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ABSTRACT

We introduce a novel learning problem: decoding gaze into natural language de-
scriptions of human goals across diverse visual tasks. Unlike prior work, which
frames gaze decoding as a classification task over predefined categories, we for-
mulate it as a generative learning problem: training a model to produce free-form
descriptions that capture the rich context, nuance, and open-ended nature of human
intentions beyond fixed labels.

To this end, we introduce Gazette, the first gaze-to-text decoding framework.
Based on multimodal large language models (MLLMs), Gazette learns to decode
gaze scanpaths into natural language for goals that may extend beyond categorical
labels and require articulation in natural language. To help Gazette filter out
individual differences in gaze behavior and learn the goal-specific spatiotemporal
dynamics crucial for generating accurate natural language goal descriptions, we
propose a novel strategy that leverages the encyclopedic knowledge and reasoning
abilities of a large language model to synthesize natural language explanations of
goal-directed attentional behavior called think-aloud transcripts. Instruction tuning
on these synthetic narratives allows Gazette to achieve state-of-the-art performance
in gaze decoding across multiple tasks, demonstrating its generalizability and
versatility, thereby enabling gaze to serve as a powerful, non-intrusive cue for
inferring human goals and intentions in diverse scenarios.

1 INTRODUCTION

Gaze decoding offers a non-intrusive and practical means of inferring human attention and intent, as
a valuable alternative to neural decoding from EEG (Hollenstein et al., 2021} |Daly} [2023)), fMRI (Xia
et al., |2024; [Takagi & Nishimoto, 2023)), MEG (Défossez et al.,[2023; |Benchetrit et al., [2023)), and
ECoG (Chestek et al., 2013} [Komeiji et al., [2024) that often need bulky, expensive, and invasive
equipment. As eye-tracking technology becomes increasingly accessible and accurate, across both
wearable and non-wearable devices, the utility of gaze decoding grows, enabling a wide range of
applications including user engagement analysis (Biihler et al,2024; Khokhar et al.| 2019)), driver
monitoring (Tawari et al.| 2014), human-robot interaction (Li & Zhang, [2017)), hands-free assistive
technologies (Perfect et al., |2020), and psychological diagnosis (Liagat et al., 2021). However,
existing gaze decoding approaches (Barz et al.l 2020; |Sattar et al.l 2015} 2017;[2020; Nishiyasu &
Satol 2024; Wang et al.| 2024a)), cannot easily decode richer, more expressive descriptions of human
intent expressed by natural language, as they focus on goal-directed visual tasks based on predefined
labels, notably categorical visual search. Such approaches are often inadequate in real-world scenarios
where capturing broader linguistic context is essential. For example, analyzing user engagement on
an e-commerce website may benefit from natural language descriptions of user gaze patterns, as many
ads or products might be novel, and cannot be captured by a fixed label set required by categorical
approaches. Furthermore, using natural language to decode user gaze instead of using categorical
labels like “chair” might reveal user engagement with products described as “modern minimalist
chairs with wooden legs”, informing the downstream recommendation system of crucial, fine-grained
nuances, enabling them to suggest visually and stylistically similar items even if they are newly listed
and not in any predefined category—potentially improving user experience.

To bridge this gap, we study the task of decoding a person’s attention to infer their goal, where
the goal ranges from a finite set of categories represented by simple labels (e.g., “bowl”, “car”) to
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free-flowing text comprising unstructured sequences of natural language, rich in context and nuance
(e.g., “red bowl to the left of the cup in the middle”). The input for our task is an image I and a
language instruction T .epec textually representing the gaze scanpath S, and the output is text D
describing the cognitive context of the human. We define cognitive context at both coarse and fine
levels. The coarser level is behavior type, such as whether a person is engaged in a visual search,
object referral, or visual question answering (VQA) task. The finer level consists of a person’s
specific goal, such as the category label of a search target, and free-flowing unstructured text in the
form a referring expression, or a question. To tackle this decoding task, we propose the Gaze-to-text
generation model or Gazette, a multimodal large language model (MLLM) based text-generative
framework, that decodes goal-directed human attention across a wide range of gaze behaviors.

Building on the broad knowledge encoded in foundational MLLMs (Liu et al., 2023} |L1 et al.| 2024c)
and the demonstrated effectiveness of instruction tuning to adapt them to downstream tasks, it is
natural to extend this strategy to train a gaze-to-text decoding model. However, this task presents
unique challenges, as decoding goals from gaze is inherently difficult — gaze behavior is shaped
not only by task-driven goals but also by individual differences among viewers. Since foundational
MLLMs lack domain-specific knowledge in specialized areas (Hamza et al., [2025} [Duan et al., [2024;
Mohbat & Zaki, [2024)) like gaze behavior, they struggle to disentangle goal-relevant signals from
these variations, yielding poor performance when trained solely on the primary gaze decoding task.

To address this limitation and improve model reasoning, we propose a novel approach that encourages
the model to focus specifically on attentional goals while abstracting away individual differences. We
construct auxiliary instruction tuning data that trains Gazette to explicitly learn fop-down attention
allocation strategies by generating think-aloud transcripts (Ericsson & Simonl [1984; van Someren
et al.| [1994) — narratives that highlight attentional patterns and information relevant to the top-down
attentional goal while filtering out individual variability. To annotate these think-aloud transcripts,
we leverage the encyclopedic knowledge and reasoning abilities of GPT-4 (Achiam et al., 2023), a
multi-billion-parameter large language model. We introduce a novel prompting strategy grounded in
our hypothesis that, for a given visual stimulus (e.g., an image), the attentional goal shared across
participants can be inferred from the commonalities in their otherwise diverse gaze patterns.

We show empirically that learning to generate think-aloud transcripts annotated by the teacher model,
i.e., GPT-4, enhances decoding performance across multiple gaze behaviors. By tuning Gazette to
deeply understand the attention allocation strategies, we encourage it to focus on the goal-specific
portions of the scanpath, effectively guiding the primary gaze decoding task. In summary:

1. We introduce the task of unconstrained decoding of goal-directed attention, where top-down
goals are expressed in natural language, supporting a wide range of human gaze behaviors.

2. We propose Gagzette, a novel text-generative MLLM-based framework, that is instruction
tuned to decode a scanpath of gaze fixations (during image viewing) to natural language.

3. We further enhance Gazette by instruction tuning on an auxiliary think-aloud transcript
generation task for identifying goal-specific attentional patterns within scanpaths.

4. We derive ground truth for think-aloud transcripts by prompting GPT-4 using a novel
prompting strategy that exploits commonalities in gaze behavior of multiple observers
engaged in the same top-down attentional task and visual stimulus.

2 RELATED WORK

Goal-directed Human Attention. Goal-directed attention, in contrast to bottom-up attention (Itt1
et al.,|1998}; [Masciocchi et al., [2009)), is the top-down control exerted by frontal-parietal brain areas
that modulates processing of sensory input based on current task demand, prior knowledge and
expectations (Henderson et al.| [2007; [Koehler et al., 2014). Several datasets have been collected
to study various facets of goal-directed gaze behavior. COCO-Searchl8 (Chen et al., [2021) is a
dataset of visual search gaze fixations from 10 participants performing Target-Present/Absent tasks on
6,202 natural images spanning 18 target categories. RefCOCO-Gaze (Mondal et al.,|2024) contains
gaze scanpaths from 220 participants viewing 2,094 COCO images while simultaneously hearing
corresponding referring expressions grounding objects in the images. AiR-D (Chen et al.,[2020) is a
dataset with scanpaths of 20 participants performing the visual question answering (VQA) task for
195 image—question pairs. In this study, we use COCO-Search18, RefCOCO-Gaze and AiR-D.
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Figure 1: Gazette: A text-generative decoding framework for top-down attention. For an input of an
image and a language instruction conveying scanpath information, a textual response is generated by
the Multimodal LLM comprised of a Vision Encoder, an LLM, and a linear projection 6,,,.,; interfacing
the Vision Encoder and the LLM. Language instruction can correspond to either the primary gaze
decoding task GazeDec, or the auxiliary think-aloud transcript generation task ThinkAloud.

