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ABSTRACT

Despite the remarkable empirical performance of distributional reinforcement
learning (RL), its theoretical advantages over classical RL are still not fully
understood. Starting with Categorical Distributional RL (CDRL), we propose
that the potential superiority of distributional RL can be attributed to a derived
distribution-matching regularization by applying a return density function decom-
position technique. This less-studied regularization in the distributional RL con-
text aims to capture additional knowledge of return distribution beyond only its
expectation, contributing to an augmented reward signal in policy optimization.
In contrast to the standard entropy regularization in MaxEnt RL, which explicitly
encourages exploration by promoting diverse actions, the regularization derived
from CDRL implicitly updates policies to align the learned policy with environ-
mental uncertainty. Finally, extensive experiments substantiate the significance of
this uncertainty-aware regularization derived from distributional RL on the em-
pirical benefits over classical RL. Our study offers a new perspective from the
exploration to explain the benefits of adopting distributional learning in RL.

1 INTRODUCTION

The fundamental characteristics of classical reinforcement learning (RL) algorithms, such as Q-
learning (Sutton & Barto) 2018; Watkins & Dayanl [1992), relies on estimating the expectation
of discounted cumulative rewards that an agent observes while interacting with the environment.
In contrast to the expectation-based RL, a novel branch of algorithms, termed distributional RL,
seeks to estimate the entire distribution of total returns and has achieved state-of-the-art performance
across a diverse array of environments (Bellemare et al.,|2017aj;|Dabney et al., [2018bga; Yang et al.,
2019; Zhou et al.| 2020; Nguyen et al.| 2020; Wenliang et al., 2024} Sun et al., [2024b)). Meanwhile,
distributional RL inherits enhanced capabilities in areas, such as risk-sensitive control (Dabney et al.}
2018a; |[Lim & Malik, 2022; [Chen et al., [2024), offline learning (Wu et al., 2023; |[Ma et al., |2021)),
policy exploration (Cho et al., 2023} Mavrin et al., 2019; Rowland et al., |2019; [Sun et al., [2024b)),
robustness (Sun et al., [2023; Sui et al., |2023), optimization (Sun et al., [ 2024a; Rowland et al., [2023}
Kuang et al.;,2023), and statistical inference (Zhang et al., |[2023)).

Motivation: Interpreting the Benefits of Being (Categorical) Distributional in RL. Despite the
impressive empirical success of various distributional RL algorithms, our comprehension of their
advantages in RL, especially within the general function approximation framework and practical
implementations, remains incomplete. Early work (Lyle et al.| | 2019) demonstrated that in many re-
alizations of tabular and linear approximation settings, distributional RL behaves similarly to classic
RL, suggesting that its benefits are mainly realized in the non-linear approximation setting. Al-
though their findings offer profound insights, their analysis, based on a coupled update method,
overlooks several factors, such as the optimization effect under various losses. The statistical ben-
efits of quantile temporal difference (QTD), employed in quantile distributional RL algorithms like
QR-DQN (Dabney et al.| 2018b), were highlighted in (Rowland et al.| 2024} |2023)), which posited
that the robust estimation of QTD fosters the benefits in stochastic environments. The foundational
theoretical aspects of CDRL were first discussed in (Rowland et al.| 2018)); however, the empirical
superiority of adopting categorical distributional remains under-explored. Furthermore, recent stud-
ies (Wang et al., 2023} 2024) elucidate the benefits of distributional RL by introducing the novel
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small-loss and second-order PAC bounds, demonstrating enhanced sample efficiency in specific
cases, such as those with small achievable costs. Yet, their findings are not directly based on typi-
cal distributional RL algorithms commonly used in practice, such as C51 (Bellemare et al.,[2017a)
or QR-DQN. Therefore, it is imperative to close this gap between the theoretical explanation and
practical deployment for distributional RL algorithms.

Contributions. In this paper, we interpret the potential advantages of distributional learning in RL
over classical RL, specifically focusing on CDRL, the pioneering family within distributional RL.
We examine these benefits through the lens of regularized exploration effect, offering a distinct per-
spective relative to existing literature. Our investigation begins with the decomposition of CDRL’s
objective function into an expectation-based term and a distribution-matching regularization, fa-
cilitated by our proposed return density decomposition technique. This regularization acts as an
augmented reward in the actor-critic framework, encouraging policies to explore states and actions
whose current return distribution estimates lag far behind the target ones, determined by environ-
mental uncertainty. This derived regularization from the objective function of distributional learning
promotes an uncertainty-aware exploration effect, diverging from the commonly used exploration
for diverse actions in MaxEnt RL (Williams & Peng| [1991; Haarnoja et al., 2018aib). Addition-
ally, we propose a theoretically grounded algorithm called Distribution-Entropy-Regularized Actor
Critic, interpolating between expectation-based and distributional RL. Empirical evidence under-
scores the pivotal role of the uncertainty-aware entropy regularization in CDRL’s empirical success
over expectation-based RL on both Atari games and MuJoCo environments. We further elucidate
the distinct roles that the uncertainty-aware entropy in distributional RL and the explicit vanilla en-
tropy in MaxEnt RL play by exploring their mutual impacts on learning performance. This opens
new avenues for future research in this domain. Our contributions are summarized as follows:

* We propose a return density decomposition technique to decompose the objective function
in CDRL. We argue that the derived regularization can promote uncertainty-aware explo-
ration, which interprets the benefits of adopting distributional learning in RL.

* Within the actor-critic framework, we compare the cross-entropy-based uncertainty-aware
regularization from distributional RL and vanilla entropy regularization in MaxEnt RL. A
byproduct interpretable algorithm is further introduced, interpolating between classical and
distributional RL.

» Empirically, we verify the uncertainty-aware regularization effect on the performance ad-
vantage of distributional RL and explore the mutual impacts of two types of regularization.

Outline. We provide the related work and background knowledge in Sections [2]and 3] respectively.
We begin by interpreting the benefits of distributional learning as uncertainty-aware exploration in
value-based CDRL in Section[d] We further study this exploration benefit within the policy gradient
framework in Section 5| where we directly compare it with the vanilla entropy regularization in
MaxEnt RL. Extensive experiments demonstrate the regularized exploration benefit of distributional
RL and its mutual impact with vanilla entropy regularization in MaxEnt RL in Section [6]

2 RELATED WORK

Distributional Learning via Categorical Representation. Categorical learning has been widely
employed, with advantages in representation (Pan et al.| 2019; Jang et al.l |2016)) and optimiza-
tion (Imani & Whitel 2018} |Sun et al.l 2024a)). The empirical superiority of categorical distribution
learning has increasingly gained attention in various RL tasks (Farebrother et al.,|2024), even beyond
the classical category of CDRL. Thus, a pressing need exists to examine the theoretical foundations
of categorical distributional learning, particularly in the RL context. The perspective of uncertainty-
aware regularization-based exploration that our research introduces adds a significant theoretical
understanding of the benefits of being categorical distributional in RL.

Exploration in RL in the Entropy Principle. As a general and effective mechanism, the en-
tropy principle has been extensively studied to enhance the exploration in RL. Classical algo-
rithms are established upon the MaxEnt RL framework (Williams & Peng, [1991)), including soft
Q-learning (Haarnoja et al., 2017), Soft Actor Critic (SAC) (Haarnoja et al., 2018a) and their vari-
ants (Han & Sung| [2021). The key characteristic in MaxEnt RL is to directly incorporate the en-
tropy term regarding the policy in the objective function, while other works introduce the variation
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in decision-making in distinct ways. These works include (Mavrin et al.| |2019), which utilizes the
variance of return distribution to promote the exploration, and (Lee et al.,2021)), which relies on the
ensemble technique. By contrast, we show that distributional learning in RL implicitly encourages a
distinct uncertainty-aware exploration driven by optimizing the derived cross-entropy-based regular-
ization that measures the discrepancy between the agent’s uncertain estimate and the environment.

3 PRELIMINARIES

Markov Decision Process (MDP) and Classical RL. An environment is modeled via an Markov
Decision Process (S, A, R, P, v), with a set of states S and actions A, the bounded reward function
R : S x A — P([Rumin, Rmax)), the transition kernel P : S x A — P(S), and a discounted factor
v € [0,1]. We denote the reward the agent receives at time ¢ as r(s¢, at) ~ R(s¢, ar). Given a
policy 7, the key quantity of interest is the return Z™, which is the total cumulative rewards over
the course of a trajectory defined by Z™(s,a) = >_,-,7'r¢[so = s,ap = a. Classical RL focuses

on estimating the expectation of the return, i.e., Q™ (s,a) = E, {ijog Yirso = s,a0 = a}. We

also define Bellman evaluation operator 7"Q(s,a) = E[R(s,a)] + YEs wpa'r [Q (s, a")], and
Bellman optimality operator T°P'Q(s, a) = E[R(s,a)] + ymaxy Eyp [Q (s',a')].

Distributional RL and CDRL. Instead of only learning the expectation in classical RL, distribu-
tional RL models the full distribution of the return random variable Z™. The return distribution
n™ 8 x A — P(R) is defined as n™(s,a) = D(Z7(s,a)), where D extracts the distribution
of the random variable. 1™ (s,a) is updated via the distributional Bellman operator 7, defined

by T Z(s,a) £ R(s,a) +~vZ (s',a’), where 2 implies random variables of both sides are equal
in distribution. CDRL (Bellemare et al., 2017al), such as C51, is the first successful distributional

RL algorithm family that approximates the return distribution by a discrete categorical distribution

nr o= vazl pid,,, where {z;}}¥ is a set of fixed supports and {p;}, are learnable probabili-

ties. The leverage of a heuristic projection operator Il (see Appendix [A]for more details) and the
Kullback-Leibler (KL) divergence guarantee the theoretical convergence of CDRL under Cramér
distance or Wasserstein distance in the tabular setting (Rowland et al., 2018)).

4 REGULARIZATION BENEFITS IN VALUE-BASED DISTRIBUTION RL

In this section, we simplify value-based distributional RL to a Neural Fitted Z-Iteration (Neural FZI)
process in Section [.1] within which the objective function of distributional learning can be further
rewritten as an entropy-regularized form as shown in Section[4.2] Finally, we characterize the role of
the derived entropy-based regularization as uncertain-aware regularized exploration in Section 4.3

4.1 DISTRIBUTIONAL RL: NEURAL FZI

Classical RL: Neural Fitted Q-Iteration (Neural FQI). Neural FQI (Fan et al., 2020; |Riedmiller,
2003)) offers a statistical explanation of DQN (Mnih et al.,|20135)), capturing its key features, including
experience replay and the target network QQy~. In Neural FQI, we update a parameterized Qy in each
iteration k of an iterative regression framework: Q5" = argming, £ 3" [yF — Qg (54, ai)]2
(Neural FQI), where the target y* = r(s;,a;) + ymax,e 4 Q’g* (s}, a) is fixed within every Tiarget
steps to update target network QQy~ by letting Q’g* = Q’g. The experience buffer induces independent
samples {(s;,a;i,7i,5)} e, I {Qo : 6 € O} is sufficiently large such that it contains TOPQE. ,
i.e., the realizable assumption in learning theory (Mohri, 2018), Neural FQI has the solution Q’g“ =
TOP‘Q’g*, which is exactly the updating rule under Bellman optimality operator (Fan et al., 2020).

