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Abstract

Predicting future scene representations is a cru-
cial task for enabling robots to understand and
interact with the environment. However, most
existing methods rely on video sequences and
simulations with precise action annotations, lim-
iting their ability to leverage the large amount
of available unlabeled video data. To address
this challenge, we propose PlaySlot, an object-
centric video prediction model that infers ob-
ject representations and latent actions from un-
labeled video sequences. It then uses these rep-
resentations to forecast future object states and
video frames. PlaySlot allows to generate mul-
tiple possible futures conditioned on latent ac-
tions, which can be inferred from video dy-
namics, provided by a user, or generated by
a learned action policy, thus enabling versatile
and interpretable world modeling. Our results
show that PlaySlot outperforms both stochastic
and object-centric baselines for video prediction
across different environments. Furthermore, we
show that our inferred latent actions can be used
to learn robot behaviors sample-efficiently from
unlabeled video demonstrations. Videos and
code are available at https://play-slot.
github.io/PlaySlot/.

1. Introduction

Accurate and flexible world models are crucial for au-
tonomous systems to reason about their surroundings, pre-
dict possible future outcomes, and plan their actions effec-
tively. Such models require a structured representation of
the world that supports generalization, robustness, and con-
trollability, even in complex and dynamic scenarios.

Humans naturally achieve such understanding by parsing
their environment into a background and multiple sepa-
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Figure 1: PlaySlot parses an image X; into its object com-
ponents S;. It then predicts multiple future object states
and frames with an object-centric video prediction module
(cOCVP) conditioned on latent actions Z, which can be
inferred from a reference video with our InvDyn module,
provided as input, or generated by a learned action policy.

rate objects, which can interact with each other and can
be recombined to form more complex entities (Johnson,
2018; Kahneman et al., 1992). Neural networks equipped
with such compositional inductive biases have the ability to
learn structured object-centric representations with desir-
able properties such as robustness (Bengio et al., 2013; Dit-
tadi et al., 2022), generalization to novel compositions (Gr-
eff et al.,, 2020), transferability to novel tasks (Zhang
et al., 2022), and sample efficiency (Mosbach et al., 2024),
among others.

Building on these foundations, the field of object-centric
learning has made great advances in recent years, progress-
ing from learning object representations in simple syn-
thetic images (Locatello et al., 2020; Burgess et al., 2019)
and videos (Kipf et al., 2022; Elsayed et al., 2022), to-
wards more complex real-world scenes (Seitzer et al., 2023;
Zadaianchuk et al., 2024). Recently, the field of object-
centric video prediction combines these learned object rep-
resentations with forward-dynamics models and has shown
great promise for multiple downstream applications such
as modeling object dynamics (Villar-Corrales et al., 2023;
Wu et al., 2023a) or action planning (Yoon et al., 2023;
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Mosbach et al., 2024). However, such models are currently
limited to deterministic environments or rely on videos and
simulations with precise action labels to forecast scene dy-
namics, limiting their ability to leverage unlabeled video
data and serve as world models for robotic applications.

In this work, we propose PlaySlot, a novel method for con-
trollable video prediction using object-centric representa-
tions. PlaySlot learns in a self-supervised manner from
video to infer object representations, called slots, and la-
tent action embeddings, which are computed using our
proposed InvDyn module to capture the scene dynamics.
PlaySlot then predicts future video frames conditioned on
the inferred object slots and latent actions. At inference
time, as illustrated on Fig. 1, PlaySlot parses the observed
environment into a set of object slots, each of them repre-
senting a different object in the image. Then, PlaySlot fore-
casts future object states and frames conditioned on past
object slots and latent actions, which can be inferred from
a video sequence using our proposed InvDyn module, pro-
vided by a human, or generated by a learned action policy.

In our experiments, we demonstrate that PlaySlot learns a
rich and semantically meaningful action space, enabling
accurate video prediction while providing high levels of
controllability and interpretability. We show how PlaySlot
effectively captures precise robot actions and seamlessly
scales to scenes with multiple moving objects or to real-
world robotics data, outperforming several controllable
video prediction baselines. Moreover, we show that the
latent actions inferred by PlaySlot enable sample-efficient
learning of robot behaviors from unlabeled demonstrations.

In summary, our contributions are as follows:

* We propose PlaySlot — an object-centric video predic-
tion model that infers object representations and latent
actions from unlabeled videos, and uses them to fore-
cast future object states and video frames.

