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ABSTRACT

Concept Bottleneck Models (CBMs) map the inputs onto a set of interpretable
concepts (“the bottleneck”) and use the concepts to make predictions. A concept
bottleneck enhances interpretability since it can be investigated to understand what
concepts the model ”sees” in an input and which of these concepts are deemed
important. However, CBMs are restrictive in practice as they require dense concept
annotations in the training data to learn the bottleneck. Moreover, CBMs often do
not match the accuracy of an unrestricted neural network, reducing the incentive
to deploy them in practice. In this work, we address these limitations of CBMs
by introducing Post-hoc Concept Bottleneck models (PCBMs). We show that we
can turn any neural network into a PCBM without sacrificing model performance
while still retaining the interpretability benefits. When concept annotations are
not available on the training data, we show that PCBM can transfer concepts from
other datasets or from natural language descriptions of concepts via multimodal
models. A key benefit of PCBM is that it enables users to quickly debug and
update the model to reduce spurious correlations and improve generalization to
new distributions. PCBM allows for global model edits, which can be more
efficient than previous works on local interventions that fix a specific prediction.
Through a model-editing user study, we show that editing PCBMs via concept-
level feedback can provide significant performance gains without using data from
the target domain or model retraining. The code for our paper can be found in
https://github.com/mertyg/post-hoc-cbm.

1 INTRODUCTION

There is growing interest in developing deep learning models that are interpretable and yet still
flexible. One approach is concept analysis (Kim et al., 2018), where the goal is to understand if and
how high-level human-understandable features are “engineered” and used by neural networks. For
instance, we may like to probe a skin lesion classifier to understand if the Irregular Streaks concept is
encoded in the embedding space of the classifier and used later to make the prediction.

Our work builds on the earlier idea of concept bottlenecks, specifically Concept Bottleneck Models
(CBMs) (Koh et al., 2020). Concept bottlenecks are inspired by the idea that we can solve the task of
interest by applying a function to an underlying set of human-interpretable concepts. For instance,
when trying to classify whether a skin tumor is malignant, dermatologists look for different visual
patterns, e.g. existence of Blue-Whitish Veils can be a useful indicator of melanoma (Menzies et al.,
1996; Lucieri et al., 2020). CBMs train an entire model in an end-to-end fashion by first predicting
concepts (e.g. the presence of Blue-Whitish Veils), then using these concepts to predict the label.

By constraining the model to only rely on a set of concepts and an interpretable predictor, we can:
explain what information the model is using when classifying an input by looking at the weights/rules
in the interpretable predictor and understand when the model made a particular mistake due to
incorrect concept predictions.

While CBMs provide several of the benefits mentioned above, they have several key limitations:

1. Data: CBMs require access to concept labels during model training, i.e. training data should be
annotated with which concepts are present. Even though there are a number of densely annotated
datasets such as CUB (Wah et al., 2011), this is particularly restrictive for real-world use cases,
where training datasets rarely have concept annotations.
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2. Performance: CBMs often do not match the accuracy of an unrestricted model, potentially
reducing the incentive to use them in practice. When the concepts are not enough to solve the
desired task, it is not clear how to improve the CBM and match the original model performance,
while retaining the interpretability benefits.

3. Model editing: Koh et al. (2020) discuss intervening on the model to fix the prediction for a single
input, yet it is not shown how to holistically edit and improve the model itself. Intervening only
changes the model behavior for a single sample, but global editing changes the model behavior
completely. When the model picks up an unintended cue, or learns spurious associations, using
the latter approach and editing the concept bottleneck can improve the model performance more
generally than an intervention tailored toward one specific input. Prior work on CBMs does not
discuss how to globally edit a model’s behavior. Ideally, we would like to edit models with the
help of human input in order to lower computational costs and remove assumptions about data
access.

Our contributions. In this work, we propose the Post-hoc Concept Bottleneck Model (PCBM)
to address these important challenges. PCBMs can convert any pre-trained model into a concept
bottleneck model in a data-efficient manner, and enhance the model with the desired interpretability
benefits. When the training data does not have concept annotations, which is often the case, PCBM can
flexibly leverage concepts annotated in other datasets and natural language descriptions of concepts.
When applicable, PCBMs can remove the laborious concept annotation process by leveraging
multimodal models to obtain concept representations; this results in richer and more expressive
bottlenecks using natural language descriptions of a concept, making PCBMs more accessible in
various settings. Furthermore, when the available concepts are not sufficiently rich, we introduce
a residual modeling step to the PCBM to recover the original blackbox model’s performance. In
experiments across several tasks, we show that PCBMs can be used with comparable performance
compared to black-box models. While prior work (Koh et al., 2020) demonstrated the possibility of
performing local model interventions to change individual predictions, here we propose interventions
for changing global model behavior. Through user studies, we show that PCBM enables efficient
global model edits without retraining or access to data from the target domain and that users
can improve PCBM performance by using concept-level feedback to drive editing decisions.
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Figure 1: Post-hoc Concept Bottleneck Models. First, we learn the vectors in our concept bank.
With the CAV approach, for each concept, e.g. stripes, we train a linear SVM to distinguish the
embeddings of examples that contain the concept and use the vector normal to the boundary (CAV).
When annotations are hard to obtain, we can leverage multimodal models and use the text encoder to
map each concept to a vector. Next, we project the embeddings produced by the backbone onto the
concept subspace defined by the set of vectors. We then train an interpretable predictor to classify the
examples from their projections. When the concept library is incomplete, we can construct a PCBM-h
by sequentially introducing a residual predictor that maps the embeddings to the target space.
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There are two main steps to building a PCBM. We let f : X → Rd be any pretrained backbone model,
where d is the size of the corresponding embedding space and X is the input space. For instance, f
can be the image encoder of CLIP (Radford et al., 2021) or the model layers up to the penultimate
layer of a ResNet (He et al., 2016). An overview of PCBMs can be found in 1, and we describe the
steps in detail below.