Distributional RL: Neural Fitted Z-Iteration (Neural FZI). While our analysis is not intended
to involve properties of neural networks, we interpret distributional RL as Neural FZI as it is by far
closest to the practical algorithms. Analogous to Neural FQI, we simplify value-based distributional
RL algorithms denoted by the parameterized Zy into Neural FZI, which is formulated as

1 n
Zytt = afgzminﬁzdp(ﬁk,Ze (83 @), M
0 i=1
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where we denote the target random variable Y;¥ = R(s;, a;) +~vZk. (s}, 7z (s.)) with the policy 7
following the greedy rule 7 (s}) = argmax,, E [Z}. (s}, a’)]. The target Yf is fixed within every
Tiarger Steps to update target network Zg-. d is a distribution divergence between two distributions,

and the lower cases of random variables s/ and 7z (s}) are given for convenience in notations.

4.2 DISTRIBUTIONAL RL: ENTROPY-REGULARIZED NEURAL FQI

As mentioned previously in prelrmmary knowledge (Section J3)), CDRL employs neural networks to
learn the probabrhtres {p;}}¥, in a discrete categorical distribution to represent Zy, and choose KL
divergence as d,, in Eq. .of Neural FZI. We next decompose the KL-based distributional loss d,, in
CDRL by decomposing an equivalent histogram density estimator p in representing Zy.

Return Density Decomposition. To characterize the impact of additional return distribution knowl-
edge beyond the expectation of Z™, we use a variant of gross error model from robust statistics
[2004), which was also similarly utilized to analyze Label Smoothing (Miiller et al., 2019) and
Knowledge Distillation (Hinton et all 2015). Akin to the categorical representation in CDRL (Dab-
ney et al., 2018b), we utilize a histogram function estimator p>®(x) with N bins to approximate
an arbitrary continuous true density p*®(x) of Z™ (s, a), given a state s and action a. In contrast
to categorical parameterization, which is defined on a set of fixed supports, the histogram estimator
operates over a continuous interval, enabling more nuanced analysis within continuous functions.
Given a fixed set of supports g < I3 < ... < Iy with the equal bin size as A, each bin is thus
dented as A; = [l;—1,0;),i =1,..., N — 1 with Ay = [Iny—1,{n]- As such, the histogram density
estimator is formulated by p*%(x) = ZZ, p1(z € A;)/A with p; as the coefficient in the i-th bin
A,;. Denote A as the interval that E [Z7 (s, a)] falls into, i.e., E [Z7(s,a)] € Ag. See Flgurelfor
the illustration of a histogram density function p*®. Putting all together we apply an action-state
return density decomposition over the hlstogram den51ty estimator p*

pi(x) = (1 —el(x € Ap)/A + ep™(2), 2

where p*® is decomposed into a single-bin histogram 1(x €
Apg)/A with all mass on Ag and an induced histogram den-

srty function ,us @ evaluated by i*%(x) = YN phl(z €
A;)/A with p!' as the coefﬁcrent of the i-th bin A;. € is
a hyper-parameter before the decomposition, controlling the
proportion between 1(z € Ag)/A and %% (x). More specif-
ically, the induced histogram density function z°* in the sec-
ond term of Eq. ] represents the difference between the full
histogram function p** and a single-bin histogram, which
only captures the mean. This difference indicates that %
captures the distribution information beyond its expectation
E [Z™(s,a)], incorporating higher-moments information. The reflects the influence of using full
distribution on the performance of distributional RL. The additional leverage of i*® in the distribu-
tional loss explains the behavior differences between classical and distribution RL algorithms. We
first demonstrate that 1% is a valid probability density function under certain € in Proposition

N
P =) pilGeA)/a

Ag

Figure 1: Histogram Estimator.

Proposition 1. (Decomposition Validity) Denote p*°%(x € Ag) = pr/A, where pg is the coeffi-
cient on the bin Ag. *%(z) = ZZ (P (x € A;)/A is a valid density if and only if e > 1 — pp.

The proof can be found in Appendix [B] Proposition [T| demonstrates that the return density decom-
position is valid when the hyper-parameter € is well specified as ¢ > 1 — pg. Under this condition,
our analysis maintains the standard categorical distributional framework in distributional RL.

Remark: Equivalence between Histogram Density Estimator and Categorical Representation.
The histogram function is a continuous estimator in contrast to the discrete nature of categorical
parameterization. We show that they are equivalent in representing a density in Appendix [C] As a
supplementary analysis, with attribution to 2006), we also discuss necessary theoretical
underpinnings of the histogram density estimator in the context of distributional RL in Appendix [D}

Distributional RL: Entropy-regularized Neural FQI. We apply the decomposition in Eq. 2] on
the histogram density function, denoted as p pimz (1) of the target return Y* = R(s;,a;) +
vZE. (sh,mz(s})) in Eq. Iof Neural FZI. Consequently, we have 5720 (z) = (1 — e)1(z €
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ALY /A + efi* ™75 (x), where Al represents the interval that the expectation of the target return
Y} falls into, i.e., E [Y*] € A%, and /% 72(5) is the induced histogram density function, similar
to the role of %% in Eq.[2| Let H(U, V') be the cross-entropy between two probability measures
UandV,ie., H(U,V) = — [ _, U(x)logV(z) dz. Immediately, we can derive the following
entropy-regularized loss functlon%orm of Neural FZI for distributional RL in Proposition[2} with the
proof provided in Appendix [F}

Proposition 2. (Decomposed Neural FZI) Denote q,* as the histogram estimator of Zg(s7 a) in
Neural FZI. Based on Eq. and the KL divergence as dy,, Neural FZI in Eq. is simplified as

Zk'H = argmin— Z [—log gy (AY) 4+ oH (i sima(s) S gy )], 3)
_/_/

qe 11 -

where o = €/(1 — €) > 0 and the term (a) is negative log-likelihood function centered on A%,

Connection between Neural FQI and FZI. A crucial bridge between classical and distributional
RL is established in Proposition [3] where we show that minimizing the term (a) in Eq. [3] of Neural
FZ1 is asymptotically equivalent to minimizing Neural FQI in terms of the minimizers. As such, the
regularization term aH(ﬁSQ’“Z(SQ), gp,"""") interprets the potential benefits of CDRL over classical
RL. For the uniformity of notation, we still use s, a in the following analysis instead of s;, a;.

Proposition 3. (Equivalence between the term (a) in Decomposed Neural FZI and Neural FQI)
In Eq. 3| I of Neural FZI, assume the function class {Zy : 6 € ©} is sufficiently large such that it
contains the target {YF}"_, for all k, when A — 0, minimizing the term (a) in Eq. implies

P(Zy+ (s,a) = T?Qf-(s,a)) = 1, 4)
where T"’”Q’g* (s, a) is the scalar-valued target in the k-th phase of Neural FQI.

See Appendix [G] for the detailed proof. Proposition [3] demonstrates that as A — 0, the random
variable Zg“ (s, a) with the limiting distribution in Neural FZI (distributional RL) will degrade to
a constant T""‘Q’g* (s,a), the minimizer (scalar-valued target) in Neural FQI (classical RL). That
being said, minimizing the term (a) in Neural FZI is asymptotically equivalent to minimizing Neural
FQI with the same limiting minimizer. A formal proof for convergence in distribution with the rate
o(A) is given in Appendix |G| With the connection between optimizing the term (a) of Neural FZI
with Neural FQI in Proposition we can leverage the regularization term a/H (7% 72 (51 gy ") to
explain the potential superiority of CDRL over classical RL. The realizable assumption that {Zy :
6 € ©} is sufficiently large such that it contains {Y;*}7_, implies good in-distribution generalization
performance in each phase of Neural FZI, which is commonly used in analyzing distributional RL,
e.g., (Wu et al [2023). This connection is also consistent with the mean-preserving property of
distributional RL in the tabular setting (Rowland et al.,[2018), but we extend this conclusion to the
arbitrary function approximation setting using a histogram density estimator.

4.3 UNCERTAINTY-AWARE REGULARIZED EXPLORATION

Thanks to the equivalence between the term (a) of decomposed Neural FZI and FQI, the behavior
difference of distributional RL as opposed to classical RL is thus attributed to the second regulariza-

tion term o/H (72577 (%) ¢5**). Minimizing Neural FZI pushes g for the current return density

estimator to catch up with the target return density function of ﬁs'/i’” (s9), which encompasses the
uncertainty of the whole return distribution in the learning course beyond only its expectation. Since
it is a prevalent notion that distributional RL can significantly reduce intrinsic uncertainty of the
environment (Mavrin et al.,[2019; [Dabney et al., [2018a), the derived distribution-matching regular-
ization term o/H(uSv’TZ( ), g,""*") helps to capture more uncertainty of the environment by mod-
eling the whole return distribution beyond the expectation. In Section [5] we show that this derived
regularization contributes to uncertainty-aware regularized exploration in the policy optimization.

Remark: Approximation of ﬂs,v’TZ(S/). In practical distributional RL algorithms, we typically use

temporal-difference (TD) learning to attain the target probability density estimate ﬂsl’”Z(Sl) based
on Eq. [2| provided E [Z(s,a)] exists and € > 1 — pg in Proposition |1} The approximation error
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of ﬁslﬂz ") is fundamentally determined by the TD learning nature. A desirable approximation of

ﬁsl’”Z (") intuitively leads to performance improvement in distributional RL. As KL divergence is
used in CDRL, we also discuss the usage of KL divergence in distributional RL in Appendix

5 REGULARIZATION BENEFITS IN ACTOR CRITIC FRAMEWORK

5.1 CONNECTION WITH MAXENT RL

Motivation for the Connection. The maximum entropy regularization is commonly used in RL,
which has various conceptual and practical advantages. Firstly, the learned policy is encouraged
to visit states with high entropy in the future, promoting the exploration of diverse actions (Han &
Sung,|2021;Haarnoja et al.,|2018a; Williams & Peng,|1991). It also considerably improves the learn-
ing speed (Mei et al.,[2020) and therefore is widely employed in state-of-the-art algorithms, e.g., Soft
Actor-Critic (SAC) (Haarnoja et al.,|2018a). Similar empirical benefits of both distributional RL and
MaxEnt RL motivate us to probe their underlying connection, especially in exploration.