* PlaySlot outperforms several video prediction models
across diverse robotic environments, while showing
superior interpretability and control capabilities.

» The object representations and latent actions inferred
by PlaySlot can be used to learn robot behaviors from
unlabeled video demonstrations sample efficiently.

2. Related Work

Unsupervised Object-Centric Learning Object-centric
representation methods aim to parse in an unsupervised
manner an image or video into a set of Ng latent vec-
tors called slots, where each of them binds to a different
object in the scene (Greff et al., 2020; Locatello et al.,
2019). Early slot-based methods aimed to learn object rep-
resentations from synthetic images (Locatello et al., 2020;

Singh et al., 2021; Biza et al., 2023) or videos (Kipf et al.,
2022; Creswell et al., 2021; Singh et al., 2022) by min-
imizing a reconstruction objective. To learn meaningful
representations from real data, recent slot-based methods
leverage weak supervision (Elsayed et al., 2022; Bao et al.,
2023), large pretrained transformers (Seitzer et al., 2023;
Aydemir et al., 2023; Zadaianchuk et al., 2024), or diffu-
sion models (Jiang et al., 2023; Wu et al., 2023b) These
object-centric representations benefit multiple downstream
tasks such as reinforcement learning for robotic manipula-
tion (Mosbach et al., 2024; Ferraro et al., 2023) or visual-
question-answering (Mamaghan et al., 2024).

Object-Centric Video Prediction Object-centric video
prediction aims to model the object dynamics and inter-
actions in a video sequence with the goal of forecasting
future object states and video frames. Several methods ad-
dress this task using different architectural priors, including
RNNS (Zoran et al., 2021; Assouel et al., 2022), transform-
ers (Villar-Corrales et al., 2023; Wu et al., 2023a; Daniel &
Tamar, 2024; Meo et al., 2024) or state-space models (Jiang
et al., 2024), attaining a remarkable prediction accuracy on
synthetic datasets. Recently, some methods improve the
controllability of object-centric video prediction models by
conditioning the prediction process on actions (Mosbach
etal., 2024) or language captions (Wang et al., 2024). How-
ever, forecasting future object states without supervision in
complex environments still remains an open challenge.

Learning Latent Actions from Unlabeled Videos:
Videos provide abundant information about dynamics and
activities, but often lack the action labels necessary for
learning behaviors from video. To address this challenge,
some methods train a latent policy directly from observa-
tions by learning a discrete latent action space and sampling
the actions that minimize a reconstruction error (Edwards
etal., 2019; Struckmeier & Kyrki, 2023). Another group of
methods, to which PlaySlot belongs, learns inverse dynam-
ics from unlabeled videos by predicting latent actions given
pairs of observations, and uses them for learning behav-
iors for video games and robot simulations (Ye et al., 2022;
Brandfonbrener et al., 2024; Schmidt & Jiang, 2024), as
pretraining for Vision-Language-Action models (Ye et al.,
2024) or for learning robot policies (Cui et al., 2024).

Latent action models have also been used for conditional
video prediction. The most similar method to ours is
CADDY (Menapace et al., 2021; 2022), which learns la-
tent actions from a collection of unlabeled videos from
a single domain and uses the latent actions as condition-
ing signal for predicting future frames. At inference time,
CADDY maps user inputs to the latent space for playable
video generation. Building upon this same principle, Ge-
nie (Bruce et al., 2024) proposes a foundation world model
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Figure 2: Overview of PlaySlot training and inference processes. (a) PlaySlot is trained given unlabeled video sequences
by inferring object representations S and latent actions Z, and using these representations to autoregressively forecast future
video frames and object states. (b) PlaySlot autoregressively forecasts future frames conditioned on a single frame X; and
latent actions Z, which can be inferred from observations, provided by a user, or output by a learned action policy.

for playable video generation on diverse environments.
However, both CADDY and Genie operate on holistic
scene representations, which are limited for tasks that re-
quire relational reasoning, often struggle to model object
relationships and interactions, and require human supervi-
sion to generalize to scenes with multiple moving agents.