Learning the Concept Subspace (C): To learn concept representations, we make use of CAVs
(Concept Activation Vectors) (Kim et al., 2018). In particular, we first define a concept library
I = {i1, i2, ..., iNc

}, where Nc denotes the number of concepts. The concepts in the library can be
selected by a domain expert or learned automatically from the data (Ghorbani et al., 2019; Yeh et al.,
2020). For each concept i, we collect embeddings for the positive examples, denoted by the set Pi =
{f(xp1

), ..., f(xpNp
)}, that exhibit the concept, and negative examples Ni = {f(xn1

), ..., f(xpNn
)}

that do not contain the concept. In practice, densely annotated datasets (Caesar et al., 2018; Fong &
Vedaldi, 2018) are used to collect points that are positive/negative for the concept. Importantly, unlike
CBMs, these samples can be different from the data used to train the backbone model. Following
(Kim et al., 2018), we train a linear SVM using Pi and Ni to learn the corresponding CAV, that is,
the vector normal to the linear classification boundary. We denote the CAV for concept i as ci. Let
C ∈ RNc×d denote the matrix of concept vectors, where each row ci represents the corresponding
concept i. Given an input, we project the embedding of the input onto the subspace spanned by
concept vectors (the concept subspace). Particularly, we let fC(x) = projCf(x) ∈ RNc , where the
ith entry is f (i)

C (x) = ⟨f(x),ci⟩
||ci||22

∈ R. It is important to observe that we do not need to annotate the
training data with concepts. Namely, the dataset used to learn concepts can be different from the
original training data. In several of our experiments, we use held-out datasets to learn the concept
subspace.

Leveraging multimodal models to learn concepts: Annotating images with concepts is a laborious
process. In practice, this can be an important roadblock before using CBMs. To address this, here
we show that we can also leverage natural language concept descriptions and multimodal models
to implement concept bottlenecks. This approach alleviates the need of collecting labeled data to
construct the concept subspace. Multimodal models such as CLIP (Radford et al., 2021) have a text
encoder ftext along with an image encoder, which maps a description to the shared embedding space.
We leverage the text encoder to augment the process of learning concept vectors. For instance, we
can have ctext

stripes = ftext(“stripes”) where the concept vector for stripes is obtained by mapping the
prompt using the text encoder. For each concept description, we can collect the text embeddings and
construct our multimodal concept bank C text as our subspace.

For a given classification task, we can use ConceptNet (Speer et al., 2017) to obtain concepts that
are relevant to these classes. ConceptNet is an open knowledge graph, where we can find concepts
that have particular relations to a query concept. For instance, we can find relations of the form “A
Cat has {whiskers, four legs, sharp claws, ..}”. Similarly, we can find ”parts” of a given class (e.g.
”bumper”, ”roof” for ”truck”), or the superclass of a given class (e.g. ”animal”, ”canine” for ”dog”).
We restrict ourselves to five sets of relations for each class: the hasA, isA, partOf, HasProperty,
MadeOf relations in ConceptNet. We collect all concepts that have these relations with classes in
each classification task to build the concept subspace.

Learning the Interpretable Predictor: Next, we define an interpretable predictor that maps the
concept subspace to the model prediction. Concretely, let g : RNc → Y be an interpretable predictor,
such as a sparse linear model or a decision tree, where Y = {1, 2, ...,K} denotes the label space.
An interpretable predictor is desirable because it provides insight into which concepts the model is
relying on when making a decision. If a domain expert observes a counter-intuitive phenomenon in
the predictor, they can edit the predictor to improve the model. To learn the PCBM, we solve the
following problem:

min
g

E
(x,y)∼D

[L(g(fC(x)), y)] +
λ

NcK
Ω(g) (1)

where fC = projCf(x) is the projection onto the concept subspace, L(ŷ, y) is a loss function such as
cross-entropy loss, Ω(g) is a complexity measure to regularize the model, and λ is the regularization
strength. Note that the concept subspace is fixed during PCBM training. In this work, we use
sparse linear models to learn the interpretable predictor, where g(fC(x)) = wT fC(x) + b. We
apply the softmax function to g if the problem is a classification problem. Similarly, we define
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Ω(g) = α||w||1 + (1− α)||w||22 to be the elastic-net penalty parameterized by α, then normalize by
the number of classes and concepts.

The expressiveness of the concept subspace is crucial to PCBM performance. However, even when
we have a rich concept subspace, concepts may not be enough to solve a task of interest. When the
performance of the PCBM does not match the performance of the original model, users have less
incentive to use interpretable models like concept bottlenecks. Next, we aim to address this limitation.

Recovering the original model performance with residual modeling: What happens when the
concept bank is not sufficiently expressive, and PCBM performs worse than the original model? For
instance, there may be skin lesion descriptors that are not available in the concept library. Ideally,
we would like to preserve the original model’s accuracy while retaining the interpretability benefits.
Drawing inspiration from the semiparametric model literature on fitting residuals (Härdle et al.,
2004), we introduce Hybrid Post-hoc CBMs (PCBM-h). After fixing the concept bottleneck and
the interpretable predictor, we re-introduce the embeddings to ‘fit the residuals’. In particular, we
solve the following:

min
r

E(x,y)∼D[L(g(fC(x)) + r(f(x)), y)] (2)

where r : Rd → Y is the residual predictor. Note that in Equation 2, while training the residual
predictor, the trained concept bottleneck (the concept subspace (fC ) and the interpretable predictor(g))
is kept fixed, i.e. fitting PCBM-hs is a sequential procedure. We hypothesize that the residual predictor
will compensate for what is missing from the concept bank and recover the original model’s accuracy.
We implement the residual predictor as a linear model, i.e. r(f(x)) = wT

r f(x) + br. Given a trained
PCBM-h, if we would like to observe model performance in the absence of the residual predictor, we
can simply drop r (in other words, concept contributions do not depend on the residual step).

3 EXPERIMENTS

We evaluate the PCBM and PCBM-h in challenging image classification and medical settings,
demonstrating several use cases for PCBMs. We further address practical concerns and show that
PCBMs can be used without a loss in the original model performance. We used the following datasets
to systematically evaluate the PCBM and PCBM-h:

CIFAR10, CIFAR100 (Krizhevsky et al., 2009) We use CLIP-ResNet50 (Radford et al., 2021) as
the backbone model. For the concept bottleneck, we use 170 concepts introduced in (Abid et al.,
2022) which are extracted from the BRODEN visual concepts dataset (Fong & Vedaldi, 2018). These
include objects (e.g. dog), settings, (e.g. snow) textures (e.g. stripes), and image qualities (e.g.
blurriness). The full list of concepts can be found in (Abid et al., 2022).

COCO-Stuff (Caesar et al., 2018) is a dataset derived from MS-COCO (Lin et al., 2014), consisting
of scenes with various object annotations. Previous work (Singh et al., 2020) has shown that there are
severe co-occurrence biases in this dataset. For instance, images from the wine glass often also have
a dining table in the image. Singh et al. (2020) identifies these 20 classes with heavy co-occurrence
biases and we train PCBMs to recognize these 20 objects, where we minimize the binary cross-entropy
loss individually for each class. In this scenario, we again use CLIP-ResNet50 (Radford et al., 2021)
as the backbone and BRODEN visual concepts as the set of concepts.