Explicit Entropy Regularization in MaxEnt RL. MaxEnt RL (Williams & Peng| [1991)) explicitly
encourages exploration by optimizing for policies to reach states with higher entropy in the future:

T
J(1) = D Eispanmps [ (st,00) + BH(n(-|s0)], )

t=0

where H (7q (-|s¢)) = — >, 7o (a|s¢) logmg (a|s¢) and p is the generated distribution following
m. The temperature parameter (3 determines the relative importance of the entropy term against the
cumulative rewards and thus controls the action diversity of the optimal policy learned via Eq.[5]

Implicit Entropy Regularization in Distributional RL. For a direct comparison with MaxEnt RL,
it is required to specifically analyze the impact of the regularization term in Eq.[3] Consequently, we
incorporate the distribution-matching regularization of distributional RL into the Actor Critic (AC)
framework akin to MaxEnt RL, enabling us to consider a new soft Q-value. The new Q func-
tion can be computed iteratively by applying a modified Bellman operator denoted as 7], called
Distribution-Entropy-Regularized Bellman Operator. Given a fixed gq, 7] is defined as

T7Q (5¢,ai) 7 (s¢,a0) +VEs,,  ~p(lsea0) [V (St41]se,a0)] s (6)
where a new soft value function V' (s;41]s¢, a¢) conditioned on sy, a; is defined by
|4 (St-‘rl |5ta at) = Eﬂrt+1’\‘77 [Q (St-‘rla at+1)] + f(H (p’St’at ) q;hat))a (7)

where f is a continuous increasing function over the cross-
entropy H. p®»* is the induced true target return histogram
density function via the decomposition in Eq. 2] regardless of
its expectation, which can be approximated via bootstrap TD
estimate fi%¢+172(5t+1) similar to Eq.[3] In this specific tabular
setting regarding s;, a;, we particularly use ¢;""“* to approx-

imate the true density function of Z(st,at). The f tgarésfor- Figure 2: q5'® is optimized to dis-
mation over the cross-entropy H between p*** and g, (z) perse (left) or concentrate (right) to
serves as the uncertainty-aware entropy regularization that we align with the uncertainty of target
implicitly derive from value-based distributional RL in Sec- eturn distributions.

tion[d.2] By optimizing gy, the value-based critic component

in Actor-Critic, this regularization reduces the mismatch between the target return distribution and
current estimate, aligning with the regularization effect analyzed in Section 4.3] As illustrated in
Figure gy” is optimized to catch up with the uncertainty of the target return distribution of *%,
expanding the knowledge of algorithms about the environment uncertainty for more informative de-
cisions. Next, we elaborate on its additional impact on policy learning in the actor-critic in contrast
to MaxEnt RL.

P

AR E)
Al

— 15(x)

Reward Augmentation for Policy Learning. As opposed to the vanilla entropy regularization in
MaxEnt RL that explicitly encourages the policy to explore, our derived distribution-matching regu-
larization in distributional RL plays a role of reward augmentation for policy learning. Compared
with classical RL, the augmented reward incorporates additional return distribution knowledge in
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the learning process. As we will show later, the augmented reward encourages policies to reach
St

states s, with actions a, ~ 7(-|s;), whose current action-state return distribution q;"""* lags far
behind the target one, measured by the magnitude of cross entropy.

For a detailed comparison with MaxEnt RL, we now focus on the properties of our distribution-
matching regularization in the AC framework. In Lemma [I| we first show that our Distribution-
Entropy-Regularized Bellman operator 7 still inherits the convergence property in the policy eval-
uation phase with a cumulative augmented reward function as the new objective function J' ().

Lemma 1. (Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-
entropy-regularized Bellman operator T in Eq. E] and assume H(p5%, ") is bounded for

all (s¢,a1) € S x A We define Q¥! = %“Qk. Given qg, QFT1 will converge to a corrected
Q-value of  as k — oo with the new objective function J'(r) defined as

T
T(1) = 3 B anp, [ (se,00) + 7 F(H (1759, g5))] ®)
t=0
We remain the updating rule me, = argmax,cm Eq,~n [@™4(8t,a¢)] in policy improvement.

Next, we derive a new policy iteration algorithm, called Distribution-Entropy-Regularized Policy
Iteration (DERPI), alternating between policy evaluation in Eq.[6|and policy improvement. It prov-
ably converges to a policy regularized by the distribution-matching term in Theorem [I]

Theorem 1. (Distribution-Entropy-Regularized Policy Iteration) Repeatedly applying distribution-
entropy-regularized policy evaluation in Eq.[6|and the policy improvement, the policy converges to
an optimal policy T* such that Q™ (s¢,az) > Q™ (s¢, ay) for all w € 1L

Please refer to Appendix [H] for the proof of Lemma [T and Theorem [T} Theorem [I] demonstrates
that if we incorporate the distribution-matching regularization into the policy gradient framework in
Eq.[8l we can design a variant of “soft policy iteration” (Haarnoja et al., 2018a)) that can guarantee
the convergence to an optimal policy given any fixed gp. While our theoretical analysis adheres
to the standard analytical framework in MaxEnt RL, we finally recognize a fundamental difference
between our decomposed entropy regularization and the vanilla entropy regularization in MaxEnt
RL. Next, we summarize the distinct regularized exploration effects of MaxEnt RL and CDRL.

Uncertainty-aware Regularized Exploration in CDRL Compared with MaxEnt RL. For the
objective function J () in Eq.[5|of MaxEnt RL, the state-wise entropy H (7 (-|s;)) is maximized ex-
plicitly w.rt. 7 for policies with a higher entropy in terms of diverse actions to encourage an explicit
exploration. For the objective function J'(7) in Eq. [8|of distributional RL, the policy  is implicitly
optimized through the action selection a; ~ 7(-|s;) mechanism guided by an augmented reward
signal from the distribution-matching regularization f(H (u5®t,g,"*")). Concretely, the learned
policy is encouraged to visit state s; along with the policy-determined action via a; ~ 7(:|s;),
whose current action-state return distributions g,""** lag far behind the target return distributions.
This discrepancy is measured by the magnitude of the cross entropy between two return distribu-
tions. A large discrepancy indicates that the uncertainty of current return distribution is considerably
misestimated for considered states, promoting an uncertainty-aware exploration against these states
in policy optimization. This also indicates that the policy learning in CDRL is additionally driven
by the uncertainty difference between the current and the target estimates, leading to a distinct ex-
ploration strategy of distributional RL compared with MaxEnt RL.

Interplay of Uncertainty-aware Regularization in Distributional Actor-Critic. Putting the critic
and actor learning together in distributional RL, we reveal their interplay impact of the uncertainty-
aware regularized exploration when compared with expectation-based RL: 1) on the one hand, the
actor (policy) learning seeks states and actions whose current return distribution estimate lags far
behind the true one determined by the environment, 2) on the other hand, the critic learning reduces
the return distribution mismatch on the states and actions explored by the actor or the policy, as illus-
trated in Figure 2] This uncertainty-aware exploration effect arises from the derived regularization
after the return density decomposition, interpreting the benefits of CDRL over classical RL.

5.2 DERAC ALGORITHM: INTERPOLATING AC AND DISTRIBUTIONAL AC

Motivation. The convergence guarantee of DERPI given a fixed gy in Section provides suffi-
cient insights to understand the uncertainty-aware regularized exploration. To further substantiate
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the validity of introducing the decomposed entropy into the actor-critic with the general function
approximation, we extend DERPI into a practical algorithm with favorable interpretability. Unlike
SAC, which introduces another value function network, we only parameterize the return distribution
qo(st, ar) and the policy 7y (a¢|st), where we use E [gg] to represent the Q function without parame-
terizing it again. Remarkably, the resulting Distribution-Entropy-Regularized Actor-Critic (DERAC)
algorithm can interpolate expectation-based AC and distributional AC.

Optimize the critic gy. The new value function jq(e) is originally trained to minimize the squared
residual error of Eq. @ We show that J, () can be simplified as:

jq(g) X (1 - )‘)Es,a {(Tﬂ-E [qG* (57 a)] —E [QQ(sv a)DQ] + /\Es,a [H(Ns’aa qz,a)} ) (9)

where we use a particular increasing function f(H) = (7H)2 /v and A = = €101, 7 > 0is
the hyperparameter that controls the uncertainty-aware regularization effect. The proof is given in
Appendix [} Interestingly, when we leverage the whole target density function p*® to approximate
the true return distribution of £1*, the objective function in Eq.[9]can be viewed as an exact interpo-
lation of loss functions between expectation-based AC (the first term) and categorical distributional
AC loss (the second term) (Ma et al.;, 2020). In our implementation, for the target 7™E [gp+ (s, a)],
we use the target return distribution neural network gy~ to stabilize the training, which is consistent

with the Neural FZI framework analyzed in Section

Optimize the policy m4;. We optimize 7, in the policy optimization based on the Q-function and

therefore the new objective function .J, (¢) can be expressed as J, (¢) = E 4r » [Elgo(s,a)]]. The
complete DERAC algorithm is presented in Algorithm 2]of Appendix [K]

Remark on DERAC and Its Difference from Categorical Distributional AC. The careful neu-
ral architecture design and selection of the function f endow the loss function of DERAC with
interpretability. However, the DERAC algorithm is not our main focus but primarily serves to sub-
stantiate the efficacy of the uncertainty-aware regularized exploration in distributional RL within an
actor-critic framework, rather than to achieve superior real-world performance. In contrast to Cate-
gorical Distributional AC, which depends entirely on distributional learning in policy optimization,
DERAC interpolates between expectation-based and distributional learning. In Section[6.2] we em-
pirically demonstrate that this interpolation form can be more suitable in specific environments than
distributional AC, helping to mitigate the excessive exploration in fully distributional learning.

