EARL: Early Intent Recognition in GUI Tasks Using Theory of Mind

Shraddha Pawar ! Pramod Kaushik ' Sarath Sivaprasad?> Balavarun Pedapudi® Mario Fritz >
Shirish Karande '

Abstract

Understanding user intent is essential for build-
ing better human interaction agents, as it enables
personalization, co-creation, and contextual adap-
tation. However, existing approaches are either
restricted to text environments, use human anno-
tation, or just predict future user actions lacking
the ability to reason explicitly about user goals.
In this work, we introduce EARL (Early Action
Reasoning for Latent intent), a theory of mind
inspired inference-time algorithm that models
user intent as an inverse planning problem, in-
ferring latent goals from observed user actions.
EARL hypothesizes potential user intent at mul-
tiple stages during the course of task execution,
enabling timely intervention and personalization.
Evaluated on three diverse benchmarks namely
Mind2Web, AiTz, and VideoGUI, and using two
strong LLMs (Gemini-1.5-Pro and GPT-40), we
show that EARL consistently outperforms CoT-
based LLM baselines in accurately deciphering
user intent, especially under partial observations.

1 Introduction

Understanding user intent by observing user’s actions is
key to building effective human-Al interaction systems. As
large language models (LLMs) are increasingly deployed as
autonomous agents in graphical user interfaces (GUISs), the
ability to infer user goals from partial observations (early in
the trajectory of actions) becomes critical for enabling proac-
tive assistance and collaborative task completion. Recent
surveys of GUI agents identify intent modeling as the key
missing capability preventing these systems from achieving
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Figure 1: A user opens the photoshop app on a system.
Based on this initial action and contextual cues (e.g., the
user selecting the number plate of a car), the LLM infers
the likely intent: to blur the number plate and proactively
suggests the corresponding action. Our method enables
such anticipatory behavior by modeling intent from partial
observations.

human-like adaptability (Wang et al., 2024).

Current approaches to GUI agents suffer from three key lim-
itations. First, most treat user behavior as action sequences
to imitate rather than interpreting them to predict the latent
intent (Zhang et al., 2024¢). Second, methods that do model
intent typically require complete task trajectories or pre-
defined goal taxonomies (Wang et al., 2024). Third, even
state-of-the-art techniques rely on few-shot prompting with
manually curated domain specific examples (Zhang et al.,
2024a), limiting their generalization to novel users and con-
texts. These constraints make existing systems unable to rea-
son about intent during the most practically relevant phase:
early interaction when the task is incomplete Figure 1.

As a result, current agents struggle to anticipate intent early
and act proactively, which is important in real-world usage.
Wang et al. argue (Wang et al., 2024), the field must shift
from hand-coded or RL-based black boxes to flexible, inter-
pretable reasoning. Towards filling this gap, we introduce
a Theory of Mind (ToM)-inspired approach called EARL
(Early Action Reasoning for Latent intent) that formulates
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intent recognition as inverse planning problem. During in-
ference, the agent evaluates plausibility of different latent
goals that could have generated the observed partial trajec-
tory of actions. With each new state and action observed, the
model updates the set of hypothesis about the latent goals
and re-samples new ones if necessary. This mechanism en-
ables the tracking of goal states and explicit reasoning on
the intent of the user.

To benchmark this method we follow an evaluation scheme
where user intent is to be predicted from partial trajectories
generated from an unobserved goal. This formulation al-
lows the agent to infer latent user intent from only the early
fraction of observed actions. Unlike prior approaches that
wait for the full trajectory, this evaluation demands reason-
ing during the interaction, critical for timely and context-
aware adaptation. In short, we treat intent modeling as an
inference-time reasoning task with only partial observations.

We evaluate our method across three challenging and diverse
benchmarks: Mind2Web, AItW, and VideoGUI, which span
desktop and mobile GUIs, open-world web navigation, and
multimodal task settings. The evaluation task is: given
a fraction of a user’s action sequence, the agent is asked
to predict the goal that leads to the sequence of actions
accurately. Our method outperforms a strong Chain-of-
Thought (CoT) baseline in intent prediction accuracy by
2.6-84.1% when given only the early portion (25-75%) of
user actions. Beyond accuracy, our method produces more
interpretable intent hypotheses and enables earlier model
response, demonstrating practical advantages for proactive
agent applications. Following are our key contributions:

* We formulate the inverse problem of exploration; in-
tent modeling as an early-stage intent prediction task,
where the agent infers latent user goals from partial
action trajectories, rather than full execution histories.

* We propose EARL (Early Action Reasoning for La-
tent Intent), an inference-time algorithm that models
intent via inverse planning. EARL is entirely dataset-
agnostic, zero-shot, and applicable across diverse GUI
domains, unlike prior methods that rely on few-shots
or environment-specific templates.

* We evaluate EARL on three competitive benchmarks,
Mind2Web, AiTz, and VideoGUI, using two strong
LLMs (Gemini-1.5-Pro and GPT-40) as backbones.
Compared to CoT-based LLM baseline, EARL consis-
tently improves intent prediction accuracy under partial
observations. Specifically, it achieves relative gains in
perfect match rate of up to 84.1% at 25% trajectory
length (on VideoGUI), 56.2% at 50% (on VideoGUI),
and 28.9% at 75% (on AiTz).

