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Abstract—This work studies the impact of morphological
symmetries in learning applications in robotics. Morphological
symmetries are a predominant feature in both biological and
robotic systems, arising from the presence of planes/axis of
symmetry in the system’s morphology. This results in harmo-
nious duplication and distribution of body parts (e.g., humans’
sagittal/left-right symmetry). Morphological symmetries become
a significant learning prior as they extend to symmetries in
the system’s dynamics, optimal control policies, and in all
proprioceptive and exteroceptive measurements, related to the
system’s dynamics evolution [10]. Exploiting these symmetries
in learning applications offers several advantageous outcomes,
such as the use of data augmentation to mitigate the cost and
challenges of data collection, or the use of equivariant/invariant
function approximation models (e.g., neural networks) to improve
sample efficiency and generalization, while reducing the number
of trainable parameters. Lastly, we provide a video presentation1

and an open access repository2 reproducing our experiments and
allowing for rapid prototyping in robot learning applications
exploiting morphological symmetries.

I. INTRODUCTION

Discrete Morphological Symmetries (DMSs) are ubiquitous
in both biological and robotic systems. The vast majority
of living and extinct animal species exhibit bilateral/sagittal
reflection symmetry, where the right side of the body is
approximately a reflection of the left side (see fig. 1-left).
Similarly, a significant number of species exhibit radial sym-
metry, characterized by two or more morphological symmetry
planes/axis (see fig. 1-center) [6]. These symmetries are a
consequence of nature’s tendency to symmetric body parts
and harmonic duplication and distribution of limbs. A pattern
perfected and exploited in the design of robotic systems.

Symmetries of the state of a dynamical system translate to
symmetries of the system’s dynamics and control [17]. Thus,
DMSs imply the presence of symmetries in the dynamics
and control of body motions, extending to symmetries in
all proprioceptive and exteroceptive measurements, related
to the evolution of the system’s dynamics (e.g., joint posi-
tion/velocity/torque, depth images, contact forces). Therefore,
for systems with morphological symmetries, we can use data
augmentation to mitigate the challenges of data collection in
robotics, computer graphics, and computational biology. This,
roughly implies that for every minute of recorded data of a
system with n morphological symmetries, we can obtain an
additional n− 1 minutes of recordings, solely by considering
the symmetric states of the recorded data. See the case of

1Video presentation: youtu.be/qu4jIViRU1A
2Code repository: github.com/Danfoa/MorphoSymm

the robot Solo in fig. 1-center, for which we obtain 3 addi-
tional minutes of recording by considering the depicted 4-fold
symmetries. Furthermore, we can exploit the symmetries of
proprioceptive and exteroceptive data by imposing symmetry
constraints in machine learning algorithms to boost sample
efficiency and enhance generalization [17, 4, 12]. Consider
the case of robot Solo in fig. 1-center/right. We desire to
approximate the function y = f(x), mapping points in an
input space x ∈ X (say, the state of our robot) to points in
an output space y ∈ Y (say, the binary contact state of the
robot’s feet). To achieve this we use recorded data to train
a function approximation model f̂ parameterized with ϕ, i.e.
y ≈ f̂ (x;ϕ). Because of the robot morphological symmetry,
the input and output spaces have symmetries, and our target
function is subjected to an equivariance constraint:

g · y = f(g · x) | ∀ g ∈ G. (1)

Where g represents a symmetry, g · x and g · y the input and
output points transformed by the symmetry (in our example,
g ·x is the transformed robot state and g ·y a different contact
state), while G represents the set of symmetries of the robot,
its symmetry group. In these scenarios, we should impose the
same equivariance constraints of our target function (eq. (1)) to
our model f̄ . Since by doing so, we are reducing the solution
space of the optimization algorithm used to find the optimal f̄ .
In practice, imposing equivariance (or invariance) constraints
implies reducing the number of parameters of your model ϕ,
while empirically obtaining benefits in sample efficiency and
generalization [4, 12, 10].

Despite the potential benefits of exploiting symmetry and
the ubiquitous presence of morphological symmetries in
robotic/biological/virtual systems, this relevant inductive bias
is frequently left unexploited in data-driven applications in
robotics, computational biology, and computer graphics. We
attribute the scarce adoption of these techniques to a miss-
ing theoretical framework that consolidates the concept of
morphological symmetries, facilitating their study and iden-
tification. And, to a missing practical framework enabling the
efficient and convenient exploitation of symmetries in real-
world data-driven applications.

