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ABSTRACT

Supervised fine-tuning is a prevalent technique for boosting model performance.
However, it heavily depends on extensive training over labeled data. This paper in-
troduces a novel model-driven fine-tuning method that operates independently of
supervised training and labeled data. By harnessing the collective intelligence of a
diverse model pool, our method enhances individual model performance through
a two-phase process. Initially, we consolidate the expertise of the models within
the pool to create a general meta-model. This meta-model then serves as a guide
for iteratively fine-tuning the original models in a few shots, promoting a syn-
ergistic improvement in performance. Our experimental results show that this
model-driven approach not only surpasses the performance of full-parameter fine-
tuning models but also does so without the need for supervised training. This
breakthrough offers a cost-effective and scalable alternative to traditional super-
vised fine-tuning, addressing the challenge of data scarcity and paving the way for
future research in unsupervised model enhancement. Our work represents a sig-
nificant step towards making fine-tuning techniques more accessible and practical
in environments where labeled data is limited or even unavailable.

1 INTRODUCTION

Foundation models in computer vision (CV) and natural language processing (NLP) have seen un-
precedented development, driven by the flourishing growth of data and computational power. The
surge of foundation models can be largely attributed to their ability to capture intricate patterns and
relationships within the ever-expanding data. Notable examples include BERT Devlin et al. (2018)
in the field of NLP and Vision Transformer Dosovitskiy et al. (2020) in CV. The future trajectory of
foundation models, spanning from vision Zhai et al. (2022) and language Hoffmann et al. (2022) to
multi-modal Aghajanyan et al. (2023) contexts, is likely to inexorably involve the continual scaling
of model sizes and the innovation of network architectures. A primary obstacle in developing foun-
dational models is the high cost of training, hindered by time-consuming processes and the demand
for high-performance computing resources. The sheer scale of these models necessitates the use of
advanced hardware, such as GPUs and TPUs. Then, the extensive need for large volumes of labeled
data further compounds the challenges in model development. Collecting, curating, and annotating
vast amounts of data is a labor-intensive and resource-intensive task.

Fine-tuning has become a prevalent strategy to address the prohibitive expenses of foundational
model training. This approach leverages pre-existing models and adjusts them to better suit specific
tasks, reducing the need for extensive training and computational resources. Full fine-tuning (FFT)
involves updating all the parameters of a pre-trained model, allowing the model to fully adapt to
the new task, potentially achieving high performance. Parameter-efficient fine-tuning (PEFT) has
been introduced to further reduce computational expenses. PEFT concentrates on updating a limited
subset of parameters or incorporating additional lightweight modules, thereby achieving efficiency
gains. Notably, Low-Rank Adaptation (LoRA) Hu et al. (2021) stands out as a prevailing approach
that fine-tunes large language models by introducing low-rank matrices to the existing weight matri-
ces, allowing for significant reductions in the number of trainable parameters. This method not only
reduces the computational burden but also minimizes the risk of overfitting.

Although fine-tuning provides substantial advantages, it still demands costly training. Whether
executed through FFT or PEFT, the fine-tuning process inherently incurs computational overhead.
This is due to the need to update and optimize model parameters for tailored tasks. Moreover, even
with PEFT methods like LoRA, which aims to reduce the number of trainable parameters, the need
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for labeled data remains a critical bottleneck. Labeled data is essential for fine-tuning models, as it
provides the necessary supervision to guide the learning process. In domains like medicine Kebaili
et al. (2023), low-resource language Magueresse et al. (2020); Ranathunga et al. (2023), and rare
objection detection Wang et al. (2020b); Minderer et al. (2024), high-quality labeled data is scarce,
further complicating the fine-tuning process and limiting the applicability of these techniques.

