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Abstract
Robustness to Out-of-Distribution (OOD) samples is crucial for the successful deployment of
machine learning models in the open world. Since it is not possible to have a priori access to a
variety of OOD data before deployment, several recent works have focused on designing scoring
functions to quantify OOD uncertainty. These methods often find a threshold that achieves 95%
true positive rate (TPR) on the In-Distribution (ID) data used for training and use this threshold
for detecting OOD samples. However, this can lead to very high FPR as seen in a comprehensive
evaluation of the Open-OOD benchmark, the FPR can range between 60 to 96% on several ID and
OOD dataset combinations. In contrast, practical systems deal with a variety of OOD samples on the
fly and critical applications, e.g., medical diagnosis, demand guaranteed control of the false positive
rate (FPR). To meet these challenges, we propose a mathematically grounded framework for human-
in-the-loop OOD detection, wherein expert feedback is used to update the threshold. This allows the
system to adapt to variations in the OOD data while adhering to the quality constraints. We propose
an algorithm that uses any time-valid confidence intervals based on the Law of Iterated Logarithm
(LIL). Our theoretical results show that the system meets FPR constraint while minimizing the
human feedback for points that are in-distribution. Another key feature of the system is that it can
work with any existing post-hoc OOD uncertainty-quantification methods. We evaluate our system
empirically on a mixture of benchmark OOD datasets in image classification tasks on CIFAR-10
and CIFAR-100 as in distribution datasets and show that our method can maintain FPR at most 5%
while maximizing TPR.
Keywords: Out-of-Distribution Detection, False Positive Rate Control, Law of Iterated Logarithms

1. Introduction
Deploying machine learning (ML) models in the open world makes them subject to out-of-distributions
(OOD) inputs — in the classification setup OOD data points are those that do not belong to any of
the classes in the training data. The modern ML models, in particular deep neural networks, can fail
silently with high confidence on OOD points Nguyen et al. (2015); Amodei et al. (2016) rather than
flagging them as OOD and asking for human intervention as they are not designed to do so. Such
failures can have serious consequences in high-risk applications e.g. medical diagnosis, autonomous
driving, etc. For a successful deployment of an ML model in the open world, we need mechanisms
that ensure robustness to the OOD inputs.

The importance of this problem has prompted the development of several solutions. Many of
these works have addressed this problem by proposing post-hoc methods for OOD detection Liang
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Figure 1: Illustration of OOD detection with human-in-the-loop with FPR control. In this example, the ID
data is of brain scans of normal people and those with Alzheimer’s disease. The OOD data could
be anything other than these, e.g. brain scans of patients with some other diseases.

et al. (2017); Lee et al. (2018); Liu et al. (2020); Ming et al. (2022). Broadly, these works offer
methods to quantify a score that can be used to decide OOD vs ID label for a given point. Many
of these methods are based on the distance between data points or a model’s confidence score in
prediction, for a detailed survey of literature in the area of generalized OOD detection, see Yang
et al. (2021b). However, many of these works are largely limited to static settings where the ID data,
which is available in a plenty for training and validating the ML system is used to set a threshold
on the scores used for OOD detection Liang et al. (2017); Liu et al. (2020); Ming et al. (2022).
This is usually done by setting a threshold that achieves a certain level of true positive rate (TPR),
e.g., TPR of 95%. However, this can lead to a very high false positive rate (FPR,) e.g., ranging
between 60% to 90% on several benchmarked ID and OOD dataset combinations Yang et al. (2022).
Furthermore, even if the ID data distribution remains the same after deployment, the OOD data
could vary, resulting in highly fluctuating FPR. Thus, having a small and fixed amount of OOD data
collected a priori to validate the FPR at a given threshold would not help in guaranteeing FPR.

In critical applications, the consequences of classifying an OOD point as ID (false positive) could
be more catastrophic than classifying an ID point as OOD (false negative), e.g. in medical diagnosis,
when in doubt it is better to classify a brain scan as OOD and defer the decision to human experts
rather than for the ML model to give it a disease label or classify as normal assuming it to be ID.
Therefore, it is crucial to guarantee that the false positive rate (FPR) is below a certain acceptable
rate, e.g., FPR below 5%. Since the availability of exact type of OOD data that the system can
encounter during deployment is rare, it is crucial to design systems that can adapt to the OOD data
while controlling the FPR during deployment.

Goal: Develop human-in-the-loop out-of-distribution detection system that has guaranteed false
positive rate control while minimizing the amount of human intervention needed.

In this work we present a framework for human-in-the-loop Out-of-Distribution (OOD) detection,
ensuring strict control over the false positive rate (FPR) while adapting to diverse OOD data.
Our Contributions: Toward this goal, we make the following contributions:
1. Human-in-the-loop OOD detection framework: We propose a novel mathematically grounded

framework that incorporates expert human feedback to adaptively update the OOD detection
threshold, ensuring robustness to variations in OOD data encountered after deployment. Our
framework can be used with any scoring function.
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2. Guaranteed FPR control: Our approach leverages mathematically grounded confidence intervals
based on the Law of Iterated Logarithm to meet false positive rate (FPR) constraints while
minimizing the need for human feedback on in-distribution points. For stationary settings, we
provide theoretical guarantees for our proposed framework and algorithm on controlling FPR at
the desired level at all times and also provide a bound on the time taken to reach a given level of
optimality. Using the insight from this analysis, we also propose an approach for settings with
change points that reduces the duration of violation of FPR control before adapting to the change.

3. Empirical validation on benchmark datasets: We evaluate our framework through extensive
simulations both in stationary and distribution shift settings. Through experiments on benchmark
OOD datasets in image classification tasks, we demonstrate the practical effectiveness of our
proposed approaches.
The paper is structured as follows: Section 2 presents the framework in detail, while Section

5 provides theoretical guarantees on False Positive Rate (FPR) control. In Section 7, we conduct
a comprehensive empirical evaluation of the proposed system. The proof details and extensive
experimental results are in Appendix.

2. Human-in-the-Loop OOD Detection
In this section, we discuss our proposed system in detail. Recall that we are motivated by two
facts. First, the type of OOD samples the system will encounter after deployment are often not
available during development, hence we need to build OOD detection systems that can adapt
to various kinds of OOD data that it encounters on-the-fly after deployment. Second, in many
critical applications, the cost of false positives i.e. misclassifying an OOD point as ID can have
more severe consequences than misclassifying an ID point as OOD e.g., in medical diagnosis
of brain scans, when in doubt it is preferable to classify a scan as OOD and seek the input of a
radiologist, rather than labeling it with a disease or as normal using the machine-learned classifier.

Algorithm 1 Human in the Loop OOD Detection
Input: FPR threshold α , window size Nw,

1: sampling probability p ∈ (0, 1) Scoring func-
tion g : X 7→ R,

2: S0 = Φ, λ̂0 = ∞
3: for t = 1, 2, . . . do
4: Receive data point xt ; st = g(xt)
5: if st ≤ λ̂t−1 then lt = 1 else lt ∼
Bernoulli(p)

6: if lt = 1 then
7: yt = GetExpertLabel(xt)
8: St = St−1 ∪ {(st, yt)}
9: λ̂t = SolveForLambda(St, Nw, α)

10: ŷt = sign(st − λ̂t)
11: if lt = 1 then Output yt else Output ŷt
12: end for

We propose a human-in-the-loop OOD de-
tection system (Figure 1) that can work with
any ML inference model and scoring function
for OOD detection. We begin by describing
the problem setting and then discuss each com-
ponent of our proposed system in detail. See
algorithm 1 for step-by-step details.

