
Recurrent Reinforcement Learning with Memoroids

Steven Morad1,2, Chris Lu3, Ryan Kortvelesy2, Stephan Liwicki4, Jakob Foerster3,
Amanda Prorok2

1Faculty of Science and Technology, University of Macau, China
2Computer Science and Technology, University of Cambridge, UK

3Engineering Science, University of Oxford, UK
4Toshiba Europe, UK

smorad@um.edu.mo, christopher.lu@exeter.ox.ac.uk, rk627@cst.cam.ac.uk,
Stephan.Liwicki@toshiba.eu, jakob.foerster@eng.ox.ac.uk, asp45@cam.ac.uk

Abstract

Memory models such as Recurrent Neural Networks (RNNs) and Transformers
address Partially Observable Markov Decision Processes (POMDPs) by mapping
trajectories to latent Markov states. Neither model scales particularly well to long
sequences, especially compared to an emerging class of memory models called
Linear Recurrent Models. We discover that the recurrent update of these mod-
els resembles a monoid, leading us to reformulate existing models using a novel
monoid-based framework that we call memoroids. We revisit the traditional ap-
proach to batching in recurrent reinforcement learning, highlighting theoretical and
empirical deficiencies. We leverage memoroids to propose a batching method that
improves sample efficiency, increases the return, and simplifies the implementation
of recurrent loss functions in reinforcement learning.

1 Introduction

Reinforcement learning (RL) traditionally focuses on solving Markov Decision Processes (MDPs),
although for many interesting problems the Markov state is hidden. Instead, we receive noisy or
ambiguous observations, resulting in Partially Observable MDPs. The standard approach to RL under
partial observability involves summarizing a sequence of observations into a latent Markov state
using a memory model or sequence model. Commonly used models include RNNs and Transformers.

Training Transformers or RNNs over long sequences is computationally expensive. Instead, prior
work often splits these sequences into shorter fixed-length subsequences called segments (Figure 1).
Using segments adds implementation complexity, reduces efficiency, and introduces theoretical
issues. Despite these drawbacks, most prior work and virtually all existing RL libraries follow this
segment-based approach. A new class of sequence models, sometimes called Linear Recurrent
Models, offers much greater efficiency over long sequences than Transformers or RNNs. We posit
that we can utilize these efficient models to do away with segments and their associated drawbacks.

Contributions We aim to remove the need for segments in RL. First, we discover that many
efficient memory models share an underlying structure reminiscent of monoids, a concept from
category theory. We propose to extend the monoid into a memoroid, a mathematical framework which
can represent a large class of efficient memory models. Armed with the memoroid, we propose a new
batching method that eliminates the need for segments.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0 0 0 0 0 1 1 1 1 2

One Rollout

Episode Index (o, a, r, o′, d) Transition
0 0 0

0 0

1 1 1

1

2

Time Dim (L)

Batch
Dim

(
B
)

Figure 1: We visualize the Segment-Based Batching approach often used in prior literature. A worker
collects a rollout of episodes, denoted by color. Each episode is split and zero-padded to produce a
batch of segments, each with a constant, user-specified segment length L. Episodes exceeding the
specified length are broken into multiple segments, preventing backpropagation through time from
reaching earlier segments. Segments contain zero padding, reducing efficiency, biasing normalization
methods, and necessitating padding-aware recurrent loss functions.

In particular, we

• Derive memoroids for existing sequence models, as well as the discounted return and advantage
• Introduce a method for inline resets, enabling any memoroid to efficiently process multiple episodes
• Demonstrate that using segments degrades recurrent value functions
• Propose a new memoroid-based batching method that eliminates the need for segments
• Use this batching method to improve sample efficiency and simplify recurrent RL loss functions

2 Preliminaries

Consider an MDP (S,A,R, T , γ), where at each timestep t, an agent produces a transition T =
(s, a, r, s′) from interaction with the environment. We let s, s′ ∈ S denote the current and next
states and state space, a ∈ A denote the action and action space, R : S × A × S 7→ R denote the
reward function, and T : S ×A 7→ ∆S denote the state transition matrix (∆ denotes a distribution).
In RL, our goal is to learn a policy parameterized by θ that maps states to action distributions
πθ : S 7→ ∆A. The agent samples an action from the policy given the current state a ∼ πθ(s), and
stochastically transitions to the next state s′ ∼ T (s, a), receiving a reward r = R(s, a, s′). The
optimization objective is to find the parameters θ that maximize the expected return, discounted by γ:
Eπ[
∑∞

t=0 γ
tR(st, at, st+1)].

2.1 Rollouts, Causality, and Episode Boundaries

It is often practical to model terminal states in MDPs, such as a game over screen in a video game. In
a terminal state, all actions lead back to the terminal state and the discounted return after entering the
terminal state is always zero. We mark whether a state is terminal using the done flag d ∈ {0, 1}. The
done flag is stored in the transition T = (s, a, r, s′, d). Transitions are often used in loss functions
to train the policy. However, while navigating the MDP we do not have access to the full transition
– just the state. We receive the done flag, reward, and next state (r, d, s′) at the next timestep. This
distinction between current and next timestep becomes important when we execute memoroids over
multiple episodes.

We find that our paper is more clear if we introduce a begin flag b ∈ {0, 1} that is emitted alongside
each observation, available during both training and rollouts. The begin flag is 1 at the initial timestep
of an episode and 0 otherwise. We differentiate between a transition T = (s, a, r, s′, b, d) available
only in hindsight, and a partial transition T = (s, b) as emitted while navigating the MDP. To reiterate,
we can access T at any time, but we can only access T during training.

2

2.2 Partial Observability

In partially observable settings, we cannot directly measure the Markov state s. Instead, we indirectly
measure s via the observation o ∼ O(s), following the observation function O : S → ∆O. With
the observation replacing the state, interaction with the environment now produces a transition
P = (o, a, r, o′, d, b) and partial transition P = (o, b). For certain tasks, the action from the previous
timestep is also necessary, and is implicitly included in the observation.

A sequence of transitions starting where b = 1 and continuing until a terminal state is known as
an episode E. We use a memory model M to summarize the corresponding sequence of partial
transitions into a latent Markov state.

M : P
n 7→ Sn. (1)

If M is recurrent, we may alternatively write M as a single update or batched update respectively

M : H × P 7→ H × S, M : H × P
n 7→ Hn × Sn, (2)

where H is the set of recurrent states.

3 Background and Related Work

In deep learning, we often wish to train memory models over batches of sequences. For a single
sequence, we can use Backpropagation Through Time (BPTT) (Werbos, 1990). If the sequences
differ in length, it is not immediately clear how to efficiently combine them into a batch. Williams &
Peng (1990) propose Truncated BPTT (T-BPTT), which enables backpropagation over fixed-length
sequences that we call segments. T-BPTT is the defacto standard for training memory models in
both supervised learning and RL (Hausknecht & Stone, 2015; Kapturowski et al., 2019; Hafner et al.,
2023; Bauer et al., 2023; Liang et al., 2018; Raffin et al., 2021; Huang et al., 2021; Serrano-Muñoz
et al., 2023; Lu et al., 2022; Ni et al., 2024).

In Segment-Based Batching (SBB), we split and zero pad episodes so that they can be stacked into
a tensor with batch and sequence length dimensions B × L. Each row in this tensor is a segment
σ containing exactly L transitions. Episodes longer than L transitions will be split into multiple
fragments, such that each is at most L transitions. Fragments shorter than L transitions will be
zero padded from the right, such that they become exactly length L. We call these padded length L
fragments segments. We must also store a mask m denoting which elements are zero-padding and
which are data. The segments and masks are stacked along the batch dimension, creating B × L
matrices for storage and training (Figure 1). We formally define SBB in Appendix C.

The Shortcomings of Segments SBB introduces a number of shortcomings. (1) The zero padding
and associated masks must be stored, taking up additional space. (2) The zero padding is fed to the
memory model, wasting computation on zeros that are discarded during gradient computation. (3) The
zero padding also prevents the use of BatchNorm (Ioffe & Szegedy, 2015) and other normalization
methods by shifting the mean and variance of input data. (4) The extra time dimension and padding
complicates RL loss functions. (5) Most importantly, when SBB splits episodes into distinct segments,
we approximate the true BPTT gradient with the T-BPTT gradient.