2 Related work

Building intelligent human interaction GUI agents requires
to go beyond just executing user commands, it demands
understanding why a user is performing an action. This
insight has driven progress along several complementary
fronts. First, modular agent architectures have emerged to
handle the complexity of open-ended GUI control, but often
remain purely reactive (Wang et al., 2024). Second, LLMs
have enabled post hoc summarization of user actions into
intentions, yet typically require full trajectories and offer
limited real-time support (Zhang et al., 2024a). Third, next-
action prediction methods excel at short-horizon reasoning
but rarely model high-level goals. Finally, a small but grow-
ing body of work has explored early-stage goal inference,
often inspired by Theory of Mind, though this remains un-
derdeveloped in HCT and GUI contexts (Rabinowitz et al.,
2018).

GUI Agent Architectures for Task Automation. End-
to-end GUI agents aim to autonomously execute high-level
natural-language instructions by directly interacting with
user interfaces. Recent frameworks, such as the unified
GUI pipeline by Wang et al. (Wang et al., 2024), employ
modular architectures including components like GUI Per-
ceiver, Task Planner, Decision Maker, Memory Retriever,
and Executor. Similarly, (Deng et al., 2023a) adopts a
two-stage HTML element-ranking approach combined with
multi-choice question-answering prompts for complex web
navigation tasks. Earlier RL-based agents, such as Mini-
WoB++ (Liu et al., 2018), have demonstrated effectiveness
within controlled browser simulators, but struggle with real-
world complexity. However, these architectures primarily
focus on maximizing task-completion rates after observ-
ing full trajectories, often overlooking explicit user intent
modeling. In contrast, our work adds value by embedding
an inference-time intention recognition module into these
pipelines, enabling goal-aligned reasoning from early task
interactions.

LLM-Based Intention Recognition and Summariza-
tion. Recent methods have approached intention modeling
as summarization tasks, translating entire user-action se-
quences into succinct natural language intentions. Zhang et
al. (Zhang et al., 2024a) introduced SummAct, a hierarchical
summarization framework combining sub-goal generation
with Ul-element attention mechanisms, yielding significant
improvements on Mind2Web and MoTIF datasets. Simi-
larly, Ahmed al (Ahmed, 2024) developed Mistral-Intention,
fine-tuning LLMs with keyword extraction losses to better
capture essential action details, and demonstrated improved
performance on diverse GUI environments. However, these
methods depend heavily on full trajectory information with
human annotation and infer intent post hoc, limiting real-
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time applicability. Our approach enhances this dimension by
framing intention recognition as an inverse planning task, al-
lowing accurate intention inference using only partial action
observations. Our approach also does not use any human
annotation particular to a dataset making it dataset agnostic.

Next-Action Prediction with LLMs. Next-action predic-
tion tasks condition on previous user interactions and cur-
rent GUI states to anticipate immediate subsequent actions.
Prominent models like SYNAPSE (Zheng et al., 2023),
DroidBot-GPT (Wen et al., 2023), and AutoDroid (Wen
et al., 2024) employ LLMs enhanced by state abstraction
and trajectory-based prompting to achieve high accuracy
in predicting immediate next actions. Despite their effec-
tiveness, these methods typically focus on short-term, step-
by-step prediction without explicitly modeling broader user
goals. Our proposed method significantly differs by lever-
aging early-stage latent intent inference, thus facilitating
not only accurate next-action predictions but also enabling
proactive, contextually relevant interventions.

3 TOM guided intent modelling

Accurate intent recognition in GUI interactions hinges on an
agent’s ability to reason about latent goals from partial and
noisy user actions. Traditional approaches are often reliant
on post hoc analysis of complete trajectories or rigid goal
taxonomies fail to address the dynamic nature of real-world
interactions, where users reveal their intentions incremen-
tally. Inspired by human cognitive processes, we frame
intent recognition as an inverse planning problem under the
Theory of Mind (ToM) framework (Baker et al., 2017). In
this framework mental state attribution is treated as perform-
ing probabilistic inference using a generative model of a
rational agent. An agent’s perceptions combined with its
prior beliefs determine its current beliefs, and those beliefs
together with its goals drive its actions. Consequently, one
can recover an agent’s beliefs and goals by (a) simulating
belief updates forward from its observations and priors, (b)
inferring them backward from its observed actions, or (c)
jointly integrating both observation-based and action-based
information.

3.1 Methodology

In this method we adapt the particle-filter thought-tracing
algorithm of Kim et al. (Kim et al., 2025) to infer a user’s la-
tent goals in GUI environments, formalized in Algorithm 1.
We instantiate this algorithm in a GUI intent inference al-
gorithm called EARL (Early Action Reasoning for Latent
Intent), which maintains a belief distribution over possible
user goals as the user interacts with the interface. Each
candidate goal is represented as a natural language hypothe-
sis, treated as a weighted “particle” that evolves over time.