Data stream: Let X ⊆ Rd denote the fea-
ture space of the data points. The OOD detection
system is expected to classify an incoming data
point as either “1” i.e. ID (In Distribution) or
”−1” stands i.e. OOD (Out Of Distribution). In
short, the label space is Y = {−1, 1}. Let the
distribution of ID and OOD data be denoted
by Did and Dood respectively. Let xt ∈ X
denote the sample received at the time t. Let
yt ∈ {−1, 1} denote the true label for xt with respect to ID or OOD classification. We assume xt are
independent and drawn according to the following mixture model, xt ∼ (1− γ)Did + γDood, where
γ ∈ (0, 1) is the fraction of OOD in the mixed stream. Note that Did, Dood and γ are unknown.
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Scoring function for OOD detection: After receiving data point xt, the system uses a given
scoring function, g : X 7→ S ⊆ R, to compute a real-valued score quantifying the uncertainty of
the point being ID or OOD. There are several scoring functions that have been developed recently
e.g. energy-based scores Liu et al. (2020), Mahalanobis distance-based scores Lee et al. (2018) etc.
Some of these scoring functions are quite accurate in providing scores to classify points as OOD or
ID and designing more accurate functions is an active area of research. Our system can use any of
these post-hoc OOD uncertainty quantification functions. We emphasize that our aim is not to design
a new OOD uncertainty quantification method (scoring function), instead, we propose a system in
which any such g can be plugged in and it can control the FPR.

Denote the score computed for point xt as st = g(xt). To be consistent across various scoring
functions, let a higher score indicate ID and a lower score indicate OOD points. After computing
the uncertainty score st the system needs to decide whether xt is OOD or ID, which is done using
a threshold-based classifier parameterized with λ ∈ Λ ⊆ R: hλ(g(x)) = sign(g(x)− λ). Here we
assume Λ = (Λmin,Λmax) is a subset of R. The threshold-based prediction is common in the OOD
detection literature Liu et al. (2020); Lee et al. (2018). Since OOD data is usually not available
during development, a common practice is to find a threshold λ̂ that correctly classifies at least 95%
of the ID data used for training/validation of the ML system as ID, i.e., λ̂ is chosen for achieving
95% TPR. While simple, a drawback of this approach is that it can result in an exceedingly high FPR,
as demonstrated by a thorough examination conducted in the Open-OOD benchmark, where the FPR
can range from 60% to 96% on various combinations of ID and OOD datasets. In contrast, real-world
systems must handle a diverse range of OOD samples in real time, and for critical applications such
as medical diagnosis, it is imperative to ensure control over the FPR. The population level FPR and
TPR for any λ ∈ Λ are defined as follows,

FPR(λ) = Ex∼Dood
[1{g(x) > λ}] and TPR(λ) = Ex∼Did

[1{g(x) > λ}]. (1)

Figure 2: Optimal λ⋆ for the optimization prob-
lem (P1) with α = 0.05 and xt

i.i.d∼
0.7 Din + 0.3 Dout, where the scores of
Din and Dout are distributed as N (4, 1) and
N (0, 1) respectively.

Note that the cumulative distribution
function (CDF) of Dood, CDFDood

(λ) =
Ex∼Dood

[1{g(x) ≤ λ}]. Therefore, FPR(λ) =
1 − CDFDood

(λ). Similarly, TPR(λ) = 1 −
CDFDid

(λ). Since the CDF of any distribution
is a monotonic function, both the FPR and TPR
are monotonic in λ.

Expert feedback and importance sam-
pling: In our proposed system, we choose λ
adaptively using human feedback so that the
FPR is maintained below the user-specified rate
of α. One can of course achieve this trivially by
setting λt = Λmax, i.e., always getting human
feedback. This would of course be extremely
expensive and defeat the purpose of having a ma-
chine learned classification model. Therefore,
in addition to controlling the FPR, we want to
minimize the human feedback solicited by the system. This is equivalent to maximizing the true
positive rate. That is, λt := arg maxλ TPR(λ) subject to FPR(λ) ≤ α. Since the TPR is monotonic
in λ, this can be re-written as,
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λ⋆t := arg minimize
λ∈Λ

λ, subject to FPR(λ) ≤ α. (P1)

Optimal threshold, denoted by λ⋆, is the smallest λ such that FPR(λ⋆) = α = 1− CDFDout(λ
⋆)

(see Figure 2).
When the distribution of the OOD points, Dood, is not changing, if we had access to the true

FPR, then λ⋆t = λ⋆. Note that, γ, the mixture ratio, or the distribution of the ID points Did changing
does not affect the value of the optimal threshold. As we do not have access to the true FPR and TPR
values, we cannot solve the optimization problem (P1). Instead, we have to estimate the threshold
at time t, λ⋆t , using the observations made up to time t. Thus, at each time point our goal is to find
λ̂t ∈ Λ such that the FPR when using λ̂t as the threshold in hλ, denoted by FPR(λ̂t), is at most α.

Algorithm 2 SolveOptForLambda
Input: FPR threshold α , St

1:

λ̂t := arg min
λ∈Λ

λ s.t. F̂PR(λ, t) + ψ(t, δ) ≤ α

2: Output λ̂t

Ideally, we want to avoid human feedback
for points with a score greater than λ̂t, i.e., those
points that are determined as ID by the system.
However, in order to have an unbiased estimate
of the FPR and also to allow for potential change
in the distribution of OOD samples and there-
fore change in true FPR, we allow for human
feedback with a small probability p for points
predicted as in-distribution by the system to be
able to detect a change.

FPR estimation and adapting the thresh-
old: At each time t, we observe xt

i.i.d∼ (1− γ)Did + γDood, and st = g(xt) is the corresponding
score. If st ≤ λ̂t−1, then it is considered an OOD point and hence gets a human label for it and
we get to know whether it is in fact OOD or ID. If st > λ̂t−1, then it is considered an ID point and
hence gets a human label only with probability p. So, we get to know whether it is truly ID or not
with probability p. Now we have to update the threshold, λ̂t, such that the FPR(λ̂t) ≤ α for all t,
while trying to maximize TPR(λ̂t). Our approach is based on constructing an unbiased estimator of
FPR(λ) using the OOD samples received till time t and in conjunction with confidence intervals for
FPR(λ) at all thresholds λ ∈ Λ that is valid for all times simultaneously. Together, at each time t,
these give us a reliable upper bound on the true FPR(λ) for all λ enabling us to find the smallest λ
such that the upper bound on FPR(λ) is at most α. Let S(o)

t = {s(o)1 , . . . s
(o)

N
(o)
t

} denote the scores of

the points that have been truly identified as OOD from human feedback and I(o)t be the corresponding
time points. We estimate the FPR as follows,

F̂PR(λ, t) =
1

N
(o)
t

∑
u∈I(o)t

Zu(λ), where Zu(λ) :=


1(s

(o)
u > λ), if s(o)u ≤ λ̂u−1

1
p1(s

(o)
u > λ), w.p. p if s(o)u > λ̂u−1

0, w.p. 1− p if s(o)u > λ̂u−1

.

(2)

Finding threshold using a UCB on FPR: We use this estimated FPR with an upper confidence
bound (UCB) to replace the unknown true FPR in the optimization problem (P1) to obtain the
following optimization problem (P2),
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λ̂t := arg minimize
λ∈Λ

λ subject to F̂PR(λ, t) + ψ(t, δ) ≤ α, (P2)

where the term ψ(t, δ) is a time-varying upper confidence which is simultaneously valid for all λ
for all time with probability at least 1− δ for any given δ ∈ (0, 1). The minimization problem can be
solved in many ways. We use a binary search procedure where we search over a grid on [Λmin,Λmax]
with grid-size ν. The procedure 2 searches for a smallest λ such that F̂PR(λ, t) + ψ(t, δ) ≤ α. It
uses eq. (4) to compute the empirical FPR at various thresholds and the confidence interval ψ(t, δ)
given in eq. (3). Details of the binary search procedure are in the Appendix.