Let us demonstrate the effect of SBB on the memory model gradient. Assume we have a loss function
L defined over a model parameterized by θ. We define the true gradient of the loss over an episode of
length n as ∇L. In SBB, we split an episode into length L segments. We approximate the gradient
over these segments as ∇σL

∇L =
∂L(θ, (P0, P1, . . . Pn−1))

∂θ
, ∇σL =

⌈n/L−1⌉∑
j=0

∂L(θ, (PjL, . . . Pmin((j+1)L−1,n−1)))

∂θ
. (3)

Under SBB, we compute the gradient independently for each segment. The gradient across segment
boundaries is therefore always zero. With zero gradient, it is unlikely that temporal dependencies
greater than the segment length L can be learned. In fact, our experiments show that ∇σ is often a
poor approximation of ∇.

3

Alternatives to Segments We are not the first to realize the drawbacks of SBB. Hausknecht &
Stone (2015) store recurrent states in the replay buffer, while Kapturowski et al. (2019) replay the
previous segment to generate a “warm” initial recurrent state for the current segment. These methods
improve the return, highlighting issues with zero-initialized states, but do not fix the underlying
gradient truncation issue. Real Time Recurrent Learning (RTRL) is an alternative to BPTT, but it
has O(n4) time complexity and is thus much slower (Williams & Zipser, 1989). Irie et al. (2024)
propose a faster version of RTRL for RL, but the model must be at most one layer deep. Similar
to our work, Lu et al. (2024) avoids truncating backpropagation entirely. They find that this results
in greater returns, but do not explore why this occurs. Furthermore, their method is restricted to
on-policy methods and the S5 memory model. Our method extends Lu et al. (2024) to off-policy
algorithms and a large majority of efficient memory models.

3.1 On the Efficiency of Sequence Models

SBB evolved alongside RNNs in RL (Hausknecht & Stone, 2015), and Transformers to a lesser
extent. Such models are only tractable when the sequence length L is small. RNNs rely on the
previous recurrent state to compute the following recurrent state, prohibiting parallelism over the
time dimension. Thus, RNNs are unable to exploit the parallelism of modern GPUs over the time
dimension. Transformers use pairwise attention on the sequence elements, scaling quadratically in
space on the length of the sequence.

A recent class of models espouse time-parallel execution while being either linear or subquadratic
in space complexity. These models, such as State Space Models, Linear Transformers, Fast Weight
Programmers, RetNet, RWKV, Linear Recurrent Units, Gated Impulse Linear Recurrent Networks,
and Fast and Forgetful Memory (Gu et al., 2021; Smith et al., 2022; Schlag et al., 2021; Anonymous,
2023; Peng et al., 2023; Orvieto et al., 2023; Martin & Cundy, 2018; Morad et al., 2023b) are
sometimes called Linear Recurrent Models because they usually (but not always) employ a Linear
Time-Invariant (LTI) recurrent state update, which can be computed in parallel over the time axis (Gu
& Dao, 2023).

Monoids Prior work on efficient sequence modeling primarily updates the recurrent state using
linear functions (Schlag et al., 2021; Gu et al., 2021; Smith et al., 2022; Orvieto et al., 2023). However,
works like Blelloch (1990); Martin & Cundy (2018); Morad et al. (2023b) show that it is possible to
create efficient models using nonlinear recurrent updates. The key to efficiency is not that updates
are linear, as stated in Gu & Dao (2023), but rather that the recurrent update obeys the associative
property. More formally, the recurrent update must be a monoid (Bourbaki, 1965). Hinze (2004)
shows that all monoids have time-parallel implementations.
Definition 3.1. A tuple (H, •, eI) is a monoid if:

(a • b) = c a, b, c ∈ H The binary operator • is closed on H (4)
(a • b) • c = a • (b • c) a, b, c ∈ H The binary operator • is associative (5)
(eI • a) = (a • eI) = a a, eI ∈ H There exists an identity element eI (6)

where • for a single input a is defined as (• a) = (eI • a).
Any monoid operator • can be computed in parallel across the time dimension using a parallel scan
(Appendix J) (Hinze, 2004; Dhulipala et al., 2021). Given a sequence of length n, a work-efficient
parallel scan known as the Blelloch Scan executes O(n) calls to • in O(n) space to produce n
outputs (Blelloch, 1990). With p parallel processors, the parallel time complexity of the scan is
O(n/p+ log p). For large GPUs where n = p, the parallel time complexity becomes O(log n).

4 Approach

While powerful, standard monoids are restrictive and cannot represent most Linear Recurrent Models
in their entirety. Monoids require that the input, output, and recurrent space be identical. In memory
models, we often decouple the input space, from the recurrent state space H , from the Markov state
space S (Equation 2). Consider, for example, a navigation task where the input is an image, the
recurrent state H is a latent map representation, and the Markov state S is a set of x, y coordinates
of the agent. In search of a more general memory model framework, we extend the monoid into a
memory monoid, or memoroid for short.

4

Definition 4.1. ((H, •, eI), f, g) constitute a memoroid if (H, •, eI) defines a monoid and functions
f, g are:

f : P 7→ H Mapping from a partial transition to the right argument of • (7)

g : H × P 7→ S Mapping a recurrent state and a partial transition to a Markov state (8)

Recall that a partial transition consists of the observation and begin flag P = (o, b). The memoroid
defines a recurrent memory model (Equation 2) over a sequence of partial transitions to produce
recurrent states (h0, h1, · · · ∈ H) and then compute Markov states (s0, s1, · · · ∈ S)[
h0 h1 h2 . . .
s0 s1 s2 . . .

]
=

[
eI • f(P 0) eI • f(P 0) • f(P 1) eI • f(P 0) • f(P 1) • f(P 2) . . .
g(h0, P 0) g(h1, P 1) g(h2, P 2) . . .

]
.

(9)

Given n inputs, functions f and g can each be split into n concurrent threads. Recall that monoids
have O(log n) parallel time and O(n) space complexity. Consequently, all memoroids have O(log n)
parallel time complexity and O(n) space complexity on the length of the sequence1.

Reformulating Existing Sequence Models As an exercise in the flexibility of our memoroid, we
rewrite the Linear Transformer, the Simplified State Space Model, the Linear Recurrent Unit, and
Fast and Forgetful Memory (Katharopoulos et al., 2020; Lu et al., 2024; Orvieto et al., 2023; Morad
et al., 2023b) as memoroids in Appendix G. We note that our monoid reformulation of Morad et al.
(2023b) improves upon the original, exhibiting better numerically stability by replacing exponentiated
cumulative sums with a Blelloch scan.

Accelerated Discounted Returns Memoroids can model other recurrences as well. For example,
we can rewrite the discounted return and Generalized Advantage Estimate (GAE) (Schulman et al.,
2016) as a memoroids. Reformulating the discounted return and GAE targets as memoroids enables
us to compute them in a GPU-efficient fashion, using a high-level framework like JAX (Bradbury
et al., 2018). We find that we can compute such quantities orders of magnitude more quickly than the
standard approach. We provide the definitions and proofs of these formulations in Theorem D.1 and
Theorem E.1.

Inline Recurrent State Resets So far, we have assumed that we operate memoroids over a single
episode using the Blelloch Scan. To scan over a batch of variable-length episodes, we could truncate
and zero pad sequences such that each is a fixed length (i.e., SBB). However, this introduces the
issues explained in Section 3.

Since memoroids are efficient over long sequences, we could consider concatenating individual
episodes into one very long sequence, removing the need for padding and truncation. Unfortunately,
as the scan crosses episode boundaries, it feeds information from all prior episodes into future
episodes, and information from future episodes into preceding episodes.

To resolve this issue, we propose a resettable monoid transformation, which prevents information
from leaking across episode boundaries. We can apply this transformation to any monoid (or
memoroid), to produce a new monoid that respects episode boundaries.