6 EXPERIMENTS

We provide a comprehensive demonstration of our theoretical analysis using both Atari games and
MuJoCo environments. In Section [6.1} we first verify that the uncertainty-aware regularization
controls the performance benefit of CDRL by varying € in the return density decomposition. In
Section [6.2] we examine the interpolation performance of the proposed DERAC algorithm in con-
tinuous control environments to substantiate the uncertain-aware regularized exploration in actor-
critic algorithms. Finally, we explore the mutual impacts between the vanilla entropy regularization
in MaxEnt RL and the uncertainty-aware one from CDRL in Section [6.3] with a slight extension
to quantile-based distributional RL, e.g., Implicit Quantile Networks (IQN) (Dabney et al., 2018a).
More implementation details, including the description of baselines, are provided in Appendix [J}

6.1 REGULARIZATION EFFECT BY VARYING € IN RETURN DENSITY DECOMPOSITION

We demonstrate the decomposed uncertainty-aware entropy regularization, which is derived in Eq.
through the return density function decomposition, plays a crucial role in the empirical outperfor-
mance of CDRL over classical RL. Our experiments are conducted on both typical Atari games and
Mujoco environments. Particularly, for the categorical distributional loss in C51 or the critic loss in
the actor-critic algorithms, we replace the whole target histogram density p*>® with the derived j2°>*
decomposed under different € based on Eq.[2l 'We then employ /i instead of p*“ as the target
return distribution in the distributional loss of CDRL, leading to the decomposed algorithms,
denoted by 7 (1, gp). This decomposed algorithm enables us to assess the uncertainty-aware regu-
larization effect of distributional RL by comparing its performance with the classical RL and CDRL.
To ensure a pre-specified e that guarantees a valid decomposition analyzed in Proposition[T] we use a
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Figure 3: Learning curves of value-based CDRL, i.e., C51 algorithm, and the decomposed algorithm
H(u, qo) after the return distribution decomposition with different ¢ on eight Atari games. Results
are averaged over 3 seeds and the shade represents the standard deviation.

new notation €, which shares the same utility with € and is more convenient in the implementation. €
is defined as the mass proportion centered at the bin that contains the expectation when transporting
the mass to other bins. A large proportion probability €, which transports less mass to other bins,
corresponds to a large € in Eq. 2] Increasing ¢ indicates that the decomposed algorithm performs
more similarly to a pure CDRL algorithm. See Appendix [I.2] for more explanation, including the
transformation equation between € and ¢, and the decomposition details of our H(u, gg) algorithm.

Figure [3] showcases that as ¢ gradually decreases from 0.8 to 0.1, learning curves of decomposed
C51, denoted as H(u, go)(e = 0.8/0.5/0.1), tend to degrade from vanilla C51 to DQN across most
Atari games. The sensitivity of decomposed algorithm  (u, gg) in terms of € depends on the envi-
ronment. Similar results in continuous control environments can be found in Appendix[L.1] Overall,
our empirical result corroborates that the decomposed uncertainty-aware entropy regularization from
the categorical distributional loss is pivotal to the empirical benefits of CDRL over classical RL.

6.2 INTERPOLATION BEHAVIOR OF DERAC: MITIGATING THE EXCESSIVE EXPLORATION

Figure[|suggests that DERAC (green) converges and tends to “interpolate” between the expectation-
based AC and distributional AC denoted by DAC (C51), substantiating the theoretical convergence
of the tabular DERPI algorithm in Theorem[I] We highlight that the primary purpose of introducing
DERAC is to interpret the benefits of CDRL from the perspective of uncertain-aware regularized
exploration, rather than to pursue the empirical superiority. In Group 1, it is essential to note that
DERAC achieves superior performance over both AC and DAC (C51) on bipedalwalkerhardcore,
verifying that the interpolation has extra advantages. We posit that the interpolation nature of DE-
RAC mitigates the over-exploration when adopting the purely categorical distributional learning in
C51, as a pure CDRL algorithm may put too much emphasis on the uncertainty-aware exploration,
i.e., all weight on the regularization term in Entropy-regularized Neural FQI in Eq.[3] In Group 2
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Figure 4: Learning curves of DERAC over 5 seeds on MuJoCo. No vanilla entropy regularization
is used in AC or DAC. Group 1: Ant, Swimmer and Bipedalwalkerhardcore, where DAC (C51)
outperforms AC. Group 2: Humanoid and Walker2d, where AC outperforms DAC (C51).
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(DSAC) over

five seeds across eight MuJoCo environments where DAC and DSAC are based on IQN. (First
Row): Mutual improvement. (Second Row): Potential interference.

where DAC is inferior to AC, it exhibits that DERAC performs similarly to or slightly excels at AC.
These results demonstrate that DERAC is more robust and can even surpass DAC (C51) by poten-
tially mitigating the over-exploration of pure distributional RL. Unlike fully distributional RL, which
put more weights on uncertainty-aware regularized exploration, DERAC offers a more optimal bal-
ance between exploration and exploitation, potentially resulting in better performance in certain
environments. We also provide a sensitivity analysis of DERAC regarding A in Appendix [L.2]

6.3 MUTUAL IMPACTS OF VANILLA ENTROPY REGULARIZATION IN MAXENT RL AND
UNCERTAINTY-AWARE REGULARIZATION IN DISTRIBUTIONAL RL

We demonstrate that the two types of regularized exploration encouraged either by Vanilla
Entropy (VE) in MaxEnt RL or Uncertainty-aware Entropy (UE) in CDRL play distinct roles in the
policy learning when used simultaneously, including mutual improvement or potential interference.
DSAC stands for Distributional SAC, as initially introduced by (Ma et al.|[2020). We perform an ab-
lation study for both DSAC (C51) and DSAC (IQN), where the latter is used to heuristically examine
the mutual impacts in quantile-based distributional RL. We present results on DSAC (IQN) and leave
similar results on DSAC (C51) in Appendix[L.3] Specifically, we denote SAC with/without vanilla
entropy as AC+VE and AC, and Distributional SAC with/without vanilla entropy as

and AC+UE or DAC. The implementation details can be found in Appendix

In the first row in Figure[5] simultaneously employing uncertainty-aware and vanilla entropy regular-
ization renders a mutual improvement. Conversely, the two kinds of regularizations when adopted
together lead to performance degradation in the second row in Figure [5] such as Swimmer and
Reacher, where is significantly inferior to AC+UE or AC+VE. We posit that the po-
tential interference may result from distinct exploration directions in the policy learning for the two
types of regularizations. SAC optimizes the policy to visit states with high entropy, while distri-
butional RL updates the policy to explore states and the associated actions whose current return
distribution estimate lags far behind the correct one determined by the environment uncertainty.

7 DISCUSSIONS AND CONCLUSION

In this paper, we interpret the benefits of CDRL over classical RL as uncertainty-aware regularization
derived through the return density decomposition. In contrast to encouraging diverse actions for
the exploration in MaxEnt RL, the uncertainty-aware regularization in CDRL promotes to explore
states where the environment uncertainty is largely underestimated. This novel perspective from the
exploration explains the benefits of (categorical) distributional learning in RL.

Limitations and Future Work. The uncertainty-aware regularization with the exploration effect is
founded on CDRL. However, it remains elusive whether extending the uncertainty-aware exploration
in CDRL to general distributional RL is feasible, given that the analytical techniques in other classes,
such as QR-DQN, are highly different from CDRL. We leave this extension as future work.

10
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A CONVERGENCE GUARANTEE OF CATEGORICAL DISTRIBUTIONAL RL
AND A DETAILED DESCRIPTION OF C51

Convergence Properties of CDRL. Categorical Distributional RL (Bellemare et all, 2017a) uses
the heuristic projection operator II¢, which was defined as

0z, y <z
e (6y) = ZZ:-LI Zyz(sl + zz-!szz 521+1 Zi <Y< zig1 (10)
Oxn Y > ZN

After applying the distributional Bellman operator €™ on the current return distribution 7™ (s, a)
in each update, the resulting new distribution, , which we denote as 77" (s, a), typically no longer
lies in the same (discrete) support with the original one on {2;}2¥ ;. To maintain the same sup-
port, the underpinning of the KL divergence, CDRL additionally applies the projection operator
II¢ on the new distribution 7" (s, ). This projection rule distributes the weight of §, across the

original support points {z;}2¥ ;| based on the linear interpolation. For example, if y lies in between
two support points z; and z;11, the probability mass on y is split between z; and z;4; with the
weight inversely proportional to its distance ratio to z; and z;1. Therefore, the projection extends

affinely to finite mixtures of Dirac measures, such that for a mixture of Diracs Zil Didy,, we have
Il (Zf\;l piéyi> = vazl pille (8y,). The Cramér distance was recently studied as an alternative

to the Wasserstein distances in the context of generative models (Bellemare et all [2017b). Recall
the definition of Cramér distance in the following.

Definition 1. (Definition 3 (Rowland et al [2018)) The Cramér distance f5 between two distribu-
tions v1,ve € P (R), with cumulative distribution functions F,,, F,,, respectively, is defined by:

by (v1, 1) = (/R (F, (z) — F,,(z))? dx>l/2.

Further, the supremum-Cramér metric {5 is defined between two distribution functions 1, €
QZ(R)X XA by

22 (777 ,U,) - sup £2 <7](I’a)7 u(m,a)) )
(z,a)EX XA
Thus, the contraction of categorical distributional RL can be guaranteed under Cramér distance:

Proposition 4. (Proposition 2 (Rowland et al.| 2018))) The operator T T™ is a \/7-contraction in
lo.

An insight behind this conclusion is that Cramér distance endows a particular subset with a notion of
orthogonal projection, and the orthogonal projection onto the subset is exactly the heuristic projec-

tion Il¢ (Proposition 1 in (Rowland et al.,[2018)). Rowland et al.|(2018) also states that the operator

II.7™ is contractive under Wasserstein distance.

Description of CDRL Algorithm, e.g., C51. With N = 51, C51 instantiates the CDRL algorithm.
To elaborate the algorithm, we first introduce the pushforward measure fv € P(R) from Definition

Algorithm 1 CDRL Update (Adapted from Algorithm 1 in (Rowland et al.,[2018))
Require: Number of atoms N, e.g., N = 51 in C51, the categorical distribution 7j(s,a) =

SN p®6., for the current return distribution.
Input: Sample transition (s, a,r, s")
1: if Policy evaluation: then

a* ~ 7(:[s")
else if Control: then

a* < argmaxa e 4 Egs(s o) [R]
end if R
n(s,a) < (fr)#0(s’, a*) # Distributional Bellmen update by applying T7
¢ Tharget (8, @) <= Hen(s, a) # Project target support points onto the original support
Output: Compute the distributional loss KL (7jareet (s, @)||7(s, a)) # Choose KL divergence as d,,

\.‘QH‘.J?‘:'.’!\.’

16



Under review as a conference paper at ICLR 2025

1 in (Rowland et al| [2018)). This pushforward measure shifts the support of the probability measure
1 according to the map f, which is commonly used in distributional RL literature. In particular, we
consider an affine shift map f, , : R — R, defined by f, (x) = r+vyz. As Algorlthmldlsplays we
first apply the pushforward measure on the target return distribution 7)(s’, a*) by affinely shifting its
support points, leading to a new distribution 77(s, a). Next, we project the support points of 7j(s, a) by
employing Il onto the original support, allowing to compute the KL divergence in the end. Notably,
we decompose the distributional objective function on the KL loss KL (7areet (s, @)||7(s, @)).

B PROOF OF PROPOSITIONI]

Proposition(Decomposition Validity) Denote p**(x € Ag) = pg/A, where pg is the coefficient
on the bin Ag. i*%x) = Zf\il pi'1(z € A;)/Ais a valid density if and only if € > 1 — pp.

