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Abstract

End-to-end speech translation (ST), which
translates speech in source language directly
into text in target language by a single model,
has attracted a great deal of attention in re-
cent years. Compared to the cascade ST, it
has the advantages of easier deployment, better
efficiency, and less error propagation. Mean-
while, spoken-to-written style conversion has
been proved to be able to improve cascaded ST
by reducing the gap between the language style
of speech transcription and bilingual corpora
used for machine translation training. There-
fore, it is desirable to integrate the conver-
sion into end-to-end ST. In this paper, we pro-
pose a joint task of speech-to-written-style-
text conversion and end-to-end ST, as well
as an interactive-attention-based multi-decoder
model for the joint task to improve end-to-end
ST. Experiments on a Japanese-English lec-
ture ST dataset and CoVoST 2 Native Japanese
show that our models outperform a strong base-
line on Japanese-English ST.

1 Introduction

Speech-to-text translation (ST) is the task of trans-
lating a speech in source language into a text in
target language. Traditionally, it is performed with
a cascade approach (Stentiford and Steer, 1988;
Waibel et al., 1991), dividing the task into 2 steps
of automatic speech recognition (ASR) and text
machine translation (MT). On the contrary, end-
to-end ST (Berard et al., 2016) directly generates
translations from speech without an intermediate
step. Compared to cascade ST, it has the advan-
tages of easier deployment, better efficiency, and
less error propagation.

Spoken-to-written style conversion refers to con-
verting text in spoken language into text in writ-
ten language with identical semantic meaning. It
is shown that spoken-to-written style conversion
improves the accuracy of cascaded speech transla-
tion (ST) as it reduces the gap between the spoken

Spoken-style & 5> HWEICK S 5 T\

Transcription DD, H k> ENNHA.
Written-style 550 FICK S0 &)
Transcription DX, X <SRN,
English I’m not sure which one is the
Translation main thing.

Table 1: An example on spoken-to-written style conver-
sion (difference is underlined). Compared to the original
spoken-style Japanese transcription which is in spoken
language, the written-style transcription is closer to the
language style in bilingual corpora for MT, thus it is
more likely to be machine-translated properly.

language in the transcription generated by ASR
systems and the written language in the bilingual
corpora used for training MT systems (Nakao et al.,
2021). See Table 1 for such an example.

However, because of the limitation of cascaded
ST, it is desirable to integrate spoken-to-written
style conversion into the end-to-end ST. Due to
the lack of large-scale ST corpora, existing well-
performed end-to-end ST methods require the as-
sist from ASR and MT by performing pre-training
or multi-task learning. Therefore, it is reason-
able that spoken-to-written style conversion can
improve end-to-end ST as well because the gap
between the language style of speech transcription
and data for MT training still exits in end-to-end
ST.

The contributions of this paper are two-fold:

* We propose an interactive-attention-based
multi-decoder model that integrates spoken-to-
written style conversion into end-to-end ST.

* We construct a large-scale lecture domain
ST dataset on the language pair of Japanese-
English and verify the effectiveness of our
model on the lecture ST dataset together with
the CoVoST 2 Native Japanese dataset.
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Figure 1: General structures of baseline (left) and proposed models (right two).

2 Related Work

Because the performance of simple end-to-end ST
is generally limited, several works proposed using
multi-task learning approach (Caruana, 1997) to
improve the translation quality of end-to-end ST.
Weiss et al. (2017) first investigated the subject
and found that a multi-task model of ASR and ST
performs better than that of MT and ST. In his pro-
posal, only the encoder is shared and decoders for
different tasks cannot utilize information from each.
A two-stage model was proposed to alleviate the
problem. (Kano et al., 2017; Anastasopoulos and
Chiang, 2018; Sperber et al., 2019) It first performs
ASR and then passes the decoder states as input
to the ST decoder. However, it has the problem of
limited efficiency of training and inference process.

Liu et al. (2020) proposed an interactive atten-
tion mechanism that enables ASR and ST to be
performed synchronously. The ASR and ST de-
coders can exchange information with each other
during the decoding process. Both decoders do not
only rely on their previous outputs but also on the
outputs produced by the other decoder.

Inspired by Liu et al. (2020)’s work, Le et al.
(2020) presented dual-decoder Transformer. It has
a more general framework with different variants
and combinations of settings for the interactive
attention mechanism. Our models are inspired by
their work. We further improve the performance
of their model by integrating the spoken-to-written
conversion.