Theorem 4.2. All monoids (H, •, eI) can be transformed into a resettable monoid (G, ◦, gI) defined
as

G = {(A, b) | A ∈ H, b ∈ {0, 1}} (10)
gI = (eI , 0) (11)

(A, b) ◦ (A′, b′) = ((A · (1− b′) + eI · b′) •A′, b ∨ b′) (12)

For a single episode, the A term output by the operator ◦ is equivalent to the output of •. Over
multiple contiguous episodes, ◦ prevents information flow across episode boundaries.

Proof. See Appendix F.
1Assuming (1) The binary operator • and f, g are constant-time and constant-space, which is the case for all

Linear Recurrent Models listed thus far. (2) Our processor has n parallel threads of execution.

5

0 0 0 0 1 1 2 3 3

0 4 6 7I

E1 E2Episode Index

D

Figure 2: A visualization of sampling in TBB, with a batch size of B = 4. Transitions from rollouts
are stored in-order in D, with each color denoting a separate episodes. Associated episode begin
indices are stored in I. We sample a train batch by randomly selecting from I. For example, we
might sample 4 from I, corresponding to E1 in red. Next, we sample 7 from I, corresponding to E2

in red. We concatenate B = concat(E1, E2) and return the result as a train batch.

By transforming the monoid (H, •, eI) within a memoroid, we no longer require separate time and
batch dimensions during training. Now, memoroids can process a long sequence comprised of many
distinct episodes. Unlike Blelloch (1990); Lu et al. (2024) which provide a reset operator for a
specific model, our resettable transformation works for any monoid.

4.1 Tape-Based Batching

Training over the concatenation of episodes would be intractable using Transformers or RNNs due to
poor sequence length scaling, while Linear Recurrent Models leak information between episodes.
By combining the efficiency of memoroids with our resettable transform, we resolve these issues,
enabling us to fold the batch and time dimensions into a single dimension. We call this approach
Tape-Based Batching (TBB), which consists of two operations: insertion and sampling. We provide
operations for both on-policy and off-policy RL algorithms. Furthermore, we design TBB in a manner
that greatly simplifies the implementation of recurrent loss functions.

Insertion In RL, we must store the training data (transitions) that we collect during a rollout. TBB
stores them following Algorithm 1. We maintain ordered lists of transitions D, and begin indices I,
corresponding to episode boundaries in D. Upon reaching the maximum capacity of D, we discard
old transitions by popping the episode begin index from the left of I, and discarding the resulting
episode in D. This is guaranteed to discard the oldest episode in D.

This method works both for rollouts that contain complete episodes (dn−1 = 1), and those that contain
incomplete episodes (dn−1 ̸= 1), where a rollout might stop before finishing an episode. When
combining incomplete episodes with multiple rollout workers, we can experience race conditions. In
this scenario, it is easiest to keep one D, I per worker to prevent race conditions.

Sampling Once we have constructed D, I, we are ready to train a policy or compute returns. We
sample transitions from D, I following Algorithm 2. If we are training on-policy, we can simply
train on D. If we are training off-policy, we randomly sample a training batch B from our dataset by
slicing D using randomly-sampled sequential pairs of episode indices from I. One could extend our
sampling approach to implement Prioritized Experience Replay (Schaul et al., 2015) by assigning
each episode or index in I a priority.

Simplified Loss Functions With TBB, we utilize unmodified, non-recurrent loss functions to train
recurrent policies, reducing the implementation complexity of recurrent RL algorithms. Unlike SBB,
there is no need to mask outputs or handle additional time dimensions like in SBB. With TBB, the
only difference between a recurrent and nonrecurrent update is precomputing the Markov states
s, s′ before calling the loss function. We demonstrate this by writing the TBB Q learning update in
Algorithm 3, highlighting departures from the standard, non-recurrent Q learning update in red. For
posterity, we define the standard SBB Q learning update in Algorithm 4. Note that the SBB update
equation has an additional time dimension k and requires a padding mask mi,j .

6

Algorithm 1 Inserting transitions using TBB
Input: List of transitions D, list of indices I, buffer size D
Output: List of transitions D, list of indices I
ρ← (P0, P1, . . . , Pn−1) ▷ Collect rollout from env
if on_policy then
D ← ρ
I ← where(b0, . . . bn−1) ▷ Indices of new episodes

else
while (D + card(ρ)) > D do
I ← I[1 :] ▷ Buffer full, pop oldest index
D ← D[I[0] :] ▷ Pop transitions for the oldest episode

end while
I ← concat(I, card(D) + where(b0, . . . bn−1)) ▷ Update replay buffer indices
D ← concat(D, ρ) ▷ Add new transitions to buffer

end if

Algorithm 2 Sampling transitions using TBB
Input: List of transitions D, list of indices I, batch size B
Output: Batch of transitions B
B ← () ▷ Empty list
while len(B) < B do

i ∼ U(0, card(I)− 1) ▷ Randomly sample an index in I
B ← concat(B, D[I[i] : I[i+ 1]]) ▷ Append episode to batch

end while
B = B[: B] ▷ Make batch exactly B transitions

Algorithm 3 TBB deep Q update
Input: params θ, target params ϕ, Q function Q, sequence model M , train batch B, discount γ, update rate β
Output: params θ, ϕ
(s1, s2, . . . sB)←Mθ(P1, . . . , PB) ▷ Estimate Markov state
(s′1, s

′
2, . . . s

′
B)←Mϕ(P1, . . . , PB) ▷ Estimate next Markov state

ŷj = rj +maxa∈A γQϕ(s
′
j , a), ∀B[j] ▷ Compute target

θ ← minθ∥Qθ(sj , aj)− ŷj∥, ∀B[j] ▷ Compute loss and update parameters
ϕ← ϕβ + (1− β)θ ▷ Update target network params

Algorithm 4 SBB deep Q update
Input: params θ, target params ϕ, Q function Q, sequence model M , train batch B, discount γ, update rate β
Output: params θ, ϕ[s1,1, ... s1,L

...
sB,1, ... sB,L

]
←

 Mθ((P1,1) ... (P1,L))

...
Mθ((PB,1) ... (PB,L))

 ▷ Estimate Markov state s′1,1, ... s′1,L

...
s′B,1, ... s′B,L

←
 Mϕ((P1,1) ... (P1,L))

...
Mϕ((PB,1) ... (PB,L))

 ▷ Estimate next Markov state

ŷj,k = (rj,k +maxa∈A γQϕ(s
′
j,k, a)), ∀B[j, k] ▷ Compute target with extra time dimension k

θ ← minθ mj,k · ∥Qθ(sj,k, aj,k)− ŷj,k∥, ∀B[j, k] ▷ Compute loss and update params
ϕ← ϕβ + (1− β)θ ▷ Update target network params

5 Experiments and Discussion

We begin our experiments by investigating the shortcomings of SBB, specifically the theoretical
issues stemming from truncated BPTT. We then compare TBB to SBB across a variety of tasks and
models. Finally, we examine the wall-clock efficiency of memoroids.

Our experiments utilize tasks from the POPGym benchmark (Morad et al., 2023a), and all TBB to
SBB comparisons use identical hyperparameters and random seeds. We validate our findings across
Simplified State Space Models (S5), Linear Recurrent Units (LRU), Fast and Forgetful Memory
(FFM), and the Linear Transformer (LinAttn) memoroids. We train our policies using Double Dueling

7

-102 -82 -62 -42 -22 -2
Observation Age

0.0

0.5

1.0

N
or

m
. C

um
ul

at
iv

e
Q

(s
n,

a n
)

o i

Batch Mode = SBB, L=10

-102 -82 -62 -42 -22 -2
Observation Age

Batch Mode = TBB, L=
Model

FFM
LinAttn
LRU
S5

Figure 3: We demonstrate that SBB can hurt Q learning through truncated BPTT. We examine the
Repeat Previous task, with RML = 10, comparing SBB (left) to TBB (right). For SBB, we set
L = RML = 10 to capture all necessary information. After training, we plot the cumulative partial
derivative with respect to the observations on the y-axis. This partial derivative determines the
VML – how much each prior observation contributes to the Q value. We draw a vertical red line at
L = RML = 10. We see that across models, a majority of the Q value is not learnable when using
SBB. Even when we set L = ∞ using TBB, we see that the VML still spans far beyond the RML.
This surprising finding shows that truncated BPTT degrades recurrent value estimators.