Upper confidence bound (UCB): At each time point, the algorithm estimates the FPR using
a finite number of samples at all thresholds. We need confidence intervals that are valid for all
thresholds at all time points to ensure the algorithm has reliable upper bounds on the FPR. In
particular, we use the Law of iterated logarithm(LIL) Khinchine (1924) based confidence bounds
that are known to be tight. In our setting, due to the importance sampling, the samples become
conditionally dependent. This dependence prevents direct application of known results like Howard
and Ramdas (2022). In section 5 we build upon the LIL bounds for martingales Balsubramani (2015)
and derive a confidence interval bound that is valid in our setting (see equation (3)),

ψ(t, δ) :=

√√√√ 3ct

N
(o)
t

[
2 log log

(3ctN (o)
t

2

)
+ log

(
2

δ

(Λmax − Λmin

ν

))]
, (3)

where ct = 1− βt +
βt

p2
, βt =

N
(o,p)
t

N
(o)
t

and N (o,p)
t is the number of points sampled using importance

sampling until time t and ν ∈ (0, 1) is a discretization parameter set by the user.
Handling distribution shift: One of the motivations for the system is to be able to adapt to

the variations of the OOD data. As long as Dood does not change, changes in the Did or the mixing
ratio γ do not affect the true FPR. However, the true FPR does get affected when Dood changes.
When there is a change in Dood, estimating the FPR using all the acquired samples so far can lead
to inaccurate estimates as the current estimate is highly influenced by scores that are far behind in
time from the previous Dood. This can lead to inaccurate estimation of λ and erroneous predictions
for the current time. To overcome this challenge, we propose a sliding window-based approach
where the user can set a window size Nw > 0 and the system will only estimate the FPR and the
confidence intervals using the most recent Nw OOD samples. This will allow the system to adapt
the threshold that is well aligned with the new distribution(s) of OOD samples. Next, we provide
theoretical guarantees for the proposed algorithm when Dood does not change over time. We refer
the reader to the appendix for theoretical analysis and experimental results.

3. Conclusion
We presented a mathematically grounded framework for human-in-the-loop Out-of-Distribution
(OOD) detection. By incorporating expert feedback and utilizing confidence intervals based on the
Law of Iterated Logarithm (LIL), our approach maintains control over false positive rates (FPR)
while maximizing true positive rates (TPR). The empirical evaluations on synthetic data and image
classification tasks demonstrate the effectiveness of our method in maintaining FPR at or below 5%
while achieving high TPR. Our work gives a promising solution for addressing the challenge of
robustness to OOD samples in real-world applications.
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Appendix

The appendix is organized as follows. We begin with discussing the related works in section 4
and then provide the technical details and proofs of our theoretical results in sections 5 and 6. The
notations are summarized the notation in Table 1. Further we provide details of experiments and
insights from them in sections 7 and 8.

4. Related Works

Out-Of-Distribution detection: The problem of OOD detection has been addressed in many recent
works where the main contributions have been methods to quantify a score (uncertainty) which gives
a better separation of OOD and ID data points. Liang et al. Liang et al. (2017) proposed ODIN,
which uses temperature scaling to separate the softmax score distributions between ID and OOD
images. Liu et al. Liu et al. (2020) proposed a framework using energy score to perform OOD
detection on pre-trained neural classifiers. Lee et al. Lee et al. (2018), Sehwag et al. Sehwag et al.
(2021), and Ming et al. Ming et al. (2022) proposed Mahalanobis distance-based scores to detect
OOD samples. While these methods perform well, the evaluation setup is rather static and does not
reflect the real-world deployment scenario, wherein the system has to adapt to new and evolving
OOD data. In our work, we are proposing a simple and extensible system for online OOD detection.
Moreover, the system can also adapt by getting ground truth labels from humans on selected points.

Online anomaly detection: There is rich literature on anomaly (or outlier) detection in offline
settings Chandola et al. (2009); Campos et al. (2016); Chalapathy and Chawla (2019). However,
our setting is akin to the online anomaly (outlier) detection – wherein the system receives samples
one at a time and it has to figure out the outliers or anomalous behavior within a given window
of time. Some of the notable works along this line are Subramaniam et al. (2006); Angiulli and
Fassetti (2007); Zhang et al. (2013). The methods proposed are unsupervised and perform density or
distance-based detection.

Outlier detection with human in the Loop: The notion of an outlier may not always be based on
statistical rarity and might need input from humans to learn the notion of an outlier in the application
of interest. Some of the recent works Chai et al. (2020); Islam et al. (2018) have given methods
for outlier detection in offline settings leveraging human inputs. The focus has been on minimizing
human effort by figuring out some candidate outliers and designing good questions and context for
getting human inputs.

While there are a number of works on outlier or OOD detection, the main focus has been on
designing methods (scoring functions) to distinguish inliers vs outliers mostly in the offline setting.
Our work is rather complementary – we consider a deployed OOD system that can work with any
scoring function and propose ways for online adaptation of this system based on human inputs.
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5. Theoretical Guarantees

In this section, we provide theoretical analysis and guarantees for Algorithm 1 when the distributions
are fixed. Also, assume that the scores g(x) have sub-Gaussian tails. Here we assume that Dood is not
changing. We provide anytime valid confidence intervals on the FPR at all thresholds which are used
in the optimization problem (P2), using which we can guarantee that the FPR is always controlled.
We also provide a bound on the time taken to reach feasibility, i.e., for the constraint in Equation (P2)
to be feasible. Furthermore, we also provide the bound on time taken to reach η-Optimality which is
defined as follows,

Definition 1 (η-Optimality) For any η, the system is said to be operating in the η-Optimal regime
after some time point Tη, if FPR(λ∗)− FPR(λ̂t) ≤ η for all t ≥ Tη.

Note that the values of η for which η-Optimality is achievable depend on the continuity of the
CDF. In particular, it is achievable for any η ≥ FPR(λ∗)− limϵ→0+ FPR(λ∗ + ϵ).

Theorem 2 Let α, δ ∈ (0, 1). Let xt
i.i.d∼ (1−γ)Did+γDood and let ct = 1−βt+ βt

p2
, βt =

N
(o,p)
t

N
(o)
t

where N (o,p)
t is the number of OOD points sampled using importance sampling until time t and

N
(o)
t is the total number of OOD points observed till time t. Let n0 = min{u : cuN

(o)
u ≥

173 log(8δ )} and t0 be such that N (o)
t0

≥ n0. If Algorithm 1 uses the optimization problem (P2) to

find the thresholds with the upper confidence term ψ(N
(o)
t , δ/2) given by equation (3), then with

probability at least 1− δ,
1. Controlled FPR: For all t ≥ t0, FPR(λ̂t) ≤ α.
2. Time to reach feasibility Let Tf = 2C1

γα2 log
(
4C2
δ log(C3

α )
)
+ 1

γ2 log(
4
δ ), then for any t ≥

max(t0, Tf ) the algorithm will find a feasible threshold, λ̂t such that F̂PR(λ̂t)+ψ(N
(o)
t ) ≤ α.

3. Time to reach η−Optimality Let Topt = 8C1
γη2

log
(
4C2
δ log(2C3

α )
)

+ 1
γ2 log(

4
δ ) and

F̂PR(λ̂Topt) ∈ [α − η/2, α], then for any t ≥ max(t0, Topt) ,λ̂t satisfy the η-Optimality
condition in definition 1.

Lemma 3 F̂PR(λ, t) as defined in equation (4) is an unbiased estimate of the true FPR(λ), i.e.,
E[F̂PR(λ, t)] = FPR(λ).

The above theorem establishes key properties of Algorithm 1 and provides insights into its
behavior and performance guarantees. We now discuss each property in detail, along with their
implications.

Controlled false positive rate: The first property of Theorem 9 ensures that the Algorithm 1
effectively controls the False Positive Rate (FPR) throughout its operation. Specifically, it guarantees
that for all time steps t ≥ t0, the FPR of the estimated threshold obtained by the algorithm will be
less than or equal to a predetermined threshold α. This property is crucial in applications where
accurately controlling the rate of false positives is essential. By limiting the FPR to a predefined
threshold, Algorithm 1 provides a reliable mechanism for distinguishing between in-distribution and
out-of-distribution samples, reducing the likelihood of erroneous classifications.
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Figure 3: Illustration of the confidence intervals on FPR and their effect on threshold estimation. We expect
as the system receives more OOD samples the confidence intervals will shrink and lead to a better
threshold.