Given an input trajectory £ = {(s1,a1),...,(st,ar)},
where s; and a; denote the GUI screen and action at step
t, the agent begins by invoking INITIALIZE to generate a
diverse hypothesis set H; of N = 4 candidate goals from
the initial observation. For each subsequent step ¢, EARL
first applies PROPAGATE to carry forward the hypotheses
from H;_; into the new state s;, preserving their semantic
content. It then invokes UPDATEWEIGHTS, which evaluates
each hypothesis g; € H; based on how well it explains the
newly observed action a; in the context of s;, assigning
qualitative likelihoods such as very likely, likely, uncertain,
or unlikely. These belief strengths guide future reasoning
by increasing the weight of plausible hypotheses and down-
weighting those that are inconsistent with the user’s behav-
ior.

If the updated belief set H; becomes dominated by low-
likelihood or semantically overlapping hypotheses, the agent
invokes RESAMPLE to restore diversity. This involves prun-
ing particles that are consistently rated as unlikely, and du-
plicating or paraphrasing stronger candidates to maintain a
balanced distribution. Through this iterative process, EARL
incrementally refines its understanding of the user’s latent
intent, enabling robust goal inference even when the true ob-
jective is revealed gradually across a multi-step interaction.
Figure 2 illustrates this process: the agent begins with a
diverse set of coarse-grained hypotheses (e.g., “apply color
grading,” “blur license plate,” “crop car”) and incrementally
filters and reweights them based on observed user actions.
As finer-grained cues emerge—such as selecting the license
plate—the belief in irrelevant goals is downweighted, and
the most consistent hypothesis (e.g., “blur license plate”) is
selected as the predicted intent.

At designated checkpoints (e.g., after observing 25%, 50%,
or 75% of the full trajectory), EARL summarizes the current
belief state using SUMMARIZEBELIEFTRACE, recording
the highest-weighted hypothesis at that point as the pre-
dicted intent g. This mechanism allows EARL to infer
intents at multiple stages throughout the interaction, rather
than deferring to a final decision at 100%. Belief summa-
rization and intent reporting occur cumulatively, reflecting
both newly observed context and the agent’s evolving hy-
pothesis distribution. All reasoning is guided by a struc-
tured system prompt that defines the agent’s behavior and
goal-tracking strategy, enabling consistent and generalizable
inference through a single language model interface (see
Appendix A2).

Throughout the remainder of this paper, we refer to this
GUI-based, particle-filtering algorithm as EARL (Early
Action Reasoning for Latent Intent)
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Figure 2: A user opens the photoshop application on the system and imports an image of car. Based on this initial action and
contextual cues (for e.g. the image of a car), the LLM initiates a chain of hypothesis that includes cropping the white car to
blurring license plate to applying color grading. The user’s further action of selecting the license plate of the car narrows the
hypothesis down to more fine grained hypothesis suggestion of blurring the license plate matching the intent of the user.

3.2 Evaluation

We evaluate the accuracy of predicted user intents at dif-
ferent points in the interaction trajectory using a seman-
tic goal entailment framework (see Appendix A4). Rather
than performing exact text comparison, we assess how well
the predicted intent semantically aligns with the annotated
ground truth intent. This approach is motivated by the need
to account for diverse phrasing, varying levels of speci-
ficity, and the compositional nature of user goals in GUI-
based tasks. Our evaluation methodology is inspired by the
goal alignment judgment setup proposed by Berkovitch et
al. (Berkovitch et al., 2025).

Given a ground truth intent A and a predicted intent B,
the model is tasked with determining whether fulfilling B
would fully, partially, or not at all satisfy the requirements of
A. To accomplish this, we use an LLM to perform pairwise
comparison between A and B and classify the relationship
into one of three categories: MATCH, PARTIAL MATCH, or
NON MATCH.

A prediction is considered a MATCH if B expresses the same
underlying goal as A, possibly using different language or
added specificity, but still preserving all essential constraints
and outcomes. For example, if A is “Search for the capital
of Argentina” and B is “Search for the capital of Argentina
using Google,” then B satisfies A and is classified as a
MATCH. In contrast, a PARTIAL MATCH indicates that the
predicted goal is related to the ground truth but either omits
required constraints or introduces new ones that are not

implied by A. For instance, predicting “Change background
to blue and add a gradient” for a ground truth “Change
background to blue” qualifies as a PARTIAL MATCH due
to the added gradient constraint. Lastly, a NON MATCH
reflects a semantic misalignment, where the predicted intent
either diverges functionally from the annotated goal or is
too underspecified to support the same outcome.

Each predicted intent is compared to the gold intent using
Gemini-1.5-Pro, which is prompted with structured instruc-
tions to return exactly one label among the three. The classi-
fication is then mapped to a numerical score, 1.0 for MATCH,
0.5 for PARTIAL MATCH, and 0.0 for NON MATCH. This
scoring method allows for nuanced assessment of semantic
similarity, particularly in settings where user intent unfolds
gradually over interaction sequences. By incorporating goal
entailment rather than exact matching, we enable fair and
flexible comparison across models that generate free-form
intent predictions.