Unsupervised fine-tuning refers to fine-tuning using unlabeled data. This learning approach lever-
ages the intrinsic structure of the data to infer patterns, relationships, and representations without
the guidance of explicit annotations Jaiswal et al. (2020); Liu et al. (2021). The primary challenge
of unsupervised fine-tuning lies in the ambiguity of the optimization direction and the design of the
loss function Fang et al. (2024). It is difficult to evaluate the performance of unsupervised models
due to the absence of ground truth labels. This makes it hard to assess the quality and applica-
bility of the learned representations. Additionally, unsupervised models may struggle to capture
relevant features for specific tasks, resulting in suboptimal performance compared to the supervised
schemes Heckler et al. (2023).

In this paper, we propose a novel unsupervised fine-tuning method known as model-driven fine-
tuning, which harnesses existing models without needing labeled data. Two stages are included in
our proposed method. First, we propose a novel method for meta-model construction leveraging pre-
existing fine-tuned models within the model pool using an unsupervised approach. Specifically, we
propose an effective unsupervised learning method based on information entropy, which addresses
the issues of entropy minimization’s error accumulation and sensitivity to harmful samples. This
method successfully synthesizes a general meta-model, achieving efficient versatility. Secondly, we
refine the meta-model to enhance its specialization. This is achieved by conducting an unsupervised
adaptation to minimize the disparity in representations between the meta-model and the original fine-
tuned model. Experimental results demonstrate that the meta-model can be effectively fine-tuned
with just several dozen steps of representation alignment, surpassing the performance of models
fine-tuned with full parameters, all without the involvement of any labeled data.

Contributions. (1) We introduce a pioneering unsupervised fine-tuning method termed model-
driven fine-tuning. This framework innovatively utilizes pre-existing trained models to perform
fine-tuning tasks without relying on labeled data, thereby overcoming the limitations of traditional
supervised learning methods. (2) We propose a novel loss function designed specifically for un-
supervised fine-tuning. This loss function is grounded in information entropy principles, adeptly
addressing challenges of error accumulation in entropy minimization. It can be used to build a gen-
eral model in an unsupervised way. (3) Experimental results demonstrate that our method matches
and even exceeds the performance of full-parameter fine-tuning without labeled data. Furthermore,
in a multi-task learning context, our model-driven approach has been shown to outperform the state-
of-the-art models, underscoring its superiority in handling complex, real-world scenarios without
the need for labeled data.

2 RELATED WORKS

Supervised Fine-tuning. Supervised Fine-tuning has emerged as a pivotal technique for adapting
pre-trained language models to specific tasks or domains. This allows the model to specialize and
enhance its performance on that task while retaining the broad knowledge it gained during pre-
training. Full Parameter Fine-tuning (FFT) involves updating all the parameters of the pre-trained
model. This approach can lead to significant performance improvements as it allows the model to
fully adapt to the new task. However, it is computationally expensive and requires much labeled
data. FFT is beneficial when there are sufficient data and computational resources. Still, it may not
be practical for all the applications due to its high cost and the risk of overfitting when limited data is
available. Parameter-efficient fine-tuning methods, on the other hand, fine-tune only a small subset
of the model’s parameters. This approach is designed to be more resource-efficient and to reduce
the risk of catastrophic forgetting, where the model loses previously learned knowledge. PEFT
can be classified into four main categories: additive fine-tuning, partial fine-tuning, reparameterized
fine-tuning, and hybrid fine-tuning, as detailed in Xu et al. (2023). Within these categories, classic
methods include Adapter Houlsby et al. (2019), Prompt-tuning Lester et al. (2021), BitFit Zaken
et al. (2021), and FISH MASK Sung et al. (2021) for additive fine-tuning; LoRA Hu et al. (2021)
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and QLoRA Dettmers et al. (2024) for reparameterized fine-tuning; and UniPELT Mao et al. (2021)
and AutoPEFT Zhou et al. (2024) for hybrid fine-tuning.