3 Method

Inspired by Le et al. (2020)’s work, we pro-
pose two model architectures: conversion-ST dual-
decoder Transformer and triple-decoder Trans-
former. Correspondingly, the original dual-decoder
Transformer is referred to as ASR-ST dual-decoder
Transformer, which we use as a baseline.

Figure 1 shows the general structures of the
baseline model and two proposed models. All the

models are based on Transformer (Vaswani et al.,
2017) and consist of one encoder and multiple sub-
decoders. Each sub-decoder is specialized in pro-
ducing outputs for a specific task.

3.1 Baseline

ASR-ST dual-decoder Transformer performs a
joint task of ASR and ST, taking a sequence of
speech features s as input and outputting a tran-
scription « and a translation y. The output distri-
butions can be written as

Dysr—st = p(xa y|8)
maz(Ty,Ty)

- I

t=0

p(ay, yt‘w<t7 Yty s)

The training objective is a weighted sum of cross-
entropy losses for both tasks:

Lgsr—st = aLggr + (1 - O5)-[/st
a is set to 0.3 in all experiments.

3.2 Proposed Models

Conversion-ST dual-decoder Transformer per-
forms a joint task of speech-to-written-style-text
conversion and ST, taking a sequence of speech
features s as input and outputting a written-style
transcription z and a translation y. Triple-decoder
Transformer performs a joint task of ASR, speech-
to-written-style-text conversion, and ST, taking a
sequence of speech features s as input and out-
putting a transcription @, a written-style transcrip-
tion 2z, and a translation y. written-style transcrip-
tion. Written-style transcription refers to the sen-
tence that has the same semantic meaning as the
transcription but is in written language instead of
spoken language.

Similar to the ASR-ST dual-decoder, proposed
models jointly predict their corresponding outputs
in an autoregressive fashion. The output distribu-
tions can be written as



Dconv—st = p(yu Z’S)
max(Ty,T>)

- I

t=0

p(yu Zt\y<t’ Z<ty 3)

Dtri = p(ma Yy, Z‘S)
maz(Ty, Ty, T:)

= I

t=0

p(xtu Yt, Zt’x<ta y<ta <ty S)

The training objective for proposed models is a
weighted sum of cross-entropy losses for the tasks
that they perform:

Leony—st = aLcony + (1 - CV)Lst

Ltriple = a1 Lgsr + a2 Lcony + (1 — a1 — 052)L5t

In all experiments, « is set to 0.3, oy is set to
0.1, and as is set to 0.2.

The purpose of proposing the triple-decoder and
preserving the task of ASR is to compensate for
possible information loss in written-style transcrip-
tions. It should be noted that it is difficult to adopt
our method directly as existing datasets for ST do
not contain written-style transcriptions. It is more
practical to synthesize written-style transcriptions
from transcriptions with a pre-trained spoken-to-
written style conversion model and use them as the
ground truth for the task of speech-to-written-style-
text conversion, which is the case in our experi-
ments. In this case, the possible information loss is
harder to ignore because the quality of the spoken-
to-written style conversion is not fully guaranteed.

3.3 Interactive Attention Mechanism

Different decoders can exchange information with
each other with the interactive attention mechanism,
which refers to replacing attention sub-layers in the
standard Transformer decoder with interactive at-
tention sub-layers (Liu et al., 2020). In our models,
the replaced sub-layers are the encoder-decoder
attention sub-layers.

An interactive attention sub-layer consists of a
main attention sub-layer and one or two cross atten-
tion sub-layers. It is only possible to have two cross
attention sub-layers for the triple-decoder. The
main attention sub-layer is the same as the replaced
attention sub-layer. The cross attention sub-layers
receives query @ from the same decoder A and
receives key K and value V' from another decoder
B. K and V is from the same layer in decoder

B, as in parallel dual-decoder. (Le et al., 2020)
The final output is obtained by merging the output
of the main attention sub-layer H 4, with the
output of the cross attention sub-layer H .,,ss. We
adopt a linear interpolation as the merging function,
therefore the output representations of the interac-
tive attention sub-layers with one and two cross
attention sub-layers are

Hdual = Hpain + AH o5
Ht'r’iple = Hmain + )\1Hcrossl + )\2Hcr0552

where H .,ss1 and H ..os52 are outputs of two
cross attention sub-layers that receives K and V'
from two different decoders. A, A1, and Ay are all
learnable parameters.