CUB (Wah et al., 2011) In the 200-way bird identification task, we use a ResNet18 (He et al., 2016)
trained on the CUB dataset1. We use the same training/validation splits and 112 concepts as in (Koh
et al., 2020). These concepts include wing shape, back pattern, and eye color.

HAM10000 (Tschandl et al., 2018) is a dataset of dermoscopic images, which contain skin lesions
from a representative set of diagnostic categories. The task is detecting whether a skin lesion is
benign or malignant. We use the Inception (Szegedy et al., 2015) model trained on this dataset,
which is available from (Daneshjou et al., 2021). Following the setting in (Lucieri et al., 2020), we
collect concepts from the Derm7pt (Kawahara et al., 2018) dataset. The 8 concepts obtained from this
dataset include Blue Whitish Veil, Pigmented Networks, Regression Structures, which are reportedly
associated with the malignancy of a lesion.

1The CUB pretrained model is obtained from https://github.com/osmr/imgclsmob
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SIIM-ISIC (Rotemberg et al., 2021) To test a real-world transfer learning use case, we evaluate the
model trained on HAM10000 on a subset of the SIIM-ISIC Melanoma Classification dataset. We use
the same concepts described in the HAM10000 dataset.

We use linear probing on top of the backbones for CIFAR, COCO, and ISIC to obtain the baseline
model performance. For CUB and HAM10000, we use the out-of-the-box models trained on the
respective datasets without any additional training. We emphasize that in all of our experiments
except CUB, we learn concepts using a held-out dataset. Namely, while the original CBMs need
to have concept annotations for training images, we remove this limitation by post-hoc learning of
concepts with any dataset. To learn the concept subspace, we use 50 pairs of images for each concept
to train a Linear SVM. We refer the reader to the Appendix for further details on datasets and training.

PCBMs achieve comparable performance to the original model: In Table 1, we report results
over these five datasets. PCBM achieves comparable performance to the original model in all datasets
except CIFAR100, and PCBM-h matches the performance in all scenarios. Strikingly, PCBMs match
the performance of the original model in HAM10000 and ISIC, with as few as 8 human-interpretable
concepts. In CIFAR100, we hypothesize that the concept bank available is not sufficient to classify
finer-grained classes, and hence there is a performance gap between the PCBM and the original
model. When the concept bank is not sufficient to solve the task, PCBM-h can be introduced to
recover the original model performance while retaining the benefits of PCBM (see next sections).
Comparing to CBM: A comparison to CBM was not possible in most datasets, as CBMs cannot be
trained due to the lack of dense annotations. To compare the data efficiency of both methods, we
report a comparison of CBM to PCBM when trained on CUB in Appendix C, finding that CBM can
only reach a similar performance to PCBM with 20x more annotations. Analyzing the residual
predictor: To understand whether PCBM-h overrides PCBM predictions, in Appendix B, we look
at the consistency between PCBM and PCBM-h predictions. We show that the residual component in
PCBM-h intervenes only when the prediction is wrong, and fixes mistakes. When PCBM is confident,
PCBM-h does not modify the prediction or significantly increase the confidence. In general, the
residual component may dominate when the bottleneck is insufficient and future work can aim to
explicitly limit the residual component, e.g. PIE (Wang et al., 2021) regularizer.

Table 1: PCBMs achieve comparable performance to the original model. We report performance
over different scenarios for the original model and PCBMs with concept datasets. In CIFAR100,
PCBM performs poorly since the concept bank is not expressive enough to solve a finer-grained task;
however, PCBM-h recovers the original model’s accuracy. Strikingly, PCBMs match the performance
of the original model in HAM10000 and ISIC, with as few as 8 human-interpretable concepts.
Original CBMs cannot be trained on CIFAR/HAM10000/ISIC/COCO-Stuff, as they do not have
concept labels in the training dataset. The mean and standard errors are reported over 10 random
seeds. We report AUROC for HAM10000 and ISIC, mAP for COCO-Stuff, and accuracy for CIFAR
and CUB.

CIFAR10 CIFAR100 COCO-Stuff CUB HAM10000 ISIC
Original Model 0.888 0.701 0.770 0.612 0.963 0.821
PCBM 0.777± 0.003 0.520± 0.005 0.741± 0.002 0.588± 0.008 0.947± 0.001 0.736± 0.012
PCBM-h 0.871± 0.001 0.680± 0.001 0.768± 0.01 0.610± 0.010 0.962± 0.002 0.801± 0.056

Table 2: Concept Bottlenecks with CLIP concepts. When a
concept bank is not available or is insufficient, we can use natural
language descriptions of concepts with CLIP to implement CBMs.

CIFAR10 CIFAR100 COCO-Stuff
Original Model (CLIP) 0.888 0.701 0.770

PCBM & labeled concepts 0.777± 0.003 0.520± 0.005 0.741± 0.002
PCBM & CLIP concepts 0.833± 0.003 0.600± 0.003 0.755± 0.001

PCBM-h & CLIP concepts 0.874± 0.001 0.691± 0.006 0.769± 0.001

PCBM using CLIP concepts:
Here, we show that when la-
beled examples to learn concepts
are not available, we can use
multimodal representations such
as CLIP to generate concepts
without the laborious annotation
cost. Using ConceptNet, we ob-
tain concept descriptions for CI-
FAR10, CIFAR100, and COCO-
Stuff tasks (206, 527, and 822
concepts, respectively), using the relations described in Section 2. The concept subspace is obtained
by using text embeddings for the concept descriptions generated by the ResNet50 variant of CLIP.
In Table 2, we give an overview of the results. We observe that with a more expressive multimodal
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bottleneck, we can almost recover the original model accuracy in CIFAR10, and we reduce the
performance gap in CIFAR100. CLIP contains extensive knowledge of natural images, and thus
captures natural image concepts (e.g. red, thorns). However, CLIP is less reliable at representing
more granular or domain-specific concepts (e.g. blue whitish veils) and hence this methodology is less
applicable to more domain-specific applications. While there is a recent trend in training multimodal
models for biomedical applications (Zhang et al., 2020; EleutherAI), these models are trained with
smaller datasets and are less competitive. We hope that as these models improve, PCBMs will make
it easier to deploy concept bottlenecks in more specialized domains.