Time to reach feasibility: The second property of Theorem 9 concerns the time it takes for
Algorithm 1 to find a feasible threshold. It provides conditions under which the algorithm is
guaranteed to discover a suitable threshold, λ̂t, that has FPR at most α. It is contingent upon the
feasible time Tf , the time step at which a sufficient number of observations N (o)

Tf
is obtained so that

the confidence interval ψ(t, δ/2) ≤ α.
Time to reach η-Optimality: The third property provides a bound on the time Topt after which

the Algorithm 1 achieves the η-Optimal regime. This regime implies that the algorithm operates in a
state where the difference between the FPR of the true optimal threshold, FPR(λ∗), and the FPR of
the estimated threshold FPR(λ̂t), is within the range η. The theorem says that, if the estimated FPR
at time step Topt, denoted as F̂PR(λ̂Topt), is within the range [FPR(λ∗)− η/2, α] and the confidence
interval ψ(Topt, δ/2) ≤ η/2. Then for all time points after Topt the algorithm will find a λ̂t that
satisfies the η− Optimality condition. Topt is defined in terms of the time point when the number

of acquired OOD samples N (o)
Topt

becomes at least 4C1
η2

log
(
2C2
δ log(2C3

η )
)

. We require these many
samples in order to guarantee the confidence intervals ψ(t, δ) are sufficiently small (of the order
of η in this case) so that when the empirical estimate of FPR is very close to α we know that the
algorithm will return a threshold satisfying η−Optimality.

If γ is not changing, it is very easy to bound Tf and Topt. When t is large enough, with a high
probability γ fraction of what is observed is going to be OOD. So, for Tf , Nf will concentrate around
γTf . And similarly for Topt, Nopt while also accounting for importance sampling.

The details of the proof of the statements in the main theorem are provided in the appendix. Here
we provide the key results and outline the key ideas of the proof.

Proof outline and discussion: The main technical challenge is to obtain accurate confidence
intervals ψ(t, δ) that are simultaneously valid with high probability for the FPR estimates at all
time points and all thresholds. Fortunately, there is a rich line of work that provide tight confidence
intervals valid for all times based on the Law of Iterated Logarithm (LIL) Khinchine (1924);
Kolmogorov (1929); Smirnov (1944). Non-asymptotic versions of LIL have been proved in various
settings e.g. multi-armed bandits Jamieson et al. (2013), quantile estimation Howard and Ramdas
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(2022). Roughly speaking, these bounds provide confidence intervals that are O(
√
log log(t)/t

and are known to be tight. However, most of these works assume i.i.d samples. In our setting, our
treatment of observing the human feedback is dependent on whether the score is above or below
λ̂t−1 which itself is estimated using all the past data which creates dependence. Though this way of
sampling saves unnecessary queries for expert labels, it breaks the independence between samples
and prevents us from utilizing results developed for independent samples in Howard and Ramdas
(2022).

We handle this by first showing that there is a martingale structure that we then exploit by
using LIL results for martingales Balsubramani (2015). A limitation of Balsubramani (2015) is
that it can only provide us confidence intervals valid for FPR estimate for a given threshold λ.
However, we need intervals that are simultaneously valid for all λ as well. Building upon the work
in Balsubramani (2015) we derive confidence intervals that are simultaneously valid for all t and
finitely many thresholds. Equation (3) shows the ψ(t, δ) we obtain. Please see section 6 for detailed
proofs and discussion.

Glossary

The notation is summarized in Table 1 below.

6. Proofs

At each time t, we observe xt
i.i.d∼ (1− γ)Did + γDood, and st = g(xt) is the corresponding score.

If st ≤ λ̂t−1, then it is considered an OOD point and hence gets a human label for it and we get to
know whether it is in fact OOD or ID. If st > λ̂t−1, then it is considered an ID point and hence gets a
human label only with probability p. So, we get to know whether it is truly ID or not with probability
p. Now we have to update the threshold, λ̂t, such that the FPR(λ̂t) ≤ α for all t, while trying to
maximize TPR(λ̂t). Our approach is based on constructing an unbiased estimator of FPR(λ) using
the OOD samples received till time t and in conjunction with confidence intervals for FPR(λ) for at
all thresholds λ ∈ Λ that is valid for all times simultaneously. Together, at each time t, these give
us a reliable upper bound on the true FPR(λ) for all λ enabling us to find the smallest λ such that
the upper bound on FPR(λ) is at most α. Let S(o)

t = {s(o)1 , . . . s
(o)

N
(o)
t

} denote the scores of the points

that have been truly identified as OOD points from human feedback and I(o)t be the corresponding
time points. We estimate the FPR as follows,

F̂PR(λ, t) =
1

N
(o)
t

∑
u∈I(o)t

Zu(λ), where Zu(λ) :=


1(s

(o)
u > λ), if s(o)u ≤ λ̂u−1

1
p1(s

(o)
u > λ), w.p. p if s(o)u > λ̂u−1

0, w.p. 1− p if s(o)u > λ̂u−1

.

(4)

Next, we show that the above estimator F̂PR(λ, t) is indeed an unbiased of false positive rate FPR(λ).

Lemma 4 F̂PR(λ, t) as defined in equation (4) is an unbiased estimate of the true FPR(λ), i.e.,
E[F̂PR(λ, t)] = FPR(λ).

Proof Let i(o)t be the indicator variable denoting whether s(o)t was sampled using importance sampling
(i.e. i(o)t = 1) or not (i.e. i(o)t = 0). Denote the pair as r(o)t = (s

(o)
t , i

(o)
t ) for brevity.
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Symbol Definition

X feature space.
Y label space, {+1,−1}, +1 for ID and -1 for OOD .
Did,Dood distributions of ID and OOD points.
γ mixing ratio of OOD and ID distributions.
λ threshold for OOD classification.
FPR(λ) population level false positive rate with threshold λ.
TPR(λ) population level true positive rate with threshold λ.
F̂PR(λ, t) empirical FPR at time t, adjusted to account for importance sampling (see eq. (4)).
λ∗ the optimal threshold for OOD classification s.t. FPR(λ) ≤ α and TPR(λ) is maximized.
λ̂t the estimated threshold at round t.
xt, yt sample and the true label at time t .
g OOD uncertainty quantification (score) function.
s
(o)
u score of uth OOD sample.
i
(o)
u indicator variable denoting whether s(o)u was importance sampled or not.
N

(o)
t number of OOD points till time t.

N
(o,p)
t number of OOD points sampled using importance sampling until time t.

βt it is equal to N (o,p)
t /N

(o)
t .

p probability for importance sampling.
δ failure probability.
α user given upper bound on FPR that the algorithm needs to maintain.
η the algorithm is in η−optimality if close FPR(λ∗)− FPR(λ̂t) ≤ η.
Λmin,Λmax the minimum and maximum scores(thresholds) considered by the algorithm.
ν discretization parameter for the interval [Λmin,Λmax] set by the user.
ψ(t, δ) LIL based confidence interval at time t.

Table 1: Glossary of variables and symbols used in this paper.

E
r
(o)
t ,r

(o)
t−1,...,r

(o)
1

[F̂PR(λ, t)] =
1

N
(o)
t

∑
u∈I(o)t

E
r
(o)
u |r(o)u−1,...,r

(o)
1

[Zu(λ)]

=
1

N
(o)
t

∑
u∈I(o)t

E
r
(o)
u |λ̂u−1

[Zu(λ)]

=
1

N
(o)
t

∑
u∈I(o)t

E
(s

(o)
u ,i

(o)
u )|λ̂u−1

[Zu(λ)]

=
1

N
(o)
t

∑
u∈I(o)t

E
s
(o)
u |λ̂u−1

[E
i
(o)
u |s(o)u ,λ̂u−1

[Zu(λ)]]

=
1

N
(o)
t

∑
u∈I(o)t

E
s
(o)
u |λ̂u−1

[1(s(o)u > λ)]
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=
1

N
(o)
t

∑
u∈I(o)t

FPR(λ)

= FPR(λ)

Having an unbiased estimator solves one part of the problem. In addition we need confidence
intervals on this estimate that are valid for anytime and for the choices of λ considered. Due to the
dependence between the samples we cannot directly apply similar results developed for quantile
estimation in the i.i.d. setting Howard and Ramdas (2022). Fortunately, part of this problem has been
addressed in Balsubramani (2015), where they provide anytime valid confidence intervals when the
estimators form a martingale sequence. We restate this result in the following lemma 5 and then
building upon this result, in the next lemma 6 we derive such confidence intervals for our setting.