4 Experiment Setup

To assess the effectiveness of early intent prediction in GUI-
based environments, we conduct experiments using two ad-
vanced large language models: Gemini-1.5-Pro and GPT-
40. Both models are prompted to infer the user’s goal at
intermediate points in the interaction sequence, specifically
after observing 25%, 50%, and 75% of the full GUI trajec-
tory. These predictions are evaluated against ground truth
intents using, Gemini-1.5-Pro, configured as a semantic
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Algorithm 1 EARL: GUI-Based Intent Inference via Goal
Hypothesis Propagation

1: Input: GUI trajectory E = {(s1,a1),...,(sT,ar)};
checkpoint indices C' C {1,...,T}

2: Output: Predicted intents {g,} at checkpoints; belief
traces {7, }

3: fort =1to 7T do

4: (s, ay) < screen and action at step ¢

5. ift =1 then

6: H,; + INITIALIZE(sS¢, at, N)

7. else

8: H; + PROPAGATE(H;_1, 8¢, az)

9: H,; + UPDATEWEIGHTS(H,, a;)
10: if H; is low-confidence or semantically redundant

then

11: H; + RESAMPLE(H;)
12: end if
13:  endif
14:  ift € C then
15: Tp <~ SUMMARIZEBELIEFTRACE({H1, . .., H;})
16: Jp < highest-weighted hypothesis in 7,
17: Output: (¢, §,)
18:  endif

19: end for

20: Return all {g,} and {7,}

evaluator. The evaluator model is tasked with determining
the degree to which each predicted intent aligns with the
true user goal, using a structured entailment prompt.

Our experiments span three benchmark datasets.
Mind2Web (Deng et al., 2023b) is a web-based task dataset
covering diverse domains such as booking, navigation, and
search. AiTz (Zhang et al., 2024b) captures Android app
interaction trajectories and includes a variety of task types
across domains like app installation, Google apps, web
shopping, and general settings. VideoGUI (Lin et al., 2024)
is a curated collection of GUI tutorials drawn from creative
software, where users perform visually grounded operations
such as editing, animation, and object manipulation.
Each dataset is evaluated independently. We specifically
selected these datasets because they satisfy the structural
requirements for intent inference: each task provides an
explicit goal paired with a sequence of user interactions,
where each step includes both the observed screen state
(as a screenshot) and the corresponding action taken
(see Appendix Al). This format enables step-wise intent
modeling grounded in visual context and behavioral data,
which is essential for evaluating partial intent prediction
and belief evolution over time. Only tasks with a minimum
of six steps in their interaction trajectory are included to
ensure that sufficient context is available for intent inference
at the earliest 25% checkpoint. This filtering results in

a total of 865 valid tasks, distributed across datasets as
follows: 439 tasks from AiTz (aggregated across four
subdomains), 345 tasks from Mind2Web, and 81 tasks
from VideoGUL.

As a baseline, we use a standard chain-of-thought (CoT)
prompting strategy (see Appendix A3) in which the model
is shown a partial sequence of screenshots and actions and
asked to generate the user’s intent in natural language. Un-
like our proposed EARL method, CoT does not maintain
or refine goal hypotheses over time, and instead treats each
prediction independently based on the local prompt context.
To ensure robustness and account for stochasticity in LLM
behavior, we evaluate both models (GPT-40 and Gemini-1.5-
Pro) using both CoT and EARL prompting strategies. Each
model-dataset—-method combination is run across three in-
dependent trials. We set the decoding temperature of the
language model to zero for all prediction and evaluation
steps to ensure deterministic outputs across runs.

To quantify performance, we report two complementary
evaluation metrics. The first is the Perfect Match Rate,
which reflects the percentage of predictions at each check-
point that are judged to be a complete semantic match with
the ground truth intent. This evaluation is based on whether
the predicted goal would fully satisfy the user’s intended
outcome, even if the phrasing differs. These results are
summarized in Table 1, which provides a compact overview
of high-confidence performance across datasets and check-
points. The table allows for a direct comparison between the
EARL model and the baseline prompting approach, high-
lighting the relative gains in perfect goal inference at early
stages of the interaction.

The second evaluation metric, the Weighted Mean Score,
offers a continuous and interpretable measure of a model’s
average semantic alignment across a set of predictions.
While the Perfect Match Rate only captures the fraction
of predictions that are exactly correct, this metric considers
the entire distribution of predictions,including those that
are partially or completely incorrect, by assigning different
weights to different levels of alignment.

To compute this score, each predicted intent is first labeled
as a MATCH, PARTIAL MATCH, or NON MATCH, depend-
ing on how well it satisfies the ground truth. We then count
the number of predictions in each of these three categories.
The final score is calculated by multiplying these counts
with predefined weights (1.0 for Match, 0.5 for Partial
Match, and 0.0 for Non Match), summing the results, and
dividing by the total number of predictions. This can be
formally expressed as:

Wy - M +wp - P+ w, - N

Mean S =
ean Score M -PEN

where M, P, and N are the number of predictions labeled
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as MATCH, PARTIAL MATCH, and NON MATCH, respec-
tively. The weights are defined as w,, = 1.0, w, = 0.5,
and w,, = 0.0.