Explanations in PCBMs: In Figure 2, we provide sample concept weights in the corresponding
PCBMs. For instance, in HAM10000, PCBMs use Blue Whitish Veils, Atypical Pigment Networks,
and Irregular Streaks to identify malignant lesions, whereas Typical Pigment Networks, Regular
Streaks, and Regular Dots and Globules are used to identify benign lesions. These associations
are consistent with medical knowledge (Menzies et al., 1996; Lucieri et al., 2020). We observe
similar cases in CIFAR-10 and CIFAR-100, where the class Rose is associated with the concepts
Flower, Thorns and Red. In Appendix Section F, we further analyze the global explanations of
COCO-Stuff and show that PCBM reveals co-occurrence biases in the training data. Note that the
concept weights for PCBM-h are exactly the same as for PCBM since the residual model is fit after
the concept weights are fixed. However, given the addition of the residual component, the net effect
of concepts may be different. We also note that the concept weights discussed may not reflect the
causal effect. Estimating the causal effect of a concept requires careful treatment (Goyal et al., 2019),
e.g. accounting for the interactions between concepts, and we leave this to future work.
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Figure 2: Explaining Post-hoc CBMs. We report the top 3 largest weights in the linear layer for the
shown classes. For instance, Blue Whitish Veils, Atypical Pigment Networks, and Irregular Streaks
have large weights for classifying whether a skin lesion is malignant. These are consistent with
dermatologists’ findings (Menzies et al., 1996).

4 MODEL EDITING WITH POST-HOC CONCEPT BOTTLENECKS

When we observe a counter-intuitive phenomenon or a spurious correlation in the concept bottleneck,
can we make the model perform better by simple edit operations? In this section, we show that
PCBMs come with the benefit of easy and global concept-level model feedback. Koh et al. (2020)
demonstrate the ability of CBMs to incorporate local interventions. Namely, if a user identifies a
misprediction in the concept bottleneck, they can intervene on the concept prediction, and change the
prediction for the particular instance, we call this a local intervention or edit. Here, we are interested
in editing models to perform ‘global’ edits. Namely, with simple concept-level feedback, we would
like to edit a PCBM and change the entire model behavior. For instance, in our experiments, we
investigate the use case of adapting a PCBM to a new distribution. Unlike most existing model
editing approaches, we do not need any data from either the training or target domains to perform
the model edit, which can be a significant advantage in practice when data is inaccessible. Given a
trained PCBM, we edit our concept bottleneck by manipulating the concept weights. For simplicity,
in the experiments below we only focus on positive weights in the linear model.
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4.1 CONTROLLED EXPERIMENT: EDITING PCBM WHEN THE SPURIOUS CONCEPT IS KNOWN

For our editing experiments, we use the Metashift (Liang & Zou, 2022) dataset to simulate distribution
shifts. We use 10 different scenarios where there is a distribution shift for a particular class between
the training and test datasets. For instance, during training, we only use table images that also contain
a dog in the image and test the model with table images where there is not a dog in the image. We
denote the training domain as table(dog). We give more details and the results of all domains in the
Appendix. We use an ImageNet pretrained ResNet50 variant as a backbone and the visual concept
bank described in the Experiments section. Given a PCBM, we evaluate three editing strategies:

1. Prune: We set the weight of a particular concept on a particular class prediction to 0, i.e. for a
concept indexed by i, we let w̃i = 0.

2. Prune+Normalize: After applying pruning, we rescale the concept weights. Let P denote the
indices of positive weights that are pruned, P̃ denote the indices of weights that remain, and
wP ,wP̃ be corresponding weight vectors for the particular class. We rescale each weight to match
the original norm of the vector by letting ∀i ∈ P̃ , w̃i = wi(1+

||wP ||1
||wP̃ ||1 ), leading to ||w̃||1 = ||w||1.

The normalization step alleviates the imbalance between class weights upon pruning concepts with
large weights for a particular class.

3. Fine-tune (Oracle): We compare our simple editing strategies to fine-tuning on the test domain,
which can be considered an oracle. Particularly, we fine-tune the PCBM using samples from the
test domain and then test the fine-tuned model with a set of held-out samples.

In the context of Metashift experiments, we simply edit the concept spuriously correlated with a
particular class. Concretely, for the domain table(dog), we prune the weight of the dog concept for
the class table. In Table 3, we report the result of our editing experiments over 10 scenarios. We
observe that for PCBMs, the Prune+Normalize strategy can recover almost half of the accuracy gains
achieved by fine-tuning on the original test domain. Further, we observe that PCBM-h obtains lower
accuracy gains with model editing. In PCBM, we can remove the concept from the model, but in
PCBM-h, there may still be leftover information about the spurious concept in the residual part of the
model. This is in line with our expectations, i.e. PCBM-h is a ‘less’ interpretable but more powerful
variant of PCBM. While it still offers partial editing improvements that would not be possible with
the vanilla model, it does not bring as much improvement as the PCBM.

Table 3: Model edits with Post-Hoc CBMs. We report results over 10 distribution shift experiments
generated using Metashift. Accuracy and edit gains are averaged over 10 scenarios and are reported
as mean ± standard error. We observe that very simple editing strategies in the concept subspace
provide almost 50% of the gains made by fine-tuning on the test domain.

Unedited Prune Prune + Normalize Fine-tune (Oracle)

PCBM Accuracy 0.656± 0.025 0.686± 0.026 0.750± 0.019 0.859± 0.028
PCBM Edit Gain — 0.029 0.093 0.202

PCBM-h Accuracy 0.657± 0.039 0.672± 0.033 0.713± 0.027 0.861± 0.032
PCBM-h Edit Gain — 0.017 0.058 0.190

Even though our edit strategy is extremely simple, we can recover almost half of the gains made by
fine-tuning the model. It is particularly easy to use since it can be applied without fine-tuning or
using any knowledge or data from the target domain. However, this methodology requires knowledge
of the spurious concept in the training domain. This may not be realistic in practice, and in the next
section, we turn to human users for guidance.

4.2 USER STUDY: EDITING PCBM WITH HUMAN GUIDANCE

One of the advantages of pruning is that it is naturally amenable to bringing humans into the loop.
Rather than attempting to automate the edits, we can rely on a human to pick concepts that make
logical sense to prune. We show that users make fast and insightful pruning decisions that improve
model performance on test data when there is a distribution shift. Notably, these decisions can be
made even when the user knows little about the model architecture and has no knowledge of the true
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underlying spurious correlation in the training data. We conduct a user study where we explore the
benefits of human-guided pruning on PCBM and PCBM-h performance.

Remove concepts from the model that you think 
may hinder generalization for classifying 
Keyboard.
The model was trained to distinguish Beach, Bus, 
Airplane, Keyboard and Bird

Figure 3: User Study In-
terface. We train PCBMs
on MetaShift scenarios, each
with a distribution shift be-
tween the training and test
datasets. The user selects con-
cepts to prune from the model.