Lemma 5 (Balsubramani (2015)) Let M t be a martingale and suppose |M t −M t−1| ≤ ρt for
constants {ρt}t>1, let m0 = mint≥1 |M t|. Fix any δ ∈ (0, 1), and let t0 = min{u :

∑u
t=1 ρ

2
t ≥

173 log(4δ )} then,

P
(
∃t ≥ t0 : |M t| ≥

√√√√3
( t∑

i=1

ρ2i

)(
2 log log

(3∑t
i=1 ρ

2
i

m0

)
+ log

(2
δ

)))
≤ δ (5)

Proof This lemma is a restatement of theorem 4 in Balsubramani (2015). For proof details please
see Balsubramani (2015).

In the next lemma we show that the sums of Zu(λ) form a martingale sequence, allowing us to
apply the results from the above lemma (5) and then we generalize it to all λ in some finite set.

Lemma 6 (Anytime valid confidence intervals on FPR) LetX(o)
t = {x(o)1 , . . . x

(o)

Nt
(o)} be the samples

drawn from Dood till round t and let S(o)
t = {s(o)1 , . . . s

(o)

Nt
(o)} be the scores of these points, let

ct = 1 − βt +
βt

p2
, βt =

N
(o,p)
t

N
(o)
t

and N (o,p)
t is the number of points sampled using importance

sampling until time t and ν ∈ (0, 1) is a discretization parameter set by the user. Let Λ =

{Λmin,Λmin + ν, . . . ,Λmax}. Let n0 = min{u : cuN
(o)
u ≥ 173 log(4δ )} and t0 be such that

N
(o)
t0

≥ n0. , then for any δ ∈ (0, 1),

P
(
∃t ≥ t0 : sup

λ∈Λ
F̂PR(λ, t)− FPR(λ) ≥ ψ(t, δ)

)
≤ δ (6)

for,

ψ(t, δ) =

√√√√ 3ct

N
(o)
t

[
2 log log

(3ctN (o)
t

2

)
+ log

(
2|Λ|
δ

)]
(7)
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Proof First, we show that we have a martingale sequence as follows,

Let Mt(λ) =
∑N

(o)
t

u=1 Zu(λ), and consider the centered random variables,

M t(λ) =Mt(λ)− E[Mt(λ)] and Zt(λ) = Zt(λ)− FPR(λ)

Let Ft be the σ−algebra of events till time t i.e. (s(o)1 , i
(o)
1 ), . . . , (s

(o)
t−1, i

(o)
t−1), (s

(o)
t , i

(o)
t ).

It is easy to see that E[M t] ≤ 1
p < ∞ and M t is Ft-measurable for all t > 1. Further, we can

see,

E
[
M t(λ)|Ft−1

]
= E[Zt(λ)+M t−1(λ)|Ft−1] = E[Zt(λ)|Ft−1] +E[M t−1(λ)|Ft−1] =M t−1(λ)

Since, E[Zt(λ)|Ft−1] = 0 and E[M t−1(λ)|Ft−1] =M t−1(λ). Thus we have thatM t is a martingale
sequence. Further, we also have the following,

|M t(λ)−M t−1(λ)| ≤
{
1 if i(o)t = 0
1
p if i(o)t = 1

Let βt ∈ (0, 1) be the fraction of OOD points sampled using probability p till round t. Let N (o)
t

be the total number of points OOD points sampled till round t and N (o,p)
t be the points sampled from

importance sampling, then βt =
N

(o,p)
t

N
(o)
t

.

Let ct = 1− βt +
βt

p2
. We know p and the number of points sampled with importance sampling,

without importance sampling we knowβt, ct are at time t. Applying lemma 5 we get the following
result for a given λ,

P
(
∃t ≥ t0 :M t(λ) ≥

√
3
(
ctN

(o)
t

)(
2 log log

(
3ctN

(o)
t

)
+ log

(2
δ

)))
≤ δ (8)

P
(
∃t ≥ t0 : F̂PR(λ, t)− FPR(λ, t) ≥

√
3ct

N
(o)
t

(
2 log log

(
3ctN

(o)
t

)
+ log

(2
δ

)))
≤ δ (9)

Doing the union bound for the failure probability over all λ ∈ Λ, (where |Λ| < ∞) gives us the
result.

Our performance guarantees in the main theorem 9 are based on ψ(t, δ) becoming smaller than
certain values. In the next lemma we derive bound on N (o)

t such that ψ(t, δ) is at most µ and use it
in the proof of the main theorem 9.

Lemma 7 Let ψ(t, δ) =

√
3ct

N
(o)
t

(
2 log log

(
3ctN

(o)
t

)
+ log

(
2|Λ|
δ

))
, and let there be a constant

C0 and time T0, such that βt ≤ C0p
2 for all t ≥ T0 (worst case T0 = 1 and C0 = 1/p2). Then

ψ(t, δ) ≤ µ for any t > Tµ > T0 such that N (o)
Tµ

= 10(C0+1)
µ2 log

(
|Λ|
δ log(5(C0+1)

µ )
)
.
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Proof First we write a simplified form of ψ(t, δ) for all t > T0 as follows,

ψ(t, δ) =

√
3(C0 + 1)

N
(o)
t

(
2 log log

(
3(C0 + 1)N

(o)
t

)
+ log

(2|Λ|
δ

))
In the above equation we used the bound on βt ≤ C0p

2 in the equation ct = 1− βt + βt/p
2 leading

to ct ≤ C0 + 1, Now, for brevity let a1 = 3(C0 + 1) and a2 = 2|Λ| and rewrite ψ(t, δ) as follows,

ψ2(t, δ) =
a1

N
(o)
t

(
2 log log

(
a1N

(o)
t

)
+ log

(a2
δ

))
≤ 2a1

N
(o)
t

(
log

(a2
δ
log

(
a1N

(o)
t

)))
We want to find N (o)

t such that ψ2(t, δ) ≤ µ2. It is difficult to directly invert this function. To get a
bound on N (o)

t we first assume the following form for it with unknown constants b1, b2, b3 > 0 and
then figure out the constants by simplifying ψ2(N

(o)
t ) and constraining it to be at most µ2.

Let N (o)
Tµ

=
b1
µ2

log

(
a2
b3δ

log
(b2
µ

))

ψ2(Tµ, δ) ≤
2a1

N
(o)
Tµ

log
[a2
δ
log(a1N

(o)
Tµ

)
]

=
2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ log

{
a1b1
µ2

log

(
a2
b3δ

log
(b2
µ

))}]
a
≤ 2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ log

{
a1b1
µ2

log

(
a2
b3δ

b2
µ

)}]

=
2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ log

{
a1b1
µ2

log

(
a2b2
b3δµ

)}]
b
≤ 2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ log

{
a1b1
µ2

a2b2
b3δµ

}]

=
2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ log

{
a1b1
µ2

a2b2
b3δµ

}]

=
2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ log

{
a1b1a2
b3b22δ

(b2
µ

)3
}]

c
≤ 2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ a1b1a2b3b22δ
log

{(b2
µ

)3
}]

=
2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [a2δ 3a1b1a2
b3b22δ

log
(b2
µ

)]

=
2a1µ

2

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [( a2b3δ
)2 3a1b1b3

b22
log

(b2
µ

)]
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d
≤

2a1µ
2 3a1b1b3

b22

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [( a2b3δ
)2

log
(b2
µ

)]
e
≤

2a1µ
2 · 23a1b1b3

b22

b1 log
(

a2
b3δ

log
(
b2
µ

)) log [ a2b3δ log
(b2
µ

)]

=
12µ2a21b3

b22
.

