseline
(blue) in the figure above. Runtime: ~1 hour. [CODE]

via nested optimization. Moreover, some of these prior ex-
periments (e.g. Ramachandran et al., 2018) used multi-day
training runs on large clusters of GPUs and TPUs, whereas
our entire training took around 1 hour of CPU runtime.

5.5. Self-supervised learning

As shown in Table 1, logistic classification accuracy for
MNIST-1D in pixel space was low (33%). A powerful
approach to self-supervised representation learning in com-
puter vision is to rely on data augmentations: each input
image is augmented twice, forming ‘positive pairs’ which
the network is trained to map to close locations in its output
space while pushing away representations of other input
images (Balestriero et al., 2023). In particular, in SimCLR
(Chen et al., 2020), each positive pair is repulsed from all
other positive pairs in the same mini-batch via the InfoNCE
loss function.

a b 90+
80
701

60

501

Linear accuracy

—e— Default
-=-No proj.
—-— Deeper proj.

40+

[S N S S R
01234567
Layer

Figure 8: SimCLR-style (Chen et al., 2020) learning on
MNIST-1D. (a) t-SNE embedding of the output represen-
tation after training (n = 5000). (b) Linear classification
accuracy after each layer. Layer O stands for the input (pixel
space). Accuracy always peaks in the middle (Bordes et al.,
2023). CPU runtime: ~5 minutes. [CODE]

We implemented the SimCLR algorithm for MNIST-1D,
using a network with three convolutional and two fully-
connected layers (‘projection head’) with output dimension-
ality 16. Our data augmentations consisted of regressing out
the linear slope, circularly shifting by up to 10 pixels, and
then reintroducing a random linear slope. We achieved 82%
linear classification accuracy before the projection head in
~1 minute of CPU training (for comparison, training Sim-
CLR on CIFAR-10/100 datasets typically takes ~10 GPU
hours). In the output space, digits 0, 3, 6, and 8 appeared as
isolated clusters (Figure 8a). Note that here we used both
training and test sets of MNIST-1D for the self-supervised
training, and the linear classifier was subsequently trained
on the training set and evaluated on the test set.

Empirically, it has been observed that the representation
quality (as measured via linear classification accuracy) is
higher before the projection head rather than after (Chen
et al., 2020); removal of the projection head after training
has been dubbed guillotine regularization (Bordes et al.,
2023) but remains poorly understood. We observed the
same effect in our experiment: classification accuracy was
the highest after the second layer (Figure 8b). Furthermore,
when using a deeper projection head with four layers, or a
network without any projection head at all, we achieved sim-
ilar representation quality, and the accuracy always peaked
in the middle (Figure 8b). This suggests that MNIST-1D
is sufficiently rich to study cutting-edge open problems in
self-supervised learning.

5.6. Benchmarking pooling methods

In our final case study we asked: What is the relationship
between pooling and sample efficiency? Here we define
pooling as any operation that combines activations from two
or more neurons into a single feature. We are not aware of
any prior literature on whether pooling makes models more

https://github.com/greydanus/mnist1d/blob/master/notebooks/metalearn-activation-function.ipynb
https://github.com/greydanus/mnist1d/blob/master/notebooks/self-supervised-learning.ipynb

Scaling Down Deep Learning with MNIST-1D

1000 examples

5000 examples

50000 examples

100 100
80 1 [—
3 95 - 98
I
o} 96 -
§ 807 | 90 -
- 94 A
0 =—— no_pool —— avg_pool
- i 85 -
= 40 == stride_2 — |2_pool 92
= max_pool
T T T T 80 T T T T 90 T T T T
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Train step

Figure 9: Benchmarking common pooling methods. Pooling was helpful in low-data regimes but hindered performance in

high-data regimes. Runtime: ~5 minutes.

or less sample efficient.

With this in mind, we trained CNN models for MNIST-1D
classification with different pooling methods and training
set sizes. Note that here we make use of the procedural
generation of MNIST-1D that allows one to generate addi-
tional samples at will. We found that, while pooling (but
not striding!) was very effective in low-data regimes, it did
not make much of a difference when more training data was
available (Figure 9). We hypothesize that pooling is a poor-
man architectural prior which is better than nothing with
insufficient data but restricts model expression otherwise.

6. Discussion

When to scale. This paper is not an argument against
large-scale machine learning research. That research has
proven its worth and has come to represent one of the most
exciting aspects of the ML research ecosystem. Rather,
we wish to promote small-scale machine learning research.
Neural networks do not have problems with scaling or per-
formance — but they do have problems with interpretabil-
ity, reproducibility, and training speed. We see carefully-
controlled, small-scale experiments as a great way to address
these problems.