DQN (Van Hasselt et al., 2016; Wang et al., 2016). See Appendix H for architecture and training
details.

What are the Consequences of Truncating BPTT? In Section 3, we discussed how the estimated
(truncated) gradient used in SBB differs from the true gradient. We aim to determine whether the
estimated gradient used in SBB is a sufficient approximation of the true gradient. We note that if
all episodes are a fixed length, and we set L to be this length, both SBB and TBB produce identical
results – although this is rare in practice.

We utilize the Reward Memory Length (RML) and Value Memory Length (VML) metrics from Ni et al.
(2024). The RML refers to the maximum temporal dependency j required to predict the expected
reward, while the VML determines at which point k prior observations stop affecting the Q value. In
other words, the environment defines the RML while the memory model defines the VML. We hope
to find that VML = RML; that the Q value only depends on the necessary history.

E [R(s, a, s′) | o0:n] = E [R(s, a, s′) | oj:n] (RML) (13)
Q(M(o0:n), a) = Q(M(ok:n), a) (VML) (14)

We examine the VML for the Repeat Previous task with a known RML of ten timesteps. We
measure the VML as the impact each observation has on the terminal Q value of an episode (i.e.,
Q(sn, an) = R(sn, an, sn+1)). Any observations older than ten timesteps are not necessary to
predict the reward, and given a relative-time policy, should have little to no impact on the terminal Q
value. Recall that we can write a memory model as sn = M(o0, . . . on). We explicitly compute∣∣∣∣∂Q(sn, an)

∂oi

∣∣∣∣ = ∣∣∣∣∂Q(sn, an)

∂sn

∂sn
∂oi

∣∣∣∣ , (15)

and plot the results for FFM, S5, LinAttn, and LRU models in Figure 3. We examine the VML and
RML of other model and task combinations in Appendix B.

Surprisingly, the VML differs significantly from the RML. The RML is fixed at ten, while the
VML appears to span the entire episode. This means that the recurrent models are unable to ignore
uninformative prior observations, suggesting that truncated BPTT degrades recurrent value estimators.
Learned recurrent Q functions do not generalize well over time, although we find that policies trained
with TBB tend to generalize better.

In the case of FFM, roughly 90% of the Q value is produced outside the segment boundaries, where
truncated BPTT cannot reach. This means that these unnecessary prior observations have a significant
impact on our Q values, yet we are unable to forget or ignore such observations. Our findings suggest
that SBB could be a major contributor to the increased difficulty and reduced sample efficiency of
recurrent RL, as we demonstrate in the next experiment.

Is TBB More Sample Efficient? For our second experiment, we measure the difference in sample
efficiency between TBB and SBB. There are two reasons that TBB could improve upon SBB sample

8

efficiency: (1) As previously discovered, the truncated gradient used by SBB is often a poor estimate
of the true gradient (2) SBB decreases the effective batch size through zero padding. We note that the
cost of zero padding in SBB is equivalent to the cost of real data – it takes up equivalent space in the
replay buffer and takes just as much compute to process as real data. We report some combinations
of model and task in Figure 4 and present the full results in Appendix A.

0 5000 10000
Train Epoch

0.75

0.50

R
et

ur
n

S5/Count Recall

0 5000 10000
Train Epoch

0

1
LinAttn/Pos. Cartpole

0 2000 4000
Train Epoch

0

1
LRU/Repeat First

0 2000 4000
Train Epoch

0.5

0.0
FFM/Repeat Previous

Batching
TBB
SBB L=10
SBB L=20
SBB L=50
SBB L=100

Figure 4: We compare TBB (ours) to SBB across POPGym tasks and memory models, reporting the
mean and 95% bootstrapped confidence interval of the evaluation return over ten seeds. We find that
TBB significantly improves sample efficiency. See Appendix A for more experiments.

We find that TBB produces a noticeable improvement in sample efficiency over SBB, across nearly
all configurations of memory model and environment. Even for large segments lengths L = 100,
we find a significant gap between SBB and TBB. SBB must make an inherent tradeoff – it can use
long segments to improve gradient estimates at the cost of smaller effective batch sizes, or shorter
segments to improve the effective batch size at the expense of a worse gradient estimate. TBB does
not need to make this tradeoff. In our experiments, SBB with larger L always outperforms shorter L,
suggesting that the gradient estimation error is a larger contributor to SBB’s lackluster performance
than reduced effective batch sizes.

Wall-Clock Efficiency In Figure 5, we investigate the wall-clock efficiency of memoroids. We
find that memoroids compute the discounted return and GAE roughly three orders of magnitude
faster than a standard implementation. Next, we compare the wall clock time TBB and SBB take to
train a policy from start to finish. For SBB, the parallel time complexity is O(logL) while TBB has
O(logB) complexity where B > L, but in practice there is no perceivable difference in wall-clock
time. One possible reason for this discrepancy is that SBB applies expensive split-and-pad operations
to the trajectories, while TBB does not. Each fragment contains a varying number of transitions,
which corresponds to a varying amount of padding we need to add. Variable-size operations are
generally slow and difficult to batch efficiently.

10
1

10
2

10
3

10
4

Num. Episodes

10
2

10
4

Ti
m

e
(m

s)

Return Runtime

Method
Serial
Monoid
Max Ep. Length
10
100
1000

Method Train Time (s) Std. Dev. (s)
SBB L=10 886.39 54.47
SBB L=20 886.30 49.71
SBB L=50 887.58 50.29
SBB L=100 886.25 49.87
TBB 886.87 53.21

Figure 5: (Left) We compare how long it takes to compute the discounted return using our memoroid,
compared to the standard way of iterating through a batch. Computing the discounted return is orders
of magnitude faster when using our memoroid implementation. (Right) we compare the total time to
train a policy on Repeat First. For both experiments, we evaluate ten random seeds on a RTX 2080Ti
GPU.

Limitations and Future Work According to our sensitivity analysis, old observations unexpectedly
impacted the Q value across models and tasks. Moving forward, we suggest testing newly-designed
memory models to see whether VML = RML, to determine whether such models truly generalize
over time.

In our experiments, we focused on long-term memory tasks from the POPGym benchmark, each
of which tests a specific aspect of long-term memory. We did not experiment on environments like
Atari, primarily because it is unclear to what extent Atari tasks require long-term memory.

9

Although memoroids scale well to long sequences, TBB still pays an increased logB time cost
compared with SBB’s logL cost. There was no perceptible difference in our experiments, but very
long sequences such as those used for in-context RL could incur more noticeable training costs. TBB
does not strictly require memoroids, but would likely be intractable for RNN or Transformer-based
memory models.

6 Conclusion

We introduced memoroids as a unifying framework for efficient sequence modeling. We found that
memoroids can represent a large number of efficient recurrent models, as well as the discounted return
and the advantage. Using our resettable transformation, we extended our approach to encompass
batching across variable length sequences. Given the efficiency of memoroids over long sequences,
we questioned whether the standard split-and-pad approach to POMDPs was still necessary. We
found that said approach causes issues, with shorter segment lengths hampering sample efficiency
and ultimately converging to lower returns. We proposed a simple change to batching methodology,
that when combined with memoroids, improves sample efficiency at a negligible cost.

Acknowledgements

We gratefully acknowledge the support of Toshiba Europe Ltd. This work was also supported in part
by ARL DCIST CRA W911NF-17-2-0181 and European Research Council (ERC) Project 949940
(gAIa). We thank Matteo Bettini for suggesting the term “memoroid”.

10

References
Anonymous. Retentive Network: A Successor to Transformer for Large Language Models. In

Submitted to The Twelfth International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=UU9Icwbhin.

Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg,
Michael Chang, Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, Karol Gregor,
Edward Hughes, Sheleem Kashem, Maria Loks-Thompson, Hannah Openshaw, Jack Parker-
Holder, Shreya Pathak, Nicolas Perez-Nieves, Nemanja Rakicevic, Tim Rocktäschel, Yannick
Schroecker, Satinder Singh, Jakub Sygnowski, Karl Tuyls, Sarah York, Alexander Zacherl, and
Lei M Zhang. Human-timescale adaptation in an open-ended task space. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 1887–1935. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/bauer23a.html.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An
Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:253–279,
June 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL https://www.jair.org/index.
php/jair/article/view/10819.