Unsupervised Fine-tuning. Unsupervised fine-tuning Huang et al. (2020); Tanwisuth et al. (2023)
is a distinctive technique that enhances model performance by integrating both labeled and unla-
beled data. Self-supervised learning (SSL) Hinton & Salakhutdinov (2006) trains models to predict
aspects of the input data itself, without relying on external labels. While it effectively utilizes redun-
dant unlabeled data, SSL faces challenges in learning imperfect representations and necessitates the
meticulous design of pretext tasks Gidaris et al. (2018). The entropy-minimization method adjusts
the model based on the current information entropy, offering simplicity but suffering from error ac-
cumulation and potential degradation after numerous optimization steps. Contrastive learning Wang
& Qi (2022); Jaiswal et al. (2020), a prevalent SSL method, focuses on learning representations
where similar examples are closely grouped and dissimilar examples are widely separated in the
embedding space. This approach yields robust features but is sensitive to data augmentation choices
and demands substantial computational resources Wu et al. (2024). Cluster-based methods Zhou
et al. (2003) group unlabeled data into clusters based on data distribution, using these groupings as
pseudo-labels to guide the learning process. Although naive and capable of revealing inherent data
structures, these methods are sensitive to the choice of distance metrics Yang et al. (2016). None
of the aforementioned unsupervised fine-tuning methods are capable of fine-tuning and enhancing
model performance with limited unlabeled data.

3 METHOD

3.1 OVERVIEW

Figure 1: Overview of our proposed method. Two stages are included. (1) To harness the existing
models within the model pool to construct a general meta-model with the same size, in an unsu-
pervised manner. (2) To undertake the few-shot model-driven fine-tuning facilitating specialization
from the general meta-model.

The complete architecture of our model-driven fine-tuning method is illustrated in Figure 1. It
consists of two primary stages. Initially, we harness the existing models within the model pool
to construct a general meta-model with the same size, in the unsupervised manner. The meta-
model is initialized leveraging fine-tuned models with constant indices, in the granularity of the
task-specific or layer-specific. Subsequently, we introduce an innovative unsupervised optimization
technique to refine the layer-specific indices. The meta-model is effectively built with the optimized
indices, having assimilated the versatile capability from the constituent models. In the second stage,
we undertake the model-driven fine-tuning facilitating specialization from the general meta-model.
Precisely, we fine-tune the meta-model by aligning its representations with those of a pre-existing
fine-tuned model, thereby enabling a tailored specialization.

3.2 META-MODEL CONSTRUCTION

Meta-model Initiation. To build a general meta-model without supervised training, we leverage
the pre-existing fine-tuned models, which have the same architecture but are fine-tuned on different
datasets, to build our initialized meta-model. Given the N pre-existing fine-tuned models {θk}N1
and the pre-trained model θpre, we extract the task vector of model θk by weight subtraction as
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τk = θk − θpre, following the task arithmetic method Ilharco et al. (2023). Then, using the constant
indices λk for each task vector, the meta-model θM is initialized following the below equation:

θM = θpre +

N∑
k=1

λk · Φ(τk) (1)

where λk indices are the optimization objectives to be refined, which are initialized using constant
values. Indices λk dictate the degree to which the k-th model contributes to the meta-model. Φ(τk)
represents the transformation method applied to the task vector τk. When Φ(τk) = τk, Eqn. 1
corresponds to the standard task arithmetic method. Due to weight conflicts and not increasing the
mode capacity, Eqn. 1 results in significant performance degradation between the individual fine-
tuned models and the meta-model. However, the meta-model has nonetheless attained an initial
multitasking capability, which denotes the degree of versatility.

Analysis on Standard Entropy Minimization. Entropy minimization (EM) Wang et al. (2020a)
has emerged as a self-supervision technique grounded in the hypothesis that a well-calibrated model
should assign low entropy to its predictions. This approach leverages entropy as a surrogate label
to facilitate self-supervision. We employ standard EM to refine model indices, initializing them at
0.3 Yang et al. (2023); Ilharco et al. (2023). The outcomes are detailed in Table 1, where classes
Spear. rho represents the Spearman correlation coefficients between entropy and actual loss, and
Drop Ration signifies the performance degradation between individual models and the meta-model
with learned indices. Table 1 reveals that datasets with a larger number of classes typically exhibit
more pronounced performance degradation and lower Spearman correlation coefficients. This is due
to the naive EM algorithm’s failure to account for diverse class cardinalities, treating each task uni-
formly and resulting in suboptimal Spearman correlation coefficients. Furthermore, EM introduces
randomness in the initial optimization stage, and there is no mechanism to rectify potential errors in
subsequent optimization steps, leading to severe error accumulation Press et al. (2024). As a result,
EM cannot fully serve as a proxy for guiding the optimization of model indices.