Gaze Decoding. Gaze measured by eye-trackers can be a noninvasive means of understanding
human intention. Yarbus (Yarbus,|1967b) showed that eye movements depend strongly on the viewer’s
task, with fixations varying across instructions even for the same visual stimulus, e.g., image. Prior
work has explored decoding goal-directed tasks from eye movements (Zelinsky et al., 2008; 2013}
Bahle et al., 2017} Borji & Itti, 2014} Borji et al.| [2015)), including reconstructing images from
fixations (Wang et al.| 2019} [Strohm et al.| 2021 2023ajb)) and inferring user tasks or activities
from gaze (Bulling et al., 2010; Bektas et al., [2024; Hu et al., 2021b; [Steil & Bulling, 2015; |Chen
et al.,[2022)). Sattar et al. (Sattar et al.l[2015;2017;/2020) studied search target detection for both
images and categories, and later methods predicted search targets from gaze using pre-trained CNN
features (Stauden et al.;, 2018} Barz et al.,|2020). The Gaze Scanpath Transformer (GST) (Nishiyasu &
Sato}, |2024)) model incorporates category semantics into scanpath information to predict visual search
targets using the COCO-Search18 dataset. GazeGNN (Wang et al.,[20244) is a radiological image
diagnosis model, that can be adapted for gaze target decoding. These methods frame decoding as
classification — selecting a single mental state or goal from alternatives — which limits their real-world
applicability. In a related work, Chen et al. (Chen et al., [2024) jointly predicted gaze scanpaths
and generated natural-language explanations for each fixation (ignoring sequential dynamics of
scanpaths). However, our work accepts human scanpaths as an input, not output, and learns to
generate the cognitive context attached to top-down attention. To our knowledge, our proposed
framework, Gazette, is the first gaze-to-text decoding method.

Instruction Tuning of MLLMs. Instruction tuning or supervised fine-tuning (SFT) for multimodal
large language models (MLLMs) adapts pre-trained vision-language architectures for downstream
tasks by training on instruction-response pairs, enhancing model performance on specific tasks and
general instruction-following (Liu et al.| 2023; 2024} Ranasinghe et al.,|2024). Methods like LLaVA
(Liu et al.,2023)) and VIGC (Wang et al.,|2024b)) generate large-scale visual instruction datasets, often
with proprietary LLMs like GPT-4 endowed with image context expressed via object bounding box
annotations in the scene. Visual instruction tuning has been applied in diverse domains. Instruction-
tuned MLLMs have excelled in robotics (Driess et al., 2023} |Li et al.| 2024c)), healthcare (Singhal
et al., [2023), education (L1 et al., 20244a)), and e-commerce (Liu et al., |2024), demonstrating how
instruction tuning transforms general-purpose MLLMs into specialized, domain-adapted agents.
Inspired by these works, we curate the first instruction tuning dataset for gaze, enabling the adaptation
of general-purpose MLLMs for the decoding of gaze behavior.

3 Gagzette: GAZE-TO-TEXT DECODING OF HUMAN ATTENTION

Existing gaze decoding methods for visual search tasks (Barz et al., 2020; Nishiyasu & Satol 2024)
adopt an K -way classification framework to select one of the K predefined search target categories.
However, this severely restricts the applicability and extensibility of these methods to a wider range
of gaze behaviors, particularly those that have complex attribute and contextual information about
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objects, e.g., object referral (Mondal et al.| [2024) and VQA (Chen et al., |2020), needing natural
language specification. To overcome this limitation, we adopt an MLLM-based text-generative
framework for gaze decoding, the Gaze-to-text generation model or Gazette (Fig.[I). Gazette extends
the LLaVA-1.5-7B (Liu et al.,|2024) model and is fine-tuned on our novel visual instruction tuning
data consisting of tasks tightly linked to gaze understanding. The original LLaVA (Liu et al.| 2023)
model integrates a frozen pre-trained Vision Encoder (Radford et al.,2021) with a large language
model (LLM) via a lightweight MLP projection 6,,,; that projects visual features in the LLM’s
token embedding space. This “visual prefix”” and a language instruction prompt from the user are
concatenated and processed by the LLM which then generates language tokens autoregressively to
form the textual response. Following (Ranasinghe et al.l 2024; [Liu et al., 2023} |Li et al., 2024c) that
encoded scene objects and sensorimotor signals using raw text, we represent the scanpath textually
and embed it within the language instruction. In the context of the image, the primary task of Gazette
is to textually decode the cognitive context represented in a hierarchical structure containing two
facets underlying top-down attentional control: (i) the coarser facet behavior type, i.e., the type of
goal-directed behavior (Target-Present Visual Search, Target-Absent Visual Search, object referral,
VQA), and (ii) the finer facet stimulus outlining the specifics of the top-down goal. The stimuli for
visual search is the target category (e.g., “car”, “bottle”), for object referral is the referring expression
(e.g., “red car on the right”), and for VQA is the question (e.g., “what vegetables are on the counter?”).

Although predicting behavior type (i.e., the coarse-level specification of gaze behavior) can be
trivial owing to artifacts from different behavioral data collection setups, decoding the fine-grained
stimulus is a hard task. Naively fine-tuning MLLMs on the primary task alone can be suboptimal
since general-purpose MLLMs seem to lack prior understanding of human attention control and are
unable to disentangle goal-specific information from individual differences within human scanpaths.
Hence, we constructed auxiliary instruction tuning data which involves learning attention allocation
strategies associated with goal-directed behavior by generating think-aloud transcripts detailing the
goal-specific information and attentional patterns. We derive ground truth for think-aloud transcripts
by prompting GPT-4 with a novel strategy that uses scanpaths of multiple participants sharing a
common cognitive context to derive a natural language explanation of the latent attentional processes.

3.1 GAZE SCANPATH DECODING (GazeDec)

We address the extensibility-related shortcomings of existing classification-based gaze decoding
frameworks by formulating the gaze decoding task as an image+text-to-text problem, where the input
is a combination of an image I and text T 4. pe. detailing the scanpath S, and the decoded output
is another text D describing the cognitive context. We call this primary task of Gazette GazeDec. For
an image I € R3*H#*W of dimensions H and W, a gaze scanpath S = {f;[i =0,...,N — 1} isa
sequence of N eye fixations f; = (x;, y;, t;), where f; is represented by three parameters: horizontal
location x;, vertical location y;, and fixation duration ¢;. We normalize x; and y; to the range of [0, 1]
to ensure scale invariance across datasets. As in previous visual instruction tuning work (Li et al.|
2024c; |Liu et al., [2024; |[Ranasinghe et al., [2024)) that represented bounding boxes and sensorimotor
signals in raw text, we represent S textually using a prompt template to produce a language instruction
prompt Tgzepec. Both I and T gqzepec constitute the input to Gazette, which processes the input
and generates a textual response D describing the cognitive context. D can be disentangled into
Dype and D g,4; containing the behavior type and stimulus, respectively, via parsing.

3.2 THINK-ALOUD TRANSCRIPT GENERATION (ThinkAloud)

To endow Gazette with in-depth knowledge of top-down attention processes, we devise a think-aloud
transcript generation task, or ThinkAloud in short. In think-aloud protocol analysis (Fonteyn et al.,
1993), transcripts are composed of “idea units”, the smallest semantically coherent chunks of a
verbal report, each representing a single thought or proposition. Similarly, our think-aloud transcript
has the following idea units: (i) top-down attention allocation explanation, (ii) target location, and
(iii) scanpath length. Similar to GazeDec, the input is image I and language instruction prompt
T rhinkAloud €mbodying the scanpath S, and the decoded output is the think-aloud transcript TaT.