The inequalities a, b follow from log(x) ≤ x for any x > 0.
The inequality c comes from log(ax) ≤ a log(x) for any a > 2, x > 2. We use a = a1b1a2

b3b22δ
and

x =
(
b2
µ

)3
, this enforces the following constraints,

b2
µ
> 21/3 (10)

a1b1a2
b3b22δ

> 2 (11)

For d we again use log(ax) ≤ a log(x) with a = 3a1b1b3
b22

and x =
(
a2
b3δ

)2
log

(
b2
µ

)
, this enforces the

following constraints,
3a1b1b3
b22

> 2 (12)

( a2
b3δ

)2
log

(b2
µ

)
> 2 (13)

Lastly, e follows by using log(xay) ≤ a log(xy) for any x > 0, a > 1, y > 1. For this we use
x = a2

b3δ
and y = log( b2µ ), leading the following constraints,

log(
b2
µ
) > 1 (14)

For ψ2(Tµ) ≤ µ2, we need
12a21b3 ≤ b22 (15)

Let b3 = 2, b1 = 10a1, b2 = 5a1 then the constraints 10,11,12,13,14 and 15 are satisfied ( when
|Λ| ≥ 10 ) for any µ ∈ (0, 1), δ ∈ (0, 1). Thus we have,

ψ(Tµ, δ) ≤ µ for NTµ =
10(C0 + 1)

µ2
log

( |Λ|
δ

log(
5(C0 + 1)

µ
)
)

(16)

Lemma 8 Let the data points {xt}t≥1 be independent draws from the mixture distribution (1 −
γ)Did + γDood, and N (o)

t be the number of OOD points received till time t from this distribution,
then for any δ ∈ (0, 1) for any t ≥ Tk we have N (o)

t ≥ k w.p. 1− δ, where Tk is given as follows,

Tk =
2k

γ
+

1

γ2
log(

1

δ
). (17)
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Proof We want to find t such that N (o)
t ≥ k w.p. 1 − δ. This is the same as finding the number

of coin tosses of a coin with bias γ so that the number of heads observed is at least k. Applying
Hoeffding’s inequality gives us the following w.p. 1− δ,

N
(o)
t ≥ γt−

√
t

2
log(

1

δ
).

Equating the r.h.s. above with k and solving for t will give us the desired bound on t. Note that it is
enough to have an upper bound on t that satisfies the following and then use that upper bound as Tk.

γt−
√
t

2
log(

1

δ
) = k.

To simplify the calculations, let c =
√

1
2 log

1
δ and let t = u2 then we have the following

quadratic equation,
γu2 − cu− k = 0.

Considering the larger of the two solutions,

u =
c+

√
c2 + 4kγ

2γ
.

Using the fact that for any a, b ≥ 0,
√
a+ b ≤ √

a+
√
b,

u ≤ c+
√
c2 +

√
4kγ

2γ
=

2c+ 2
√
kγ

2γ
=
c

γ
+

√
k

γ
.

Lastly, using (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R we get the following upper bound on t,

t = u2 ≤ 2c2

γ2
+

2k

γ
=

2k

γ
+

1

γ2
log(

1

δ
).

Theorem 9 Let α, δ ∈ (0, 1). Let xt
i.i.d∼ (1− γ)Did + γDood and let ct = 1− βt +

βt

p2
, βt =

N
(o,p)
t

N
(o)
t

where N (o,p)
t is the number of OOD points sampled using importance sampling until time t and N (o)

t

is the total number of OOD points observed till time t. Let n0 = min{u : cuN
(o)
u ≥ 173 log(8δ )} and

t0 be such that N (o)
t0

≥ n0. If Algorithm 1 uses the optimization problem (P2) to find the thresholds

with the upper confidence term ψ(N
(o)
t , δ/2) given by equation (3), then with probability at least

1− δ,
1. (Controlled FPR) For all t ≥ t0, FPR(λ̂t) ≤ α.
2. (Time to reach feasibility) Let Tf = 2C1

γα2 log
(
4C2
δ log(C3

α )
)
+ 1

γ2 log(
4
δ ), then for any t ≥

max(t0, Tf ) the algorithm will find a feasible threshold, λ̂t such that F̂PR(λ̂t) + ψ(N
(o)
t ) ≤ α.
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3. (Time to reach η−Optimality) Let Topt = 8C1
γη2

log
(
4C2
δ log(2C3

α )
)
+ 1

γ2 log(
4
δ ) and F̂PR(λ̂Topt) ∈

[FPR(λ∗) − η/2, α], then for any t ≥ max(t0, Topt) ,λ̂t satisfy the η-Optimality condition in
definition 1.

Proof
To prove this we first obtain confidence intervals on FPR valid w.p. 1 − δ/2 using Lemma 6.

Then applying Lemma 7 on these confidence intervals gives us the number of OOD samples that are
sufficient to guarantee certain width of the confidence intervals and lastly we use Lemma 8 to bound
the time point such that we observe a certain number of OOD points till that time. We do this for the
second and third points separately each time invoking Lemma 8 with failure probability δ/4 and then
union bound over them.

Controlled FPR: This follows from Lemma 6 (with probability 1− δ
2 ) and the fact the algorithm

uses confidence intervals on FPR estimate that are valid for all t ≥ t0 for the choices of λ it considers.
Time to reach feasibility: Applying Lemma 7 with µ = α gives bound on NTf

with C1 =
10(C0 + 1), C2 = |Λ|, C3 = 5(C0 + 1). Then using Lemma 8 with k = NTf

gives us the desired
Tf .

Time to reach η-optimality : We know, FPR(λ∗) = α, and it is given that F̂PR(λ̂t) ∈ [FPR(λ∗)−
η/2, α]

FPR(λ̂t) ∈ [FPR(λ∗)− η/2− ψ(t, δ), α]

this means FPR(λ̂t) ≥ FPR(λ∗)− η/2− ψ(t, δ)

FPR(λ∗)− FPR(λ̂t) ≤ η/2 + ψ(t, δ)

If ψ(t, δ) ≤ η/2 we have, FPR(λ∗)− FPR(λ̂t) ≤ η. Thus applying we want to find t for which
ψ(t, δ) = η/2. Applying lemma 7 with µ = η/2 gives bound on NTf

with C1 = 40(C0 + 1), C2 =
|Λ|, C3 = 10(C0 + 1). Then using Lemma 8 with k = NTopt gives us the desired Topt.

This concludes the proofs of the main results. Next, we present additional experiments on
synthetic and real datasets.

7. Empirical Evaluation

Methods: We evaluate our method on synthetic and real-world image classification datasets. We
compare our (a) LIL confidence interval based method against (b) No-UCB: which does not use any
confidence intervals (c) Hoeffding: which uses the confidence intervals from Hoeffding’s inequality.
We consider two variations of each method, one without using a window and the other using a
window size. We expect that No-UCB will violate the FPR constraint since it does not account for
the uncertainty in the estimates. While the methods that accurately account for the uncertainty using
confidence intervals like LIL, and Hoeffding are expected to adhere to the FPR constraints. We note,
that the confidence intervals from Hoeffding inequality are not theoretically valid for these settings
but are a reasonable choice for a practitioner, and in our evaluation, we do not observe significant
differences between Hoeffding and LIL-based bounds in the results. We use α = 0.05, δ = 0.2, and
importance sampling probability p = 0.2 through all the empirical evaluations.
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7.1 Searching for constants in LIL-Heuristic

The theoretical LIL bound in equation3 has constants that can be pessimistic in practice. We get
around this by using a LIL-Heuristic bound which has the same form as in equation (3) but with
different constants in particular we consider the form in equation LIL-Heuristic. We find the constants
C1, C2, C3 using a simulation on estimating the bias of a coin with different constants and picking
the ones so that the observed failure probability is below 5%.