Guy E Blelloch. Prefix Sums and Their Applications. Technical report, School of Computer Science,
Carnegie Mellon University, November 1990.

Nicolas Bourbaki. Éléments de mathématique. Integration, Livre 1, Livre 5, 1965. Publisher:
Hermann Paris.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically Efficient Parallel Graph Algo-
rithms Can Be Fast and Scalable. ACM Trans. Parallel Comput., 8(1), April 2021. ISSN 2329-4949.
doi: 10.1145/3434393. URL https://doi.org/10.1145/3434393. Place: New York, NY,
USA Publisher: Association for Computing Machinery.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space
Layers. In Advances in Neural Information Processing Systems, volume 34, pp. 572–585. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains
through World Models. arXiv preprint arXiv:2301.04104, 2023.

Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observable MDPs.
In 2015 AAAI Fall Symposium Series, September 2015. URL https://www.aaai.org/ocs/
index.php/FSS/FSS15/paper/view/11673.

Ralf Hinze. An algebra of scans. In Mathematics of Program Construction: 7th International
Conference, MPC 2004, Stirling, Scotland, UK, July 12-14, 2004. Proceedings 7, pp. 186–210.
Springer, 2004.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. CleanRL: High-
quality Single-file Implementations of Deep Reinforcement Learning Algorithms. 2021. _eprint:
2111.08819.

11

https://openreview.net/forum?id=UU9Icwbhin
https://proceedings.mlr.press/v202/bauer23a.html
https://www.jair.org/index.php/jair/article/view/10819
https://www.jair.org/index.php/jair/article/view/10819
http://github.com/google/jax
https://doi.org/10.1145/3434393
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Kazuki Irie, Anand Gopalakrishnan, and Jürgen Schmidhuber. Exploring the Promise and Limits
of Real-Time Recurrent Learning, February 2024. URL http://arxiv.org/abs/2305.19044.
arXiv:2305.19044 [cs].

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. RECURRENT
EXPERIENCE REPLAY IN DISTRIBUTED REINFORCEMENT LEARNING. pp. 19, 2019.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: fast autoregressive transformers with linear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20, pp. 5156–5165. JMLR.org, July 2020.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pp. 3053–3062. PMLR, 2018.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

Eric Martin and Chris Cundy. Parallelizing Linear Recurrent Neural Nets Over Sequence Length. In
International Conference on Learning Representations, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, and others. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015. Publisher: Nature
Publishing Group.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POPGym:
Benchmarking Partially Observable Reinforcement Learning. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?id=
chDrutUTs0K.

Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforcement Learning
with Fast and Forgetful Memory. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/forum?id=KTfAtro6vP.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36, 2024.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting Recurrent Neural Networks for Long Sequences. In Proceedings
of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023. Place:
Honolulu, Hawaii, USA.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun
Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the Transformer
Era, December 2023. URL http://arxiv.org/abs/2305.13048. arXiv:2305.13048 [cs].

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

12

http://arxiv.org/abs/2305.19044
https://openreview.net/forum?id=chDrutUTs0K
https://openreview.net/forum?id=chDrutUTs0K
https://openreview.net/forum?id=KTfAtro6vP
http://arxiv.org/abs/2305.13048
http://jmlr.org/papers/v22/20-1364.html

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers Are Secretly Fast Weight
Programmers. In Proceedings of the 38th International Conference on Machine Learning, pp. 9355–
9366. PMLR, July 2021. URL https://proceedings.mlr.press/v139/schlag21a.html.
ISSN: 2640-3498.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-Dimensional
Continuous Control Using Generalized Advantage Estimation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, and Nestor Arana-Arexolaleiba.
skrl: Modular and Flexible Library for Reinforcement Learning. Journal of Machine Learning
Research, 24(254):1–9, 2023. URL http://jmlr.org/papers/v24/23-0112.html.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified State Space Layers for
Sequence Modeling. In The Eleventh International Conference on Learning Representations, 2022.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016. Issue:
1.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990. Publisher: IEEE.

Ronald J. Williams and Jing Peng. An Efficient Gradient-Based Algorithm for On-Line Training
of Recurrent Network Trajectories. Neural Computation, 2(4):490–501, December 1990. ISSN
0899-7667. doi: 10.1162/neco.1990.2.4.490. URL https://doi.org/10.1162/neco.1990.2.
4.490.

Ronald J. Williams and David Zipser. Experimental Analysis of the Real-time Recurrent Learning
Algorithm. Connection Science, 1(1):87–111, January 1989. ISSN 0954-0091. doi: 10.1080/
09540098908915631. URL https://doi.org/10.1080/09540098908915631. Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/09540098908915631.

13

https://proceedings.mlr.press/v139/schlag21a.html
http://jmlr.org/papers/v24/23-0112.html
https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/10.1162/neco.1990.2.4.490
https://doi.org/10.1080/09540098908915631

A Return Comparison Between TBB and SBB

0 5000 10000

0.5

0.4

0.3
R

et
ur

n
FFM

0 5000 10000

0.5

0.0

0.5

LRU

0 5000 10000

0.50

0.45

LinAttn

0 5000 10000

0.5

0.4

0.3

0.2 A
utoencode

S5

0 5000 10000

0.0

0.5

R
et

ur
n

0 5000 10000

0.0

0.5

0 5000 10000

0.2

0.0

0.2

0.4

0 5000 10000
0.2

0.0

0.2

0.4 B
andits

0 5000 10000
1.0

0.5

0.0

0.5

R
et

ur
n

0 5000 10000
1.0

0.5

0.0

0.5

0 5000 10000

0.8

0.6

0.4

0 5000 10000

0.8

0.6

0.4 C
ount R

ecall

0 20000 40000

0.5

0.0

0.5

R
et

ur
n

0 20000 40000

0.5

0.0

0 20000 40000

0.5

0.0

0 20000 40000

0.5

0.0

M
inesw

eeper

0 5000 10000
0.0

0.5

1.0

R
et

ur
n

0 5000 10000
0.0

0.5

1.0

0 5000 10000
0.0

0.5

1.0

0 5000 10000
0.0

0.5

1.0 N
oisy C

artpole

0 5000 10000
0.0

0.5

1.0

R
et

ur
n

0 5000 10000

0.0

0.5

1.0

0 5000 10000
0.0

0.5

1.0

0 5000 10000
0.0

0.5

1.0 P
os. C

artpole

0 2000 4000

0.5

0.0

0.5

1.0

R
et

ur
n

0 2000 4000

0.5

0.0

0.5

1.0

0 2000 4000

0

1

0 2000 4000

0.50

0.25

0.00

0.25 R
epeat First

0 2000 4000

0.4

0.2

0.0

R
et

ur
n

0 2000 4000

0.5

0.0

0.5

1.0

0 2000 4000

0.50

0.45

0.40

0 2000 4000

0.5

0.0

0.5

1.0

R
epeat P

revious

0 5000 10000
Train Epoch

0.0

0.5

1.0

R
et

ur
n

0 5000 10000
Train Epoch

0.0

0.5

1.0

0 5000 10000
Train Epoch

0.0

0.5

1.0

0 5000 10000
Train Epoch

0.0

0.5

1.0 Vel. C
artpole

Method
TBB
SBB L=10
SBB L=20
SBB L=50
SBB L=100

14

Figure 6: We run four memoroids on nine different POPGym environments over ten seeds and report
the mean and 95% bootstrapped confidence interval. The POPGym environments have a minimum
episodic return of -1.0 and a maximimum of 1.0. In virtually all experiments, Tape-Based Batching
provides improved sample efficiency over all tested segments length using Segment-Based Batching.
The Count Recall and Autoencoder environments have temporal dependencies that span the entire
sequence, demonstrating the importance of TBB for long range dependencies. On the other hand,
Positional Cartpole has a temporal dependency of two timesteps, and so policies trained via SBB
can still do reasonably well. Like Count Recall, Repeat First has long term temporal dependencies,
however, SBB-trained methods do better than in Count Recall because Repeat First requires storing
and recalling only a single observation. All policies perform poorly on bandits because we use a
deterministic policy, and this environment benefits from a stochastic policy.