As existing gaze datasets do not contain attention allocation strategies for top-down goal-specific
fixation patterns, we must generate these strategies synthetically. Observers’ eye movement patterns
when viewing the same scene vary dramatically depending on the specific task (Yarbus,|1967a)),
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Figure 2: A novel prompting strategy for GPT-4 to extract top-down attention allocation explanation
for think-aloud transcript generation task (ThinkAloud). This strategy instructs GPT-4 to summarize
common spatiotemporal patterns in scanpaths of n participants, given the task type and goal, along
with scene information via scene object bounding boxes from COCO (Lin et al.| 2014) and Visual
Genome (Krishna et al., 2017). The response is used to construct the think-aloud transcript.

suggesting that goal-specific information is embodied by eye movement patterns. However, human
visual attention is driven by many factors such as bottom-up salience, top-down goals, and idiosyn-
cracies (or “attentional fingerprints,” e.g., genetic factors, personality traits, neurodiversity), making
it non-trivial to identify goal-specific information. We thus hypothesize that scanpaths of different
people sharing a common top-down goal share common patterns,indicative of the top-down goal.
Based on this hypothesis, we devise a novel prompting strategy to query GPT-4 (Achiam et al.l |2023)
to derive pseudo-annotations for think-aloud transcripts corresponding to our gaze data.

Novel prompting strategy for GPT-4 to annotate top-down attention allocation explanation. In
addition to the attentional goal, human top-down attention control is affected by several individual
factors such as age, ocular health, and neurodiversity. These individual factors are analogous to
“style” while the goal is analogous to “content”. We hypothesize that this goal-specific information
is contained within the common spatiotemporal patterns within scanpaths of multiple participants
engaged in the same attentional task for the same visual stimulus, e.g., image. These common patterns
are likely due to the common goal shared by the participants, potentially unaffected by individual-
level idiosyncrasies and noise. Since LLMs excel at identifying patterns within data (Mirchandani
et al.,[2023} |Weber, [2024b) and have encyclopedic world knowledge, we use GPT-4 (Achiam et al.,
2023)) to analyze scanpaths from distinct participants sharing the same cognitive context for the same
image, and summarize the common spatiotemporal patterns (see Fig.[2). As noted in (Wang et al,
2024b), currently available accessible MLLMs are less capable and more expensive than LLMs.
Hence, as in LLaVA (Liu et al.|[2023), we use text-only GPT-4 for its accessibility, cost-effectiveness,
and efficiency. We provide scene context in the form of bounding-box annotations of objects in the
scene derived from COCO (Lin et al.l 2014} for COCO-Search18, RefCOCO-Gaze, and COCO-
originated images in the AiR-D dataset, and from Visual Genome (Krishna et al.||2017) scene graphs
for Flickr-originated images in AiR-D dataset sourced from GQA dataset (Hudson & Manning,
2019). Again, to counter scale variation, we normalize bounding-box parameters. Additionally, we
provide scanpath information for all observers in the form of normalized fixation co-ordinates, raw
fixation durations and category labels of the fixated objects (derived from COCO and Visual Genome
bounding box annotations). Finally, cognitive context is also included in the prompt. Prompt details
are given in Appendix [C} GPT-4’s response reflects common patterns across scanpaths of several
participants, which we hypothesize indicates the top-down attentional allocation strategies utilized
by the human visual system, therefore serving as pseudo-annotation for the “top-down attention
allocation explanation” idea unit of the think-aloud transcript. Because this response captures the
common patterns, it remains consistent across all scanpaths from multiple participants, and can be
used as psuedo-annotation for scanpaths from each individual participant. Additionally, following
previous visual instruction tuning research (Ranasinghe et al.| 2024; |Li et al.| 2024c) adapting MLLMs
for specialized tasks, we propose two fundamental scanpath comprehension tasks as “idea units” in
the think-aloud transcript: target localization, and counting fixations in a scanpath. Since MLLMs
struggle in object localization (Ranasinghe et al.| 2024)), a crucial task underlying gaze behavior for
visual search and object referral (Yang et al., 2022 [Mondal et al., 2023)), we posit that Gazette will
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benefit from learning target localization, particularly for Visual Search and Object Referral tasks.
Following previous MLLM literature (Ranasinghe et al., 2024; [Liu et al.| [2024; [Li et al., [2024c)), we
normalize bounding box parameters [z, y, w, h] (where x, y locate the upper-left corner, and w and h
are the width and height of the bounding box, respectively) to deal with scale variation. This task
also accounts for target-absent cases (null scenario), where Gazette must predict the absence of the
target instead of a bounding box. The second task is inspired by previous research (Tsang et al.|[2010;
Williams & Castelhano| [2019; [Sabab et al.| 2022) suggesting that scanpath length indicates many
properties of gaze behavior, e.g., the degree of exploratory compared to focused behavior. Prompts
for both GazeDec and ThinkAloud along with human evaluation of the ThinkAloud is in Appendix [C]

3.3 MODEL TRAINING AND INFERENCE

The following are training and inference procedures for Gazette. More details are in Appendix

Training. We initialize our model with pre-trained LLaVA-1.5-7B model (Liu et al., [2024)) weights,
and fine-tune it via Low-Rank Adaptation (LoRA) (Hu et al., 2021a).This reduces the number of
trainable parameters, mitigating overfitting on limited gaze training data. We use an auto-regressive
language modeling objective (Liu et al.l 2023) for instruction tuning. Both sets of instructions, i.e.,
T GazeDec for GazeDec, and Trpink Aioud fOr ThinkAloud, are used for instruction tuning.

Inference. We prompt Gazette using T 4. pec and decode the response text using greedy decoding
strategy. The response text is then parsed to obtain the gaze behavior type Dy, and the stimulus
Dgoai- Dyype is encoded using a language encoder (Wang et al., |2020) and matched to label
vocabulary by computing cosine similarities between each text embedding and each label’s language
embedding, where label vocabulary is {“"Target-Present Search”, “Target-Absent
Search”, “Object Referral”, or “Wisual Question Answering”}. Similarly, for
COCO-Search18, D44 is matched with the 18 target categories of the dataset.

4 EXPERIMENTS

Gazette can decode gaze scanpaths for multiple gaze behaviors, including categorical visual search,
object referral, and visual question answering (VQA). In this section, we evaluate Gazette’s gaze
decoding capabilities using a diverse array of metrics across multiple gaze behaviors. Gaze behavior
type prediction is trivial for Gazette (see Suppl.), perhaps because it recognizes artifacts in scanpaths
from distinct behavioral data collection setups. Here, we focus on stimulus decoding.

We train our model on two NVIDIA RTX A6000 cores with a total batch size of 32 and a learning rate
of 2e-5. Training is done on the training splits of COCO-Search18 (both Target-Present and Target-
Absent trials), RefCOCO-Gaze and AiR-D, and evaluation is done on the corresponding test splits.
To evaluate and analyze the efficacy of our proposed auxiliary task, we compare performances of our
full model Gazette trained on both sets of instructions T Ggzepec and Trhink Aloud (corresponding to
GazeDec and ThinkAloud, respectively), and a variant where the MLLM is trained only on T gqzeDec
but not TrpinkAioud. The latter variant is simply denoted as “w/o ThinkAloud”.

