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ABSTRACT

The attention mechanism is powering rapid progress in terms of large-scale gener-
ative AL It is conversely exceedingly difficult to find small-scale applications for
which attention-based models outperform traditional approaches, such as multi-
layer perceptrons or recurrent networks. We examine this problem in the context
of ‘task switching’. In this framework models work on ongoing token sequences
with the current task being determined by stochastically interseeded control to-
kens. We show that standard transformers cannot solve a basic reference model,
TARC, which is based on finite-domain arithmetics. The model contains a trivial
unary operation, (I: increment the current input), a likewise trivial binary opera-
tion, (A: add last two inputs), and reverse copy, (R), a standard memory task. A
fourth control token, (C), adds recursive context dependency by modifying cur-
rent tasks. Tasks are maintained as long as no new control tokens appears in the
prompt, which happens stochastially every 3-9 steps. We show that transformers,
LSTM recurrent networks and plain MLPs of similar sizes (~1.5M parameters)
achieve only modest prediction accuracies, of about 45%. As a countertest we
trained transformers containing a modified attention mechanism, expressive at-
tention, finding performance levels of around 95%. Our results indicate that the
workings of attention can be understood better, and even improved, when compar-
ing qualitatively different formulations is a task-switching setting.

1 INTRODUCTION

An undisputed advantage of the transformer architecture is that memory requirements scale only
linearly with context length [Vaswani et al.| (2017). Compute scales however quadratically, a feature
shared with fully-connected multi-layer perceptrons and recurrent networks. It remains an open
question whether the success of transformers is due to particular properties of the underlying atten-
tion mechanism, or a consequence of the resulting improved size scaling. Alternative models with
favorable scaling may be just as good in the later case (Gu & Dao| (2023)). This question received
further urgency by the recent observation that MLPs learn in-context a la par with transformers when
given the same compute budget [Tong & Pehlevan| (2024). It is hence important to study to which
extend transfomers excel or fail for small-sized applications, viz in a regime where scaling is not yet
relevant.

Here we work below the scaling regime, typically for a context length N, = 24. In this regime,
in which transformers and classical models have about the same number of adjustable parameters,
we evaluated to which extend several standard models are able to switch task upon the appearance
of a suitable control token. Individual tasks work on sequences of encoded numbers, skipping the
interseeded control tokens, as explained further in Sect. [3] The resulting evaluation protocol can be
varied and/or extended by selecting appropriate tasks, making it a versatile tool for comparative per-
formance tests. For real-world applications, task switching protocols are relevant, e.g., for steering
robots by switching between motor primitives [Saveriano et al.| (2023)).

Our results support the notions that small transformers are not generically better than MLPs or recur-
rent networks. This holds, however, only when attention weights are ~ exp(z; j / \/K ), the standard
formulation, where z;; is the dot-product between query and key. We also tested transformers based
on expressive attention [Gros| (2024), for which attention weights are proportional to z?j /(1+ z?j),
finding substantial performance leaps.
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Figure 1: The TARC task switching evaluation framework, for details see Sect. @ Shown are re-
sults for a LSTM recurrent network (black), a MLP (green), a standard transformer (blue), and a
transformer with expressive attention (red). Left: As a function of training epochs, the prediction
accuracy (performance). Right: Testing with various combinations of the fundamental tasks, in-
cluding (I), incrementing the current input, (A), adding the last two inputs and (R), reverse copy.
Recursive context dependency is encoded by (C).

2 RELATED WORK

The task-switching protocol used here is a specification of multi task learning|Zhang & Yang|(2021);
Chen et al.|(2024), in the form of ever ongoing sequences of concatenated tasks. Task switching is
in particular important for reset-free robotic applications |Gupta et al.| (2021), e.g., in the context
of embodied robotics [Kumar et al.| (2024), or for large language models Knight & Duan| (2024).
Related to our approach are testing procedures involving synthetic reasoning tasks Zhang et al.
(2022), which have been applied to small models in the form of in-context and global bigrams
Bietti et al.| (2024). Another example are toy models of superposition, which can be used to study
polysemanticity Elhage et al.| (2022)). It is likewise important to find out which formal languages
transformers can express|Strobl et al.|(2024); Deletang et al.|(2022). Equivalently the question arises
to which extend large-model scaling |[Kaplan et al.| (2020); [Hoffmann et al.| (2022), and variantes
thereof Naveed et al.|(2023));/Shen et al.| (2024), is retained when models are small Ivgi et al.[(2022).

3 TARC TASK SWITCHING FRAMEWORK

A considerable number of benchmark tasks for the evaluation of transformer variantes have been
developed |Liu et al.| (2024)), however nearly exclusively for large model sizes Tay et al.| (2020). The
benschmark task introduced here is meant in contrast for the evaluation of small models, typically
with a few million parameters or less.

The vocabulary consists of a finite set of N numbers, plus a limited number of control tokens,
denoted here (I), (A), (R), and (C). Control tokens interseed the sequence of symbols, Sy = {zy [t' <
t}. The task is to predict the next symbol, x;1, but not the occurance of future control tokens. The
last control token, or the history of previous control tokens, determines the dependence of x;y; on
S¢. One has

zip1|, = (2 + 1)%N, Tipa| = (@0 + 2 1) %N (1
for increment (I) and addition (A). For N = 10, an example would be

A I
1203 [4[7[1]8[9[T]8]9]0]1 2)
Here with two interseeded control tokens, as indicated by the respective superscripts. Including
reverse copy (R), one could have
A R R
(20314171881 [7[4]3][3[4]7 3)
Tasks remain when (I/A) tokens are followed by (I/A) tokens, with the reverse copy process being

restarted by subsequent (R) tokens. The action of the context token (C) depends on the current task,
consecutively increasing the increment by one for (I) tasks:

I C C
[ 112]3]4]6[8[0[2]4]7]0]3 )



When the current task is (A/R), the context token (C) just acts as an additional (A/R) token, as
illustrated in for the case of two consecutive (R) token. As a basic protocol regulating the
frequency of task switching, we use a 6 =3 setup, which means that the distance between subsequent
control tokens is drawn from a flat distribution out of [3,9]. The four control tokens, (A/I/R/C),
appear with equal probabilities.

4 RESULTS

For all models the context length is N, = 24, together with one-hot embedding and a fixed embed-
ding dimension d = 20. We did set d = N + S, where S is the number of control symbols, compare
(I). This implies N = 16 for IARC and N = 17 for an ablated version like IAR. Transformers
have L = 12 layers, causal self-attention with four heads and ALiBi positional encoding |Press et al.
(2021)), altogether 1.3M parameters. The multi-layer perceptron (MLP) had L. = 16 layers with
causal connections, resulting in 1.9M parameters, the LSTM recurrent net was somewhat larger,
L = 2 with a size of 3.7M. For all models we did additional runs with increased numbers of layers,
finding only marginal improvements. All runs used identical training protocolls, with a batch size
of 500.

Our results are summarized in Fig. E} The three basic models, LSTM, MLP and the standard trans-
former show roughly similar performances, both as a function of training compute and when ablating
the IARC model. Given the same resources, small standard transformers are not better. A massive
outperformance is seen however by transformers based on expressive attention (Gros| (2024). This is
an interesting result, given that expressive attention is intrinsically quadratic in the scalar product be-
tween queries and keys, making it bi-quadratic in token activities. It also implies that there is room
for gains when reformulating the core of the attention mechanism. Finally we want to point out
that task-switching frameworks paralleling the one used here are relevant for real world applications
taking place in dynamic environments, such as autonomous driving and robot control.
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