This produces a single scalar value between 0.0 and 1.0,
where higher values indicate stronger semantic accuracy
overall. By rewarding partially correct predictions while pe-
nalizing incorrect ones, the Weighted Mean Score provides
a more comprehensive view of model performance.

Dataset LLM Checkpoint EARL Baseline Gain (%)
25% 41  3.04 34.9%

GPT-4o  50% 1701 1253 35.7%

AT 75% 4434 344 28.9%
1z 25% 33 285 15.8%
Gemini  50% 1298 115 12.9%

75% 3702 3235 14.4%

25% 174 232 25.0%

GPT4o  50% 889 821 8.3%

. 75% 2415 2145 12.6%
Mind2Web 25% 119 116 2.6%
Gemini  50% 638 493 29.4%

75% 17.68 1623 8.9%

25% 144 782 84.1%

GPT40  50% 2222 1687 31.7%

) 75% 3539 321 10.2%
VideoGUI 25% 1111 617 80.1%
Gemini  50% 15.43 9.88 56.2%

75% 16.67 1481 12.5%

Table 1: Perfect match rate (%) at different trajectory check-
points for each dataset and backbone (GPT-40 and Gemini).
EARL outperforms the CoT baseline across most datasets.

5 Results and Discussion

5.1 Overview of Quantitative Trends

Table 1 quantifies the Perfect Match Rate (%) for each
model—dataset combination at 25%, 50%, and 75% check-
points. EARL yields significant gains over the CoT base-
line—up to 84.1% on VideoGUI (GPT-40, 25%) and 56.2 %
on VideoGUI (Gemini, 50%), with consistent improvements
observed in most configurations. Table 2 further analyzes
semantic alignment by reporting the percentage of MATCH,
PARTIAL MATCH, and NON MATCH predictions, as well
as the resulting weighted mean score. EARL consistently
achieves higher mean scores across checkpoints, indicat-
ing stronger overall alignment with user goals, even when
perfect matches are not obtained.

Figure 3 presents a comparative view of model performance
across all datasets and checkpoints. Figure 3 shows the
Match (%) rate across the three datasets AiTz, Mind2Web,
and VideoGUI—for both EARL and the Chain-of-Thought
(CoT) baseline, using two LLMs: GPT-40 and Gemini.
EARL consistently achieves higher match accuracy, with
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Figure 3: Comparison of the performance of EARL with
the CoT baseline. (a) shows the exact match rate for CoT
and EARL across datasets and checkpoints. Across all three
checkpoints and three datasets, both the LLMs (GPT-40 and
Gemini-1.5-Pro) with EARL show better performance in
deciphering user intent from partial trajectories compared
to the CoT baseline (b) highlights EARL’s consistent gain
in semantic alignment (weighted mean score) over CoT
across all three checkpoints and datasets for both LLMs.
The inference time algorithm EARL is shown in solid lines
whereas the CoT baseline is shown in dotted lines.
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especially large margins at earlier checkpoints (25% and
50%). Figure 3 illustrates the trend of the weighted mean
score, highlighting EARL’s consistent semantic advantage
across models and datasets.

5.2 Comparative Analysis of EARL and
Chain-of-Thought Baseline

Although both EARL and the Chain-of-Thought (CoT) base-
line operate over sequences of GUI screenshots and user ac-
tions, they differ significantly in how they perform inference
under partial observation. CoT treats each checkpoint as an
isolated input window: it consumes the visible trajectory
up to that point and produces a single-shot intent predic-
tion without modeling uncertainty or maintaining evolving
beliefs. EARL, in contrast, maintains a set of competing
intent hypotheses that are updated incrementally based on
the user’s observed behavior. This distinction becomes espe-
cially important in early-stage prediction, where the user’s
goal is not yet fully revealed and must be inferred from
subtle or indirect cues.

One observed example involves a creative editing workflow
where the user first imports a background image, overlays



EARL: Early Intent Recognition in GUI Tasks Using Theory of Mind

text, and selects a mask layer. At this early point (25%), the
CoT baseline often predicts narrow intents such as “add text”
or “mask the text layer,” based solely on visible actions.
EARL, however, begins with a diverse hypothesis set includ-
ing goals like “mask background,” “create text reveal effect,”
or “prepare composite layer,” and evaluates each based on
how well it fits the current interface state. As the user contin-
ues by adding a blur and enabling track matte mode (50%),
CoT tends to focus on local transformations like “apply blur
effect,” while EARL reweights its belief distribution, down-
ranking simpler operations and strengthening the hypothesis
for a “text reveal” effect. By 75%, when glow is applied
and the preview is rendered, EARL converges on a tempo-
rally grounded goal like “create glowing text reveal using
track matte,” while CoT remains focused on fragmented
predictions without integrating the broader intent.