Study Design:
We construct 9 MetaShift scenarios with a distribution shift for one
of the classes between the training and testing datasets, which we
refer to as the ”shifted class”. For instance, all of the training images
for the class Keyboard also contain a Cat in the image, whereas test
images do not have a cat in the image. The list of the 9 scenarios can
be found in the Appendix. For each scenario, we train a PCBM and
a PCBM-h with CLIP concepts on the training dataset and task the
users with making edits to the trained models by selecting concepts
to prune. We use CLIP’s ResNet50 variant as our backbone, and
leverage ConceptNet to construct the concept subspace.

Figure 3 shows the concept-selection interface. We refer to the
Appendix for the full set of instructions given to the user. The
display consists of the classification task the model was trained on
and the concepts with the ten most positive weights for the shifted
class. The user selects a subset of the concepts to prune. Neither the
original model accuracy nor the accuracy after pruning is revealed
to the user until all scenarios are completed. The target audience
for the study was machine learning practitioners and researchers; 30
volunteers participated for a total of 30× 9 = 270 experiments. The
IRB has determined that this does not require review.

Human-guided editing is fast and improves model accuracy:
On average, users prune 3.65 ± 0.39 concepts in 34.3 ± 6.4s per
scenario. We evaluate the effectiveness of user pruning by comparing
the model accuracy after user pruning to the accuracy of the unedited

model on a held-out dataset from the test domain. All 30/30 users improve the model accuracy
when averaged over scenarios. 8/30 users improve model accuracy in all scenarios and 26/30 users
improve model accuracy in at least 6 scenarios. We compare human-guided editing to three baselines:
1. Random Pruning: We uniformly select without replacement a subset of the top ten concepts to

prune, matching the number of concepts pruned by the user for a fair comparison.
2. Greedy Pruning (Oracle): We greedily select one of the top 10 concepts that, when pruned,

improves the model accuracy the most. We match the number of concepts pruned by the user.
3. Fine-tune (Oracle): The model is fine-tuned on samples from the test domain.

Table 4: Human-guided editing improves model accuracy for PCBMs with CLIP concepts
(N=30). We show the test accuracy on the shifted class averaged across 9 MetaShift scenarios, before
and after the model is edited. Accuracies and edit gains are reported as mean ± standard error. (For
the pruning strategies, we first compute the mean test accuracy across users within each scenario,
then calculate the overall mean and standard error from the within-scenario means). We see that
user pruning surpasses random pruning and can achieve nearly 50% of the accuracy gains made by
fine-tuning and over 80% of the accuracy gains made by greedy pruning.

Unedited Random Prune User Prune Greedy Prune (Oracle) Fine-tune (Oracle)

PCBM Accuracy 0.620 ± 0.035 0.604 ± 0.039 0.719 ± 0.042 0.740 ± 0.041 0.824 ± 0.049
PCBM Edit Gain — -0.016 0.099 0.120 0.204

PCBM-h Accuracy 0.642 ± 0.034 0.622 ± 0.037 0.736 ± 0.034 0.766 ± 0.034 0.856 ± 0.018
PCBM-h Edit Gain — -0.020 0.094 0.124 0.224

We consider greedy pruning and retraining to be oracles since they require ”leaked” knowledge of the
test domain. Table 4 reports the model performance improvements for PCBM and PCBM-h, averaged
over all 270 experiments in the user study. Improvements within each separate scenario can be found
in the Appendix. We note that even with the residual component in PCBM-h, we can still improve
model performance by editing the concept bottleneck. We observe that user pruning achieves marked
improvement in model performance compared to the unedited model, attaining around 50% of the
accuracy gains from fine-tuning and 80% of the gains from greedy pruning.
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5 RELATED WORKS

Concepts Using human concepts to interpret model behavior has been drawing increasing inter-
est (Kim et al., 2018; Bau et al., 2017; 2020). Related work focuses on understanding if neural
networks encode and use concepts (Lucieri et al., 2020; Kim et al., 2018; McGrath et al., 2021), or
generate counterfactual explanations to understand model behavior (Ghandeharioun et al., 2021; Abid
et al., 2022; Akula et al., 2020). Recent works evaluated the causal validity of explanations (Feder
et al., 2021; Elazar et al., 2021; Goyal et al., 2019), e.g. to eliminate potential confounding effects.
There is further increasing interest in automatically discovering the concepts that are used by a
model (Yeh et al., 2020; Ghorbani et al., 2019; Lang et al., 2021). Concept-based Models: Concept
bottleneck models (CBMs) (Koh et al., 2020) extend the earlier idea (Lampert et al., 2009; Kumar
et al., 2009) of first predicting the concepts, then using concepts to predict the target. CBMs bring
about interpretability benefits but require training the model using concept labels for the entire training
dataset, which is a key limitation. CBMs have not been analyzed in terms of model edits. Recent work
reveals that end-to-end learned CBMs encode information beyond the desired concept (Mahinpei
et al., 2021; Margeloiu et al., 2021). Concept Whitening (Chen et al., 2020) aims to align each concept
with an individual dimension in a layer. While a subset of dimensions is aligned, this approach lacks
a bottleneck since there are dimensions that are potentially not aligned with a concept (comparable
to PCBM-h). Barnett et al. (2021) learns prototypes and uses them as concepts, where the distance
to prototypes determines the model prediction. PCBM-h is inspired by semiparametric models on
fitting residuals (Härdle et al., 2004). PIE (Wang et al., 2021) has a similar approach, where they
combine individual features with more complicated interaction terms for tabular data.

Model Editing Model editing aims to achieve the removal or modification of information in a given
neural network. Several models investigated editing factual knowledge in language models: Zhu
et al. (2020) use variants of fine-tuning to achieve this objective while retaining performance on
unmodified factual knowledge and Mitchell et al. (2021); De Cao et al. (2021); Hase et al. (2021)
update the model by training a separate network to modify model parameters to achieve the desired
edit. Similarly, Sotoudeh & Thakur (2021) proposes ”repairing” models by finding minimal parameter
updates that satisfy a given specification. One thread of work focuses on intervening on the latent
space of neural networks to alter the generated output towards the desired state, e.g. removal
of artifacts or manipulation of object positions (Sinitsin et al., 2020; Bau et al., 2020; Santurkar
et al., 2021). For instance, Bau et al. (2020) edits generative models. Santurkar et al. (2021) edits
classifiers by modifying ‘rules’, such as making a model perceive the concept of a ‘snowy road‘
as the concept of a ‘road’, and they achieve this by modifying minimal updates to specific feature
extractors. FIND (Lertvittayakumjorn et al., 2020) prunes individual neurons chosen by users and
later fine-tunes the model. Right for the Right Concepts (Stammer et al., 2021) similarly fine-tune
a neuro-symbolic model with user-provided feedback maps. Bontempelli et al. (2021) give an
overview of concept-based models and a discussion on debugging strategies while concurrent work
ProtoPDebug (Bontempelli et al., 2022) proposes an efficient debugging strategy.