Proof. Recap a valid probability density function requires non-negative and one-bounded probabil-
ity in each bin and all probabilities should sum to 1.

Necessity. (1) When z € Ag, Eq.can simplified as pp/A = (1 — €)/A + eply /A, Where Py =
[i(z € Ag). Thus, ply = B2 — 1= > (if ¢ > 1 — pp. Obviously, pf, = pEE —lecl_le g

guaranteed by the validity of p3.*. (2) When = ¢ Ap, we have p;/A = epl’ /A, ie. When x §é Apg,
We immediately have p}' = & < 17% < 1whene>1-pg. Also, pf = B > 0.

Sufficiency. (1) When z € Ag, letphy, = 22 — 1= > 0, wehave € > 1 —pp. plp = 22 — =< <1
in nature. (2) Whenz ¢ Ap, p}' = 2 > 0in nature, Let pf' = 28 <1, we have p; < e. We need to
take the intersection set of (1) and (2) and we find thate > 1 — p g = € > 1 —pg > p; that satisfies
the condition in (2). Thus, the intersection set of (1) and (2) would be ¢ > 1 — pg.

In summary, as ¢ > 1 — pg is both the necessary and sufficient condition, we have the conclusion
that i(x) is a valid probability density function <= € > 1 — pg.

O

C EQUIVALENCE BETWEEN CATEGORICAL REPRESENTATION AND
HISTOGRAM ESTIMATION IN DISTRIBUTIONAL RL

Proposition 5. Suppose the target categorical distribution ¢ = Zf\il D;0, and the target histogram

function h(zx) = Zf\il pil(z € A;)/A, updating the parameterized categorical distribution cgy
under KL divergence is equivalent to updating the parameterized histogram function hy.

Proof. For the histogram density estimator hy and the true target density function p(z), we can
simplify the KL divergence as follows.

N l; pl($)
b opi(x) A
Dot =3 [ PR og
X lic1 A
N 1
pi(z)  pi(z) Copil) Ry
72/ o P ;/lilAlAdx
(a) Copi(x) . hy
- log & 11
o< Z_Zl/lll A ogAdm (11)
N .
hZ
Y3 pilog
=1
N .
— " piloghj
i=1
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where A}, is determined by 4 and 6, which is independent of x. (a) is true because the target distri-
bution with all p; is fixed. (b) follows because p;(x) remains constant for « € [l;, ;11]. Finally, (¢)
holds as the remaining term involving p; and A is also constant.

On the other hand, we consider the KL-based objective function in learning categorical distribution

estimator. Given the target categorical distribution ¢ = Zfil p:62,;, where the probability p; is fixed
for each atom z;, we aim at updating the current categorical estimator cg. Then, we have:

N N N N
pi : :
Dxi(c,co) = E Di IOgCTZ = E pilogp; — E pilogcy o< — E pi log cy, (12)
i=1 0 =1 i=1 i=1

where ¢y = Ziv=1 4, is the current categorical estimator and ¢} is the learnable probability. By
comparing the final loss function forms in Eq. [[T]and Eq.[T2] it turns out that they are equivalent as
both ¢ and hj, are the learnable probabilities, which are parameterized by the same neural network.

O

Remark. In CDRL, we use a discrete categorical distribution with probabilities centered on the fixed
atoms {z; },. In contrast, the histogram density estimator in our analysis is a continuous function
defined on [z, zx], enabling more nuanced analysis within continuous functions. Proposition
indicates that minimizing the KL divergence with the categorical distribution in Eq. [I2] amounts to
the cross-entropy loss with the parameterized histogram function in Eq.

D CONVERGENCE GUARANTEE OF HISTOGRAM DENSITY ESTIMATOR IN
DISTRIBUTIONAL RL

Histogram Function Parameterization Error: Uniform Convergence in Probability. The pre-
vious discrete categorical parameterization error bound in (Rowland et al., |2018) (Proposition 3) is
derived between the true return distribution and the limiting return distribution denoted as 7 iter-
atively updated via the Bellman operator II¢T™ in expectation, without considering an asymptotic
analysis when the number of sampled {s;, a;}?_; pairs goes to infinity. As a complementary re-
sult, we provide a uniform convergence rate for the histogram density estimator in the context of
distributional RL. In this particular analysis within this subsection, we denote ﬁé’“ as the density
function estimator for the true limiting return distribution 7¢ via IIcT™ with its true density pZ“.
In Theorem [2| we show that the sample-based histogram estimator p;* can approximate any ar-
bitrary continuous limiting density function p* under a mild condition. This ensures the use of
a histogram density estimator in the implementation of our subsequent algorithm adapted from
CDRL.

Theorem 2. (Uniform Convergence Rate in Probability) Suppose py“(x) is Lipschitz continuous
and the support of a random variable is partitioned by N bins with bin size A. Then

log N
sup [7" () = " (#)| = O (&) + Op (\/;332) . (13)

Proof. Our proof is mainly based on the non-parametric statistics analysis (Wasserman, [2006)). In
~S,a

particular, the difference of p“(x) — pz* () can be written as
pe"(x) = pg*(x) = E(pg” (2)) — p” () + p (z) — E (e (z)) -

(14)
bias stochastic variation
(1) The first bias term. Without loss of generality, we consider x € Ay, we have
~s,a P<X € Ak)
E (pe*(z)) = A
lo+kA
i te—na PW)dy
N A (15)

_ F(lo+ (k—1)A) — F(lo + (k—1)A)
B lo+ kA = (lp+ (k—1)A)

= pg"(«"),
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where the last equality is based on the mean value theorem. According to the L-Lipschitz continuity
property, we have

IE (" (x)) — pg*(x)| = Ipg“(«") = pg*(x)| < L|z’ — x| < LA (16)

(2) The second stochastic variation term. If we let x € Ay, then p* = pi, = % Y 1(X; €
Ay), we thus have
> e)

SN 1(Xi € D) - P(Xi € A) >Ae> a7
=1

> Ae)

< N -exp (727”LA262) (by Hoeffding’s inequality),

P (sup 72" (0) - E 7" (2)] > )

=P max
j=1,",N

i=1

where in the last inequality we know that the indicator function is bounded in [0, 1]. We then let the
last term be a constant independent of N, n, A and simplify the order of e. Then, we have:

log N
sup [P¢" (#) — E (5" ()] = Op (w;&) (18)

In summary, as the above inequality holds for each =, we thus have the uniform convergence rate of
a histogram density estimator

sup [ (x) — g (x)] < sup [E (5" (x)) — pe (x)| + sup [p” (x) — E (B (2))]

log N (19)
nA2 |’

:O(A)+OP<

E DIScUSSION ABOUT KLL DIVERGENCE IN DISTRIBUTIONAL RL

E.1 PROPERTIES OF KL DIVERGENCE IN DISTRIBUTIONAL RL

Remark on KL Divergence. As stated in Section [3| of CDRL (Bellemare et al., 2017a), when the
categorical parameterization is applied after the projection operator Il¢, the distributional Bellman
operator ™ has the contraction guarantee under Cramér distance or Wasserstein distance (Row-
land et al., 2018)), albeit the direct use of a non-expansive KL divergence (Morimura et al., [2011])).
Similarly, our histogram density parameterization with the projection Il and KL divergence also
enjoys a contraction property due to the equivalence between optimizing histogram function and
categorical distribution analyzed in Appendix [C| We summarize some properties of KL divergence
in distributional RL in Proposition 6]

Proposition 6. Given two probability measures i and v, we define the supreme Dg; as a functional
P(X)SA X P(X)S*A S R, ice., DY (1,v) = SUDP(s,a)es x4 DrL(pi(s, a),v(s, a)). we have:

(1) € is a non-expansive distributional Bellman operator under DR, i.e.,

DI(?[),((Iﬂ-Zla‘IﬂZQ) < DIC?L)(ZMZQ)a (20)

(2) D(Zn, Z) — 0 implies the Wasserstein distance W,(Z,,, Z) — 0.

19



Under review as a conference paper at ICLR 2025

Proof. We first assume Zj is absolutely continuous and the supports of two distributions in KL
divergence have a negligible intersection (Arjovsky & Bottou,[2017)), under which the KL divergence
is well-defined.

(1) The contraction analysis of distributional Bellman operator ™ under a distribution divergence
d, depends on its scale sensitive (S) and sum invariant (I) properties (Bellemare et al., 2017bfa).
We say d,, is scale sensitive (of order 7) if there exists a 7 > 0, such that for all random variables
X,Y and a real value ¢ > 0, dy(aX,aY) < |a|"d,(X,Y). d, has the sum invariant property if
whenever a random variable A is independent from X, Y, we have d,(A+ X, A+Y) < d,(X,Y).
We first prove that the Dy, is sum-invariant, which is based on the dual form of KL divergence via
the variational representation (Donsker & Varadhan, |1976; |Agrawal & Horel, 2021):

Dia(X,¥) = sup {Ex[f(z)] - log (Ev [¢/])} @

where L is the space of bounded measurable functions. Consequently, we have

Diu(A+ X, A+Y) = sup {Ez,—a i x[f(21)] — 1og (Ezemasy [e/)] )}

jecr
@ fsélfb{]EA [Ex [f(z + a)]] — log (IE A [Ey [€f<y+a>ﬂ)}

(%) ;ggb{EAJEX [f(z +a)] — E4log (EY [ef<y+a>} )}

= sup {E4[Ex[f(z +a)] - log (By [eer] )13 (22)
<E, fsélg{EX [f (z +a)] —log (Ey [ef<y+a>] )}

D g sup {Ex[g(x)] ~ log (Ey [20])}

g )

where (a) results from the independence between A and X (Y). (b) and (c) rely on the Jensen
inequality for the function — log and the operator sup. (d) is because the translation is still within
the same bounded functional space. Next, we show that Dy is not scale-sensitive, where we denote
the probability density function of X and Y as p and q.

© 1 sz p(2) . > ply) .
Dy (aX,aY) = /_oo ~p (5) log i (f)dx - /_Oop(y) log e Sy = Din(X.Y) - (23)

Putting the two properties together and given two return distributions Z; (s, a) and Zs(s, a), we have
the non-expansive contraction property of the supremal form of Dgy as follows.

