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Abstract

End-to-end speech translation (ST), which001
translates speech in source language directly002
into text in target language by a single model,003
has attracted a great deal of attention in re-004
cent years. Compared to the cascade ST, it005
has the advantages of easier deployment, better006
efficiency, and less error propagation. Mean-007
while, spoken-to-written style conversion has008
been proved to be able to improve cascaded ST009
by reducing the gap between the language style010
of speech transcription and bilingual corpora011
used for machine translation training. There-012
fore, it is desirable to integrate the conver-013
sion into end-to-end ST. In this paper, we pro-014
pose a joint task of speech-to-written-style-015
text conversion and end-to-end ST, as well016
as an interactive-attention-based multi-decoder017
model for the joint task to improve end-to-end018
ST. Experiments on a Japanese-English lec-019
ture ST dataset and CoVoST 2 Native Japanese020
show that our models outperform a strong base-021
line on Japanese-English ST.022

1 Introduction023

Speech-to-text translation (ST) is the task of trans-024

lating a speech in source language into a text in025

target language. Traditionally, it is performed with026

a cascade approach (Stentiford and Steer, 1988;027

Waibel et al., 1991), dividing the task into 2 steps028

of automatic speech recognition (ASR) and text029

machine translation (MT). On the contrary, end-030

to-end ST (Berard et al., 2016) directly generates031

translations from speech without an intermediate032

step. Compared to cascade ST, it has the advan-033

tages of easier deployment, better efficiency, and034

less error propagation.035

Spoken-to-written style conversion refers to con-036

verting text in spoken language into text in writ-037

ten language with identical semantic meaning. It038

is shown that spoken-to-written style conversion039

improves the accuracy of cascaded speech transla-040

tion (ST) as it reduces the gap between the spoken041

Spoken-style
Transcription

どっちが主になるかってい
うの、ちょっと分からん。

Written-style
Transcription

どちらが主になるかという
のは、よく分からない。

English
Translation

I’m not sure which one is the
main thing.

Table 1: An example on spoken-to-written style conver-
sion (difference is underlined). Compared to the original
spoken-style Japanese transcription which is in spoken
language, the written-style transcription is closer to the
language style in bilingual corpora for MT, thus it is
more likely to be machine-translated properly.

language in the transcription generated by ASR 042

systems and the written language in the bilingual 043

corpora used for training MT systems (Nakao et al., 044

2021). See Table 1 for such an example. 045

However, because of the limitation of cascaded 046

ST, it is desirable to integrate spoken-to-written 047

style conversion into the end-to-end ST. Due to 048

the lack of large-scale ST corpora, existing well- 049

performed end-to-end ST methods require the as- 050

sist from ASR and MT by performing pre-training 051

or multi-task learning. Therefore, it is reason- 052

able that spoken-to-written style conversion can 053

improve end-to-end ST as well because the gap 054

between the language style of speech transcription 055

and data for MT training still exits in end-to-end 056

ST. 057

The contributions of this paper are two-fold: 058

• We propose an interactive-attention-based 059

multi-decoder model that integrates spoken-to- 060

written style conversion into end-to-end ST. 061

• We construct a large-scale lecture domain 062

ST dataset on the language pair of Japanese- 063

English and verify the effectiveness of our 064

model on the lecture ST dataset together with 065

the CoVoST 2 Native Japanese dataset. 066
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Figure 1: General structures of baseline (left) and proposed models (right two).