Table 2: Semantic alignment results across datasets and
models. For each checkpoint percentage (CP), we show the
percentages of Non-Matches (NM), Partial-Matches (PM),
and perfect Matches (M), along with the weighted mean
score. Bold scores indicate where EARL outperforms Base-
line.

Dataset Model CP (%) Method NM (%) PM (%) M (%) Mean
25 Baseline 81.44 15.72 2.85 0.107

EARL 65.49 31.21 330  0.189

GPT-40 50 Baseline 49.43 39.07 11.50 0.310

EARL 41.91 45.10 1298  0.355

AiTz 75 Baseline 18.56 49.09 3235 0.569
EARL 15.72 47.27 37.02  0.606

25 Baseline 72.89 24.07 3.04 0.151

N EARL 62.57 3333 4.10  0.208

Gemini 50 Baseline 44.12 43.36 12.53 0.342

EARL 35.00 47.99 17.01 0.410

75 Baseline 13.59 52.01 34.40 0.604

EARL 10.78 44.87 4434 0.668

25 Baseline 16.23 81.06 1.16 0.420

EARL 16.60 82.61 1.19 0425

GPT-40 50 Baseline 6.38 88.70 4.93 0.493

- EARL 6.67 86.96 638  0.500

Mind2Web 75 Baseline 3.19 80.58 16.23 0.565
EARL 3.19 79.13 17.68  0.572

25 Baseline 12.46 85.22 2.32 0.449

N EARL 10.05 88.21 174 0.458

Gemini 50 Baseline 5.31 86.47 8.21 0.514

EARL 3.09 88.02 8.89  0.529

75 Baseline 2.13 76.43 21.45 0.597

EARL 1.16 74.69 24.15  0.615

25 Baseline 20.37 73.46 6.17 0.429

EARL 17.28 71.60 11.11 0.469

GPT-4o 50 Baseline 9.26 80.86 9.88 0.503

- EARL 4.94 79.63 1543  0.552

VideoGUI 75 Baseline 432 80.64 14.81 0.552
- EARL 1.85 81.48 16.67  0.574

25 Baseline 18.52 73.66 7.82 0.447

N EARL 13.99 71.60 1440  0.502

Gemini 50 Baseline 3.70 79.42 16.87 0.566

EARL 5.76 72.02 2222 0.582

75 Baseline 1.65 66.26 32.10 0.652

EARL 2.47 62.14 3539  0.665

A similar trend appears in mobile device settings tasks. At

25%, after navigating to display settings and toggling adap-
tive brightness, CoT typically outputs intents like “adjust
brightness,” closely reflecting the immediate interface state.
EARL, meanwhile, retains a broader hypothesis set that
includes “enable adaptive brightness,” “manually reduce
screen brightness,” and “optimize power consumption.” As
the user proceeds to open battery settings and explore power-
saving features (50%), CoT updates toward “view battery
settings” or “turn on battery saver,” still reflecting only the
latest action. EARL instead adjusts belief toward a goal like
“optimize power using adaptive settings,” connecting earlier
and current actions. By 75%, EARL strengthens its belief
in higher-level goals such as “reduce power consumption
through adaptive features,” whereas CoT continues to pre-
dict isolated steps, missing the evolving underlying intent.

This contrast illustrates a key behavioral distinction be-
tween the two approaches: while CoT generates predictions
grounded primarily in the most recent observed actions,
EARL incrementally integrates cues from the full interac-
tion history to model latent user goals with greater semantic
depth. Its evolving belief refinement enables more coherent
interpretation of partially observed tasks, particularly in set-
tings where intent must be inferred before all goal-revealing
actions have been completed.

5.3 Limitations Due to Ground Truth Specificity and
Goal Timing

While EARL consistently outperforms the CoT baseline
across benchmarks, the magnitude of improvement is not
uniformly large across all datasets. A key limiting factor
lies in the nature of the annotated ground truth intents, par-
ticularly in how specific or temporally delayed they are.

In the AiTz dataset, some ground truth intents are phrased
as highly specific instructions rather than generalized, latent
goals. For example, an intent like “login with username
’john’ and password "xyz123’ ” encodes a literal procedu-
ral step tied directly to interface elements, rather than the
broader goal of “log in” or “access account.” In such cases,
both EARL and CoT are constrained: since neither model
is instructed to reproduce literal field values, they often
receive a PARTIAL MATCH or NON MATCH even when
the inferred goal is behaviorally appropriate. These over-
specified ground truths limit the space for abstraction and
reduce EARL’s advantage in progressive inference.

In contrast, the Mind2Web dataset introduces a different
challenge. Many of its tasks involve complex, multi-part
goals that are only fully specified at the end of the trajectory.
For instance, a task might ask the user to “find a permanent
job in Logistics within 20 miles of New York, zip 11005, in
the middle-income range for a high school diploma holder.”
Early-stage actions in such tasks, like keyword search, loca-
tion filter, or salary sorting, do not yet reflect the complete
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structure of the target goal. As a result, EARL may form
plausible partial hypotheses like “search for jobs near New
York,” but its predictions at early checkpoints cannot match
the full specificity required by the annotated intent. This
constrains its performance gains over CoT, which often
makes similarly partial predictions in such contexts.