Table 1: Comparative Analysis of Datasets and Entropy Minimization Performance.

High Class Cardinality Low Class Cardinality
SUN397 Cars DTD RESISC45 GTSRB SVHN EuroSAT MNIST

Classes 397 196 47 45 43 10 10 10
Spear. rho 0.61 0.67 0.70 0.79 0.91 0.92 0.86 0.98
Drop Ratio 16.7% 21.2% 30.9% 28.5% 20.6% 15.3% 15.9% 5.3%

Debiasd Entropy Minimization. We propose a novel unsupervised optimization method based on
EM, which is more suitable to refine the model indices in Eqn. 1, in order to mitigate the perfor-
mance degradation and improve the capability of meta-model on multi-tasking. Specifically, we
design a joint loss function that harmoniously integrates self-supervision and cooperative supervi-
sion. We harness the cross-information between the meta-model and individual models to aid the
self-supervised optimization. In the initial stage, the optimization is no longer ambiguous, thus elim-
inating randomness and mitigating error accumulation. At each step, the self-entropy loss focuses
on local supervision and information, while the cooperative loss considers global guidance. Inspired
by knowledge distillation techniques Xu et al. (2024), this joint loss effectively mitigates bias and
directs the update of multiple model indices, ensuring a balanced and comprehensive optimization
process. Concretely, we have crafted methods with two distinct levels of granularity.

a) Task-specific. We view the entire model holistically and assign identical indices to each
model parameter. For each input of task k, the task-specific loss is denoted as follows:

L(xk;λk) = α ·

(
−

K∑
k=1

yk(xk) · log θM (xk;λk)

)
+H(θM (xk;λk)) (2)

where θM (xk;λk) is the output of the meta-model with current indices λk; H(·) is the information
entropy function; y(k) is the output of the k-th model; α is a hyperparameter to control the impact
from cooperative supervision.
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b) Layer-specific. Neural networks typically extract features at varying levels of abstraction
across different layers. We employ Center Kernel Alignment (CKA) Kornblith et al. (2019) to
visualize the layer-wise similarity among each compact model. Notably, when compared to the
same model EuroSAT, different models exhibit varying degrees of similarity at different layers 2.
Deeper layers generally show greater divergence, whereas shallower layers, except the first layer,
tend to be more similar. More visualization results are shown in the Appendix 8. As a result, the
overall model’s unified indices are too sparse. To address this, we refine the layer-specific debiased
entropy minimization approach to operate at the layer level. The formulation is as follows:

L(xk;λ
l
k) = α ·

(
−

K∑
k=1

L∑
l=1

ylk · log θs(xk;λ
l
k)

)
+H(θM (xk;λ

l
k)) (3)

where λl
k signifies the layer-specific indices for layer l of the k-th cooperative model.

Class Cardinality-based Sample Filtering. Standard EM necessitates a substantial number of
unlabeled samples, and higher-entropy samples may impede the optimization process Grandvalet &
Bengio (2004). Adapting models with samples exhibiting extremely high entropy can degrade per-
formance, whereas low-entropy samples markedly enhance model performance Niu et al. (2022).
Consequently, we aim to simultaneously reduce the unsupervised optimization cost and decrease
model uncertainty caused by high-entropy samples. Given that class cardinality influences the op-
timization of model indices, we propose to filter samples while considering both sample entropy
and class cardinality. Specifically, we introduce a class cardinality-based sample filtering method,
denoted as Fent(x; θi). This method only considers samples with entropy below a threshold specific
to their class cardinality for optimization, given by:

Fent(x; θk) = IH(x;θk)<H0(k)(x; θk), H0(i) = µ · log Ck (4)
where I denotes the indicator function that constructs the entropy filtering function Fent; Hk

0 repre-
sents the filtering threshold about class cardinality Ck of task k. To standardize the entropy within a
batch, the following coefficients are computed:

γθk =
1

exp[H(x; θk)−Hk
0 ]
· B

B −NFent

, (5)

where B denotes the batch size and NFent
denotes the number of unfiltered samples in the current

batch. Integrating Eqn. 4, Eqn. 5, and either Eqn. 2 or Eqn. 3, we formulate our comprehensive ob-
jective function for either task-specific construction (Eqn. 2) or layer-specific construction (Eqn. 3),
as follows:

min
λk

γθk · Fent(x; θk) · L(xk;λk) (6)

By optimizing λk in Equation 6, we can derive task-specific or layer-specific indices. Using the
learned indices, combined with Eqn. 1, the meta-model is constructed. The algorithmic process for
meta-model constructing is outlined in Algorithm 1.

Figure 2: Layer-specific similarity between models calculated by CKA. Light colors indicate high
similarity, and vice versa.

3.3 MODEL SPECIALIZATION

With the meta-model θM established, we proceed to the second stage, where model-driven fine-
tuning is implemented. The meta-model serves as a versatile foundation, demonstrating strong per-
formance in multi-tasking (refer to Section 4.2). This indicates that the meta-model has effectively
assimilated capability from a diverse range of fine-tuned models.
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Meta-model Specialization. Given meta-model θM with strong versatility, we subsequently aim
to specialize this model toward the specific task, facilitating the fine-tuning process. Specifically,
we achieve model specialization by leveraging representation alignment Sucholutsky et al. (2023).
In detail, we extract the existing fine-tuned model from the model pool that corresponds to the task
we wish to fine-tune. We then guide the meta-model’s representation to re-adapt towards this tuned
model for a few steps, thereby inducing a shift in the meta-model’s representation. Specifically, we
minimize the L1 distance between their representations and subsequently update the optimization of
the meta-model’s indices. The formula is as follows:

minLL1(y(θ
M ), y(θk)), (7)

where y(·) represents the representation of the final layer and θk denotes the aligned model. By
performing 20 steps of minimization on Equation 7, the model achieves specialization, thereby
efficiently completing model-driven fine-tuning.

3.4 MODEL-DRIVEN FINE-TUNING ALGORITHM

The algorithm is concisely presented as Algorithm 1. For each task, the algorithm accepts the
following inputs: (1) the pre-trained model θpre; (2) the teacher models {θ1t , θ2t , ..., θNt }, and (3) the
task inputs {I1, I2, ..., IN}. Firstly, we undertake some preliminary steps: acquiring task vectors
and initializing the meta-model (line 3-4). At each iteration, we calculate the loss for each task (line
6-10) and subsequently derive the cumulative loss by summing these values (line 11). Based on the
aggregate loss, we adjust the model indices corresponding to each task and subsequently update the
meta-model parameters θs (line 11-12).

Algorithm 1 Model-Driven Fine-tuning
1: Input: K fine-tuned models {θ1t , θ2t , ..., θKt }, default indices {λi}K1 , unlabeled samples {Di}K1
2: Output: the fine-tuned model θ∗
3: Extract task vectorτk = θkt − θpre k = 1, 2, ..., N
4: Initialize Meta-model following Equation 1
5: for i = 1, ..., T do
6: for k = 1, ...,K do
7: Sample a batch of data (xi

k) from Dk

8: Filter data following Equation 4
9: Reweigh data following Equation 5

10: Compute loss L(xi
k;λk) following Equation 2

11: end for
12: Li =

∑N
k=1 L(xi

k;λk)

13: λ
(i)
k ← λ

(i−1)
k −∇Li.