In fact, small-scale research is complimentary to large-scale
research. As in biology, where fruit fly genetics helped guide
the Human Genome Project, we believe that small-scale
research should always have an eye on how to successfully
scale. For example, several of the findings reported in this
paper are at the point where they could be investigated at
scale. It would be interesting to show that large-scale lottery
tickets also learn spatial inductive biases and feature local
connectivity. It would also be interesting to try metalearning
an activation function on a larger model in order to find an
activation that can outperform ReLU and Swish in practical
deep learning systems.

Understanding vs. performance. There has been some
debate over the relative value of understanding neural nets

[CODE]

versus increasing their performance. Some researchers con-
tend that a high-performing algorithm need not be inter-
pretable as long as it saves lives or produces economic
value. Others argue that hard-to-interpret deep learning
models should not be deployed in sensitive real-world con-
texts until we understand them better. Both arguments have
merit. However, we believe that the process of identifying
things we do not understand about large-scale neural net-
works, reproducing them in toy settings like MNIST-1D,
and then performing careful ablation studies to isolate their
causal mechanisms is likely to improve both performance
and interpretability in the long run.

Reducing environmental impact. There is hope that
deep learning will have positive environmental applications
(Loehle, 1987; Rolnick et al., 2019). This may be true in
the long run, but so far, artificial intelligence has done little
to solve environmental problems. Deep learning models
do, however, require massive amounts of electricity to train
and deploy (Strubell et al., 2019). Running experiments
on smaller datasets — and waiting to scale until one has a
solid grasp of the phenomena involved — is a good way to
reduce the electricity costs and environmental impact of this
research.

The scaling down manifesto. We would like to provoca-
tively suggest that in order to explore the limits of how large
we can scale neural networks, we may need to explore the
limits of how small we can scale them first. Scaling models
and datasets down in a way that preserves the nuances of
their behaviors will allow researchers to iterate more quickly
on fundamental and creative ideas. This fast iteration cycle
is the best way to obtain insights on how to incorporate pro-
gressively more complex inductive biases into our models.
We can then transfer these inductive biases across scales
in order to dramatically improve the sample efficiency and
generalization of large models. The MNIST-1D dataset is a
first step in that direction.

https://github.com/greydanus/mnist1d/blob/master/notebooks/benchmark-pooling.ipynb

Scaling Down Deep Learning with MNIST-1D

Acknowledgements

We would like to thank Luke Metz for the interesting con-
versations, Tony Zador for the encouragement to release this
dataset, Simon Prince for improving our initial double de-
scent experiments and for the permission to adapt his code
for Figure 5, and Peter Steinbach for his help with preparing
the Python package.

This work was partially funded by Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) via Ger-
many’s Excellence Strategy (Excellence cluster 2064 “Ma-
chine Learning — New Perspectives for Science”, EXC
390727645; Excellence cluster 2181 “STRUCTURES”,
EXC 390900948), the German Ministry of Science and Ed-
ucation (BMBF) via the Tiibingen Al Center (01IS18039A),
and the Gemeinniitzige Hertie-Stiftung.

Impact Statement

The goal of our paper is to advance the field of machine
learning. We do not see any potential societal consequences
of our work that need to be highlighted in this section.

References

R. Balestriero, M. Ibrahim, V. Sobal, A. Morcos, S. Shekhar,
T. Goldstein, F. Bordes, A. Bardes, G. Mialon, Y. Tian, et al.
A cookbook of self-supervised learning. arXiv preprint
arXiv:2304.12210, 2023.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Recon-
ciling modern machine-learning practice and the classi-
cal bias—variance trade-off. Proceedings of the National
Academy of Sciences, 116(32):15849-15854, 2019.

R. Bellman and R. Kalaba. On adaptive control processes.
IRE Transactions on Automatic Control, 4(2):1-9, 1959.

Y. Bengio. Gradient-based optimization of hyperparameters.
Neural Computation, 12(8):1889-1900, 2000.

F. Bordes, R. Balestriero, Q. Garrido, A. Bardes, and P. Vin-
cent. Guillotine regularization: Why removing layers is
needed to improve generalization in self-supervised learn-
ing. Transactions on Machine Learning Research, 2023.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple
framework for contrastive learning of visual representations.
In International Conference on Machine Learning, pages
1597-1607. PMLR, 2020.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units

(elus). International Conference on Learning Representa-
tions, 2016.

J. Frankle and M. Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In International

Conference on Learning Representations (ICLR), 2019.