While classification-based gaze decoding methods exist (Wang et al.||2024a; [Nishiyasu & Satol [2024)),
Gazette is the first gaze-to-text model to our knowledge, so we constructed baselines based on SOTA
LLaVA (Liu et al., 2024)model. For Object Referral and Target-Present Visual Search, a majority of
last fixations land on the target, so we fine-tune LLaVA-1.5 to describe the object where the final
fixation lands, to yield the gaze stimulus. We call this baseline LLaVA-last. Another baseline is a
frozen LLaVA-1.5 (Liu et al.l |2024) model prompted with scanpath information and instructions
to describe the goal. We also compare Gazette with baselines GST (Nishiyasu & Satol 2024) and
GazeGNN (Wang et al., 2024a)) (adapted by us for visual search) in visual search decoding with
COCO-Search18 (Chen et al., |2021)). More details of Gazette and baselines are in the Appendix@

4.1 EVALUATION METRICS

We curated a broad set of metrics suited to gaze behavior. For visual search, gaze is decoded by
selecting a target category from a predefined set, while for object referral and VQA it is decoded into
free-form referring expressions and questions. Accordingly, the metrics for object referral and VQA
differ from those for visual search, as detailed below.
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4.1.1 TEXT GENERATION EVALUATION METRICS FOR OBJECT REFERRAL AND VQA

We evaluate model text-generative capabilities on Object Referral gaze decoding and VQA gaze
decoding using two paradigms: (1) using standard lexical overlap metrics, and (2) using GPT-4 to
assess generated texts using a set of abstract rubrics, also known as LLM-as-a-Judge paradigm.

Lexical Overlap Metrics. To assess the text generation-based decoding capabilities of Gazette, we
use a broad set of standard metrics used to evaluate the lexical overlap of generated text from text
generation models with the ground truth text. BLEU-1 to BLEU-4 (Papineni et al.l 2002) evaluate
machine-generated text by comparing its n-gram precision (n=1-4) against reference translations and
applies a brevity penalty to discourage overly short outputs. METEOR (Banerjee & Lavie, [2005))
aligns candidate and reference translations via exact, stem, synonym, and paraphrase matches, then
computes a recall-weighted harmonic mean of unigram precision and recall with a fragmentation
penalty to preserve word order. ROUGE-L (Lin,[2004) measures the longest common subsequence
between candidate and reference texts, combining recall and precision into an F-score to capture
sentence-level structure and word-order overlap. CIDEr (Vedantam et al., 2015) captures human
consensus by computing the TF-IDF—weighted cosine similarity of n-gram vectors between a
candidate and multiple references, highlighting terms frequent in the candidate and distinctive in the
references. While there is only one reference question for VQA samples in AiR-D, there are multiple
reference referring expressions in RefCOCO (Yu et al.,2016)) annotated by multiple annotators for
the same object in an image. This allows us to compute lexical overlap metrics for each referring
expression as the candidate, while reserving the others as ground truth. This is repeated for all
referring expressions; the average is the RefCOCO Inter-Annotator Consistency (RefCOCO-IAC).
The consistency values approximate the variability among humans annotating the same object, serving
as a noise ceiling (similar to IOC values in behavioral literature).

LLM-as-a-Judge. In this evaluation paradigm popularized by recent text-generative research (Liu
et al.| 2023; Zheng et al.| 2023)), a very large language model (such as GPT-4) is used as an external
evaluator to assess the quality of the generated outputs, providing a scalable and cost-effective
alternative to human evaluation. Additionally, this allows more interpretable evaluation rubrics to
be used (e.g., fluency, helpfulness, relevance), allowing for a more nuanced, and context-aware,
approach to assessing model-generated text that might not be possible with standard lexical overlap
metrics. For each scanpath, GPT-4 is prompted to evaluate texts using a scale from 1 to 10 for each
rubric, where 1 is poor and 10 is excellent. The prompt also contains these key information: (1)
referring expressions/questions generated by all models to be evaluated, (2) ground truth referring
expressions/questions, (3) scene context in the form of bounding boxes of every object in the scene
(similar to the method described in Sec. , (4) rubrics to evaluate the generated texts on. The
rubrics are distinct for object referral and VQA and are detailed below and in Appendix [C).

For object referral, we use the following rubrics. Expression Overlap - How much does the generated
referring expression match the ground-truth referring expressions, especially in terms of coverage of
the entities, their attributes and spatial relationships? Referential Equivalence - Does either of the
ground-truth expressions refer to the same object in the image as the generated expression? Category
Correctness - Is the type or category of the referred object mentioned correctly?

For VQA, we use the following rubrics. Question Overlap - How much does the generated question
match the ground truth question, especially in terms of coverage of the entities, their attributes and
spatial relationships? Answer Equivalence - Does the generated question and the ground-truth
question have the same correct answer on the image?

4.1.2 TARGET CATEGORY PREDICTION METRICS FOR VISUAL SEARCH TASKS

Since there are scanpaths for 18 distinct target categories in COCO-Search18, we evaluate decoding
methods according to their ability to correctly distinguish these target categories, as quantified by
precision, recall, F; score, and accuracy. Since the COCO-Search18 test set is imbalanced in terms
of number of scanpaths per category, we average the reported precision, recall and F; scores across
the 18 COCO-Search18 search target categories, equally weighting each category. On the other hand,
accuracy does not account for this imbalance, but we include it to compare with accuracy value
reported for SOTA method GST (Nishiyasu & Sato} 2024) whose implementation is not public.
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4.2 RESULTS

Our evaluation assesses the efficacy of Gazette in decoding gaze scanpaths originating from four
top-down attention behavior tasks: Task A — Object Referral, Task B — Visual Question Answering
(VQA), Task C — Target-Present Visual Search, and Task D — Target-Absent Visual Search. First, we
evaluate generative gaze decoding on Object Referral (using RefCOCO-Gaze (Mondal et al., 2023)
dataset) and VQA (using Air-D (Chen et al.| 2020) dataset) tasks under two paradigms: (1) Lexical
Overlap Metric-based evaluation (Table[T) and (2) LLM-as-a-Judge-based evaluation (Table2).

Table 1: Performance of Gazette and baselines on Task A — Object Referral Gaze Decoding evaluated
using RefCOCO-Gaze (Mondal et al} [2024)), and Task B — VQA Gaze Decoding evaluated using
AiR-D (Chen et al., 2020) on the basis of lexical overlap metrics. Best results are highlighted in bold.
Results exceeding RefCOCO Inter-Annotator Consistency (RefCOCO-IAC) values are underlined.
Percentage improvements of Gazette over variant w/o ThinkAloud are provided in parentheses.

Task Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CiDeR
RefCOCO-IAC 0.500 0.282 0.148 0.057 0.244 0452 1.115
Object LLaVA-1.5 (Liu et al.,[2024) 0.066 0.018 0.006 0.0 0.077 0.105 0.062
Referral LLaVA-last 0.170 0.080 0.039 0.014 0.113 0.221 0.113
(Task A) \/o ThinkAloud 0479 0263 0.145 0.070 0232 0443 0.872
Gazette 0.519 0.305 0.175 0.098 0.248 0.480 0.974

(+8.36%) (+15.97%) (+20.69%) (+40.00%) (+6.90%) (+8.36%) (+11.70%)
LLaVA-1.5 (Liu et al.,2024) 0.124 0.030 0.012 0.006 0.039 0.103 0.047
w/o ThinkAloud 0.329 0.222 0.144 0.095 0.147 0286 0.263

Gazette 0.364 0.268 0.202 0.159 0.160 0.324 0.367
(+10.64%) (+20.72%) (+40.28%) (+67.37%) (+8.84%) (+13.29%) (+39.54%)

VQA
(Task B)

Table 2: Performance of Gazette and baselines on Task A — Object Referral Gaze Decoding evaluated
using RefCOCO-Gaze dataset (Mondal et al.| 2024), and Task B — VQA Gaze Decoding evaluated
using AiR-D dataset (Chen et al.| 2020) by GPT-4 (Achiam et al.,|2023) on a scale of 1-10 under the
LILM-as-a-Judge setting. The scores are averaged and provided below with best scores in bold.