Q|

—

Dy (3721, %7 Z3) = sup Dx.(T" Z1(s,a), T Z2(s,a))

= sup Dxr(R(s,a) +vZ1(s',a’), R(s,a) + vZ2(s",a’))

(a) ! I / /

< DxL(vZ1(s',a),vZ2(s',a')) (24)
Y pe(Zi(s',d'), Zo(s',d))

<sup Dx1L(Z1(s',d’), Z2(s',a"))

= D1 (%1, Z2),

where (a) relies on the sum invariant property of Dy and (b) utilizes the non-scale sensitive prop-
erty of Dgr. By applying the well-known Banach fixed point theorem, we have a unique return
distribution when convergence of distributional dynamic programming under Dgj .
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(2) By the definition of DR}, we have sup, , Dki(Zn (s, a), Z(s,a)) — 0 implies Dxi(Zn, Z) —
0. DxL(Z,, Z) — 0 implies the total variation distance d(Z,,, Z) — 0 according to a straightfor-
ward application of Pinsker’s inequality

1 1
0(Z0.2) <\ 5Dxu (2. 2) 0. §(Z.2,) <[ 5Dxa (2, Z0) = 0 (25)

Based on Theorem 2 in WGAN (Arjovsky et al.l 2017), §(Z,,, Z) — 0 implies W,(Z,,Z) — 0.
This is trivial by recalling the fact that 0 and W give the strong and weak topologies on the dual of
(C(X), |l - lloo) When restricted to Prob(X).

O

E.2 EQUIVALENCE BETWEEN CROSS-ENTROPY LOSS AND KLL DIVERGENCE IN NEURAL
FZ1

If the target density function in evaluating the KL divergence is not fixed, using cross-entropy loss in-
stead of the KL divergence may underestimate the uncertainty of return since this simplification may
fail to capture the exact shape or uncertainty spread of the true target return distribution. However,
this underestimation issue does occur in our analysis. Particularly, the leverage of target network
in Neural FZI, which is fixed in the updating of each phase, guarantees that the KL divergence
is exactly proportional to the cross-entropy loss. Figure [6] suggests that C51 with cross-entropy
loss (DSAC_CE) behaves similarly to the vanilla C51 equipped with KL divergence (DSAC) in both
three Atari games and MuJoCo environments with continuous action space.
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Figure 6: (First row) Learning curves of C51 under cross-entropy loss on Atari games over 3
seeds. (Second row) Learning curves of DSAC with C51 under cross-entropy loss on MuJoCo
environments over 5 seeds.

F PROOF OF PROPOSITION 2]

Proposition 2 (Decomposed Neural FZI) Denote g, as the histogram density function of Zk(s,a)
in Neural FZI. Based on Eq. |2| and KL divergence as d,, Neural FZI in Eq. llS simplified as

Z’€+1 = argmin— Z log g, (A%) + o/H(,usl’”Z ), a5 ")) (26)
qe i=1 %/_/
(a)
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Proof. Firstly, given a fixed p(x) we know that minimizing Dky(p, gg) is equivalent to minimizing
H(p, q) by following

Nl (T i(x
Dx.(p, 09) = Z/l pila) 1o PU)/2 4,

= A G/ 5
N L. N 1 :
_ Copi(e) g / topi(z)  p(x) (27)
= ;/11 A log dz ; . log A dz)
= H(p,q9) — H(p)
OCH(pvq{9)

where p = ngzlpi(z)]l(x € AY)/A and gy = Zf\;l qi/A. Based on H(p,qg), we use
psé*”Z(s{)( ) to denote the target probability density function of the random variable R(s;,a;) +
VZE, (s 7z (s})). Then, we can derive the objective function within each Neural FZI as

n N Si @y N 1 / s:.a
! ’ TGA ) 4" (B)) Dy gt (A)
ZgZ 1—62/ Bty [* Prog A,
=1 Jj=1 - =1 i—1
1 = Si,a Z s’ T S.i.Q;
= =3 (1= (= log gy (Ap)) + eH(E ™D, g5) ) +(1 = A

>0

1 n - ’ ’ €
— 1 Siri( AT H Asi,ﬂz(si)7 84,04 ) , wh _
o E ( 0g gy (A%) + aH(n q,""") ), where o 1

—€

(28)
where recall that ﬁsi mz(si) = Zf;l pi(z)l(z € A)/A = ZZ L P /A for conciseness and de-
note ¢, = Zj 1957 (A)/A. The cross-entropy H(f° oz (sh) qy""") is based on the discrete
distribution when ¢ = 1,..., N. AY represent the interval that E [R(s;, a;) + vZ}. (s}, mz(s}))]
falls into, i.e., E [R(s;, a;) + vZE. (s}, mz(s}))] € A%. O

G PROOF OF PROPOSITION 3]

Proposition 3] (Equivalence between the term (a) in Decomposed Neural FZI and Neural FQI) In
Eq. Iof Neural FZI, assume the function class { Zy : 0 € ©} is sufficiently large such that it contains
the target {Y;*}7_,, when A — 0, for all k, minimizing the term (a) in Eq. [3|implies

+oo

P(Zy ™ (s,a) = T"Qf-(s,a)) = 1, and /

—00

Fpy(@) = By ., (2)] da = 0(8),

(29)
where T°P'Q¥. (s, a) is the scalar-valued target in the k-th phase of Neural FQI, and 670,,‘@;5* (s,a) 18

the Dirac delta function defined on the scalar 7°P'QE. (s, a).

Proof. Limiting Case. Firstly, we define the distributional Bellman optimality operator T°" as
follows:

T Z(s,a) 2 R(s,a) +vZ (S',a%) (30)
where S’ ~ P(- | s,a) and a* = argmaxE [Z (57,a)]. If {Zy : 0 € O} is sufficiently large enough

such that it contains T Zy- ({Y;*}7)), then optimizing Neural FZI in Eq. [1| leads to Z§ ™! =
TP Z g+

Secondly, we apply the return density decomposition on the target histogram function p*“(x). Con-
sider the parameterized histogram density function hy and denote hg /A as the bin height in the
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bin A, under the KL divergence between the first histogram function 1(z € Ag) with hg(z), the
objective function is simplified as

hE
1 0

Dii(1(z € Ap)/A, hy(z)) = —/ X log 2dr =-logh§ (€19
TEAR A

Since {Zy : 0 € O} is sufficiently large enough that can represent the pdf of {Y*}1 ., it
also implies that {Zy : § € O} can represent the term (a) part in its pdf via the return den-
sity decomposition. The KL minimizer would be hy = 1(z € Ag)/A in expectation. Then,
lima 0 arg ming, Dx(1(z € Ag)/A, hg(7)) = gz (s,qa)], Where 0| zuse (s q)) is a Dirac Delta
function centered at E [ 28 (s, a)] and can be viewed as a generalized probability density function.
That being said, the limiting probability density function (pdf) converges to a Dirac delta func-
tion at E [Z%€"(s,a)]. The limit behavior from a histogram function D to a continuous one for
Z'eet js guaranteed by Theorem [2] and this also applies from hg to Zg. In Neural FZI, we have

Zweet — TP 7, Here we use Z, " '(s,a) as the random variable whose cdf is the limiting dis-
tribution. According to the definition of the Dirac function, in the limiting case where A — 0, we
attain that

P(Zy ™ (s,a) = E [TP'Z}.(s,a)]) = 1. (32)

This is because the pdf of the limiting return random variable Zé““ (s, a) is a Dirac delta function,
which implies that the random variable takes this constant value with probability one. Due to the
linearity of expectation in Lemma 4 of (Bellemare et al.,[2017a), we have

E [T Z).(s,a)] = TPE [Z5.(s,a)] = TP'Qf (s, a) (33)
Finally, we obtain the convergence in probability one in the limiting case:
P(Z§ T (s,a) = T"'Qh.(s,a)) =1 as A —0 (34)

Convergence in Distribution. The connection established above is in the limiting case. Alterna-
tively, we can have a more formal proof by using the language of convergence in distribution. Here,

we use Z 5’21 to replace Zg“ to explicitly consider its asymptotic behavior. According to the fact

that co{x € Ag}/A is the optimizer when minimizing the term (a) in Eq. [3| given a fixed A, the
convergence in distribution is:

. E+1y _ 1 _
ilinOD(Zg,A )= AII_I}OD(]l{x € Agp}/A) = D((57—othrg* (5,0))> (35)

where d7opi gk, (5,4 i the Dirac Delta function centered at TOPtQE. (s,a). D(b7opik, (s,a)) 18 the
corresponding step function, where D(dropigk, (s,0))(2) = 1if 2 > TP Qk. (s,a), and equals 0
otherwise. Note that the convergence in distribution in terms of the Dirac delta function implies that
P(Z§*'(s,a) = T®Q.(s,a)) = Las A — 0in Eq[34]

Convergence Rate. In order to characterize how the difference varies when A — 0, we further
define Ag = [l¢, le+1) and we have:

e 1 opt Yk 2 t 2
[ ’qu () = F‘ST“P‘QQ*(S@) (I)‘ de = 2A ((T Q- (s,0) — le) + (le+1 = T Qg- (s,a)) )
= E(QQ + (A —a)?)
<A/2
= O(A)a

(36)
where T°P'QE. (s,a) = E [TP'Z}. (s,a)] € Ag and we denote a = TP'QF. (s, a) — .. The first
equality holds as gg(z), the KL minimizer while minimizing the term (a), would follows a uniform
distribution on Ag, i.e., g9 = 1(z € Ag)/A. Thus, the integral of LHS would be the area of two
centralized triangles accordingly. The inequality is because the maximizer is obtained when a = A
or 0. The result implies that the convergence rate in distribution difference is o(A).

O
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H CONVERGENCE PROOF OF DERPI IN THEOREM [I]

H.1 PROOF OF DISTRIBUTION-ENTROPY-REGULARIZED POLICY EVALUATION IN LEMMA [T]

Lemma [T| Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-entropy-
regularized Bellman operator 7" in Eq.|6{and assume H (p5%, g,"**) is bounded for all (s;, a;) €

S x A. Define Q"' = TTQF, then Q**! will converge to a corrected Q-value of 7 as k — oo
with the new objective function J' () defined as

T
(1) =) B, anmpn [ (5, a0) + 7 F(H (15", g5 )] (37)
t=0

Proof. Firstly, we plug in V (s;41) into RHS of the iteration in Eq. @, then we obtain
T4 Q (e, ar)
=7 (st,at) +VEs, 1 oP(1si,a0) [V (St41)]
=T (Sta at) + ’Yf(H (/U‘Stﬂt ’ q;t,at)) + ’VE(st+1,at+1)Np" [Q (St+17 at+1)]

= Tr (St7 at) + IYE(st+1,at+1)~p7' [Q (St+17 at+1)] B

(38)

where 1 (s¢,a;) = 7 (s, a) +vf (H (509, ;")) is the entropy augmented reward we redefine.
Applying the standard convergence results for policy evaluation (Sutton & Bartol 2018), we can
attain that this Bellman updating under 7 is convergent under the assumption of |A| < oo and
bounded entropy augmented rewards 7.