M. Geiger, S. Spigler, S. d’Ascoli, L. Sagun, M. Baity-Jesi,
G. Biroli, and M. Wyart. Jamming transition as a paradigm
to understand the loss landscape of deep neural networks.
Physical Review E, 100(1):012115, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in neural informa-
tion processing systems, pages 2672-2680, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. International Conference on Learning Repre-
sentations, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. International Conference on Learning Representa-
tions (ICLR), 2014.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum,
M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle,
W. FitzHugh, et al. Initial sequencing and analysis of the
human genome. Nature, 2001.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541-551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring
the Intrinsic Dimension of Objective Landscapes. In In-
ternational Conference on Learning Representations, Apr.
2018.

C. Loehle. Applying artificial intelligence techniques to
ecological modeling. Ecological Modelling, 38(3-4):191—
212, 1987.

D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based
hyperparameter optimization through reversible learning.
In International Conference on Machine Learning, pages
2113-2122, 2015.

A. Morcos, H. Yu, M. Paganini, and Y. Tian. One ticket to
win them all: generalizing lottery ticket initializations across
datasets and optimizers. In Advances in Neural Information
Processing Systems, pages 4933-4943, 2019.

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and
I. Sutskever. Deep double descent: Where bigger models

Scaling Down Deep Learning with MNIST-1D

and more data hurt. International Conference on Learning
Representations, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

S. J. Prince. Understanding Deep Learning. MIT Press,
2023. URL http://udlbook.comn.

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for
activation functions. International Conference on Learning
Representations (workshop tract), 2018.

A.Rawal, J. Lehman, F. P. Such, J. Clune, and K. O. Stanley.
Synthetic petri dish: A novel surrogate model for rapid
architecture search. arXiv preprint arXiv:2005.13092, 2020.

D. Rolnick, P. L. Donti, L. H. Kaack, K. Kochanski, A. La-
coste, K. Sankaran, A. S. Ross, N. Milojevic-Dupont,
N. Jaques, A. Waldman-Brown, et al. Tackling climate
change with machine learning. Neural Information Process-
ing Systems Workshop on Climate Change Al, 2019.

O. Sharir, B. Peleg, and Y. Shoham. The cost of train-
ing nlp models: A concise overview. arXiv preprint
arXiv:2004.08900, 2020.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. The journal of machine learning
research, 15(1):1929-1958, 2014.

E. Strubell, A. Ganesh, and A. McCallum. Energy and
policy considerations for deep learning in nlp. 57th Annual
Meeting of the Association for Computational Linguistics
(ACL, 2019.

G. V. Trunk. A problem of dimensionality: A simple exam-
ple. IEEE Transactions on pattern analysis and machine
intelligence, (3):306-307, 1979.

L. Van der Maaten and G. Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(11), 2008.

C. J. Vercellino and W. Y. Wang. Hyperactivations for
activation function exploration.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking generaliza-
tion. International Conference for Learning Representations
(ICLR), 2017.

10

http://udlbook.com

Scaling Down Deep Learning with MNIST-1D

A. Supplementary Figures

CNN mistakes by class label s Human mistakes by class label
15 4
E E 10.0 A
210 - 2 754
© ©
a 3 5.0
£ 54 £
R R 251
0 - 0.0 -
012 3 456 7 8 9 012 3 456 7 89
Label Label

Figure S1: Classwise errors of a CNN and a human subject on the test split of the MNIST-1D dataset. As described in the
main text, we estimated human performance on MNIST-1D by training one of the authors to perform classification and
then evaluating his accuracy on 500 test images. His accuracy was 96%. The CNN’s accuracy was 94%. Both humans
and the CNN struggled primarily with classifying 2’s and 7’s, and to a lesser degree 4’s. The human subject had a harder
time classifying 9’s whereas the CNN had a harder time classifying 1’s. Both had zero errors classifying 3’s and 6’s. It is
interesting that a human could outperform a CNN on this task. Part of the reason may be that the CNN was only given 4000
training examples — with more examples it could possibly match and eventually exceed the human baseline. Even though
the data is low-dimensional, the classification objective is quite difficult and spatial/relational priors matter a lot. It may
be that the architecture of the CNN prevents it from learning all of the tricks that humans are capable of using. It is worth

noting that modern CNNs can outperform human subjects on most large-scale image classification tasks like ImageNet. But
in our tiny benchmark a human was still competitive.

11

Scaling Down Deep Learning with MNIST-1D

o Random tlcket #1 (92 % sparse)

Input axis

Input axis

0 100 200 300 400

Input axis

400

Input axis

400

Hidden layer axis

Figure S2: First layer weight masks of random tickets and lottery tickets. We sorted the masks along their hidden layer axes,
according to the number of adjacent unmasked parameters. This helps to reveal a bias towards local connectivity in the
lottery ticket masks. Notice how there are many more vertically-adjacent unmasked parameters in the lottery ticket masks.
These vertically-adjacent parameters correspond to local connectivity along the input dimension, which in turn biases the
sparse model towards data with spatial structure.

12