Method
Task Rubric LLaVA-last w/o ThinkAloud Gazette
Object Expression Overlap 3.515 5.019 5.980
Referral Referential Equivalence 4.100 5.771 6.638
(Task A) Category Correctness 7.577 8.376 8.743
VQA Question Overlap - 2.103 2.792
(Task B) Answer Equivalence - 1.642 2.135

As shown in Table[T] Gazette trained with auxiliary ThinkAloud task significantly outperforms the
variant not trained on ThinkAloud (“w/o ThinkAloud”), and baselines LLaVA-1.5 (Liu et al., [2024)
and LLaVA-last for both Task A and Task B. Under the LLM-as-a-Judge paradigm (Table [2), the
reported scores follow the same trend seen in lexical overlap metrics, with Gazette outperforming the
variant not trained on ThinkAloud (‘“w/o ThinkAloud”) by large margins on every human-interpretable
rubric. This shows the efficacy of deeper reasoning about the top-down attentional processes via the
ThinkAloud task. LLaVA-last baseline performs poorly in Tables[T]and [2] suggesting that complete
scanpath provides crucial contextfor referring expression generation. In Appendix [A] we explore
the individual effects of idea units within think-aloud transcripts, and show that for Object Referral,
learning both attention allocation explanation generation and target localization enhances performance.
For VQA (where target localization is not relevant), only attention allocation explanation generation
is crucial, as it helps Gazette learn the complex reasoning processes underlying VQA.

Next, we focus on evaluating the target prediction capabilities of Gazette (trained with and without
ThinkAloud), and compare with the baselines GazeGNN (Wang et al.,[2024a) (which we adapt for
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Table 3: Performance of Gazette and baselines on Task C — Target-Present Visual Search Gaze
Decoding, and Task D — Target-Absent Visual Search Gaze Decoding, both evaluated using COCO-
Search18 dataset (Chen et al.,[2021)). Best performance results are highlighted in bold.

Task Method Precision Recall F; Accuracy
Target- LLaVA-1.5 (Liu et al.| [2024]) 0.448 0.436 0.406 0.402
Present LLaVA-last 0.688 0.649 0.628 0.618
Visual GazeGNN .(Wang et al.| 2024 a) 0.338 0.345 0.319 0.335
S h GST (Nishiyasu & Sato} [2024) - - - 0.544
earc
(Task C) w/o ThinkAloud 0.768 0.746 0.742 0.742
Gazette 0.786 0.775 0.775 0.773
Target- LLaVA-1.5 (Liu et al.,|2024) 0.128 0.102  0.077 0.088
Absent GazeGNN (Wang et al., [2024a) 0.241 0.251 0.218 0.270
Visual GST (Nishiyasu & Sato}, [2024) - - - 0.385
(Sl‘fé‘sfl‘(*]‘)) w/o ThinkAloud 0437 0424 0420 0445
Gazette 0.438 0426 0.424 0.443

target prediction), GST (Nishiyasu & Sato, [2024), LLaVA-1.5 (Liu et al., 2024)), and LLaVA-last,
on the COCO-Search18 benchmark (Chen et al.| 2021). The results are shown in Table E} The
implementation for GST is not publicly available, therefore we are unable to furnish metrics not
reported by the authors (i.e., precision, recall, F}). Gazette significantly outperforms previous
methods in all available metrics for both Target-Present and Target-Absent Visual Search tasks.
Gazette-last fares well in recognizing Target-Present gaze targets, but still lags behind Gazette,
suggesting the importance of context provided by scanpaths. In Appendix[A] we show that akin to
Object Referral, both target localization and attention allocation explanation generation idea units are
important for Target-Present search gaze decoding. For Target-Absent trials, training with ThinkAloud
results in modest performance improvements. We attribute this to poor agreement between observers
in Target-Absent search (Yang et al.| [2022)), where gaze behavior increasingly resembles free-viewing
with progression of search (Chen et al., [2022), resulting in low commonality in gaze patterns across
participants, potentially affecting GPT-4’s responses when prompted by our strategy. In Appendix [F|
we qualitatively analyze model-decoded cognitive contexts and think-aloud transcripts, shedding light
on Gazette’s understanding of human attention behavior. We also provide a human evaluation of the
GPT-4 generated transcripts in Appendix [C.2] This paper’s use of LLMs is detailed in Appendix [E]

5 CONCLUSION

In this work, we explored the capabilities of Multimodal LLMs in understanding human attention
behavior, specifically top-down attention control. We proposed Gazette, a novel text-generative gaze
decoding framework to decode a wide array of top-down attention behaviors. Rather than naively
instruction-tuning MLLMs on the primary gaze decoding task, we built an auxiliary dataset for gener-
ating top-down attentional allocation explanations — termed think-aloud transcripts — to encourage
Gazette to explicitly separate goal-specific attentional dynamics from individual idiosyncrasies. To
generate pseudo-annotations for these think-aloud transcripts, we prompted GPT-4 using a novel
prompting strategy which exploits commonalities in gaze patterns across participants engaged in
the same attentional task for the same image. We showed that when trained with a combination of
our proposed primary and auxiliary tasks, Gazette achieved significant performance boost in both
generative and predictive gaze decoding tasks over naive instruction tuning strategies and SOTA
methods, as evaluated by our rigorous evaluation scheme. Although we showed generalization of
Gazette to a diverse set of top-down attentional behaviors, it can potentially be extended to appli-
cations in psychological analysis, driving, and assistive healthcare, which require decoding human
mental states. We expect that Gazette, along with our novel prompting strategy, will inspire future
work to explore new avenues of gaze understanding using LLMs and MLLM:s.

Limitations. Our GPT-4 prompting strategy relies on multi-subject data, limiting its applicability in
single-subject settings. Furthermore, its performance may degrade on tasks with high variability in
gaze behavior, such as Target-Absent Search, where shared attentional patterns are weak or scarce.
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Reproducibility Statement. We provide implementation details of our model, Gazette, and our
GPT-4 prompting strategy in Sec.d|and Appendices|C|and D] Code will be released upon publication.
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APPENDIX

A  PROBING IDEA UNITS IN THINK-ALOUD TRANSCRIPTS

In Sec. @], we mentioned that the think-aloud transcript contain three “idea units”.In this section,
we will discuss their impacts on gaze decoding. Specifically, these three idea units are: (i) top-down
attention allocation explanation, which we denote as GenAttAlloc, (ii) target location, which we
denote as LocTarget), and (iii) scanpath length, which we denote as CountFix. We probe the effects of
these idea units on performance through a series of ablations on the four gaze behaviors in our studies.
In each ablation, we either remove or retain each idea unit in the think-aloud transcript. Note that
for each ablation, T7;nk Alouq 1S identical for fair comparison. The results are in Table Eﬂ, Table El,
Table[6] and Table[7] for Target-Present Visual Search, Target-Absent Visual Search, Object Referral,
and Visual Question Answering (VQA), respectively.

In Table E} we observe that for Object Referral, while GenAttAlloc idea unit (i.e., attention allocation
explanation generation sub-task) is crucial, only when it is combined with target localization sub-task,
do we achieve best performance. We also note that CountFix and LocTarget are not sufficient for
Gazette to learn how to decode object referral gaze optimally. A similar trend is seen in Table|[6] for
Target-Present Search, where localization is more important than any other idea unit. We attribute
this to short scanpaths for Target-Present Visual Search, where fixations usually land on the target
within 1-2 fixations after the initial fixation. On the other hand, GenAftLoc embodying the attention
allocation explanation generation task is most crucial for VQA Gaze Decoding (see Table[5), with
other idea units negatively affecting performance when added to the think-aloud transcript (see
row 5 in Table [5). However, for Target-Absent Visual Search (Table[7), predicting the absence
of the target (embodied by LocTarget) and counting fixations in a scanpath (CountFix) seem to
improve performance more than GenAttAlloc does. We have attributed this to low commonality in
gaze patterns across participants for Target-Absent Search, potentially affecting GPT’s responses
when prompted by our strategy. Overall, we find a combination of all idea units is most beneficial,
prompting us to include all of them in the think-aloud transcript annotations.