0 2000 4000 6000 8000 10000
Train Epoch

400

600

800

1000

1200

1400

R
et

ur
n

LRU-ALE/Asteroids-v5

0 2000 4000 6000 8000 10000
Train Epoch

20

10

0

10

20

FFM-ALE/Pong-v5

0 5000 10000 15000 20000 25000 30000
Train Epoch

0

250

500

750

1000

1250

1500

1750

2000
LinAttn-ALE/Frostbite-v5

Method
TBB
SBB L=80

Figure 7: We examine three memoroids on Atari environments from the Arcade Learning Environment
(ALE) Bellemare et al. (2013), plotting the mean and 95% confidence interval over three random
seeds. In all environments, we see that TBB outperforms SBB.

B Observation Sensitivity Analysis

50 40 30 20 10
Observation Age

0.0

0.5

1.0

N
or

m
. C

um
ul

at
iv

e
Q

(s
n,

a n
)

o i

Batch Mode = SBB, L=10

50 40 30 20 10
Observation Age

Batch Mode = TBB, L=
Model

FFM
LinAttn
LRU
S5

Figure 8: We follow a similar approach to Figure 3 for the Repeat First environment from the
POPGym benchmark. In Repeat First, each the agent receives reward for outputting the initial
observation at each timestep. Here, we would expect to see virtually all of the probability mass on
the initial observation, and zero elsewhere. Again, we see that the gradient is distributed throughout
the episode, suggesting that VML will always span the episode. The Linear Transformer (LinAttn)
with SBB does very poorly on this task, and so its gradient distribution is not informative.

15

C Segment-Based Batching
After collecting episodes E during a rollout, we split E into fragments F such that each F has a
maximum length of L. Fragments are zero padded from the right until they are precisely length L,
turning them into segments σ and padding masks m. The segments are stacked into a dataset D,
enabling easy batching, storage, and training (Figure 1). We define this approach more accurately in
the following paragraphs.
We define a segment σ as a length L sequence of transitions. During collection, episodes E longer
than L transitions are split into fragments F . Fragments are then zero-padded to be length L, resulting
in fixed-size segments σ and associated masks m. The resulting segments and masks are stacked into
a dataset D, enabling easy batching, storage, and training (Figure 1).
The split function splits a single episode E into one or more fragments F , each of size L except for
the final fragment.

F0

F1

...
Fk

=

T0, T1, . . . TL−1

TL, TL+1, . . . T2(L−1)

...
TkL, . . . Tn

(16)

The pad function zero pads a fragment F into a fixed size segment σ and associated mask m denoting
the padding elements

σ,m = pad(F,L) (17)

= concat(F, 0L−card(F)), concat(1card(F), 0L−card(F)) (18)

Using our split and pad operators, we split and pad each incoming episode, producing one or more
segments and associated masks for each episodeσ0,m0

...
σk,mk

 = pad(Fi, L), ∀Fi ∈ split(E,L). (19)

We represent our training dataset D as the concatenation of segments and masks

D = concat



[σ0,m0

...
σk,mk

]
[σk+1,mk+1

...
σj ,mj

]
...

 =



σ0,m0

...
σk,mk

σk+1,mk+1

...
σj ,mj

...

 (20)

During training, we randomly sample rows from D for minibatching (on-policy) or experience replay
(off-policy).

16

D The Discounted Return as a Memoroid
Theorem D.1. The discounted cumulative return given by

G =

∞∑
t=0

γtrt (21)

is equivalent to computing the following memoroid over r0, r1, . . .

H = {(a, r) | a ∈ [0, 1], r ∈ R} (22)
eI = (1, 0) (23)

(a, r) • (a′, r′) = (aa′, ar′ + r) (24)
f(o, b) = (γ, o) (25)

g((a, r), (o, b)) = r. (26)

Proof. We prove the correctness of our discounted return memoroid by showing the expansion is
equivalent to the discounted return.

(1, 0) • (γ, r0) = (γ, r0 + 0) = (γ, r0) (27)

(1, 0) • (γ, r0) • (γ, r1) = (1 · γ · γ, 0 + 1 · r0 + γr1) = (γ2, r0 + γr1) (28)
(1, 0) • (γ, r0) • . . . (γ, rn) = (1 · γ · γ · · · · γ, 1 · r0 + γr1 + . . . γnrn) (29)

=

(
γn,

n∑
i=0

γiri

)
(30)

If we let n → ∞, we see that the second element in the monoid tuple approaches the discounted
return

lim
n→∞

n∑
i=0

γiri =

∞∑
i=0

γiri (31)

17

E The Generalized Advantage Estimate as a Memoroid
Let us define Generalized Advantage Estimation (GAE) in memoroid form:
Theorem E.1. The GAE target given by

At =

∞∑
l=0

(λγ)lδt+l; δt = rt + γV (st+1)− V (st) (32)

is equivalent to computing the following memoroid over δt, δt+1, . . .

H = {(a, g) | a ∈ [0, 1], g ∈ R} (33)
HI = (1, 0) (34)

(a, g) • (a′, g′) = (aa′, ag′ + g) (35)
f(o, b) = (γλ, o) (36)

g((a, g), (o, b)) = g. (37)

Proof. We prove the correctness of our GAE memoroid by showing the expansion is equivalent to
the GAE target. This proof is very similar to the proof of the discounted return.

(1, 0) • (γλ, δt) = (γλ, δt + 0) = (γλ, δt) (38)

(1, 0) • (γλ, δt) • (γλ, δt+1) = (1 · γλ · γλ, 0 + 1 · δ + γλδt+1) = ((γλ)2, δ + γλδt+1)
(39)

(1, 0) • (γλ, δt) • . . . (γλ, δ(t+n)) = (1 · γλ · γλ · · · · γλ, 1 · δ + γλδt+1 + . . . (γλ)nδt+n) (40)

=

(
(γλ)n,

n∑
l=0

(γλ)lδt+l

)
(41)

If we let n → ∞, we see that the second element in the monoid tuple approaches the GAE target

lim
n→∞

(
n∑

l=0

(γλ)lδt+l

)
=

∞∑
l=0

(λγ)lδt+l (42)

18

F Resettable Monoid Transformation Proof
Proof of Theorem 4.2. First, let us compute all possible pairs of inputs, as we will use them to
simplify the rest of the proof.

(A, 0) ◦ (A′, 0) = (A · (1− 0) +HI · 0 •A′, 0 ∨ 0) = (A •A′, 0) (43)

(A, 1) ◦ (A′, 0) = (A · (1− 0) +HI · 0 •A′, 1 ∨ 0) = (A •A′, 1) (44)

(A, 0) ◦ (A′, 1) = (A · (1− 1) +HI · 1 •A′, 0 ∨ 1) = (HI •A′, 1) (45)
(46)

Now, we must demonstrate that associativity holds ((A, b)• (A′, b′))• (A′′, b′′) = (A, b′)• ((A′, b′)•
(A′′, b′′)) for all possibilities of A,A′, A′′ and b, b′, b′′. That is, we must ensure that the episode
boundaries are correctly handled for all possibilities – that information does not leak across episode
boundaries and that prior information otherwise propagates forward in time.

(A •A′, 0) ◦ (A′′, 0) = ((A •A′) · (1− 0) +HI · 0 •A′′, 0 ∨ 0) = (A •A′ •A′′, 0)
(47)

(A •A′, 1) ◦ (A′′, 0) = ((A •A′) · (1− 0) +HI · 0 •A′′, 1 ∨ 0) = (A •A′ •A′′, 1)
(48)

(HI •A′, 1) ◦ (A′′, 0) = ((HI •A′) · (1− 0) +HI · 0 •A′′, 1 ∨ 0) = (HI •A′ •A′′, 1).
(49)

And for b′′ = 1, we have

(A •A′, 0) ◦ (A′′, 1) = ((A •A′) · (1− 1) +HI · 1 •A′′, 0 ∨ 1) = (A •A′ •A′′, 1) (50)

(A •A′, 1) ◦ (A′′, 1) = ((A •A′) · (1− 1) +HI · 1 •A′′, 1 ∨ 1) = (HI •A′′, 1) (51)

(HI •A′, 1) ◦ (A′′, 1) = ((HI •A′) · (1− 1) +HI · 1 •A′′, 1 ∨ 1) = (HI •A′′, 1). (52)

We see that resets correctly remove the impact of any terms that occur before b′ = 1, while correctly
propagating state when b′ = 0.