4 Experiments

4.1 Datasets
4.1.1 Datasets for ST

We constructed a dataset (Lecture ST) for our ex-
periments with the data collected from lectures
delivered at Kyoto University in 2019 and 2020.
The raw data include full audio of the lectures,
timestamps, Japanese transcriptions, and English
translations from 15 courses. Timestamps mark
the beginning and end of each transcription and
each translation corresponds to multiple transcrip-
tions. We combined timestamps and transcriptions
to match the translations.

Some of the raw translations include multiple
sentences. To segment them into sentence level,
we first aligned the Japanese transcriptions to each
English sentence based on the cosine similarity
of their LASER! embeddings with the sentence
alignment algorithm using dynamic programming
proposed by Song et al. (2020). We then gener-
ated the new timestamps to align the text pairs
with the audio with CTC segmentation (Kiirzinger
et al., 2020). Possible misalignment were manually
checked and fixed in validation and test sets.

For ST experiments, we also used CoVoST 2 Na-
tive J. apanese,2 which is a rerecorded version of the
Japanese section of CoVoST 2 (Wang et al., 2021)
dataset all spoken by Japanese native speakers.

4.1.2 Datasets for ASR and MT Pre-training

We also constructed a lecture dataset for ASR pre-
training (Lecture ASR) as we have data without

"https://github.com/facebookresearch/LASER
Zhttps://github.com/ku-nlp/covost2NativeJa



Task Dataset Train Valid  Test
ST Lecture ST 71k 1,686 2,135
CoVoST2NJ 1,119 635 684
ASR Lecture ASR 170k 7,983 8,188
CSJ 878K 8,644 8,622
MT  ASPEC-JE 2M 1,790 1,812

Table 2: The number of utterances in ST/ASR datasets
and the number of sentences in the MT dataset.

Model Lecture ST CoVoST 2 NJ
ASR-ST Dual 25.08 2.37
Conv-ST Dual 25.817 2.41
Triple 26.027 2.64

Table 3: BLEU-4 scores on the two ST datasets. “{”
indicates that the result is significantly better than “ASR-
ST Dual” at p < 0.05).

translation from 6 extra courses. For this dataset,
we used the raw timestamps and transcriptions from
a total of 21 courses. We also used the 7th ver-
sion of CSJ? for ASR pre-training. For MT pre-
training, we used the Japanese-English section of
ASPEC (ASPEC-JE) (Nakazawa et al., 2016). Ta-
ble 2 shows the details of all the datasets that we
used.

4.2 Spoken-to-Written Style Conversion

For the task of speech-to-written-style-text conver-
sion, we need the written-style transcriptions cor-
responding to utterances in the datasets for ST. To
obtain them, we trained a spoken-to-written style
conversion model based on LaserTagger (Malmi
et al., 2019) with the same data and settings as
Nakao et al. (2021). The model gets a SARI (Xu
et al., 2016) of 80.6 on the test set. We then used
the model to synthesize written-style transcriptions
from transcriptions in KU Lecture ST and CoVoST
2 Native Japanese.

4.3 Preprocessing and Model Settings

English translations were normalized and tokenized
using the Moses tokenizer (Koehn et al., 2007).
Japanese transcriptions and written transcriptions
were tokenized using JUMAN++ (Morita et al.,
2015; Tolmachev et al., 2018) and the punctuation
was stripped. Japanese and English tokens were
further split into subwords using the BPE method
(Sennrich et al., 2016) with a joint vocabulary of
16k subwords.

3https://ccd.ninjal.ac.jp/csj/en/

Our implementation was based on the ESPnet-
ST toolkit (Inaguma et al., 2020). For all the
models, we used the same architecture with a 12-
layer encoder and 8-layer decoders. For the triple-
decoder, we only activated the cross attention sub-
layers between the ST decoder and the other two
decoders, as demonstrated in Figure 1. Encoders
were initialized with an ASR model pre-trained on
CSJ. For experiments on KU Lecture ST, the ASR
model was further fine-tuned on KU Lecture ASR.
ST decoders were initialized with an MT model
pre-trained on ASPEC-JE. Other settings can be
found in Appendix A.

4.4 Results

We report case-insensitive tokenized BLEU (Pa-
pineni et al., 2002) on two ST datasets. Signif-
icance tests were conducted using the bootstrap
re-sampling method proposed by (Koehn, 2004).
The results are shown in Table 3. Both proposed
models (Conv-ST Dual and Triple) outperform the
baseline (ASR-ST Dual) with triple-decoder mak-
ing more improvement. We show more results for
ablation study of interactive attention in Table 4 in
Appendix B.