6 LIMITATIONS AND CONCLUSION

In this work, we presented Post-hoc CBMs as a way of converting any model into a CBM, retaining
the original model performance without losing the interpretability benefits. We leveraged multimodal
models as an interface to use concepts, without the laborious concept annotation steps. Further, in
addition to the local intervention benefits of CBM, we demonstrated that PCBMs can be leveraged to
perform global model interventions. Many benefits of CBMs depend on the quality of the concept
library. The concept set should be expressive enough to solve the task of interest. Users should be
careful about the concept dataset used to learn concepts, which can reflect various biases. While there
are several such real-world tasks, it is an open question if human-constructed concept bottlenecks
can solve larger-scale tasks(e.g. ImageNet level). Hence, finding concept subspaces for models in an
unsupervised fashion is an active area of research that will help with the usability and expressivity of
concept bottlenecks. Multimodal models provide an effective interface for concept-level reasoning,
yet it is unclear what is the optimal way to have humans in the loop. Here, we presented a simple
way of taking human input via concept pruning; how to incorporate richer feedback is an interesting
direction for future work.
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A TRAINING DETAILS

Hyperparameters: In all of our experiments ElasticNet sparsity ratio parameter was α = 0.99.
We trained all our models on a single NVIDIA-Titan Xp gpu. All of the models were trained for
a total number of 10 epochs. We tune the regularization strength on a subset of the training set,
that is kept as a validation set. PCBMs are fitted using scikit-learn’s SGDClassifier class, with 5000
maximum steps. Hybrid parts are trained with PyTorch, where we used Adam as the optimizer with
0.01 learning rate, with 0.01 L2 regularization on the residual classifier weights, and trained for 10
epochs.

Dataset Details:

1. Metashift: For all metashift experiments, we have 5 class classification problems. We
have 50 images for each class as the training set, and 50 images for each class in the test
dataset, which is different from the training images. The regularization strength for Metashift
experiments is 0.002.

2. CIFAR: We use the original training and test splits of CIFAR datasets. The regularization
strength for CIFAR10 and CIFAR100 is 2.0

KNc
. We use linear probing to evaluate the original

model
3. COCO-Stuff: We use the original training and test splits of COCO dataset. We sample

500 training and 250 test images from the dataset for each class, and we upsample the
images whenever there are not enough images. Recognizing each of the 20 biased classes
itepsingh2020don is treated as a binary classification task where we minimize binary cross
entropy loss separately for 20 classes, and compute the mean average precision metric.
The regularization strength for COCO-Stuff is 0.001. We evaluate the original model
performance using linear probes with CLIP.

4. Ham10k: We split 80% of the HAM10k dataset and use it as the training set, and use the
remaining 20% as the test data. The regularization strength for Ham10k is 2.0

KNc
.

5. ISIC: We use 2000 images for training (400 malignant, 1600 benign) and evaluate the model
on a held-out set of 500 images (100 malignant, 400 benign). The regularization strength
for ISIC is 0.001

KNc
. We evaluate the original model performance using a linear probe.

6. CUB: We use the training and test splits provided in Koh et al. (Koh et al., 2020). The
regularization strength for CIFAR10 and CUB is 0.01

KNc
.
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Visual Concepts: We used Broden Visual concept bank for CIFAR and controlled editing experiments,
CUB’s training data for CUB concepts, and derm7pt dataset for dermatology concepts. For each of
these, we use 50 pairs of positive and negative images, and learn a linear SVM. We use the vector
normal to the decision boundary as the concept vector.

Multimodal concepts: For concept learning, we leveraged the ConceptNet hierarchy. For each
classification task, we searched concept net for the class name and obtained concepts that have the
following relation with the query concept: hasA, isA, partOf, HasProperty, MadeOf. We share the
code for obtaining natural language concepts using ConceptNet. For each of these concepts, we
obtain the text embedding using CLIP and use those as the concept vector.

B RESIDUAL COMPONENT INTERVENES ONLY WHEN NECESSARY

Does PCBM-h alter predictions made by the PCBM? We hypothesized that the residual component
would intervene only when the concept bottleneck is not sufficient. To better understand the effect of
residual predictor, we analyzed the prediction consistency between the two models for CIFAR10 and
CIFAR100, where we looked at the models with labeled concepts (i.e. 170 concepts). In Figure 4 and
5, x-axis denotes the confidence of PCBM, the orange line gives the accuracy for samples with the
given confidence, and the blue line gives the consistency between PCBM and PCBM-h for the same
samples, i.e. whether they make the same prediction. In CIFAR10 and CIFAR100, we show that
PCBM and PCBM-h consistency is high when the model confidence is high, and the model accuracy
is high. Consequently, PCBM-h changes the model prediction mostly when the PCBM prediction is
likely a mistake, and the confidence is low. In Figure 5, we show that all of the predictions changed
by PCBM-h are to fix model mistakes. Further, in Figure 6 we show the PCBM confidence and the
mean absolute deviation between the PCBM confidence and the PCBM-h confidence. We observe
that PCBM-h has less effect on model confidence as the model gets more confident.
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Figure 4: Residual component intervenes mostly when the confidence is low. Here, we look at
the consistency between PCBM and PCBM-h predictions (i.e. whether both models make the same
prediction). Namely, at each confidence level for the PCBM, we report the accuracy and consistency
with the PCBM-h predictions. Overall, we see that PCBM-h is most likely to change the model
prediction when the model is making a mistake, and otherwise, predictions are consistent.