14: Update meta-model θs following Equation 1
15: end for
16: Sample few batches of data (x∗) from D∗
17: y(θM ), y(θ∗)← inference (x∗)
18: Minimize LL1 following Equation 2
19: Update indices {λi}K1 following Equation 7
20: θ∗ ←− θM

4 EXPERIMENTS

Datasets and Models. We assess the efficacy of our proposed framework across eight diverse im-
age classification datasets, varying in class cardinalities. These include SUN397 Xiao et al. (2016),
Cars Krause et al. (2013), RESISC45 Cheng et al. (2017), EuroSAT Helber et al. (2019), SVHN Net-
zer et al. (2011), GTSRB Stallkamp et al. (2011), MNIST LeCun (1998), and DTD Cimpoi et al.
(2014). Our backbone and pre-trained models are the ViT-base with a patch size of 32x32 and ViT-
Large with a patch size of 14x14 Dosovitskiy et al. (2020) from CLIP Radford et al. (2021) models.
The fine-tuned models are sourced from a publicly accessible hub 1.

1https://github.com/mlfoundations/task vectors
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Table 2: Fine-tuning performance comparison

Method SUN397 Cars RESI45 EurSAT SVHN GTSRB MNIST DTD Avg.
ViT-B/32

Pre-Trained Dosovitskiy et al. (2020) 63.2 59.6 60.2 45.0 31.6 32.6 48.3 44.4 48.1
Multi-Task Learning Huang et al. (2024) 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9
Full Fine-tuning Ilharco et al. (2023) 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5

Ours 79.3 78.4 96.1 99.8 97.5 98.8 99.5 79.6 91.1
ViT-L/14

Pre-Trained Dosovitskiy et al. (2020) 66.8 77.7 71.0 59.9 58.4 50.5 76.3 55.3 64.5
Multi-Task Learning Huang et al. (2024) 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5
Full Fine-tuning Ilharco et al. (2023) 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2

Ours 84.6 92.7 97.4 99.7 98.1 99.4 99.7 84.8 94.6

Compared Methods and Implementation. We assess our proposed framework by comparing its
performance against both the pre-trained model and their fully fine-tuned models. Then, to further
evaluate the performance of the meta-model on multi-tasking, the multi-task learning model is com-
pared, which is trained by supervised training. In the first stage of our framework, the model indices
λk are equally initialized as 0.3 Ilharco et al. (2023). In the second stage, 20 steps are executed, and
accuracy serves as the metric for evaluating all tasks.

4.1 COMPARISON OF FINE-TUNING PERFORMANCE AND EFFICIENCY

Performance Comparison. We have conducted a thorough analysis of fine-tuning performance
across full fine-tuning benchmarks for the ViT-B/32 and ViT-L/14 models, as delineated in Table 2.
Our model-driven fine-tuning method referred to as Ours, has been compared with Pre-Trained and
Full Fine-tuning approaches, as well as Multi-Task Learning. The results are shown in Table 2.
According to Table 2, several observations can be made:

(i) Both on the ViT-B/32 and ViT-L/14 models, our method achieves the highest average accuracy.
Across both models, our method outperforms the full fine-tuning method in 7 out of the 8 datasets,
without the need for labeled data or extensive supervised training.

(ii) On the SUN397 dataset, our method attains 79.3% for ViT-B/32 and 84.6% for ViT-L/14, rep-
resenting significant improvements over the next best methods. Notably, our method demonstrates
particular strength on the EurSAT dataset, achieving perfect or near-perfect scores for both model
sizes. This indicates that our fine-tuning approach is highly effective for certain complex tasks.

(iii) For the MNIST dataset with ViT-B/32 and EuroSAT with ViT-L/14, our method lags behind
by only 0.2% and 0.3%, respectively, as these are simple tasks that have been extensively trained.
We infer that, on these two datasets, the full fine-tuned models have likely overfit. In conclusion,
our fine-tuning method has demonstrated greater effectiveness in labeled-free fine-tuning, providing
substantial improvements over existing approaches, particularly for larger models like ViT-L/14.
This underscores the effectiveness of our approach in enhancing model performance across a diverse
range of tasks.