These characteristics overly literal goal definitions and de-
layed intent anchoring pose fundamental challenges to early
intent modeling. They limit the measurable benefit of be-
lief refinement strategies like those employed by EARL,
particularly when the ground truth formulation does not
reward abstraction or progressive inference. In contrast,
datasets such as AiTz (excluding its over-specified cases)
and VideoGUI, where the user’s goal unfolds gradually
through interaction, e.g., setting up a visual effect or com-
pleting a feature-rich workflow—better support EARL’s
evolving hypothesis mechanism and allow it to demonstrate
stronger alignment and earlier goal anticipation compared
to the CoT baseline.

5.4 Theoretical and Practical Implications

EARL’s success in early intent recognition underscores the
value of inverse planning frameworks for modeling latent
user goals in GUI interactions. Central to this is the ”in-
version problem” articulated by Mullainathan & Kleinberg
(2023), who argue that Al systems must prioritize inferring
mental states (e.g., goals, beliefs) over merely predicting
actions. They demonstrate that systems focused solely on
behavioral prediction risk optimizing for superficial proxies
rather than the underlying intent, leading to brittle, context-
blind solutions. For instance, an agent trained to predict
”mouse clicks” might learn to mimic common interaction
patterns (e.g., frequent clicks on a ’submit” button) without
understanding why the user clicked, resulting in failures
when faced with novel goals or interface changes. EARL
addresses this gap by explicitly reasoning about the latent
goals that drive user actions, treating intent recognition as
an inverse problem where partial observations are explained
through probabilistic hypothesis refinement.

This approach bridges classical inverse planning (Baker
et al., 2009), which models actions as rational means to
achieve hidden goals, with modern LLM-based reason-
ing. While earlier ToM-inspired systems (Rabinowitz et al.,
2018) focused on synthetic environments, EARL demon-
strates how particle filtering and hypothesis rejuvenation
can adapt these principles to noisy, open-world GUI tasks.
For example, EARL'’s ability to refine hypotheses like “color
grading” — ”blur license plate” in Figure 2 mirrors human
belief updating during collaborative tasks, as observed in
cognitive science (Baker et al., 2017).

Practically, EARL’s gains on VideoGUI (84.1% at 25%
trajectory length) highlight the benefits of modeling intent

incrementally. Proactive systems like EARL can reduce user
effort in creative workflows (e.g., suggesting blur tools early
in Figure 1), addressing a key limitation of post hoc sum-
marization methods (Zhang et al., 2024a). However, chal-
lenges remain: overly specific ground truths (e.g., AiTz’s
literal login instructions) constrain abstraction, echoing Mul-
lainathan & Kleinberg (2023)’s warnings about goal mis-
alignment between humans and algorithms.

Future work could integrate multimodal cues (e.g., gaze
tracking (Lee et al., 2023)) to enrich hypothesis generation,
while addressing ethical risks like unintended inference of
sensitive goals. By prioritizing interpretable mental state rea-
soning over opaque action prediction, EARL advances the
vision of GUI agents that collaborate with humans, rather
than merely executing commands.

6 Conclusion

We introduce EARL (Early Action Reasoning for Latent
Intent), a framework for proactive intent recognition in GUI
tasks inspired by Theory of Mind (ToM). By integrating par-
ticle filtering with hypothesis re-sampling, EARL maintains
a belief distribution over candidate goals, updating them
incrementally as new actions are observed. Our experiments
across three benchmarks (Mind2Web, AiTz, VideoGUI)
demonstrate that EARL’s hypothesis-driven reasoning out-
performs action-prediction paradigm CoT. This capability
addresses the “inversion problem” in Al—systems must
infer why users act, not just what they do, to avoid brittle,
context-blind solutions.Looking ahead, EARL’s modular
architecture invites extensions, such as integrating gaze or
speech cues to enrich hypotheses, or fine-tuning LLMs for
goal abstraction. Our work underscores that modeling men-
tal states is not merely complementary to action prediction,
it is foundational for human-AlI partnership.

7 Impact statement

EARL enables proactive GUI agents through early intent
inference, benefiting accessibility and complex workflows.
While enhancing responsiveness, it raises privacy/autonomy
concerns—we mitigate these via transparent operation and
user correction mechanisms. Our dataset-agnostic approach
reduces bias, though diverse user evaluation remains criti-
cal. By focusing on interpretable goal inference (not action
mimicry), EARL advances collaborative, human-centered
Al By focusing on interpretable goal inference (not action
mimicry), EARL advances collaborative, human-centered
Al This work paves the way for more equitable digital
interfaces that adapt to users’ cognitive needs rather than re-
quiring adaptation to rigid systems, particularly perticularly
empowering technology-novice users through anticipatory
support.
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8 Appendix

Al Example Trajectories Across Datasets

AiTz Dataset: Mobile App Navigation Task
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Mind2Web Dataset: Web-Based Job Search Interaction
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5