C COMPARISON TO CBM

In most of our experiments, there is no clear way to run CBM as a benchmark, as none of the datasets
have dense concept annotations - except CUB. In CUB, we run CBM as a baseline. Particularly,
we try the joint training strategy from Koh et al. (Koh et al., 2020), where it was reported to
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Figure 5: Residual component intervenes only to fix mistakes. Here we show the number of
mistakes, the number of predictions changed by PCBM-h, and the number of mistakes fixed by
PCBM-h. We see that PCBM-h only changes the model predictions to fix model mistakes.
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Figure 6: Effect of the residual predictor on the confidence. Here we show the PCBM confidence
and mean absolute deviation between the PCBM confidence and the PCBM-h confidence. We observe
that PCBM-h has less effect on model confidence as the model gets more confident.

give the best results in the CUB dataset. To make the comparison equal, we use the same set of
concepts in both models, and use a linear predictor layer. Further, in both cases, we use the same
frozen ResNet18 backbone. We searched over a grid of learning rates from {0.01, 0.01, 0.1, 1.0}
and λ ∈ {0.001, 0.01, 0.1, 1.0} where λ is the coefficient of the concept predictors in the joint
training objective (see the CBM paper, Section 3), and the ElasticNet regularization strength in
{0.001, 0.01, 0.1, 1.0}. In Table 5, we report the model performance. Overall, we observe some
benefit from using dense concept annotations over the entire training dataset, where CBMs achieve a
slightly better performance than PCBMs, and the original backbone. We note that this was at the cost
of 112 concept annotations for each of the training samples.

We further analyze the behavior of CBM under different number of annotations. In Figure 7 we
train the CBM with varying number of annotations. CBMs require dense annotations, e.g. 11200
annotations would mean 11200/112 = 100 images. On the x-axis, we give the number of annotations
used to train the CBM. On the y-axis, we give the accuracy on the test set. We observe that CBMs
require a much larger amount of annotations to achieve the same accuracy as PCBMs.
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Table 5: Comparison to CBM. We compare PCBM to CBM in the CUB dataset. The accuracy over
the test set is reported.

ResNet18(Backbone) PCBM PCBM-h CBM(Backbone Fixed)

CUB Accuracy 0.612 0.588 0.610 0.629
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Figure 7: Effect of the number of annotations in CBM. Here we train the CBM with varying
number of annotations. CBMs require dense annotations, e.g. 11200 annotations would mean
11200/112 = 100 images. On the x-axis, we give the number of annotations used to train the CBM.
On the y-axis, we give the accuracy on the test set. We observe that CBMs require a much larger
amount of annotations to achieve the same accuracy as PCBMs.

D CONTROLLED METASHIFT EXPERIMENTS FOR MODEL EDITING

For Metashift, we have 2 tasks. Both tasks are 5-class object recognition tasks, where in the first
one classes are airplane, bed, car, cow, keyboard, and for the second one we have beach, computer,
motorcycle, stove, table. For each of these, we use a ResNet18 pretrained on ImageNet as the
backbone of the P-CBM, and then use 100 images per class to train the concept bottleneck. For all
experiments, we use the Adam Optimizer with a learning rate of 0.05, the regularization parameters
λ = 0.05, α = 0.99. Similar to CIFAR experiments, we use the Broden Concept dataset. Below we
give the entire set of results.

16



Published as a conference paper at ICLR 2023

Train Test Model Original Prune Prune+Normalize Fine-Tune
bed(dog) bed(cat) P-CBM 0.760 0.760 0.760 0.920
bed(cat) bed(dog) P-CBM 0.680 0.700 0.720 0.940
table(dog) table(cat) P-CBM 0.520 0.540 0.620 0.760
table(cat) table(dog) P-CBM 0.660 0.700 0.740 0.760
table(books) table(dog) P-CBM 0.600 0.580 0.780 0.720
table(books) table(cat) P-CBM 0.620 0.680 0.800 0.820
car(dog) car(cat) P-CBM 0.718 0.718 0.744 0.949
car(cat) car(dog) P-CBM 0.620 0.760 0.840 0.840
cow(dog) cow(cat) P-CBM 0.778 0.750 0.778 0.944
keyboard(dog) keyboard(cat) P-CBM 0.620 0.580 0.720 0.940
bed(dog) bed(cat) HP-CBM 0.760 0.760 0.780 0.900
bed(cat) bed(dog) HP-CBM 0.760 0.740 0.760 0.940
table(dog) table(cat) HP-CBM 0.600 0.620 0.640 0.780
table(cat) table(dog) HP-CBM 0.540 0.580 0.640 0.820
table(books) table(dog) HP-CBM 0.660 0.700 0.760 0.680
table(books) table(cat) HP-CBM 0.760 0.800 0.820 0.780
car(dog) car(cat) HP-CBM 0.795 0.769 0.795 0.974
car(cat) car(dog) HP-CBM 0.640 0.660 0.740 0.720
cow(dog) cow(cat) HP-CBM 0.639 0.639 0.639 0.917
keyboard(dog) keyboard(cat) HP-CBM 0.400 0.460 0.560 0.940

Table 6: Results of the Metashift editing experiments.

E USER STUDY

E.1 USER INTERFACE

Below, we provide screenshots of the initial launch page and the concluding summary page from the
user study. For the concept-selection interface, refer to the main paper.
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Figure 8: Launch page for user study. Before starting the editing tasks, participants are shown a
launch page containing a brief background section on PCBMs and a set of instructions.

Figure 9: Summary page for user study. After completing all 9 scenarios, participants are shown a
summary page that includes the user’s choice of concepts, the accuracy of the unedited model, and
the accuracy achieved by the edited model.

E.2 HUMAN-GUIDED PCBM EDITING: DETAILED PERFORMANCE RESULTS

In each of the 9 scenarios in the user study, the underlying classification task is a 5-class object
recognition task, and one of the classes has a spurious correlation in the training set. For instance, all
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training images for the class keyboard also contain a cat in the image. In Table 7, we list the classes
in the underlying classification task and the spurious correlation for each scenario.

Table 7: Classification tasks and spurious correlations in user study scenarios.

Classification Task Spurious Correlation

airplane, bed, car, cow, keyboard bed(dog)
beach, bus, airplane, keyboard, bird keyboard(cat)
beach, car, airplane, bed, bird bed(cat)
beach, motorcycle, airplane, couch, bird couch(cat)
bus, painting, cat, computer, snowboard painting(lamp)
bus, pillow, cat, computer, snowboard pillow(clock)
bus, television, cat, computer, snowboard television(fireplace)
car, fork, table, bed, computer fork(tomato)
dog, car, airplane, couch, bird car(snow)

Below, we report the test accuracies for each of the 9 scenarios in our user study, both for the shifted
class and for the overall classification task.

Table 8: Model accuracy of PCBM-h with CLIP concepts after editing (N=30) We report the test
accuracy in the shifted class and the overall test accuracy for each individual scenario in the user
study. Accuracy for the pruning strategies is averaged over users and is shown as mean ± standard
error.