2 Related Work067

Because the performance of simple end-to-end ST068

is generally limited, several works proposed using069

multi-task learning approach (Caruana, 1997) to070

improve the translation quality of end-to-end ST.071

Weiss et al. (2017) first investigated the subject072

and found that a multi-task model of ASR and ST073

performs better than that of MT and ST. In his pro-074

posal, only the encoder is shared and decoders for075

different tasks cannot utilize information from each.076

A two-stage model was proposed to alleviate the077

problem. (Kano et al., 2017; Anastasopoulos and078

Chiang, 2018; Sperber et al., 2019) It first performs079

ASR and then passes the decoder states as input080

to the ST decoder. However, it has the problem of081

limited efficiency of training and inference process.082

Liu et al. (2020) proposed an interactive atten-083

tion mechanism that enables ASR and ST to be084

performed synchronously. The ASR and ST de-085

coders can exchange information with each other086

during the decoding process. Both decoders do not087

only rely on their previous outputs but also on the088

outputs produced by the other decoder.089

Inspired by Liu et al. (2020)’s work, Le et al.090

(2020) presented dual-decoder Transformer. It has091

a more general framework with different variants092

and combinations of settings for the interactive093

attention mechanism. Our models are inspired by094

their work. We further improve the performance095

of their model by integrating the spoken-to-written096

conversion.097

3 Method098

Inspired by Le et al. (2020)’s work, we pro-099

pose two model architectures: conversion-ST dual-100

decoder Transformer and triple-decoder Trans-101

former. Correspondingly, the original dual-decoder102

Transformer is referred to as ASR-ST dual-decoder103

Transformer, which we use as a baseline.104

Figure 1 shows the general structures of the105

baseline model and two proposed models. All the106

models are based on Transformer (Vaswani et al., 107

2017) and consist of one encoder and multiple sub- 108

decoders. Each sub-decoder is specialized in pro- 109

ducing outputs for a specific task. 110

3.1 Baseline 111

ASR-ST dual-decoder Transformer performs a
joint task of ASR and ST, taking a sequence of
speech features s as input and outputting a tran-
scription x and a translation y. The output distri-
butions can be written as

Dasr−st = p(x,y|s)

=

max(Tx,Ty)∏
t=0

p(xt, yt|x<t,y<t, s)

The training objective is a weighted sum of cross-
entropy losses for both tasks:

Lasr−st = αLasr + (1− α)Lst

α is set to 0.3 in all experiments. 112

3.2 Proposed Models 113

Conversion-ST dual-decoder Transformer per- 114

forms a joint task of speech-to-written-style-text 115

conversion and ST, taking a sequence of speech 116

features s as input and outputting a written-style 117

transcription z and a translation y. Triple-decoder 118

Transformer performs a joint task of ASR, speech- 119

to-written-style-text conversion, and ST, taking a 120

sequence of speech features s as input and out- 121

putting a transcription x, a written-style transcrip- 122

tion z, and a translation y. written-style transcrip- 123

tion. Written-style transcription refers to the sen- 124

tence that has the same semantic meaning as the 125

transcription but is in written language instead of 126

spoken language. 127

Similar to the ASR-ST dual-decoder, proposed 128

models jointly predict their corresponding outputs 129

in an autoregressive fashion. The output distribu- 130

tions can be written as 131
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Dconv−st = p(y, z|s)

=

max(Ty ,Tz)∏
t=0

p(yt, zt|y<t, z<t, s)

Dtri= p(x,y, z|s)

=

max(Tx,Ty ,Tz)∏
t=0

p(xt, yt, zt|x<t,y<t, z<t, s)

The training objective for proposed models is a
weighted sum of cross-entropy losses for the tasks
that they perform:

Lconv−st = αLconv + (1− α)Lst

Ltriple = α1Lasr + α2Lconv + (1− α1 − α2)Lst

In all experiments, α is set to 0.3, α1 is set to132

0.1, and α2 is set to 0.2.133

The purpose of proposing the triple-decoder and134

preserving the task of ASR is to compensate for135

possible information loss in written-style transcrip-136

tions. It should be noted that it is difficult to adopt137

our method directly as existing datasets for ST do138

not contain written-style transcriptions. It is more139

practical to synthesize written-style transcriptions140

from transcriptions with a pre-trained spoken-to-141

written style conversion model and use them as the142

ground truth for the task of speech-to-written-style-143

text conversion, which is the case in our experi-144

ments. In this case, the possible information loss is145

harder to ignore because the quality of the spoken-146

to-written style conversion is not fully guaranteed.147

3.3 Interactive Attention Mechanism148

Different decoders can exchange information with149

each other with the interactive attention mechanism,150

which refers to replacing attention sub-layers in the151

standard Transformer decoder with interactive at-152

tention sub-layers (Liu et al., 2020). In our models,153

the replaced sub-layers are the encoder-decoder154

attention sub-layers.155

An interactive attention sub-layer consists of a156

main attention sub-layer and one or two cross atten-157

tion sub-layers. It is only possible to have two cross158

attention sub-layers for the triple-decoder. The159

main attention sub-layer is the same as the replaced160

attention sub-layer. The cross attention sub-layers161

receives query Q from the same decoder A and162

receives key K and value V from another decoder163

B. K and V is from the same layer in decoder164

B, as in parallel dual-decoder. (Le et al., 2020) 165

The final output is obtained by merging the output 166

of the main attention sub-layer Hmain with the 167

output of the cross attention sub-layer Hcross. We 168

adopt a linear interpolation as the merging function, 169

therefore the output representations of the interac- 170

tive attention sub-layers with one and two cross 171

attention sub-layers are 172

Hdual = Hmain + λHcross

Htriple = Hmain + λ1Hcross1 + λ2Hcross2

where Hcross1 and Hcross2 are outputs of two 173

cross attention sub-layers that receives K and V 174

from two different decoders. λ, λ1, and λ2 are all 175

learnable parameters. 176

4 Experiments 177

4.1 Datasets 178

4.1.1 Datasets for ST 179

We constructed a dataset (Lecture ST) for our ex- 180

periments with the data collected from lectures 181

delivered at Kyoto University in 2019 and 2020. 182

The raw data include full audio of the lectures, 183

timestamps, Japanese transcriptions, and English 184

translations from 15 courses. Timestamps mark 185

the beginning and end of each transcription and 186

each translation corresponds to multiple transcrip- 187

tions. We combined timestamps and transcriptions 188

to match the translations. 189

Some of the raw translations include multiple 190

sentences. To segment them into sentence level, 191

we first aligned the Japanese transcriptions to each 192

English sentence based on the cosine similarity 193

of their LASER1 embeddings with the sentence 194

alignment algorithm using dynamic programming 195

proposed by Song et al. (2020). We then gener- 196

ated the new timestamps to align the text pairs 197

with the audio with CTC segmentation (Kürzinger 198

et al., 2020). Possible misalignment were manually 199

checked and fixed in validation and test sets. 200

For ST experiments, we also used CoVoST 2 Na- 201

tive Japanese,2 which is a rerecorded version of the 202

Japanese section of CoVoST 2 (Wang et al., 2021) 203

dataset all spoken by Japanese native speakers. 204

4.1.2 Datasets for ASR and MT Pre-training 205

We also constructed a lecture dataset for ASR pre- 206

training (Lecture ASR) as we have data without 207

1https://github.com/facebookresearch/LASER
2https://github.com/ku-nlp/covost2NativeJa
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Task Dataset Train Valid Test

ST
Lecture ST
CoVoST 2 NJ

71k
1,119

1,686
635

2,135
684

ASR
Lecture ASR
CSJ

170k
878K

7,983
8,644

8,188
8,622

MT ASPEC-JE 2M 1,790 1,812

Table 2: The number of utterances in ST/ASR datasets
and the number of sentences in the MT dataset.

Model Lecture ST CoVoST 2 NJ
ASR-ST Dual 25.08 2.37
Conv-ST Dual 25.81† 2.41
Triple 26.02† 2.64

Table 3: BLEU-4 scores on the two ST datasets. “†”
indicates that the result is significantly better than “ASR-
ST Dual” at p < 0.05).