Table 4: Probing effects of idea units (GenAttAlloc, LocTarget, CountFix) in think-aloud transcripts
on Object Referral Gaze Decoding. Best results are highlighted in bold. The last row signifies our
full model, Gazette.

GenAttAlloc  LocTarget CountFix BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CiDeR

X X X 0479 0.263 0.145 0.070 0.232 0.443 0.872
v X v 0.455 0.241 0.121 0.061 0.224 0.429 0.806
v v X 0485 0.275 0.152 0.076  0.233 0452 0910
X v v 0494 0.272 0.153 0.085 0.239 0.446 00918
v X X 0472 0259 0.134 0.061 0.227 0.426 0.838
v v v 0.519 0.305 0.175 0.098 0.248 0480 0974
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Table 5: Probing effects of idea units (GenAttAlloc, LocTarget, CountFix) in think-aloud transcripts
on VQA Gaze Decoding. Best results are highlighted in bold. The last row signifies our full model,

Gazette.
GenAttAlloc  LocTarget CountFix BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CiDeR
X X X 0.329 0.222 0.144 0.095 0.147 0.286  0.263
v X v 0.354 0.252 0.178 0.133  0.155 0.316  0.300
v v X 0.364 0.264 0.193 0.147 0.163 0.330 0.310
X v v 0.369 0.261 0.184 0.138 0.156 0.327 0.278
v X X 0.375 0.278 0.206 0.159 0.169 0.342 0.433
v v v 0.364 0.268 0.202 0.159 0.160 0.324  0.367

Table 6: Probing effects of idea units (GenAttAlloc, LocTarget, CountFix) in think-aloud transcripts
on Target-Present Visual Search Gaze Decoding. Best results are highlighted in bold. The last row

signifies our full model, Gazette.

GenAttAlloc  LocTarget CountFix Precision Recall F Accuracy
X X X 0.768 0.746  0.742 0.742
v X v 0.714 0.709  0.701 0.703
v v X 0.759 0.753  0.749 0.748
X v v 0.765 0.745 0.745 0.749
v X X 0.692 0.686 0.679 0.686
v v v 0.786 0.775  0.775 0.773

B GAZE BEHAVIOR TYPE PREDICTION RESULTS

The gaze behavior type prediction results for Gazette with and without ThinkAloud instruction tuning
are provided in Table[§] As mentioned in Sec. 4] we find that gaze behavior type prediction is trivial
for Gazette, achieving more than 0.90 across precision, recall, and F; scores, regardless of whether
it is trained with or without ThinkAloud instructions. We attribute this to the fact that the four gaze
behaviors we study are derived from three distinct datasets, collected under different behavioral
setups, potentially contributing to artifacts that can easily be recognized by the model without
additional supervision from think-aloud transcripts. However, following previous gaze decoding
work (Nishiyasu & Satol 2024) and for the sake of completeness, we retain the coarser behavior type
facet of the cognitive context. The main focus of the paper remains decoding the finer stimulus facet
of the cognitive context, which has been shown to be a non-trivial task in this paper.
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Table 7: Probing effects of idea units (GenAttAlloc, LocTarget, CountFix) in think-aloud transcripts
on Target-Absent Visual Search Gaze Decoding. Best results are highlighted in bold. The last row
signifies our full model, Gazette.

GenAttAlloc  LocTarget CountFix Precision Recall ) 1 Accuracy

0.437 0424  0.420 0.445
0.421 0.409  0.409 0.427
0.434 0425 0423 0.445
0.445 0426 0.424 0.456
0.422 0418 0412 0.438
0.438 0426 0.424 0.443

NAX NS X
AX NN X X
X A X N X

Table 8: Performance of Gazette (full model and wgThinkAloud on gaze behavior type prediction as
measured by precision, recall, and F; scores.

Task Method Precision Recall F;

Object Referral (Task A) v(t;;oze];ftzénkAloud 832 833 83;
Visual Question Answering (Task B) vcv;;oze];}tzeinkAloud (1)8(9) (1)8(8) (1)88
Target-Present Visual Search (Task C) gilozg;ltzeinkAloud 82;’1 82; 823
Target-Absent Visual Search (Task D) va/;ZZ;anAloud 82; 822 82;7;
Tasks A, B, C, and D combined v(t;;oze];ftzénkAloud 83(1) 83(1) 83(1)
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C PROMPTING PROCEDURES FOR GAZETTE AND GPT-4

C.1 GAZETTE INSTRUCTION TUNING.

The instruction tuning data used to fine-tune Gazette is a combination of two types of instructions for
the same scanpath-image input, where the scanpath is generally denoted as a series of fixations (x,y,t):
[(z0,Y0,t0), --» (TN—1,YN—1,tN—1)]. Note that the spatial coordinates x and y are normalized while
fixation duration t is unnormalized. An example fixation is: (0.661, 0.112, 272.0).

¢ Instruction T, .cpe. for primary task GazeDec:

We use the following prompt template to construct instruction T g epec for primary task
GazeDec:

Given a scanpath [(zg, Yo, o), e (xN-1,YN—-1,tN-1)], which is a
list of fixations [x, y, t], with spatial co-ordinates

x and y normalized between 0 and 1 and t as the fixation
duration), analyze the sequence in the context of the

given image to infer the underlying cognitive process
defined by the top-down task #TASK and the top-down stimulus
#STIMULUS. Approach the problem through these systematic
steps: (1) Identify the task type (Target-Present Search,
Target-Absent Search, Object Referral, or Visual Question
Answering) and label it as #TASK. (2) Generate a description
of the top-down stimulus or goal, marking it as #STIMULUS.
(3) Format your final response as: <task> #TASK </task>
<stimulus> #STIMULUS </stimulus>

The ground-truth response is in XML format for easy parsing of the textual re-
sponse from Gazette to Dyy,. and Dg,q;. A sample response is: <task> Object
Referral </task> <stimulus> red car on the left </stimulus>

e Instruction T 7,1 A10ud for ThinkAloud
We follow recent instruction tuning work (Li et al., [2024b; |Ca1 et al., [2025) and combine
all idea-units of the think-aloud transcript into a single instruction T7pinkAioud, thus
avoiding training Gazette on the same image-scanpath pair multiple times that leads to poor
generalization on our limited gaze training data. The prompt template for TrpinkAloud 18
the following:

Given a scanpath [(zo,%0,%0); --» (*N—1,YN—-1,tN—-1)], which is a list
of fixations [x, vy, t]l, with spatial co-ordinates x and y
normalized between 0 and 1 and t as the fixation duration),
analyze the sequence in the context of the given image

to describe the attention allocation strategy #STRATEGY.
Approach the problem through these systematic steps: (1)
Describe the attentive strategy based on fixation density,
areas of interest, durations, and spatiotemporal patterns
between fixations and label this text as #STRATEGY. (2)
Generate #STRATEGY as: <strategy> #STRATEGY </strategy>"

C.2 GPT-4 PROMPTING STRATEGY FOR T 7hinkAloud

The prompt template for querying GPT-4 using our prompting strategy is:

System prompt: You are a specialist in human visual attention,
adept at analyzing images through bounding box annotations and
summarizing fixation patterns.