H.2 PoLiCY IMPROVEMENT WITH PROOF

Lemma 2. (Distribution-Entropy-Regularized Policy Improvement) Let m € 11 and a new policy
Tnew be updated via the policy improvement step in the policy optimization. Then Q™= (s¢,at) >
Q7 (s¢,a4) for all (s¢,ar) € S x Awith | A] < 0.

Proof. The policy improvement in Lemma implies that E,,or,, [@™4(st,a:)] >
Eo, onge [@74(s¢, at)], we consider the Bellman equation via the distribution-entropy-regularized

us

Bellman operator 7_7:

Q™" (s¢, ar) £

(Sta a’t) + 7E5t+1~0 [Vﬂdd (StJrl)}
(56,a0) + 7 F(H (1%, 45" ) + VB (srsrsae1)~pmon [Q7 (St41, a141)]
S r (St’ at) + ’Yf(H (/’Ls“at ) QZhat)) + ’YE(St+1,at+1)Np7rﬂ¢W [Qﬂ-(ﬂd (St+17 at+1)]

7r 39
= Tgnew (St’ a’t) + ’YE(St+17at+l)~pﬂ"ew [Q o (St+17 at+1)] ( )

S Qﬂ-new (St-‘rla at+1) )
where we have repeated expanded Q™ on the RHS by applying the distribution-entropy-regularized
O

distributional Bellman operator. Convergence to Q™ follows from LemmalT}

H.3 PROOF oF DERPI IN THEOREMI]

Theorem [I] (Distribution-Entropy-Regularized Policy Iteration) Repeatedly applying distribution-
entropy-regularized policy evaluation in Eq.[6]and the policy improvement, the policy converges to
an optimal policy 7* such that Q™ (s, a;) > Q™ (s¢,a) for all w € TI.

Proof. The proof is similar to soft policy iteration (Haarnoja et al., 2018a). For completeness, we
provide the proof here. By Lemma[2] as the number of iteration increases, the sequence Q™ at i-th
iteration is monotonically increasing. Since we assume the uncertainty-aware entropy is bounded,
the Q7 is thus bounded as the rewards are bounded. Hence, the sequence will converge to some 7*.
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Further, we prove that 7* is in fact optimal. At the convergence point, for all 7 € II, it must be case
that:

Eqpmmes [Q™ (5¢,a1)] 2 Eg, o [Q™ (S¢,a¢)] -

According to the proof in Lemma we can attain Q™ (s;,a;) > Q™ (s¢,az) for (s¢,az). That is
to say, the “corrected” value function of any other policy in II is lower than the converged policy,
indicating that 7* is optimal.

I PROOF OF INTERPOLATION FORM OF .J,(6)

In SAC (Haarnoja et al., 20184) (Section 4.2), it introduces another parameterized state value func-
tion to approximate the soft value in the function approximation setting. Instead, we are not intended
to do so, but directly use a single Q network to be optimized, which allows the interpolation form
of our algorithm. In particular, we directly evaluate the least squared loss between the current Q
estimates and the target ones for the critic loss. With a particular form of f, (), the removal of
the interaction term, and the replacement of @)y with [ [gy], we can derive the interpolation form of

jq(H) according to the following formula:

T Qu-(5,0) — Qus,))’]

2
(7@ (5:0) = Qulss0) 2200207, 5|

(T™E g0+ (5,)] — E [qu(s, @))) H(1", ;)]
~Eoa [(T7E [0+ (5,0)] — E [a0(s, a)])? ] + 7Eoa [H(, ;)

x (1= NEsa [(T7E a0 (5,0)] — E[a0(s, @)))°] + ABoa [H(5, 65)]

where the second equation is based on the definition of Distribution-Entropy-Regularized
Bellman Operator 7] in Eq. |§| and let f(H) = (7H)/?/y. The interaction term
+Es,0 [(TTE [g6+ (s, a)] — E [go(s,a)]) H(p** ,q,"")] equal zero in the last equation is rooted in
Lemma 1 in (Shi et al.,[2022). Although Lemma 1 considers the A/B testing with offline dataset, it
demonstrates that the estimation equation between the Bellman error and and any function ¢ (S;, A;)
equals zero under mild conditions, such as the consistency assumption. Strictly speaking, we
heuristically extend the conclusion in Lemma 1 of (Shi et al m 2022) to the simplification of our
critic loss, where we let o (S, A)) = H(u 4, q)" Consequently, we can approximately
remove the interaction term as E, , [(77 E[qg*(s a)] E[qg(s a)]) H(p>*, qp")] = 0. We set
A = == € [0,1]. Another simplification is that we directly use E [gy] to replace Qg rather than

1+7
to maintain both two networks gy and @)y with different parameters 6. This strategy simplifies our

implementation and contributes to derive the final interpolation form in jq(ﬁ).

3l

[ (T™E lo+ (5, )] ~ Elan(s, a)])*| + 7Eya [H(u", g5 (40)
(
[

J  IMPLEMENTATION DETAILS

J.1 BASELINES ALGORITHMS

Algorithms in Section[6.1}

* DQN and C51 (Bellemare et al] 20174)

* H(u,q9)(e = X): a variant of C51 algorithm, where we replace the original target his-
togram function p** with the induced *“ for each (s, a) pair in the update. By varying
e = X, H(u, qo) relies on the distributional loss to different extents in the RL learning. For
examples, when € = 1, H (1, go) (¢ = X') degenerates to the vanilla C51 algorithm. On the
contrary, decreasing ¢ in H(u qp) will reduce the leverage of knowledge from the distribu-

tional loss, leading to the performance degradation in distributional learning context.
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Algorithms in Section[6.2]

* AC: The implementation of AC is directly from the standard SAC algorithm (Haarnojal
without using the entropy regularization.

* DAC (C51). Based on the original implementation of AC, we employ the C51 loss in the
critic loss. Thus, the performance difference between DAC (C51) and AC is merely the
leverage of distributional loss.

* DERAC: Our proposed algorithm in Section[5.2]based on the implementation of AC, which
uses an interpolated critic loss. The experiments on DERAC are used to validate the con-
vergence analysis in Section [5.2] and highlight the potential performance improvement of
an interpolated algorithm in mitigating the over-exploration for an entire distribution RL
algorithm.

Algorithms in Section[6.3}

* AC: This implementation is same as AC in Section[6.2}
AC+VE: This is exactly the standard SAC algorithm.

* AC+UE: This implementation is also same as DAC (C51) in Section@ where we use a
distributional critic loss in AC algorithm.

* AC+UE+VE: Based on the SAC algorithm, i.e., AC+VE, we additionally use the distribu-
tion objective in C51 as the critic loss.

J.2 REPLACING € WITH THE RATIO € FOR VISUALIZATION

The substitution of € with ¢ is for convenience in the implementation. As Proposition [T]elucidates,
the return density decomposition requires that € exceed certain thresholds to ensure the resultant
decomposed 1** qualifies as a valid density function. In practice, pinpointing this lower boundary
for € in each iteration to regulate its range could be prohibitively time-intensive. A more pragmatic
approach involves redistributing the mass from the bin that contains the expectation to other bins
in specified ratios, thereby introducing the corresponding ratio term . By varying ¢ from O to 1, it
invariably meets the validity condition outlined in Proposition [I] thereby streamlining the process
for conducting ablation studies concerning /i** as demonstrated in Figure[3]

To delineate the relationship between the ratio ¢ and the coefficient € in constructing i**%, after some
calculations we establish their equivalence as follows:

— (1=
c— M’ (41)
PEe€
where pg represents the weighting assigned to the bin A as specified in Proposition[} The result-

ing £ € [0, 1] has a monotonically increasing relationship with €, which facilitates the visualization
without undermining our conclusion.

Decomposition Details. By varying ¢, we can evaluate ¢ via the transformation equation in Eq. T}
which guarantees the validity of return density decomposition. Next, under different e, we compute
the induced histogram density 7i°°* via the return density decomposition in Eq.[2l We replace p**
with %% in C51 or the critic loss in Distributional AC (C51) in the distributional loss and compare
the performance of all considered algorithms. Please refer to the code in the implementation for
more details.

J.3 HYPER-PARAMETERS AND NETWORK STRUCTURE

Our implementation is adapted from the popular RLKit platform. For Distributional SAC with
C51, we use 51 atoms similar to the C51 (Bellemare et all, [2017a). For distributional SAC with
quantile regression, instead of using fixed quantiles in QR-DQN, we leverage the quantile fraction
generation based on IQN (Dabney et al,[2018a) that uniformly samples quantile fractions in order
to approximate the full quantile function. In particular, we fix the number of quantile fractions as N
and keep them in ascending order. Besides, we adapt the sampling as 79 = 0,7; = ¢;/ Zf\:()l e;,
where €; € U[0,1],i = 1, ..., N. We adopt the same hyper-parameters, which are listed in Table
and network structure as in the original distributional SAC paper 2020).
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K DERAC ALGORITHM

We provide a detailed algorithm description of DERAC algorithm in Algorithm 2]

Algorithm 2 Distribution-Entropy-Regularized Actor Critic (DERAC) Algorithm

1: Initialize two value networks gg, gg~, and policy network 7.
2: for each iteration do

3:  for each environment step do

4: ag ~ 7r¢(at|st).

5 Se41 ~ P(St1(8¢, ar).

6: D<—DU{(St,at,T(St,at),St+1)}
7:  end for )

8:  for each gradient step do

9: 0+ 60— XVgJy(0)

10: ¢ ¢+ AV n(9).

11: 0* 710+ (1—71)0*
12:  end for
13: end for

L EXPERIMENTS RESULTS

L.1 UNCERTAINTY-AWARE REGULARIZATION EFFECT VIA ABLATION STUDY IN ACTOR
CRITIC

We study the uncertainty-aware regularization effect from being categorical distributional in the
actor-critic framework, where we decompose the C51 critic loss in distributional SAC (DSAC)
according to Eq. 2l We denote the decomposed DSAC (C51) with different ¢ as H(u,q9)(e =
0.8/0.5/0.1). As suggested in Figure ] the performance of H (11, go) tends to vary from the vanilla
DSAC (C51) to SAC with the decreasing of € on three MuJoCo environments, except bipedalwalk-

Table 1: Hyper-parameters Sheet.