19

G Rewriting Sequence Models as memoroids
In this section, we reformulate existing models used in our experiments as memoroids. This reformu-
lation is necessary to use inline resets for these models.

G.1 Linear Transformer
The Linear Transformer from Katharopoulos et al. (2020) written as

X0 = 0 ∈ Rj×k (53)

x0 = 0 ∈ Rj (54)

Xn = Xn−1 + ϕ(Wkon)(Wvon)
⊤ (55)

xn = xn−1 + ϕ(Wkon) (56)

sn = MLP

(
Xn ϕ(Wqon)

x⊤
n ϕ(Wqon)

+ on

)
. (57)

can be reformulated as the following memoroid

H = {(X,x) | X ∈ Rj×k, x ∈ Rj} (58)
eI = (0, 0) (59)

(X,x) • (X ′, x′) = (X +X ′, x+ x′) (60)

f(o, b) = (ϕ(Wko)(Wvo)
⊤, ϕ(Wko)) (61)

g((X,x), (o, b)) = MLP

(
X ϕ(Wqo)

x⊤ϕ(Wqo)
+ o

)
, (62)

where ϕ(x) = 1 + ELU(x).

G.2 Simplified State Space Models
Prior work (Lu et al., 2024) defines an associate scan operator for the S5 variant of State Space
Models. Little work is required to rewrite this in memoroid form:

H = {(X,x) | X ∈ Cm×m, x ∈ Rm×1} (63)
HI = (Im, 0) (64)

(X,x) • (X ′, x′) = (X ′X,X ′x+ x′) (65)
f(o, b) = (WX ,Wxo) (66)

g((X,x), (o, b)) = (W1 GeLU(Wcx) + b1)⊙ sigmoid(W2 GeLU(Wcx) + b2) (67)

where WX ,Wx,Wc are learnable weights, b1, b2 are learnable biases, and Im is the square identity
matrix of size m.

G.3 Linear Recurrent Unit
The Linear Recurrent Unit (Orvieto et al., 2023) could be roughly described as a theoretical simplifi-
cation of S5, bringing it closer to classical RNNs. Writing it out as a memoroid, we see that it nearly
identical to S5, however the weight initialization is different

H = {(X,x) | X ∈ Cm×m, x ∈ Cm×1} (68)
HI = (Im, 0) (69)

(X,x) • (X ′, x′) = (X ′x,X ′x+ x′) (70)
f(o, b) = (WX ,Wxo) (71)

g((X,x), (o, b)) = MLP(a) (72)

G.4 Fast and Forgetful Memory
Finally, we can rewrite Fast and Forgetful Memory (FFM) as a memoroid, with the parallel scans
simplifying its implementation and fixing numerical instabilities caused by large positive exponentials
over long sequences, as discussed in Morad et al. (2023b). The original formulation is written as an

20

aggregator and cell. First, let us write down the Γ term used in the aggregator.

Γ(t) = exp (−t|α|) exp (−tiω)
⊤ (73)

=

 exp−t(|α1|+ iω1) . . . exp−t(|α1|+ iωc)
...

. . .
exp−t(|αm|+ iω1) . . . exp−t(|αm|+ iωc)

 (74)

We then write the aggregator as

Sk:n =

 Γ(1)
...

Γ(t+ 1)

⊙

Sk−1

...
Sk−1

+

Γ(−t)
...

Γ(0)

⊙


(∑0

j=0 Γ(t− j)⊙
(
ok+j1

⊤
c

))
...(∑t

j=0 Γ(t− j)⊙
(
ok+j1

⊤
c

))
 . (75)

where ⊙ is the Hadamard product (or power), m is the trace size, c is the context size, and α ∈
Rm

+ , ω ∈ Rc are trainable parameters representing decay and context respectively. Multiplying
column a vector by 1⊤c “broadcasts” or repeats the column vector c times. The cell is defined as

x̃k:n = ℓ1(ok:n)⊙ σ(ℓ2(xk:n)) (76)
Sk:n = Agg(x̃k:n, Sk−1) (77)
zk:n = ℓ3(Flatten(ℜ[Sk:n] || ℑ[Sk:n])) (78)
yk:n = LN(zk:n)⊙ σ(ℓ4(ok:n)) + ℓ5(ok:n)⊙ (1− σ(ℓ4(ok:n)). (79)

Agg represents the aggregator (Equation 75) and ℓ represents linear layers with mappings ℓ1, ℓ2 :
Rd → Rm, ℓ3 : Rm×2c → Rd, ℓ4, ℓ5 : Rd → Rd. ℜ,ℑ extract the real and imaginary components
of a complex number as reals, Flatten reshapes a matrix (m× c → mc) and || is the concatenation
operator. LN is nonparametric layer norm, and σ is sigmoid activation. We reformulate and simplify
Γ, the FFM aggregator, and the cell as a single memoroid

H = {(X, t) | X ∈ Cm×c, t ∈ Z} (80)
HI = (0, 0) (81)

(X, t) • (X ′, t′) = (X ⊙ exp (t′(−|α| ⊕ iω)) +X ′, t+ t′) (82)

f(o, b) =


(W1o+ b1)⊙ σ(W2o+ b2)

...
(W1o+ b1)⊙ σ(W2o+ b2)


⊤

, 1

 (83)

g((X, t), (o, b)) = MLP(LN(W3 [ℜ(X) || ℑ(X))] + b3))⊙ σ(W4o+ b4) + (1− σ(W4o+ b4))⊙ o.
(84)

where W, b are learnable weights and biases, ℜ,ℑ extract the real and imaginary part of a complex
number, ⊙ is the elementwise product, ⊕ is an outer sum, and α ∈ Rn, ω ∈ Rm are learnable
parameters. Note that the original FFM formulation requires distributing Γ(−t) = exp t(|α|+ iω)
into the sum. Since α is learned, the real component can grow very large and cause numerical
instabilities as it overflows even a double precision float. This is discussed in the limitations section
of the original paper. Since our formulation utilizes a Blelloch scan, we can do away with the negative
exponent, removing the numerical instability. We note that unlike the other memory models we
implemented, FFM is a time-varying recurrence because the recurrent updates depends on t.

21

H Experiment Setup

The code necessary to reproduce all of our experiments is available at https://github.com/
proroklab/memory-monoids. We used the same model hyperparameters across all experiments.
Training hyperparameters, such as number of epochs, varied across tasks. To find hyperparameters,
we simply ran many experiments using SBB, the approach used in prior literature. Once we arrived
at a good set of hyperparameters, we simply reused them for our TBB method.

H.1 Compute Used

We ran out of GPU credits early in the paper. We estimate roughly 70% of experiments were run
on CPU only, across a number of hardware configurations. Thus, it is not straightforward to arrive
at a single number. Users should be able to run at least one seed for each experiment we did, on a
reasonable laptop, over approximately one week.

H.2 Model Setup

We construct our model using blocks. A block contains a linear layer with nonparametric layer
normalization and leaky ReLU activation. Observations feed into a block, followed by a memory
model, followed by two more blocks. The hidden size of all blocks is 256 dimensions. For the S5 and
LRU models, stacked two S5 and LRU layers, resulting in a sum of 512 dimensions of recurrent state
(256 per layer). The Linear Transformer and Fast and Forgetful Memory models use just a single
layer with 256 dimensions of recurrent state. We use the ADAM optimizer without weight decay.