User  prompt: Given an image described by objects represented as
<category: [x, v, w, h]>:[SCENE_OBJECTS], and 10 humans are
searching for a TARGET labeled “bottle“that is present in the
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Stimulus: Object Referral for ‘“car on the right”.

GPT-4 generated: Most humans initially fixate on the large vertical parking meter spanning a significant
portion of the left-central part of the image, then shift focus toward the large car located on the right side,
spending varying durations there.

Figure 3: For the given image and a give top-down task (object referral for referring expression “‘car
on the right", GPT-4 summarizes the common spatiotemporal patterns across several scanpaths
(here, we show four scanpaths for the same image-stimulus pair) as per our novel prompting strategy.

image. Eye movements of each human are recorded as a scanpath

- a sequence of fixations, with each fixation represented as
<x-location, y-location , fixation duration, object fixated>:
Human 0 - <fizg, ..., fizp>, ..., Human 9 - <fizg, ..., fixy>,
identify and concisely merge the most common spatiotemporal
patterns across all scanpaths in one sentence. Use clear,
unambiguous referring expressions containing attributes and
spatial relationships to refer to objects, and avoid referencing
individual scanpaths, adding extra information, or formatting the
response.

Note that [SCENE_OBJECTS] are represented by a list of scene objects, each represented by
category of the object and its normalized bounding box, e.g., <bottle:[0.634, 0.068, 0.058, 0.321]>,
<chair:[0.519, 0.002, 0.27, 0.304]>. Additionally, each fixation fix; is represented as normalized
X,y co-ordinates, raw fixation duration, and category of the fixated object, e.g., (0.661, 0.112, 272.0,
bottle). As mentioned in Sec.[3] the category of the fixated object is derived from COCO and Visual
Genome annotations. Through this prompt, we leverage the general pattern-understanding capabilities
of GPT-4 as documented by several works (Mirchandani et al., 2023} Weber, |2024al), and do not
assume that GPT-4 implicitly understands gaze behavior. Previous work on MLLMs have successfully
used GPT-4 for spatial and spatio-temporal synthetic training data generation like LLaVA (Liu et al.,
2023) , VIGC (Wang et al.,|2024b)), Zhang et al. (Zhang et al.)). Following their footsteps, we used
GPT-4 to synthesize our own auxiliary instruction tuning data which resulted in better performance,
as evidenced by our experimental results. Sample scanpaths for an image-stimulus pair and the
corresponding GPT-4 generated response for our prompting strategy are provided in Figure 3]

Human evaluation of quality of GPT-4 generated transcripts. To evaluate the quality of the
GPT-4 generated transcripts, we recruited three participants to rate 50 GPT-4 generated transcripts.
For each image-stimulus pair corresponding to a GPT-4-generated transcript, we first sampled 5
scanpaths included in the prompt to GPT-4 for generating that transcript (positive samples). Five
more scanpaths corresponding to other image-stimulus pairs were also sampled (negative samples).
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Hence we obtain 10 scanpaths in total per image-stimulus pair. Each of these 10 scanpaths is
overlaid on the given image and presented to three participants to rate (on a scale of 1-5, 1 being
very inconsistent and 5 being very consistent) based on the displayed scanpath’s consistency with
the GPT-4-generated attention allocation description. This assessment showed that the level of
hallucination in these GPT-4 generated transcripts is limited, as participants’ ratings for positive
samples were statistically significantly higher than for negative samples (p < 0.05), both in terms of
ratings of each individual participant and ratings of all three participants combined. On the scale
of 1-5, positive samples were rated on average 3.28 (x£1.29 ), and negative samples were rated on
average 2.04 (£1.06). we performed paired samples t-test and regression modeling to account for the
between-item response biases. For paired samples t-test, T-statistic = 17.662 and p-value < 0.001,
which also suggests that there is a strong and statistically significant difference between scores for
positive and negative samples, with positive samples scoring higher on average. Similarly, mixed
linear regression modeling of the survey scores revealed that positive samples had scores about 1.25
points higher than negative samples on average (recall that the survey scores were on a scale of 1-5,
making this difference quite significant), and this effect is large and statistically significant (z-value =
21.128, p < 0.001). Also, group variance (0.092) was small compared to residual variance (1.3024),
suggesting that most of the variation is within conditions rather than across items.

C.3 GPT-4 PROMPT TEMPLATE FOR LLM-AS-A-JUDGE EVALUATION.

We use a comparative prompt comparing multiple methods, as done in Xiong et al. (Xiong et al.,
2024])), by providing the texts generated by them in order to give GPT-4 more context in evaluation. A
sample is provided below:

System Prompt: You are a decisive evaluation assistant specializing
in analyzing images with bounding box annotations and assessing
generated expressions. For each case, compare Output A, Output

B, Output C, Output D, and Output E against the provided ground
truth. Assign distinct scores unless the outputs are truly
equivalent. If you judge one output strictly better on any
criterion, assign it at least 2 points higher.

User  Prompt: Given an image described by objects represented as
<category: [x, vy, w, h]>: <bicycle:[0.153, 0.434, 0.517, 0.49]>,
<car:[0.111, 0.25, 0.485, 0.347]>, <car:[0.68, 0.222, 0.23¢,
0.271]1>, <bench:[0.085, 0.617, 0.643, 0.37]1>, <car:[0.61, 0.257,
0.157, 0.1111>, <car:[0.428, 0.243, 0.256, 0.155]1>, <truck:[0.083,
0.187, 0.199, 0.191]> , please compare the following generated
referring expressions: Output A: “the car on the far right",
Output B: “right side suv“, Output C: “car on right“, Output D:
“white car to right", Output E: “white car on right™ with the
ground truth expressions [“benz“, “silver benz“, “right car"“]
referring to the object in bounding box [0.68, 0.222, 0.234,
0.269] based on “Expression Overlap"“ (How much does the generated
referring expression match the ground truth referring expressions,
especially in terms of coverage of the entities, their attributes
and spatial relationships?), “Referential Equivalence"“ (Does
either of the ground truth expressions refer to the same object

in the image as the generated expression?) “Category Correctness™“
(Is the type or category of the referred object mentioned
correctly?). Use a scale from 1 to 10 for each criterion, where

1 is poor and 10 is excellent. Format the response in the form
of a dictionary with exactly five top-level keys: “Output AY,
“Output BY, “Output C%, “Output D“ and “Output E“. Each of those
keys maps to a nested dictionary with exactly the following keys

- “Expression Overlap“, "“Category Correctness“, and “Referential
Equivalence“ - whose values are your numeric scores. Do not
include explanations, provide only the scores.
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D IMPLEMENTATION DETAILS

Gazette. We initialize the weights of Gazette from pre-trained LLaVA-1.5-7B (Liu et al., [2024)
architecture. This model houses a Vicuna (Chiang et al.|[2023)) v1.5 LLM and for the vision encoder,
and uses a CLIP (Radford et al.,2021)) VIT-large image encoder. We train all Gazette variants using
LoRA (Hu et al.}[2021a) for a maximum of 3 epochs, with a learning rate of 2e-5 (cosine learning
rate scheduler), a batch size of 32, and maximum LLM context length of 2048. All code is written in
PyTorch (Paszke et al.|[2019), and we used DeepSpeed (Rasley et al.|[2020) acceleration framework
for training. We train our models on two NVIDIA RTX A6000 (48 GB) cores, with each training
epoch taking approximately 16 hours to complete. During inference, processing of each scanpath
(one inference sample) took approximately 1.2 seconds to complete. For inference-time matching for
behavior type Dy, and stimulus (target category) for Target-Present and Target-Absent search trials,
we use the language encoder, MiniLM (Wang et al., 2020), to encode the generated texts and labels
in the label-vocabulary and consequently match the generated texts with labels by computing cosine
similarities between language embedding of the generated text and language embedding of each label
in the label vocabulary. Finally, we pick the label with the highest cosine similarity. For Dy, ., the
label-vocabulary is ["Target-Present Visual Search”, “Target—-Absent Visual
Search”, “Object Referral”, “Wisual Question Answering”]; for target cate-
gories in visual search, the label vocabulary is the set of 18 categories in COCO-Search18 (Chen
et al., 2021). Note that for VQA samples, the localization idea unit in a think-aloud transcript is
simply a placeholder saying “The human is answering a question about the image”, since there are no
targets to localize. We use GPT-40 version of GPT-4 to create the think-aloud transcripts and as the
evaluation engine under LLM-as-a-Judge evaluation paradigm.