Hyperparameter Value
Shared
Policy network learning rate 3e-4
(Quantile) Value network learning rate ~ 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing Se-3
Batch size 256
Replay buffer size le6
Minimum steps before training le4
DSAC with C51
Number of Atoms (N) 51
DSAC with ION
Number of quantile fractions (V) 32
Quantile fraction embedding size 64
Huber regression threshold 1
Hyperparameter Temperature Parameter 5 Max episode lenght
Walker2d-v2 0.2 1000
Swimmer-v2 0.2 1000
Reacher-v2 0.2 1000
Ant-v2 0.2 1000
HalfCheetah-v2 0.2 1000
Humanoid-v2 0.05 1000
HumanoidStandup-v2 0.05 1000
BipedalWalkerHardcore-v2 0.002 2000
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erhardcore. In bipedalwalkerhardcore. this tendency may not be clear, as we hypothesis that the
algorithm performance is not sensitive when ¢ changes within this restricted range, although this
range is designed to guarantee a valid density decomposition. It is worth noting that our return den-
sity decomposition is valid only when € > 1 — pg as shown in Proposition [T} and therefore € can
not strictly go to 0, where H (1, go) would degenerate to SAC ideally. In addition, compared with
the ablation study in Figure 3] the trend varying from DSAC to SAC by decreasing ¢ may not be
as pronounced as that in value-based RL evaluated on Atari games. This is because the actor-critic
architecture is generally perceived to be more prone to instability compared to value-based learning
in RL. As outlined in (Fujimoto et al., [2018), this instability stems from the policy updates, which
may introduce additional bias or variance from the critic learning process.

ant swimmer bipedalwalkerhardcore
< — SAC 150
5000 oo DSAC
E 2000 H(u, ge)(e = 0.1) 100
3 80 | — (1, qe)e=0.5) ,\/WW“A\/W\
[0) —— H(u, Ge)(e=0.8)
300 50
0]
g) 2000 0
o
O 1000
3: ’ H{t, Go) (e =0.1) -0 H(H, go)(e = 0.1)
oy —— M1, qe)(e=0.5) —— H(u, ge)(e =0.5)
—— H(u, Ge)(e=0.8) ~100 —— H(i, qe)(e=0.8)
=1000
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1€6) Time Steps (1€6) Time Steps (1€6)

Figure 7: Learning curves of Distributional AC (C51) with the return distribution decomposition
H(1, go) under different .

L.2 SENSITIVITY ANALYSIS OF DERAC

Figure [§] shows that DERAC with different A in Eq. [0 may behave differently in different environ-
ments. In general, DERAC with different € and A\ perform similarly to DERAC, with an interpola-
tion nature between AC and DAC (C51). Notably, DERAC with different £ and A still surpasses at
both AC and DAC (C51) in bidedalwalkerhardcore, demonstrating the robust superiority of DERAC
algorithm.

L.3 MUTUAL IMPACTS ON DSAC (C51)

We presents results on seven MuJoCo environments and omits Bipedalwalkerhardcore due to some
engineering issue when the C51 algorithm interacts with the simulator. Figures [J] showcases that
the simultaneous leverage of uncertainty-aware and vanilla entropy regularization renders a mutual
improvement on humanoidstandup and Walker2d. In contrast, the two regularization when em-

ant swimmer bipedalwalkerhardcore
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— DAC(C51)
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—— DERAC(e =0.9,A = 0.5) 20 —— DERAC(e =0.9,A = 0.5) 50 —— DERAC(=0.9,A =0.5)

Average Return

0
—— DERAC(¢=1.0,A=0.5) DERAC(e =1.0,A=0.5) —— DERAC(¢=1.0,A=0.5)
~1000 DERAC(e =1.0,A =0.0) 0 DERAC(e =1.0,A =0.0) 100 DERAC(e =1.0,A =0.0)
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Time Steps (1€6) “Time Steps (1€6) “Time Steps (1€6)

Figure 8: Learning curves of DERAC algorithms across different A and € on three MuJoCo environ-
ments over 5 seeds.
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Figure 9: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and AC+UE+VE (DSAC) over 5
seeds across seven MuJoCo environments where distributional RL part is based on C51. (Walker
2d and Humanoidstandup): Mutual Improvement. (Others): Potential Interference.

ployed together lead to a performance degradation in other environments, especially in swimmer
and halfcheetah, where AC+UE+VE is significantly inferior to AC+UE or AC+VE.

L.4 ABLATION STUDY ACROSS DIFFERENT BIN SIZES (NUMBER OF ATOMS)

To further demonstrate our regularization effect based on the return density decomposition, we con-
ducted an additional ablation study by varying the number of bins / atoms (equivalent to adjusting
the bin sizes) of both C51 and our decompose algorithm # (1, gp). Consistent with the tendency
shown in Figure [3]in Section Figure [10] also suggests that decreasing & implies that (1, gy)
degrades from C51 with the same bin size to DQN. Another interesting observation is that, as shown
in Breakout (the first row in Figure [I0), increasing the number of atoms (reducing the bin size)
restricts the range of ¢ for a valid return density decomposition in Proposition [T} Consequently, a
small number of atoms or a large bin size can allow a broader variation of H(u, gg) from C51 to
DQN, facilitating the demonstration of our regularization effect empirically.
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Figure 10: Learning curves of value-based CDRL, i.e., C51 algorithm, and the decomposed algo-
rithm # (1, go) across different numbers of atoms (various bin sizes) on two Atari games. Results
are averaged over 3 seeds and the shade represents the standard deviation.
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M DISCUSSION ON DECOMPOSING QUANTILE-BASED DISTRIBUTIONAL RL

In this section, we discuss about how to decompose the quantile-based distributional loss in quantile
regression distributional RL. In each phase of Neural FZI, we know that the return distribution,
typically also parameterized by quantiles, is fixed. This, therefore, leads to a composite quantile

loss (Zou & Yuan| [2008)):

1 o |

équamile = N ZZ; Ey~py [pﬂ- (y — Z;—Z)] ) (42)
where we use Py to denote the fixed target return dlstrlbutlon In quantile-based distributional
RL, we can directly sample y from the quantile function Fy of the fixed target return as both
the current and target return distributions are parameterized by the quantiles. Z,' represents the
7;-quantile value of the current return distribution. p,, can be the vanilla quantile loss defined by:
pr(u) =u (’7’2 — du<oy) , Yu € R. Alternatively, p-, can be the quantiel Huber loss E,
a smooth version of vanilla quantile loss at zero, by additionally introducing a hyper-parameter x.
We thus denote the quantile Huber loss as p%. , which is defined as:

L.(u
P (w) = |7 — é ), (43)
where L il
B SU”, if |[u] <k
Lrlu) = { i (Jul — 35), otherwise “44)

As k — 0, quantile Huber loss reverts to the vanilla quantile loss. To simplify the notation, we
consider the inner-level loss for a fixed y:

quantlle = Z Pr; y Zﬂ (45)

Unlike normal representation and categorical represent with a proper projection to satisfy the mean-
preserving property, quantile distributional dynamic programming is generally not mean-preserving,
as the quantiles are non-linear functionals of distribution (Bellemare et al}[2023)). However, we show
that the quantile representation has an asymptotic connection with the mean-preserving property as
the mean of quantiles is asymptotically equivalent to the expectation of the considered distribution
when the number of quantiles tends to infinity. Assume that we have NV evenly spaced quantiles, we
approximate the expectation by the mean of the all quantiles values defined by

P 2

Consequently, given a random variable X with its quantile function F~!, we have the following
property of quantile function:

N +oo

lim iZF‘l( ! ):/OlF_l(T)dT:/ xdF(z) = E[X], 47)

N—+oo N Pt N +1 S

where the first equation results from the relationship between the limit of Riemann Sum and its
integral, and the second equation holds by changing the variable 7 = F'(x). Note that this asymptotic
regime is similar to that in our histogram function analysis for CDRL, where A — 0 <—= N —
+00. According to this equivalence regarding the mean quantiles and the expectation, we consider
the following two decomposition ways.

Decomposition Method 1. We denote Z = - Zf\i 1 Z," as the mean of the quantiles for the current
return. Consequently, we have a straightforward composition as follows:

pr. ((y—2)+(Z = 25)) = pr.ly — Z) + b, (48)

where

0 =pr ((y=2)+(Z - 23")) — pri(y — 2). (49)
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Therefore, we have the decomposed composite quantile loss as

1 & 1Y
Lquuntile = N Z Pr; (y - Z) + N Z Or . (50)
i=1 i=1
———
Mean-Related Term Residual Term

The first term is a mean-related term, which we will elaborate later, while the induced ¢, in the
residual term is aimed at capturing the distribution information beyond only the expectation. Par-
ticularly, minimizing p-, ((y — Z) + (Z — Z;')) in 6, will push the deviations Z — Z;' from the
current return estimator to capture the deviations from the target return distribution yy — Z. This regu-
larization term contributes to preserving the richness of the quantile representation for distributional
information from the return.

In terms of the mean-related term, let us consider the approximation. As the quantile Huber loss
is typically used in quantile-based distributional RL, when & is large, the mean-related term can be
simplified as

1 & 1 & 1 1
NZPH(?J_Z) :NZ|Ti_]l{y—Z<o}|§(y—Z)2% Z(Q—Z)Q’ (51
=1

i=1

where the approximation holds because |7',; —1yy_z<0y | %(y — 7)? is just the quantile value scaled

version of least squared loss. Since Z is the expectation of all quantiles, it can be approximately
symmetric to E [Y]. Suppose P(y — Z < 0) = P(y — Z > 0) = %, we have

1 1
Ellri -1 z<0|] = 5 (ri =1 +7) = 3 (52)

Therefore, this approximation in the mean-related term holds. This implies that the mean quantile

estimator Z captures the expectation of the target return distribution from y ~ Py. Recap the
asymptotic equivalence between the expected quantiles and the expectation, the limiting estimator

of Z by minimizing the mean-related term in {yqniise satisfies the following equation:

Z=E[Y], and lim Z=E[Z], (53)

N—o0
where E [Zy] is the expectation of the current return Zj.

In summary, the first decomposition method decomposes the quantile-base distributional loss into
the mean-related and residual terms. After a mild approximation, the mean-related term can be
simplified as a least-squared loss equipped with an expected quantiles estimator. Combining the
equivalence regarding the limiting behavior of the expected quantiles, the mean -related term is thus
approximately equivalent to the standard least-squared loss used in classical RL, asymptotically
satisfying the mean-preserving property in distributional dynamic programming. Moreover, the
residual term is able to capture the return distribution information beyond its expectation. In the
context of uncertain-aware regularized exploration in our paper, the residual term plays the similar
role of the cross-entropy-based regularization derived in Proposition 2Jof CDRL.

Decomposition Method 2. The other decomposition method can directly follow the return den-
sity decomposition proposed in Eq. 2] but we apply the decomposition on the quantile function
F~1(r) for 7 € [0,1]. We expect that this decomposition also leads to two parts, where the
first part can involve the quantile defined on the a bin A that contains the expected quantiles
F~1 = YN F~1(r;), and the second term relates to the distribution part. However, this de-
composition is largely beyond the existing techniques we proposed in this paper, and it takes more
efforts to think it carefully. We leave this decomposition regarding the quantile function as future
work.
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