H.3 Task Setup

For each task, we selected a replay buffer large enough such that no old observations ever needed to
be discarded. Epochs Rand, Train describes the number of episodes we collect randomly, and then the
number of training epochs. Polyak τ determines the target network update rate. Batch Size measures
the batch size in transitions for each model update. LR is the learning rate with a linear warmup
over a specified number of model updates. The ratio describes the number of episodes collected at
each epoch, compared to the number of model updates per epoch. 1 : 2 means we would perform 2
gradient updates for each 1 episode collected. ∇ Clip corresponds to gradient clipping, where the
gradient magnitude is rescaled to at most ∇ Clip. γ is the decay term used in MDPs. We use a linear
learning rate warmup of 200 updates for all tasks.

Task Epochs Rand, Train Polyak τ Batch Size LR Ratio ∇ Clip γ
RepeatFirst 5,000, 5,000 0.995 1,000 0.0001 1:1 0.01 0.99
RepeatPrevious 5,000, 5,000 0.995 1,000 0.0001 1:1 0.01 0.5
CountRecall 10,000, 10,000 0.995 1,000 0.0001 1:1 0.01 0.99
PosOnlyCartPole 10,000, 10,000 0.995 1,000 0.0001 1:1 0.01 0.99
VelOnlyCartPole 10,000, 10,000 0.995 1,000 0.0001 1:1 0.01 0.99
NoisyCartPole 10,000, 10,000 0.995 1,000 0.0001 1:1 0.01 0.99
AutoEncode 10,000, 10,000 0.995 1,000 0.0001 1:4 0.01 0.99
MultiarmedBandit 10,000, 10,000 0.995 1,000 0.0001 1:1 0.01 0.8
MineSweeper 10,000, 40,000 0.9975 1,000 0.0001 1:1 0.01 0.99

H.4 Wall-Clock Experiment Details

In the Figure 5 plot, we test the wall-clock efficiency of our discounted return monoid against the
standard approach of iterating over episodes in a batch. Both the monoid and standard approach
are just-in-time compiled on a GPU, however the standard approach requires a for loop when the
episode lengths are not fixed. We sample a batch of episodes, where each episode length is sampled
from a discrete uniform distribution between one and a maximum episode length. We find that our
memoroid computes the discounted return between three orders of magnitude faster.
Next, we compare TBB and SBB scaling. TBB scales worse than SBB (O(logB) and O(logL)
respectively, where B is the batch size and L is segment length). We question how this overhead
translates to wall-clock training time. In the Figure 5 table, we examine the total time spent training,
finding that the time difference is negligible. The memory model forward pass is only a fraction of
the time spent at each epoch, with environment sampling, replay buffer sampling (and in the case of
SBB, splitting, truncating, and padding sequences) all taking a nontrivial amount of time.

22

https://github.com/proroklab/memory-monoids
https://github.com/proroklab/memory-monoids

H.5 Atari Experiment Details
We describe the model and training configuration for the Atari experiments below. We use a CNN
similar to that of Mnih et al. (2015), with filter sizes 8, 4, 3 and filter channels 32, 64, 64, and
layernorm. The CNN is followed by the recurrent model with recurrent states of size 512, and a
two-layer MLP of width 512. We collect one episode per training epoch, and perform 5 gradient
updates per epoch. We use a batch size of 16,000 transitions for each update, and evaluate our policy
every 100 epochs.

23

I Non-Recurrent Q Learning

Algorithm 5 Non-recurrent Q learning update
Input: params θ, target params ϕ, Q function Q, train batch B, discount γ
ŷj = rj +maxa∈A γQϕ(s

′
j , a), ∀B[j] ▷ Q Target

θ ← minθ∥Qϕ(sj , aj)− ŷj∥, ∀B[j] ▷ Q update
ϕ← ϕβ + (1− β)θ ▷ Target update

J A Primer on Scans
In this section, we briefly review scans and associative scans. Generally speaking, we express
classical RNNs using scans, and linear recurrent models using associative scans which tend to be
more efficient.

J.1 Scans
A scan is an operation over a sequence of elements, often used in tensor processing. We write scans
as some function • defined over elements x1, x2, . . . , xn

hn = x1 • x2, · · · • xn (85)
In deep learning, we often formulate an RNN using a scan. Consider, for example, the following
simple recurrent network

hn = σ(Whhn−1 +Wxxn) (86)
yn = Wyhn (87)

where σ represents some nonlinearity, and the W terms are learned parameters. We can define • as
hn−1 • xn = σ(Whhn−1 +Wxxn). (88)

Thus, we can execute a scan h0 • x1 • x2 · · · • xn to compute the recurrent state hn and output yn.
Note that in doing so, we must also compute all intermediate recurrent states h1, . . . , hn. This is due
to the dependence of hn on hn−1. Let us write out the formula for h3 to demonstrate this dependence

h1 = σ(Whh0 +Wxx1) (89)
h2 = σ(Whσ(Whh0 +Wxx1) +Wxx2) (90)
h3 = σ(Whσ(Whσ(Whh0 +Wxx1) +Wxx2) +Wxx3). (91)

Due to their sequential nature, standard scans tend to be slow on a GPU, since all computations must
be executed in sequence.

J.2 Associative Scans
Certain operators • may exhibit the associative property

(x1 • x2) • x3 = x1 • (x2 • x3). (92)
When this is the case, we may use associative scans instead of scans. Associative scans (alternatively
called parallel scans) are generally much faster to execute on a GPU than standard scans. While a
scan is O(n) parallel time complexity, a work-efficient parallel scan is O(log n).

The key idea behind parallel scans is that if the operator • is associative, there is no explicit dependency
that requires we execute • in series. Rather, we can we can parallelize computation.
Consider the following expression

x1 • x2 • x3 • x4. (93)
If • exhibits the associative property, then we can compute the expression as

(x1 • x2) • (x3 • x4). (94)
That is, we can compute the first term z2 = (x1 • x2) independently of z4 = (x3 • x4). Then, we can
compute the resulting operator h4 = z2 • z4.

This is a naiive associative scan – it executes the binary operator O(n log2 n) times. The Blelloch
Scan (Blelloch, 1990) produces equivalent outputs to the naiive associative scan, but does so in O(n)
calls to •. The Blelloch Scan algorithm is relative complex to implement or explain, but fortunately it
exists in the CUDA and JAX libraries.

24

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We highlight the claims in the abstract and contribution paragraph, which we
provide evidence for throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a section on limitations and future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

25

Justification: We provide proofs for the reset mechanisms and the discounted return and
generalized advantage estimate memoroids in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all hyperparameters in the appendix. We also include all source
code with yaml files denoting the configuration of each experiment we ran.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include the code used to run all experiments in this paper. The supplemen-
tary material upload has a readme describing the commands to install the library and run the
experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code. Simply
run ‘python tape_dqn.py PATH_TO_CONFIG’ to run the tape-based RL experiments.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe mostly everything, such as all hyperparameters and how we chose
them, in the Appendix. Anything missing should be readily available in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report bootstrapped 95% confidence interval for all experiments except for
the wall-clock time, which uses standard deviation instead.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail this in the appendix. We do not have a hard number, but we explain
roughly how much compute would be required.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have adhered to ethics guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research focuses on improving efficiency in RL, as demonstrated on toy
problems. It could potentially decrease energy usage in this manner, but we do not want to
jump to any conclusions. Further research is required.

Guidelines:

28

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The worst thing our models can do is learn to play MineSweeper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we credit the various model authors for their memory models and the
POPGym authors for their dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

29

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We just include methods, not new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There were no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There were no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

30

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Preliminaries
	Rollouts, Causality, and Episode Boundaries
	Partial Observability

	Background and Related Work
	On the Efficiency of Sequence Models

	Approach
	Tape-Based Batching

	Experiments and Discussion
	Conclusion
	Return Comparison Between TBB and SBB
	Observation Sensitivity Analysis
	Segment-Based Batching
	The Discounted Return as a Memoroid
	The Generalized Advantage Estimate as a Memoroid
	Resettable Monoid Transformation Proof
	Rewriting Sequence Models as memoroids
	Linear Transformer
	Simplified State Space Models
	Linear Recurrent Unit
	Fast and Forgetful Memory

	Experiment Setup
	Compute Used
	Model Setup
	Task Setup
	Wall-Clock Experiment Details
	Atari Experiment Details

	Non-Recurrent Q Learning
	A Primer on Scans
	Scans
	Associative Scans