Scenario Unedited Random Prune User Prune Greedy Prune Fine-tune

Shifted Class Test Accuracy

bed(dog) 0.720 0.651 ± 0.023 0.832 ± 0.008 0.838 ± 0.008 0.940
keyboard(cat) 0.520 0.425 ± 0.040 0.788 ± 0.021 0.803 ± 0.015 0.940
bed(cat) 0.700 0.663 ± 0.016 0.789 ± 0.006 0.813 ± 0.008 0.860
couch(cat) 0.700 0.725 ± 0.033 0.763 ± 0.011 0.883 ± 0.010 0.960
painting(lamp) 0.640 0.617 ± 0.006 0.640 ± 0.006 0.659 ± 0.002 0.840
pillow(clock) 0.800 0.776 ± 0.008 0.815 ± 0.003 0.815 ± 0.003 0.820
television(fireplace) 0.480 0.485 ± 0.004 0.535 ± 0.008 0.564 ± 0.009 0.760
fork(tomato) 0.580 0.583 ± 0.012 0.655 ± 0.010 0.707 ± 0.009 0.840
car(snow) 0.640 0.676 ± 0.014 0.807 ± 0.013 0.817 ± 0.011 0.840

Overall Test Accuracy

bed(dog) 0.864 0.850 ± 0.005 0.882 ± 0.001 0.882 ± 0.001 0.900
keyboard(cat) 0.764 0.741 ± 0.008 0.811 ± 0.004 0.814 ± 0.003 0.860
bed(cat) 0.820 0.808 ± 0.004 0.834 ± 0.001 0.841 ± 0.002 0.832
couch(cat) 0.840 0.839 ± 0.005 0.851 ± 0.002 0.858 ± 0.002 0.904
painting(lamp) 0.852 0.841 ± 0.001 0.845 ± 0.001 0.854 ± 0.001 0.884
pillow(clock) 0.888 0.882 ± 0.002 0.891 ± 0.001 0.891 ± 0.001 0.888
television(fireplace) 0.816 0.817 ± 0.001 0.827 ± 0.002 0.832 ± 0.002 0.856
fork(tomato) 0.700 0.695 ± 0.002 0.706 ± 0.001 0.711 ± 0.001 0.732
car(snow) 0.784 0.791 ± 0.003 0.816 ± 0.002 0.817 ± 0.002 0.848

F ANALYSIS ON THE COCO-STUFF BIASES

Singh et al (Singh et al., 2020) identifies co-occurence biases in the COCO-Stuff dataset, where
20 categories frequently co-occur with other identified categories. In Table 10, reader can find the
concepts, taken from Singh et al. In Table 10, we report the Top-5 concepts for the PCBM trained
with CLIP concepts. In the Biased Context column, we give the category that co-occurs frequently
with the given context. In PCBM Top-5 Concepts column, we give the concepts that have the highest
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Table 9: Model accuracy of PCBM with CLIP concepts after editing (N=30) We report the test
accuracy in the shifted class and the overall test accuracy for each individual scenario in the user
study. Accuracy for the pruning strategies is averaged over users and is shown as mean ± standard
error.

Scenario Unedited Random Prune User Prune Greedy Prune Fine-tune

Shifted Class Test Accuracy

bed(dog) 0.720 0.647 ± 0.024 0.830 ± 0.008 0.832 ± 0.008 0.900
keyboard(cat) 0.520 0.412 ± 0.040 0.787 ± 0.021 0.799 ± 0.016 0.980
bed(cat) 0.700 0.677 ± 0.017 0.813 ± 0.008 0.804 ± 0.007 0.820
couch(cat) 0.680 0.701 ± 0.034 0.751 ± 0.012 0.882 ± 0.011 0.920
painting(lamp) 0.580 0.579 ± 0.004 0.607 ± 0.007 0.635 ± 0.005 0.520
pillow(clock) 0.740 0.760 ± 0.008 0.811 ± 0.005 0.799 ± 0.006 0.720
television(fireplace) 0.420 0.428 ± 0.004 0.459 ± 0.006 0.483 ± 0.007 0.880
fork(tomato) 0.600 0.581 ± 0.012 0.642 ± 0.007 0.685 ± 0.006 0.960
car(snow) 0.620 0.651 ± 0.014 0.777 ± 0.011 0.737 ± 0.008 0.720

Overall Test Accuracy

bed(dog) 0.860 0.844 ± 0.005 0.878 ± 0.001 0.877 ± 0.001 0.880
keyboard(cat) 0.748 0.727 ± 0.008 0.802 ± 0.004 0.804 ± 0.003 0.800
bed(cat) 0.804 0.801 ± 0.004 0.830 ± 0.002 0.829 ± 0.001 0.668
couch(cat) 0.828 0.826 ± 0.006 0.841 ± 0.002 0.850 ± 0.001 0.892
painting(lamp) 0.836 0.835 ± 0.001 0.841 ± 0.001 0.847 ± 0.001 0.840
pillow(clock) 0.876 0.879 ± 0.002 0.890 ± 0.001 0.888 ± 0.001 0.848
television(fireplace) 0.800 0.802 ± 0.001 0.808 ± 0.001 0.813 ± 0.001 0.812
fork(tomato) 0.704 0.699 ± 0.002 0.710 ± 0.001 0.705 ± 0.002 0.720
car(snow) 0.768 0.776 ± 0.003 0.799 ± 0.002 0.792 ± 0.002 0.732

Biased
Category Biased Context PCBM Top-5 Concepts

cup dining table table, coaster brake, crockery, dining table, column
handbag person bag, platform, woman, person, toiletry
apple fruit apple tree, fruit, edible fruit, citrus fruit, produce
car road traffic circle, intersection, car window, car mirror, trunk
bus road public transport, transportation, tube, carriages, traffic circle
potted
plant vase tall plant, patio, vase, plant, plant organ

spoon bowl eating utensil, utensil, cutlery, crockery, flatware
microwave oven kitchen, washing machine, kitchen appliance, oven, countertop
keyboard mouse computer, computer system, portable computer, computer brand, mouse
clock building-other clock face, timepiece, the dial, plank, chimney
hair drier towel shower, bathroom, toiletry, plumbing fixture, toilet
skateboard person paved surface, person, outsole, instep, footwear

Table 10: COCO-Stuff Concepts

weight for the given category. Looking at PCBM categories, we can see that we can identify the
biased contexts. For instance, cup category has table, dining table, apple has fruit, fresh vegetables,
car has traffic circle, intersection in the concepts identified as important, which are parallel to the
biased context. In other cases, our model surfaced different potential co-occurence biases, such as
chimney for clock, and toilet for hair drier. One important limitation for this analysis is that the
desired concepts should exist in the concept bank. To further improve the pipeline, automatic concept
discovery approaches shall be a fruitful research direction (Ghorbani et al., 2019; Yeh et al., 2020).
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