We analyzed the translation results with TER
(Snover et al.,, 2006). The detailed statistics
are shown in Table 5 in Appendix C. Compared
to ASR-ST dual-decoder, conversion-ST dual-
decoder tends to generate translations with fewer
insertion and substitution errors as well as more
deletion errors. It is intuitive because written-style
transcriptions tend to be more concise but some of
the information may be lost during the conversion.
Triple-decoder can achieve a better trade-off with
the assist of ASR and generate translations with
relatively few errors in all categories.

5 Conclusion

In this paper, we proposed a joint task of speech-to-
written-style-text conversion and end-to-end ST,
as well as an interactive-attention-based multi-
decoder architecture to perform the joint task. Com-
pared to training on the joint task of ASR and ST,
our method reduced the gap between the language
styles of speech transcription and bilingual cor-
pora used for MT pre-training. Experiments on
Japanese-English ST datasets illustrated the effec-
tiveness of our method. We plan to conduct experi-
ments on other language pairs in the future.
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A Experiment Details

We used the settings for speech features in the origi-
nal dual-decoder Transformer (Le et al., 2020). The
only difference was that we removed utterances
having more than 6, 000 frames instead of 3,000
because speakers can take long pauses within one
sentence when delivering a lecture.

For the experiments on CoVoST 2 Native
Japanese, the vocabulary was built with ASPEC-JE
as building with CoVoST 2 Native Japanese led to a
vocabulary that was too small for MT pre-training.

We used a Transformer with a 12-layer encoder
and a 6-layer decoder for ASR pre-training and
Transformer with a 6-layer encoder and an 8-layer
decoder for MT training.

We used the Adam optimizer (Kingma and Ba,
2015) and Noam learning rate schedule (Vaswani
et al., 2017) with 10k warm-up steps and a maxi-
mum learning rate of 1.5e—3. We used a batch size
of 24 sentences per GPU. All models were trained
on a single machine with 8 Geforce GTX 1080 Ti
GPUs. The models were trained for 75 epochs for
experiments on KU Lecture ST and 150 epochs
for experiments on CoVost 2 Japanese ST. We kept
model checkpoints after each epoch and averaged
the 5 best models on the validation set based on
BLEU and used it for testing. For decoding, the
beam size was set to 5 for the task of ST, 1 for the
other tasks.

B Ablation Study

For ablation study, we conducted experiments on
asymmetric models, which refers to only allowing
the ST decoder to attend to other decoders, but
not vise versa. We also conducted experiments in
which we activate all of the cross attention sub-
layers in 6 directions including the ones between
the ASR decoder and the style decoder for the
triple-decoder. The results are shown in Table
4. Changing to an asymmetric setting generally
improves BLEU for the baseline (ASR-ST Dual
asym) but not for proposed models (Conv-ST Dual
asym, Triple asym), which shows that our proposed
models are more dependent on bi-directional cross
attention than the baseline. The results of triple-
decoder with cross attention in 6 directions (Triple
6c¢ca) are worse than that with cross attention in 4
directions, which shows that the cross attention
between ASR decoder and style decoder is not nec-
essary.

Model Lecture ST CoVoST 2 NJ
ASR-ST Dual 25.08 2.37
ASR-ST Dual asym 25.63 2.33
Conv-ST Dual 25.81 241
Conv-ST Dual asym 25.37 2.81
Triple 26.02 2.64
Triple asym 25.44 2.62
Triple 6¢ca 2541 2.51

Table 4: BLEU using different settings of the interactive
attention on the two ST datasets.

C TER

Table 5 shows the TER and detailed statistics of
translations generated by the baseline and proposed
models on 2 datasets.



Dataset Model Ins Del Sub Shft NumEr NumWd TER
ASR-ST Dual 2,387 3,307 3,617 411 9,722 12,153  79.99
Lecture ST Conv-ST Dual 2,340 3,456 3,510 400 9,706 12,153  79.86
Triple 2,384 3,227 3,571 411 9,593 12,153 78.93
ASR-ST Dual 553 1,363 2930 131 4,977 5,049 98.57
CoVoST 2 NJ  Conv-ST Dual 507 1,404 2,891 134 4,936 5,049 97.76
Triple 547 1,379 2,877 132 4,935 5,049 97.74

Table 5: TER and detailed statistics includes insertion (Ins), deletion (Del), substution (Sub), shift (Shft), number of
errors (NumEr) and number of words (NumWd).