The identification of morphological symmetries and how
these extend to symmetries of proprioceptive and exteroceptive
data is currently a laborious and error-prone system-specific
process, due to the lack of a clear theoretical framework. As
a result, most recent works that exploit some morphological
symmetry (e.g., [15, 1, 16] in computer graphics and [12, 9,
5, 3] in robotics/dynamical systems) have only been applied

https://youtu.be/qu4jIViRU1A
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Fig. 1: Left: Symmetric configurations of the bipedal robot Atlas (3D animation) illustrating its morphological symmetry
described by the reflection group C2. The robot can imitate the reflections gs (hint: note the non-reflected text on the robot’s
chest). Middle: Top-view of symmetric configurations of the quadruped robot Solo (3D animation) showcasing its morphological
symmetries described by the Klein four-group K4. The robot can imitate two reflections (gs, gt) and a 180◦ rotation (gr) of
space (hint: observe the unreflected/unrotated robot’s heading direction and legs coloring). Symmetry transformations (arrows)
affect the robot’s configuration, as well as proprioceptive measurements (center of mass linear l and angular k momentum)
and exteroceptive measurements (terrain elevation, external force f1). Right: Diagram of a toy K4-equivariant neural network,
processing the symmetric states of robot Solo x and outputting the symmetric binary foot contact states y (see section IV).

to simple systems and the simplest morphological symmetry:
reflection/sagittal symmetry (see fig. 1-left), with the exception
of Finzi et al. [3]. However, these works provide little guidance
on how to apply these techniques to other systems, particularly
those with more than a single morphological symmetry.

Our recent work [10], aims at increasing the adoption of
morphological symmetry exploitation in robotics by presenting
the theoretical and practical contributions2 that enable the
study and exploitation of these symmetries in arbitrary dy-
namical systems with any number of symmetries. In this short
paper, we summarize the most important facts of morphologi-
cal symmetries in robotics and their implications in data-driven
applications. For a rigorous and extended development, we
refer the interested reader to [10].

II. PROPERTIES OF SYMMETRIC DYNAMICAL SYSTEMS

In robotics a symmetry g is roughly defined as an energy-
preserving transformation of the robot state (q, q̇), defined
by the system generalized position q ∈ Q and velocity
coordinates q̇ ∈ TqQ. If a dynamical system has a group
of symmetries G, its dynamics (i.e, its equations of motion
M(q)q̈ = τ (q, q̇)) are equivariant. That is:

g · [M(q)q̈︸ ︷︷ ︸
Inertial

−τ (q, q̇)︸ ︷︷ ︸
Moving

] = M(g · q)g · q̈︸ ︷︷ ︸
Inertial

−τ (g · q, g · q̇)︸ ︷︷ ︸
Moving

= 0

| ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ. (2)

Denoting M(q) : Q → Rn×n as the generalized mass matrix
function and τ (q, q̇) : Q × TqQ → Rn as the generalized
moving forces at a given state (q, q̇).

This property of symmetric dynamical systems, denoted
as dynamics G-equivariance (eq. (2)), depends on both the

generalized inertial and moving forces being independently
equivariant, implying:

M(g · q) = gM(q)g-1 ∧ g · τ (q, q̇) = τ (g · q, g · q̇)
| ∀ g ∈ G, q ∈ Q, q̇ ∈ TqQ. (3)

The equivariance of the inertial forces requires that the gen-
eralized mass matrix of the systems is equivariant. This is
the identifying property of symmetrical dynamical systems.
In practice, as the generalized mass matrix is well-defined for
model-based systems, it can be used for the identification of
system’s symmetries using eq. (3) (see [10] for the case of
rigid body dynamics). Furthermore, the equivariance of the
generalized moving forces (which in practice, usually incor-
porates control, constraint, and external forces) implies that
dynamics G-equivariance (eq. (2)) is upheld until a symmetry
breaking force violates the equivariance of τ .

To gain some intuition, consider as an example the bipedal
robot Atlas, with symmetry group G = C2 = {e, gs}. Both
robot states in fig. 1-left are symmetric states (related by the
action gs). Then, eq. (2) suggests that any trajectory of motion,
starting from the left robot state, will be equivalent (up to
transformation by gs) to a motion trajectory starting from the
right robot state, if and only if, the moving forces driving both
trajectories are equivalent (up to transformation by gs). That is
if the control and external forces are C2-equivariant (eq. (3)).
Note, we can perform a similar analysis for each symmetric
state and action of systems with larger symmetry groups (e.g.
Solo in fig. 1-center).