translation from 6 extra courses. For this dataset,208

we used the raw timestamps and transcriptions from209

a total of 21 courses. We also used the 7th ver-210

sion of CSJ3 for ASR pre-training. For MT pre-211

training, we used the Japanese-English section of212

ASPEC (ASPEC-JE) (Nakazawa et al., 2016). Ta-213

ble 2 shows the details of all the datasets that we214

used.215

4.2 Spoken-to-Written Style Conversion216

For the task of speech-to-written-style-text conver-217

sion, we need the written-style transcriptions cor-218

responding to utterances in the datasets for ST. To219

obtain them, we trained a spoken-to-written style220

conversion model based on LaserTagger (Malmi221

et al., 2019) with the same data and settings as222

Nakao et al. (2021). The model gets a SARI (Xu223

et al., 2016) of 80.6 on the test set. We then used224

the model to synthesize written-style transcriptions225

from transcriptions in KU Lecture ST and CoVoST226

2 Native Japanese.227

4.3 Preprocessing and Model Settings228

English translations were normalized and tokenized229

using the Moses tokenizer (Koehn et al., 2007).230

Japanese transcriptions and written transcriptions231

were tokenized using JUMAN++ (Morita et al.,232

2015; Tolmachev et al., 2018) and the punctuation233

was stripped. Japanese and English tokens were234

further split into subwords using the BPE method235

(Sennrich et al., 2016) with a joint vocabulary of236

16k subwords.237

3https://ccd.ninjal.ac.jp/csj/en/

Our implementation was based on the ESPnet- 238

ST toolkit (Inaguma et al., 2020). For all the 239

models, we used the same architecture with a 12- 240

layer encoder and 8-layer decoders. For the triple- 241

decoder, we only activated the cross attention sub- 242

layers between the ST decoder and the other two 243

decoders, as demonstrated in Figure 1. Encoders 244

were initialized with an ASR model pre-trained on 245

CSJ. For experiments on KU Lecture ST, the ASR 246

model was further fine-tuned on KU Lecture ASR. 247

ST decoders were initialized with an MT model 248

pre-trained on ASPEC-JE. Other settings can be 249

found in Appendix A. 250

4.4 Results 251

We report case-insensitive tokenized BLEU (Pa- 252

pineni et al., 2002) on two ST datasets. Signif- 253

icance tests were conducted using the bootstrap 254

re-sampling method proposed by (Koehn, 2004). 255

The results are shown in Table 3. Both proposed 256

models (Conv-ST Dual and Triple) outperform the 257

baseline (ASR-ST Dual) with triple-decoder mak- 258

ing more improvement. We show more results for 259

ablation study of interactive attention in Table 4 in 260

Appendix B. 261

We analyzed the translation results with TER 262

(Snover et al., 2006). The detailed statistics 263

are shown in Table 5 in Appendix C. Compared 264

to ASR-ST dual-decoder, conversion-ST dual- 265

decoder tends to generate translations with fewer 266

insertion and substitution errors as well as more 267

deletion errors. It is intuitive because written-style 268

transcriptions tend to be more concise but some of 269

the information may be lost during the conversion. 270

Triple-decoder can achieve a better trade-off with 271

the assist of ASR and generate translations with 272

relatively few errors in all categories. 273

5 Conclusion 274

In this paper, we proposed a joint task of speech-to- 275

written-style-text conversion and end-to-end ST, 276

as well as an interactive-attention-based multi- 277

decoder architecture to perform the joint task. Com- 278

pared to training on the joint task of ASR and ST, 279

our method reduced the gap between the language 280

styles of speech transcription and bilingual cor- 281

pora used for MT pre-training. Experiments on 282

Japanese-English ST datasets illustrated the effec- 283

tiveness of our method. We plan to conduct experi- 284

ments on other language pairs in the future. 285
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A Experiment Details462

We used the settings for speech features in the origi-463

nal dual-decoder Transformer (Le et al., 2020). The464

only difference was that we removed utterances465

having more than 6, 000 frames instead of 3, 000466

because speakers can take long pauses within one467

sentence when delivering a lecture.468

For the experiments on CoVoST 2 Native469

Japanese, the vocabulary was built with ASPEC-JE470

as building with CoVoST 2 Native Japanese led to a471

vocabulary that was too small for MT pre-training.472

We used a Transformer with a 12-layer encoder473

and a 6-layer decoder for ASR pre-training and474

Transformer with a 6-layer encoder and an 8-layer475

decoder for MT training.476

We used the Adam optimizer (Kingma and Ba,477

2015) and Noam learning rate schedule (Vaswani478

et al., 2017) with 10k warm-up steps and a maxi-479

mum learning rate of 1.5e−3. We used a batch size480

of 24 sentences per GPU. All models were trained481

on a single machine with 8 Geforce GTX 1080 Ti482

GPUs. The models were trained for 75 epochs for483

experiments on KU Lecture ST and 150 epochs484

for experiments on CoVost 2 Japanese ST. We kept485

model checkpoints after each epoch and averaged486

the 5 best models on the validation set based on487

BLEU and used it for testing. For decoding, the488

beam size was set to 5 for the task of ST, 1 for the489

other tasks.490

B Ablation Study491

For ablation study, we conducted experiments on492

asymmetric models, which refers to only allowing493

the ST decoder to attend to other decoders, but494

not vise versa. We also conducted experiments in495

which we activate all of the cross attention sub-496

layers in 6 directions including the ones between497

the ASR decoder and the style decoder for the498

triple-decoder. The results are shown in Table499

4. Changing to an asymmetric setting generally500

improves BLEU for the baseline (ASR-ST Dual501

asym) but not for proposed models (Conv-ST Dual502

asym, Triple asym), which shows that our proposed503

models are more dependent on bi-directional cross504

attention than the baseline. The results of triple-505

decoder with cross attention in 6 directions (Triple506

6ca) are worse than that with cross attention in 4507

directions, which shows that the cross attention508

between ASR decoder and style decoder is not nec-509

essary.510

Model Lecture ST CoVoST 2 NJ
ASR-ST Dual 25.08 2.37
ASR-ST Dual asym 25.63 2.33
Conv-ST Dual 25.81 2.41
Conv-ST Dual asym 25.37 2.81
Triple 26.02 2.64
Triple asym 25.44 2.62
Triple 6ca 25.41 2.51

Table 4: BLEU using different settings of the interactive
attention on the two ST datasets.

C TER 511

Table 5 shows the TER and detailed statistics of 512

translations generated by the baseline and proposed 513

models on 2 datasets. 514
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Dataset Model Ins Del Sub Shft NumEr NumWd TER

Lecture ST
ASR-ST Dual
Conv-ST Dual
Triple

2,387
2,340
2,384

3,307
3,456
3,227

3,617
3,510
3,571

411
400
411

9,722
9,706
9,593

12,153
12,153
12,153

79.99
79.86
78.93

CoVoST 2 NJ
ASR-ST Dual
Conv-ST Dual
Triple

553
507
547

1,363
1,404
1,379

2,930
2,891
2,877

131
134
132

4,977
4,936
4,935

5,049
5,049
5,049

98.57
97.76
97.74

Table 5: TER and detailed statistics includes insertion (Ins), deletion (Del), substution (Sub), shift (Shft), number of
errors (NumEr) and number of words (NumWd).
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