ψ̃(t, δ) = C1

√
ct

N
(o)
t

(
log log

(
C2ctN

(o)
t

)
+ log

(C3

δ

))
. (LIL-Heuristic)

Specifically, we keep C3 = 1, and run for δ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4} with varying C1

from 0.1 to 0.9 and C2 from 1.5 to 4.75. For each choice of δ, C1, C2, we toss an unbiased coin
(mean p = 0.5) for T = 10k times. For each choice of t = 1, 2, · · · , T , we compute the empirical
mean p̂ of the coin and define it as a failure if p /∈ [p̂− ψ̃(t, δ), p̂+ ψ̃(t, δ)]. We run this process for
100 times and compute the average failure probability for each choice of t = 1, 2, · · · , T . We then
pick the constant so that the observed average probability is below 5%. Throughout the paper, we
use C1 = 0.5 and C2 = 0.75.

7.2 Simulations

Synthetic data setup: We simulate the OOD and ID scores using a mixture of two Gaussians
Nid(µ = 5.5, σ = 4) and Nood(µ = −6, σ = 4). We randomly draw and shuffle 100k samples with
ID: OOD sample ratios of 2:1 in figure.4 and 4:1 in figure.5. We run the following simulation to better
understand the performance of the system. We use α = 0.05, δ = 0.2, and importance sampling
probability p = 0.2 through all the simulations. Through simulations, we study the behavior of
methods in the following settings,
1. Fixed distributions setting: This is when the data distributions do not change over time. In this

setting, we expect the methods will perform well even if they use all the observed samples. This
is because there is no change in the distributions. The results of simulations in this setting are
shown in figure 5(a). We can see that the results are consistent with our expectations.

2. Effect of window size: This parameter controls how many samples the system would look back.
It is important for the settings with distributions shift. We study the role of different window
sizes in the shift and no-shift scenarios. To simulate distribution change we change the OOD
distribution to Nood(µ = −5, σ = 4) at time t = 55k. The results with various window sizes
with a shift in OOD distribution is shown in figure 6. In the shifted settings, we observe that using
a sufficiently small window size is crucial because the system can quickly react to the shift.

3. Effect of γ: We show that changing the mixing ratio γ of ID and OOD samples does not affect
the control of FPR. We show two settings for changing γ. First, the gamma changes from 0.1 to 1
when t = 55k. Second, we show γ gradually changes from 0.1 to 1 starting from t = 20k and
ends at t = 80k. Specifically, γ increases 0.1 for every 6k sample the system receives. We see
that our system is able to control FPR with the change of γ. The results are shown in figure 7 and
they match with what we expected.

4. In-Distribution shift : We show that our system is able to control FPR when the ID distribution is
shifted. We simulate the OOD and ID scores using a mixture of two Gaussians Nid(µ = 5.5, σ =
4) and Nood(µ = −5, σ = 4) with γ = 0.1. To simulate distribution change we change the ID
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(a) No window, no distribution shift. (b) 10K window, no distribution shift

(c) No window, distribution shift at t = 55k. (d) 10K window, distribution shift at t = 55k.

Figure 4: Experiments on Synthetic Data. The ratio of ID: OOD = 2:1. Each method is repeated 10
times. The mean and standard deviation are shown. The distribution shift starts at t = 55k
for figure 5(c),5(d).

distribution to Nid(µ = 5, σ = 4) at time t = 55k. The results are shown in figure 8. We can
clearly see that changing ID distribution(ID scores getting closer to the OOD scores) leads to a
decrease in the TPR at the threshold with 5% FPR. Since the estimation of threshold only depends
on the FPR estimates and hence only on OOD samples, changing ID distribution does not affect
this estimation so the methods perform the same as in the setting of no-distribution shift but get a
reduction in the TPR at FPR 5%.
Next, we present our results on real ID and OOD datasets. In the synthetic setup, we directly

simulated the scores and ran experiments on those. Here we obtain scores using some of the highly
effective scoring functions for OOD detection. We first provide details of ID and OOD datasets and
then discuss the scoring functions we used.

7.3 Real data experiments:

We evaluate our proposed system empirically on two sets of benchmarks from OpenOOD Benchmark
Yang et al. (2022). Here we show the results on CIFAR-10 ID dataset and show the results on CIFAR-
100, and Imagenet-1K Deng et al. (2009) ID dataset in the appendix. CIFAR-10Krizhevsky et al.
(2009). CIFAR-10 is a 10-class dataset for general object classification. We use the official testing
datasets as the ID dataset. The OOD datasets for CIFAR-10 consist of CIFAR100, SVHN Netzer
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(a) No window, no distribution shift. (b) 10K window, no distribution shift

(c) No window, distribution shift at t = 55k. (d) 10K window, distribution shift at t = 55k.

Figure 5: Experiments on Synthetic Data. The ratio of ID: OOD = 4:1. Each method is repeated 10
times. The mean and standard deviation are shown. The distribution shift starts at t = 55k.

et al. (2011), TinyImageNet Krizhevsky et al. (2017) (1,207 images are removed from TinyImageNet
since they belong to CIFAR-10Yang et al. (2021a)), MNIST Deng (2012), Texture Kylberg (2011),
Places365 Zhou et al. (2017) (1,305 images are removed due to semantic overlaps). We use a pre-train
ResNet-18 with 94.3% accuracy throughout all the experiments on CIFAR-10.

Data Stream: For the non-distribution shifted setting, we combine all six OOD datasets for a joint
OOD distribution. For shifted distribution setting, we sample a portion of OOD samples from three
OOD datasets and then sample the shifted distribution samples from the rest of the OOD datasets.
We randomly sample 90k OOD samples and 9k ID samples.

Computing OOD Scores: Accurately detecting OOD points in the online setting needs a good
scoring function that separates the ID and OOD points at some threshold score λ. We leverage
existing works on the construction of the scoring function. We use ODIN Liang et al. (2017),
Mahalanobis Distance Lee et al. (2018), Energy Score Liu et al. (2020), SSD Sehwag et al. (2021),
VIM Wang et al. (2022), and KNN Sun et al. (2022) scores for the evaluation. We use an open-source
codebase, OpenOOD Yang et al. (2022), to implement all the methods. Due to space limitation, we
present results for KNN Sun et al. (2022) score here. For more details on these scores and results on
the rest of the scores please see the Appendix.

Discussion: As expected, in the fixed distributions setting in both synthetic and real data settings
(figures 5(a), and 10(a), respectively), we see that not using a UCB leads to violation of FPR
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(a) No window. (b) 10k window.

(c) 15k window. (d) 20k window.

Figure 6: Effect of using various window sizes in synthetic data experiments.

constraints and the methods with LIL-Heuristic, Hoeffding based intervals are able to maintain the
FPR below the user given threshold 5%. Moreover, all the methods improve as they acquire more
samples with time and eventually reach very close to the optimal solution. When we run these
methods with a window size of 10k in the fixed distribution setting (figures 6(b), 10(b)) we observe
similar behavior except with a bit more variance since with a fixed window the confidence intervals
are not shrinking with time. Though the windowed setting is more useful when the distributions
change and not so much of use in the fixed distribution case, nevertheless we show this experiment to
validate our understanding of the fixed distribution setting.

Moving forward, we investigate the case where the distributions change at a specific time point.
In such scenarios, we find that the windowed approach adapts more rapidly compared to the method
without a window (see figures 5(c),5(d)). Using a fixed window allows the algorithm to quickly
adjust to the changed distribution, whereas without a window, the adaptation process is significantly
delayed.

In summary, our findings demonstrate that the choice of using a windowed approach or not
depends on the nature of the data and the presence of distribution changes. The windowed approach
proves advantageous in scenarios where rapid adaptation is crucial, while the non-windowed approach
can still be effective, albeit potentially with longer adaptation times. The consistency between our
observations in the synthetic experiments and the real-data evaluations provides strong evidence of
the reliability and effectiveness of our proposed methods. These findings demonstrate the robustness
of our approaches and their applicability to various practical scenarios.
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(a) No window, γ changes suddenly. (b) 10k window, γ changes suddenly.

(c) No window, γ changes gradually. (d) 10k window, γ changes gradually.