The aforementioned definition of symmetries as energy-
preserving transformations of the system state is intentionally
generic, imposing no restrictions on the nature of the state

https://bit.ly/3HTn7bM
https://bit.ly/3wSzjDd


transformation, such as whether the transformed state is feasi-
ble or reachable. This allows us to consider feasible state trans-
formations (such as robot translations and rotations3) along
with unfeasible state transformations (such as a reflection of
space) as symmetries of the system. Naturally, in robotics, we
are interested in studying and exploiting feasible symmetries
alone. Therefore we introduced the concept of discrete mor-
phological symmetry, as the set of feasible symmetries of the
system that imitate feasible and unfeasible symmetries.

III. DISCRETE MORPHOLOGICAL SYMMETRIES (DMSS)

A dynamical system is said to possess a DMS if it can
imitate the effects of a rotation, reflection, or translation in
space (i.e. Euclidean isometries), through a feasible discrete
change in its configuration (see formal definition in [10]). To
gain intuition, we can analyze the simplest and most common
DMS.

Reflection DMS: Although most floating-base dynamical
systems are symmetric with respect to reflections of space
(section II), these symmetries are infeasible due to the impos-
sibility to execute reflections in the real-world [11]. However,
systems with sagittal symmetry (e.g., Atlas in fig. 1-left, or
humans) can imitate the effect of a reflection with a feasible
discrete change in their configuration, by rotating their body
and modifying their limbs’ pose. These systems share the same
symmetry group, the reflection group G ≡ C2.

Multiple DMSs: This property can be extended to the case
of a floating-base system having multiple DMSs, allowing it to
imitate multiple distinct Euclidean isometries. Most frequently
systems can imitate a set of rotations and reflections, making
G a Cyclic Ck or Dihedral D2k group. See examples for C3 in
[10], and for D4 ≡ K4 in fig. 1-center.

Because each DMS is defined as a feasible transformation
that imitates a system’s symmetry g due to a Euclidean
isometry, the group of DMSs G is isomorphic to a subset
of the feasible and unfeasible symmetries of the dynamical
system due to rotations, reflections, and translations in space.
Furthermore, the existence of the DMSs is subjected to the sys-
tem’s generalized mass matrix being G-equivariant (eq. (3)). In
practice, these constraints translate to identifiable constraints
in the kinematic and dynamic parameters of the system model
[10].

IV. G-EQUIVARIANT AND G-INVARIANT FUNCTION
APPROXIMATORS

Once we identified the DMS group G of our system, we
know that any proprioceptive or exteroceptive measurements
have the same symmetry group G. Therefore, to improve
generalization and sample efficiency, we can exploit the
known symmetries of the input x and output y spaces, of
any mapping we desire to approximate, by constructing G-
equivariant or G-invariant (eq. (1)) function approximation
models f̂ (x;ϕ), parameterized with ϕ. In [10] we study

3In conservative systems, translational, rotational, and time-shift sym-
metries imply, by Noether’s theorem, the conservation of linear momentum,
angular momentum, and energy, respectively [8].

Fig. 2: Left: Solo sagittal (blue) and transversal (red) symme-
try planes of the base body. Right: Solo’s kinematic tree, and
permutation symmetries of the legs/tree-branches.

the case of G-equivariant/invariant neural networks (NN). In
this section, we summarized the most relevant implications of
DMSs for this type of machine-learning model.

• Computational implications of using G-equivariant
NN. Thanks to recent theoretical and practical develop-
ments [4, 10, 12], the use of G-equivariant NN instead
of unconstrained NN comes at the price of a negligible
increase in memory and computational resources required
during training of the model. Most importantly, there is
no difference, at inference time, between equivariant and
unconstrained models.

• Number of trainable parameters of a NN. Imposing
equivariance/invariance constraints in NN signifies the
reduction in the number of trainable parameters of the
model [4, 12, 2]. In practice, this implies that for a G-
equivariant layer the number of trainable parameters is
reduced by approximately 1/|G| being |G| the number
of symmetries of the data (i.e., number of DMSs of
the system). Therefore a G-equivariant architecture with
G = C2 (robot Atlas in fig. 1-left), or G = K4 (Solo in
fig. 1-center) will have approximately 1/2 (Atlas) or 1/4
(Solo) of the trainable parameters of an unconstrained
NN of the same architectural size. The reduction of
parameters is caused by the parameter sharing and is
visually depicted in fig. 1-right.

An increasing amount of theoretical [2, 14] and empirical
[12, 3, 10, 13] evidence suggest that when the data features
symmetries, the use of equivariant/invariant function approx-
imation models leads to increase generalization capabilities
and a reduction in sample complexity. On [10] we present
empirical evidence in robotics in a synthetic and real-world
learning application. Here, we summarize the results of the
real-world application.