LLaVA-last. LLaVA-last is a model that involves predicting the goal based on the last fixation. It is
initilaized with the weights of Gazette from pre-trained LLaVA-1.5-7B (L1u et al., [2024)) architecture.
Then following the same hyperparameters as Gazette, we train the model on gaze decoding
with this prompt template: Describe the object at co-ordinate (x,y). Use
referring expressions if there are multiple objects of the same
category, else just generate the object category which you can
choose from [bottle, bowl, car, chair, clock, cup, fork, keyboard,
knife, laptop, microwave, mouse, oven, potted plant, sink, stop
sign, toilet, tv]. Thistemplate is also used for inference. Note that mentioning the list of
categories help for LLaVA-last, but not for Gazette, as revealed by our experiments - perhaps because
LLaVA-last is trained on only Object Referral and Target-Present Visual Search, but Gazette is
trained on additional Target-Absent Visual Search and VQA, the latter not having any singular target.

LLaVA-1.5. This baseline is the frozen, pretrained LLaVA-1.5-7B model (Liu et al., 2024). We
provide the same GazeDec prompt, with one modification — for visual search scanpaths, we provide
the set of COCO-Search18 categories in the prompt, similar to LLaVA-last.

GazeGNN. We implemented GazeGNN (Wang et al,, |2024a) for gaze target classification.
Nishiyasu et al. (Nishiyasu & Satol[2024)) also implemented GazeGNN but this implementation is not
public. Specifically, we replace the final classification layer with two classification layers to do the
following tasks: (i) predict behavior type (Target-Present or Target-Absent) and (ii) predict stimulus
(one of 18 COCO-Search18 categories). This baseline is not extensible to Object Referral and VQA.
All hyperparameters are preserved as designated by the authors of GazeGNN.

E LLM USAGE

This paper employs LLMs in three ways: (1) Our proposed model, Gazette, is based on a pre-trained
LLaVA-1.5-7B (Liu et al.l [2024)) architecture which contains a pre-trained Vicuna (Chiang et al.|
2023) v1.5 LLM. (2) We used GPT-40 to derive the think-aloud transcripts for auxiliary instruction
tuning of Gazette. (3) We used GPT-4o0 to refine the grammar of this paper.
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F QUALITATIVE ANALYSIS

In this section, we qualitatively analyze the model-generated predictions and the attention-allocated
explanations generated by Gazette. The qualitative examples are in Fig. 4] Fig.[5] Fig.[6] and Fig.[7]

Fig. @ shows a scanpath of a human grounding the referring expression “silver benz”, and Gazette
both trained with or without ThinkAloud instructions identify the correct category, i.e., car, but without
deeper understanding of the verification and scanning strategies exhibited by the scanpath through
ThinkAloud instruction tuning, the model misinterprets the “red car” to be the target, whereas our full
Gazette model trained on ThinkAloud instructions identifies the correct car by analyzing the gaze
patterns, as evidenced by the generated attention allocation explanation. The crucial contribution
of ThinkAloud task is underscored by the model behavior for VQA scenarios, as shown in Fig. [5]
where complex reasoning patterns are at play. We see that Gazette trained with ThinkAloud interprets
the scanpath correctly and manages to reconstruct the question from the scanpath to a great degree,
even though it asks about “curtains” instead of the “window” they cover. On the other hand, without
ThinkAloud, Gazette miserably fails to decode the question corresponding to this scanpath. In Fig.
we see a scanpath for a Target-Present search for a “TV”. Owing to fixations next to the chair and
close to the floor, Gazette trained w/o ThinkAloud instructions erroneously predicts a Target-Absent
search for a “potted plant”. As evidenced by the attention-allocation explanation generated by Gazette
trained with ThinkAloud instructions, Gazette correctly identifies the target “TV” that is present in
the image. Finally, we show a scanpath of Target-Absent for a “bowl” in Fig.[7] We see that Gazette
trained with ThinkAloud instructions identifies the Target-Absent search for a “bowl” correctly,
instead of mispredicting the “fork™ distractor object category. We posit that this because of the model
finding no fixations to a fork’s distractor object in the scene, i.e., spoon, but to the “cup” which is a
distractor for a “bowl”, as captured within the generated attention allocation explanation.

Gazette Predicts: Object Referral for “black car top right”.
Gazette w/o ThinkAloud Predicts: Stimulus:Object Referral for “red car”.

Gazette-generated attention-allocation explanation: Most humans initially fixate on the road before shifting
their attention to the car located in the upper right corner of the image, often after scanning other cars and
occasionally focusing on people in the vicinity.

Figure 4: Qualitative Results [1/4]. Comparison of methods on decoding a gaze scanpath corre-
sponding to Object Referral for referring expression “black car on right”. The target object is
within the blue bounding box. We provide model predictions from full model Gazette, and its variant
not trained on ThinkAloud instructions. We also provide the attention allocation explanation idea unit
in the Gazette-generated think-aloud transcript.
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Gazette Predicts: VQA for “Are there curtains to the right of the chair that is to the right of the lamp?”’
Gazette w/o ThinkAloud Predicts: VQA for “Is there a table to the right of the vase?”

Gazette-generated attention-allocation explanation: Most humans fixated on the chandelier and chain, located
centrally in the image, before moving to the curtains and window positioned to the right of the chair, with
frequent attention to the light and cabinet near the right edge.

Figure 5: Qualitative Results [2/4]. Comparison of methods on decoding a gaze scanpath corre-
sponding to Visual Question Answering for the question “Is the window behind the chair near
the pillows?”. We provide model predictions from full model Gazette, and its variant not trained
on ThinkAloud instructions. We also provide the attention allocation explanation idea unit in the

Gazette-generated think-aloud transcript.

Gazette Predicts: Target-Present Search for “TV”.
Gazette w/o ThinkAloud Predicts: Target-Absent Search for “Potted Plant”.

Gazette-generated attention-allocation explanation: Most humans initially fixate on the wall or fireplace,
then shift their gaze towards the vicinity of the TV, often fixating on or near the TV multiple times, with some
eventually locating the TV positioned slightly below and to the right of the center of the image.

Figure 6: Qualitative Results [3/4]. Comparison of methods on decoding a gaze scanpath correspond-
ing to Target-Present Search for a “TV”. We provide model predictions from full model Gazette,
and its variant not trained on ThinkAloud instructions. We also provide the attention allocation
explanation idea unit in the Gazette-generated think-aloud transcript.
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Gazette Predicts: Target-Absent Search for “Bowl”
Gazette w/o ThinkAloud Predicts: Target-Absent Search for “Fork”.

. 4
Cafeligris -

Gazette-generated attention-allocation explanation:Most humans initially fixate on the large cake in the
center of the image before shifting their gaze to the cups located on the upper right side, often returning to the

cake or intermittently fixating on the dining table.

Figure 7: Qualitative Results [4/4]. Comparison of methods on decoding a gaze scanpath correspond-
ing to Target-Absent Search for a “bowl”. We provide model predictions from full model Gazette,
and its variant not trained on ThinkAloud instructions. We also provide the attention allocation
explanation idea unit in the Gazette-generated think-aloud transcript.
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