Figure 7: Changing the mixing ratio γ in the synthetic data.

(a) No window. (b) 10k window.

Figure 8: Changing ID distribution in synthetic data.

8. Additional Experiments and Details

In the simulations we study the effect of changing γ, using different window sizes and the case
when the In-Distribution shifts. For the real data experiments, we study the performance of the
methods under different settings with different scoring functions on CIFAR-10 and CIFAR-100 as
In-Distribution datasets.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) ID:OOD = 2:1 w. distribution shift & 10k window. (d) ID:OOD = 4:1 w. distribution shift & 10k window.

Figure 9: Results on the KNN scores with Cifar-10 as ID dataset.

8.1 Additional Real OOD datasets Experiments

We run our proposed system on different OOD scoring methods. We use α = 0.05, δ = 0.2, and
importance sampling probability p = 0.2 through all the experiments.

CIFAR-10 and CIFAR-100. We use CIFAR-10 or CIFAR-100 as ID datasets. We run the
experiment with different window sizes and distribution shifts. In the distribution shift setting,
if not specified, we use MNIST, SVHN, and Texture as the first mixture of OOD datasets, and
TinyImageNet, Places365, and CIFAR-10/100 as the second mixture of OOD datasets by default.
We use a pre-trained Resnet-50 model for SSD method, Resnet-34, for iDECODE method, and
Resnet-18 for the rest of the methods.

Imagenet-1K. Additionally, We use Imagenet-1K Deng et al. (2009) as the ID datasets and SSB-
hard Vaze et al. (2021), NINCO Bitterwolf et al. (2023), iNaturalist Huang and Li (2021), Texture,
and OpenImage-O Hendrycks et al. (2021) as the OOD datasets. We use ResNet-50 for ASHDjurisic
et al. (2022), GradNorm Huang et al. (2021), and, ReAct Sun et al. (2021) methods. We also apply
vision transformers (SWIN-T Liu et al. (2021)) for ReAct. Each experiment is conducted in shifted
and non-shifted cases. For shifted cases, we shift the OOD datasets from Far OOD (iNaturalist,
Texture, and OpenImage-O) to Near OOD (SSB-hard, NINCO).

1. ODIN: ODIN Liang et al. (2017) takes the soft-max score from DNNs, and scales the score with
temperature. A gradient-based input perturbation is also used for better performance. We choose
temperature 1000 and input perturbation noise 0.0014, as discussed in Liang et al. (2017). Please
see figures 20 and 21 for the results with this score.
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2. Mahalanobis Distance: For a given point x, the Mahalanobis Distance (MDS) based score is
its MD from the closest class conditional distribution. We use the MD-based score as given in
Lee et al. (2018) for detecting OOD and adversarial samples. They compute the scores using
representations from various layers of DNNs and combine them to get a better scoring function.
We choose input perturbation noise to be 0.0014. Please see figures 14 and 15 for the results with
this score.

3. Energy Score: This score was proposed in Liu et al. (2020) and it is well aligned with the
probability density of the samples, with low energy implying ID and high energy implying OOD.
We choose the temperature parameter to be 1. Please see figures 12 and 13 for the results with
this score.

4. SSD. It is based on computing the Mahalanobis distance in the feature space of the model
trained on the unlabeled in-distribution data using self-supervised learning. We use the official
implementation of Sehwag et al. (2021). For CIFAR-10, we use the pre-train model they released.
For CIFAR-100, We train a Resnet-50 using a contrastive self-supervised learning loss, SimCLR
Chen et al. (2020). When calculating the distance-based OOD scores, we use one unsupervised
clustering center as the only center for ID distribution for both CIFAR-10 and CIFAR-100. Please
see figures 18 and 19 for the results with this score.

5. Virtual-logit Match. Virtual-logit Match (VIM) Wang et al. (2022) combines the class-agnostic
score from feature space and ID class-dependent logits. Specifically, an additional logit repre-
senting the virtual OOD class is generated from the residual of the feature against the principal
space and then matched with the original logits by a constant scaling. We set the dimension of the
principal space D = 100. Please see figures 16 and 17 for the results with this score.

6. K-Nearest-Neighborhood. Unlike other methods that impose a strong distributional assumption
of the underlying feature space, the KNN-based method Sun et al. (2022) explores the efficacy
of non-parametric nearest-neighbor distance for OOD detection. The distance between the test
sample and its k-nearest training IN sample will be used as the score for a threshold based OOD
detection. We choose neighbor number k = 50. Please see figures 10 and 11 for the results with
KNN scores.

7. Activation Shaping. ASHDjurisic et al. (2022). extremely simple post-hoc activation shaping
method, ASH, where a large portion of a sample’s activation at a late layer is removed, and the
rest simplified or lightly adjusted. The shaping is applied at inference time, and does not require
any statistics calculated from training data.

8. GradNorm. GradNorm Huang et al. (2021) is a simple and effective approach for detecting OOD
inputs by utilizing information extracted from the gradient space. GradNorm directly employs the
vector norm of gradients, backpropagated from the KL divergence between the softmax output
and a uniform probability distribution. The key idea is that the magnitude of gradients is higher
for in-distribution (ID) data than for OOD data, making it informative for OOD detection.

9. Rectified Activations. ReActSun et al. (2021) is a simple and effective technique for reduc-
ing model overconfidence in OOD data. ReAct is motivated by a novel analysis of internal
activations of neural networks, which displays highly distinctive signature patterns for OOD
distributions.ReAct can generalize effectively to different network architectures and different
OOD detection scores.

10. iDECODE. iDECODe Kaur et al. (2022) leverages in-distribution equivariance for conformal
OOD detection. It relies on a novel base non-conformity measure and a new aggregation method,
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used in the inductive conformal anomaly detection framework, thereby guaranteeing a bounded
false detection rate.

(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) ID:OOD = 2:1 w. distribution shift & 10k window. (d) ID:OOD = 4:1 w. distribution shift & 10k window.

Figure 10: Results on the KNN scores with Cifar-10 as ID dataset.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 11: Results on the KNN scores with Cifar-100 as the ID dataset.

(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 12: Results on the Energy Based Score (EBO) method with Cifar-10 as the ID dataset.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 13: Results on the EBO scores with Cifar-100 as the ID dataset.

(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 14: Results on the Mahalanobis distance (MDS) method with Cifar-10 as the ID dataset.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 15: Results on the MDS scores with Cifar-100 as the ID dataset.

(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 16: Results on the Virtual-logit Match (VIM) method with Cifar-10 as the ID dataset.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 17: Results on the VIM scores with Cifar-100 as the ID dataset.

(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 18: Results on the SSD method with Cifar-10 as the ID dataset.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 19: Results on the SSD scores with Cifar-100 as the ID dataset.

(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 20: Results on the ODIN method with Cifar-10 as the ID dataset.
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(a) No window, no distribution shift. (b) 10k window, no distribution shift.

(c) No window, distribution shift at t = 45k. (d) 10k window, distribution shift at t = 45k.

Figure 21: Results on the ODIN scores with Cifar-10 as the ID dataset.

Figure 22: Scores distribution for KNN with CIFAR-10 as In-Distribution.

Figure 23: Scores distribution for EBO with CIFAR-10 as In-Distribution.
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Figure 24: Scores distribution for SSD with CIFAR-10 as In-Distribution.

Figure 25: Scores distribution for VIM with CIFAR-10 as In-Distribution.

Figure 26: Scores distribution for MDS with CIFAR-10 as In-Distribution.

Figure 27: Scores distribution for ODIN with CIFAR-10 as In-Distribution.

Figure 28: Scores distribution for KNN with cifar-100 as In-Distribution.
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Figure 29: Scores distribution for EBO with cifar-100 as In-Distribution.

Figure 30: Scores distribution for SSD with cifar-100 as In-Distribution.

Figure 31: Scores distribution for VIM with cifar-100 as In-Distribution.

Figure 32: Scores distribution for MDS with cifar-100 as In-Distribution.
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Figure 33: Scores distribution for ODIN with cifar-100 as In-Distribution.
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