V. EXPERIMENTS

We present a supervised experiment using real-world data
in a classification application to showcase the effectiveness
of Discrete Morphological Symmetries (DMSs) for data aug-
mentation and training equivariant functions. The goal is to
demonstrate the positive impact of exploiting DMSs on the
model’s sample efficiency and generalization capacity. For
a detailed analysis of the technical aspects and additional
experiments, please refer to [10].



Fig. 3: Static-Friction-Regime contact detection results comparing CNN, CNN-aug, and ECNN. Left: Sample efficiency
in log-log scale. Middle: Average legs F1-score. Right: Classification metrics on test set performance of models trained with
the entire training set. The selected metrics include contact-state (y ∈ R16) accuracy (Acc) and f1-score (F1) for each leg
binary contact state. Due to the sagittal symmetry of the robot, the left front (LF) and right front (RF) legs are expected to be
symmetric, as well as the left hind (LH) and right hind (RH) legs. F1-score is presented considering the dataset class imbalance
(see [10]). The reported values represent the average and standard deviation across 8 different seeds.

A. Static-friction-regime contact detection (Classification)

In this experiment, we utilize the dataset introduced in
Lin et al. [7] for estimating static-friction-regime contacts in
the foots of the Mini-Cheetah quadruped robot. The dataset
consists of real-world proprioceptive data (q̂, ˙̂q, base linear
acceleration, base angular velocity, and leg feet positions and
velocities) captured over a history of 150 time-frames. These
measurements were obtained from inboard sensors during
locomotion, encompassing various gaits and terrains. The
dataset also includes y ∈ R16, representing the ground truth
contact state of the robot, which was estimated offline using
a non-causal algorithm. Our goal is to train a causal function
approximator f̂ (x;ϕ) to predict the contact state based on the
input proprioceptive data.

The Mini-Cheetah robot in the real-world exhibits an ap-
proximate reflection symmetry group, G ≈ C2. As a result,
both the proprioceptive data x and the contact state y share
the symmetry group G. In this experiment, we compare three
variants of function approximators: the original Convolutional
Neural Network architecture proposed by Lin et al. [7] (CNN),
a version of CNN trained with data augmentation (CNN-aug),
and a version of CNN that incorporates hard-equivariance
constraints (E-CNN).

The sampling efficiency and average leg contact state classi-
fication results are depicted in fig. 3-left-&-middle. The equiv-
ariant model, E-CNN, demonstrates superior generalization
performance and robustness to dataset biases compared to
the unconstrained models [10]. Following E-CNN, CNN-aug
exhibits better performance than the original CNN. In fig. 3-
right, we evaluate the classification metrics of the test set when
using the entire training data. The E-CNN model outperforms
both CNN-aug and CNN in contact state classification and
average leg contact detection. Notably, exploiting symmetries
helps mitigate suboptimal asymmetries in the models, prevent-
ing them from favoring the classification of one leg over others

(observe legs LF and RF in fig. 3-right).

VI. CONCLUSIONS & DISCUSSION

In this work, we summarize the findings presented in [10],
where we present the definition of Discrete Morphological
Symmetry (DMS): a capability of some dynamical systems
to imitate the effect of rotations, translations, and infeasible
reflections of space with a feasible discrete change in the
system configuration. Using the language of group theory we
study the set of DMSs of a dynamical system as a symmetry
group G and conclude that: (1) A system with a symmetry
group G exhibits G-equivariant generalized mass matrix and
dynamics. (2) That the symmetries of the dynamics extend
to optimal control policies as well as to any proprioceptive
and exteroceptive measurements, related to the evolution of
the system’s dynamics.

We establish the necessary theoretical abstractions to inves-
tigate and identify DMSs in any dynamical system, irrespective
of the number of symmetries present. This new formalism
allows us to identify the reflection/sagittal symmetry, prevalent
in humans, animals, and most robots, as the simplest morpho-
logical symmetry group G = C2. Crucially, we use the same
formalism to identify and exploit DMSs in real-world robotic
systems with a greater number of symmetries.

In addition, we provide an open-access repository that
facilitates the efficient prototyping of G-equivariant neural
networks for exploiting DMS in various applications involving
rigid-body dynamics, such as robotics, computer graphics, and
computational biology. This repository includes a growing
collection of symmetric dynamical systems, with their cor-
responding symmetry groups already identified. Furthermore,
we present compelling empirical and theoretical evidence
supporting the utilization of DMSs in data-driven applications
through data augmentation and the adoption of G-equivariant
neural networks. Both symmetry exploitation techniques result
in improved sample efficiency and generalization.
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