Efficiency. We further assess the efficiency of our proposed method based on the ViT-B/32 model.
Figure 3 illustrates the performance variance across optimization steps. In Figure 3, the red dashed
line represents the full fine-tuning baseline. As depicted, our method converges on all datasets
within 80 steps, and notably, it achieves convergence in just 20 steps for MNIST and 30 steps for
EuroSAT, respectively, thereby emphatically demonstrating the efficiency of our proposed method.
Supplementary analysis for the ViT-L/14 model is elaborated upon in Appendix B.

Further, we have meticulously assessed the efficiency and the utilization of trainable parameters,
as depicted in Table 3. The findings indicate that our proposed method markedly surpasses the
established baseline with respect to optimization time and trainable parameters Key insights include:
(i) Our method exhibits an impressive speedup ratio that surpasses 9 times for the ViT-B/32 model,
and this ratio increases with the model size. Specifically, for the ViT-L/14 model, the speedup
ratio is even more pronounced. (ii) Our method demands a substantially lower number of trainable
parameters compared to the FFT method, utilizing only 3.1% and 2.1% of the parameters for the
ViT-B/32 and ViT-L/14 models, respectively. This reduction is because only the model indices need
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Figure 3: Performance versus steps compared to full fine-tuning based on ViT-B/32. Each red dashed
line signifies the performance of full fine-tuning.

to be optimized, thanks to our innovative layer-specific minimization approach. which is linearly
proportional to the number of layers within the model, as detailed in 3. In contrast, the trainable
number of the FFT method is associated with the entire model parameter size.

Table 3: Efficiency Comparison

Model Method Avg Optim. Time(s) Speedup Ratio Trainable Params Rel.

ViT-B/32
FFT 361.9 (±50) 1.0 108.2MB 100%
Ours 37.8 (±5.0) 9.57 ↑ 3.4MB 3.1%

ViT-L/14
FFT 3300 (±200) 1.0 326.7 MB 100%
Ours 108 (±17) 30.6↑ 6.8MB 2.1%

4.2 ABLATION STUDIES

Ablation for Meta-model Construction. We conduct an ablation study on the effectiveness of
meta-model construction. Given the challenge of quantifying the degree of model versatility, we
employ the model’s performance on multi-task scenarios as a proxy, specifically using average ac-
curacy. We compare a range of unsupervised model integration methods without increasing model
parameters, categorizing them into direct weight manipulation approaches and task vector-based
strategies. The former includes Model Soups Wortsman et al. (2022), Fisher Merging Matena &
Raffel (2022), and RegMean Jin et al. (2022). The latter encompasses Task Arithmetic Ilharco et al.
(2023), Ties-Merging Yadav et al. (2023), and AdaMerging Yang et al. (2023). All experimental
settings are standardized, encompassing identical networks and datasets. Figure 4 illustrates that
our proposed method attains the highest average performance across all evaluated methods, thereby
substantiating the effectiveness of our method in building versatile meta-models.

Ablation on Class Cardinality-based Sample Filtering. To demonstrate the efficacy of class
cardinality-based sample filtering, we have compared the performance achieved with and without
employing this technique. Utilizing an identical experimental setup, with the sole variation being

8
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Figure 4: Ablation for meta-model construction methods.

the data refinement process illustrated in Figure 5, the results conclusively indicate that our filtering
method outperforms the non-filtered approach regarding overall average performance. Moreover,
our method exhibits a faster convergence rate than the naive method.
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69
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72

Av
g 
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c

Naive EM
Refined EM

Figure 5: Ablation for sample filtering

Ablation for Optimization Function. To clarify the
effectiveness of debiased entropy minimization, we
conducted an ablation study on the optimization func-
tion. Specifically, we compared the performance of
joint supervision, singular self-supervision, and singu-
lar cooperated supervision during the optimization pro-
cess. Figure 6 demonstrates that our proposed loss
function achieves the highest performance across all
tasks. Additionally, LCE and LH exhibit varying levels
of superiority on different datasets. The experimental results unequivocally demonstrate the effec-
tiveness of our method.