Figure 4: Examples of early interaction trajectories from each dataset. Top: a mobile settings navigation task from the AiTz
dataset. Middle: a creative editing sequence from the VideoGUI dataset. Bottom: a web-based job search scenario from

the Mind2Web dataset. Each example highlights the sequence of GUI states and user actions, with dotted arrows denoting
continuation beyond the shown steps.
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A2 EARL Prompt Used for Intent Prediction

Prompt Template: EARL for Intent Prediction

Given a sequence of GUI steps, infer what the user is trying to accomplish based on what they see and do.
You will be given a sequence of GUI steps. Each step includes:

* A screenshot showing the interface before the action is taken

99 99

* A natural language description of the action performed (e.g., ”click Gmail icon”, "type 'resume’ in search bar”)

Track a set of evolving goal hypotheses over time using the following steps:

<thinking>
Follow this process internally. Do not include or print anything from this section in your output.
EARL Algorithm:

1. Initialize (only at the first step): Start with 4 diverse hypotheses about the user’s goal based on the initial
screen and action.

2. Propogate: For all later steps, carry forward the existing hypotheses and refine them using the latest screen
and action.

3. Update Weights: Assess how well each hypothesis explains the user’s current action and assign a qualitative
likelihood (e.g., very likely, likely, uncertain, unlikely, very unlikely).

4. Resample: If many hypotheses have very low likelihoods, remove them and duplicate stronger ones to
maintain a set of 4 plausible alternatives.

5. Rejuvenate: If the hypotheses are too semantically similar, paraphrase or diversify the top ones.

* Drop hypotheses that are low-weight or nearly identical in meaning
* Rephrase high-weight but redundant ones to maintain diversity in possible interpretations

</thinking>

6. Hypotheses Summarization (after processing all steps):
Once the full sequence has been processed and belief updates are complete, summarize the user’s belief evolution using
the following format:

<thought_trace_summary>

context: [What the user now sees on screen|

action: [What they did and why]

believes: [What they currently want to achieve, based on behavior so far]
</thought_trace_summary>

Only summarize meaningful turning points where the visible state or belief clearly shifts. This summarization is not
done during the loop, but only after all steps have been processed.

Final Intent OQutput:

Based on the complete thought trace, infer what motivated the entire sequence — the goal that explains the user’s
behavior across all screens and actions.

Use this format:

<Intent> [User’s intent/goal in present tense]</Intent>

Note: Only output the <thought_trace_summary> and <Intent> tags. Do not include the <thinking>
section or any explanatory text.
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A3 Baseline Prompt Using Chain-of-Thought

Prompt Template: Chain-of-Thought Baseline

You will receive a series of screenshots and actions representing a user’s interactions on a website or application. Each
item contains:

* An action performed by the user
A screenshot depicting the state of the website before that action

Think step by step about what the user is doing and why.
Your output must follow this structure:
step-by-step description:

Provide a numbered list where each entry corresponds directly to a specific screenshot, detailing the user’s actions
and the visual context provided by the screenshots.

concise task:
Summarize the user’s overall goal that motivated the sequence of actions based on the step-by-step description.

Use the following format to express the inferred intent:

<Intent> [User’s intent/goal in present tense] </Intent>

12
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A4 Prompt for Comparing Predicted and True Goals

Prompt Template: Evaluate Predicted Goal (B) Against True Goal (A)

You are an expert evaluator of goal alignment in GUI-based tasks.

Your job is to assess how well two user goals align with each other in terms of their intended outcome, specificity, and
completeness. Both goals describe what a user wants to achieve through interaction with a graphical interface.
A={a}

B = {b}

CHOOSE ONE RELATION

MATCH
* B expresses the same actionable goal as A
* B includes all essential constraints, targets, or outcomes that A requires
» Even if B is phrased differently or more specific, completing B would fully satisfy A

 If A is more general and B is more specific, but performing A would still accomplish everything that B requires —
this counts as a MATCH

* Example:
A: ”Search for the capital of Argentina”
B: ”Search for the capital of Argentina using Google”
— MATCH: B adds specificity, but A still covers all of B

PARTIAL MATCH
» B reflects the same high-level intent as A (e.g., animate a shape, enable a setting, search for information)

¢ But either:

— B omits one or more meaningful constraints that A specifies (e.g., a specific object, color, or location)
— Or B adds extra constraints not present in A, such that performing B might not guarantee A is satisfied

* Example:
A: ”Add a title to the video”
B: ”Add a title to the video using a red font and position it at the top-left corner”
— PARTIAL MATCH: B adds visual and positional constraints (red font, top-left) not mentioned in A —
performing A does not guarantee these requirements are satisfied

NON MATCH
* B expresses a different goal or intent than A

* Or B is too vague, too incomplete, or completely unrelated to satisfy A in any meaningful way

RESPONSE FORMAT

Return exactly one word wrapped in an <output > tag:

<output>MATCH</output>
<output>PARTIAL MATCH</output>
<output>NON MATCH</output>
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