DTD SUN397 Cars RESISC45 SVHN GTSRB EuroSAT MNIST

70
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Ours

Figure 6: Ablation for optimization function.

5 CONCLUSION

Supervised fine-tuning is computationally expensive and often necessitates much labeled data,
whereas unsupervised fine-tuning faces challenges in providing effective guidance and designing
appropriate supervision. In this paper, we introduce a novel model-driven labeled free fine-tuning
method, which allows fine-tuning and boosting models without labeled data and extensive train-
ing. Leveraging the collective intelligence of diverse models, our two-phase approach significantly
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enhances individual model performance by creating a general meta-model and subsequently fine-
tuning the original model in a few shots. Our method, which operates independently of any super-
vised data, surpasses the performance of supervised full-parameter fine-tuning. Our experimental
results demonstrate that this model-driven approach offers a cost-effective and scalable alternative
to traditional supervised fine-tuning. It effectively addresses the challenge of data scarcity, making
fine-tuning techniques more accessible and practical in environments where labeled data is limited
or inaccessible. This breakthrough paves the way for future research in unsupervised fine-tuning.
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Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, and Su Ruan. Deep learning approaches for data
augmentation in medical imaging: a review. Journal of Imaging, 9(4):81, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMLR, 2019.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engi-
neering, 35(1):857–876, 2021.

Alexandre Magueresse, Vincent Carles, and Evan Heetderks. Low-resource languages: A review of
past work and future challenges. arXiv preprint arXiv:2006.07264, 2020.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
Advances in Neural Information Processing Systems, 36, 2024.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International conference on
machine learning, pp. 16888–16905. PMLR, 2022.

Ori Press, Ravid Shwartz-Ziv, Yann LeCun, and Matthias Bethge. The entropy enigma: Success and
failure of entropy minimization. arXiv preprint arXiv:2405.05012, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Surangika Ranathunga, En-Shiun Annie Lee, Marjana Prifti Skenduli, Ravi Shekhar, Mehreen
Alam, and Rishemjit Kaur. Neural machine translation for low-resource languages: A survey.
ACM Computing Surveys, 55(11):1–37, 2023.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, pp. 1453–1460. IEEE, 2011.

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim,
Bradley C Love, Erin Grant, Jascha Achterberg, Joshua B Tenenbaum, et al. Getting aligned
on representational alignment. arXiv preprint arXiv:2310.13018, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Korawat Tanwisuth, Shujian Zhang, Huangjie Zheng, Pengcheng He, and Mingyuan Zhou. Pouf:
Prompt-oriented unsupervised fine-tuning for large pre-trained models. In International Confer-
ence on Machine Learning, pp. 33816–33832. PMLR, 2023.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020a.

Xiao Wang and Guo-Jun Qi. Contrastive learning with stronger augmentations. IEEE transactions
on pattern analysis and machine intelligence, 45(5):5549–5560, 2022.

Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gonzalez, and Fisher Yu. Frustratingly
simple few-shot object detection. arXiv preprint arXiv:2003.06957, 2020b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang, and Xiangnan He. Understanding
contrastive learning via distributionally robust optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 119:
3–22, 2016.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interfer-
ence when merging models. arXiv preprint arXiv:2306.01708, 2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.
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APPENDIX

A SIMILARITY

The supplementary layer-specific similarity analysis is presented. The CKA Kornblith et al. (2019)
visualization about MLP layers is as follows:

Figure 7: The CKA visualization results. Light colors indicate high similarity, and vice versa.

Layer-specific similarity of each model is shown in Figure 8.
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Figure 8: Layer-specific similarity analysis.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EFFICIENCY

Efficiency analysis based on ViT-L/14 model is given:
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Figure 9: Performance versus steps compared to full fine-tuning based on ViT-L/14. Each red dashed
line signifies the performance of full fine-tuning.
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