3. PlaySlot

We propose PlaySlot, a novel framework for control-
lable object-centric video prediction from unlabeled video
sequences. Fig. 2a) illustrates the training process in
PlaySlot, as well as its main four components. Namely,
given T video frames Xy.r, our model employs as Scene
Parsing module that decomposes these images into ob-
ject representations, called slots, S;.r = (Si,...,S7),
where S; = (s},...,s0'%) € RNs*Ds is the set of Dg-
dimensional object slots parsed from frame X;. For each
consecutive pair of frames, PlaySlot employs an Inverse
Dynamics (InvDyn) module (Sec. 3.2) in order to esti-
mate latent action embeddings Z; that encode the actions
taken by the agents in the scene between every consecu-
tive pair of frames. The Conditional Object-Centric Pre-
dictor (cOCVP) (Sec. 3.3) forecasts future object states
conditioned on past slots and latent actions estimated by
InvDyn. Finally, the object rendering module decodes the
object slots to render object images and masks, which can
be combined via a weighted sum to render video frames.

At inference time, as shown in Fig. 2b), PlaySlot autore-
gressively predicts multiple possible sequence continua-
tions conditioned on the initial object slots and latent action
embeddings, which can be estimated by InvDyn, provided
by human, or generated by a learned action policy.

3.1. Object-Centric Representation Learning

PlaySlot employs SAVi (Kipf et al., 2022), a recursive
encoder-decoder model with a structured bottleneck of Ng
permutation-equivariant object slots, to parse a sequence of
video frames Xy.7 into their object components S1.7, S; €
RNsxDs  The slots Sy are sampled from a learned distri-
bution and recursively refined to bind to the objects in the
video frames. At time step ¢, SAVi encodes the correspond-
ing input into feature maps h € RL*Px which are fed to
Slot Attention (Locatello et al., 2020) to iteratively refine
the previous slot representations conditioned on the current
features. Slot Attention performs cross-attention between
the image features and slots with the attention weights nor-
malized over the slot dimension, encouraging competition
between slots so as to represent each feature location:

1) - k()T
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where ¢ and k are linear projections. The slots are
then independently updated via a shared Gated Recurrent
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where v is a linear projection. The steps described in Equa-
tions (1) and (2) can be repeated multiple times with shared
weights to iteratively refine the slots and obtain an accurate
object-centric representation of the scene.

To map the object representations back to images, SAVi in-
dependently decodes each slot in S; with a Spatial Broad-
cast Decoder (Watters et al., 2019) (Dsay;) to render an ob-
ject image and mask, which can be normalized and com-
bined via a weighted sum to render the reconstructed frame:

o/, m;" = Dsavi(sy), 3)
Ns

X; = Zlo? -m; with m; = sofyvrgax(m?). 4)
n=

3.2. Learning Inverse Dynamics

In general, future frames depend not only on previous ob-
servations, but also on other variables, such as robot ac-
tions. We propose an inverse dynamics module (InvDyn)
that estimates, given the object slots from two consecutive
time steps, latent action embeddings 2 € Rz that encode
the actions taken by the agents between such time steps:

Zt = InvDyn(St, St+1)- (5)

3.2.1. ACTION PARAMETERIZATION

The parameterization of the latent actions determines the
complexity of the transitions that can be modeled, as well
as the degree of control that we have over the predictions.
On the one hand, learning a finite set of latent actions al-
lows for controllable video prediction while limiting the
complexity of the dynamics that such actions can explain.
On the other hand, continuous latent vectors can model
complex transitions between frames with the drawback of
less interpretability and control.

As a compromise between these two approaches, inspired
by Menapace et al. (2021), we propose a hybrid approach
to parameterize the latent actions Z; with a discrete com-
ponent p, denoted as action prototype, which determines
the high-level action taking place (e.g. move left, go up),
and a continuous action variability v;, which captures non-
deterministic dynamics in the environment and enables to
interpolate between action prototypes. This combination
allows for modeling complex frame transitions effectively.

3.2.2. INVDYN MODULE

We propose two variants of our inverse dynamics module.
InvDyng processes object slots S; along with an additional
token [ACT] using a transformer encoder f,. It outputs a
single latent action Z; that captures the agent’s action, mak-
ing it well-suited for single-agent environments. In con-
trast, InvDyn,, processes each slot with a shared MLP, pro-
ducing Ny latent action embeddings Z; = {},...,2)5},

each representing the action of a specific object in the
scene. Below we explain the process for computing latent
actions using InvDyng, which follows a similar procedure
to that of InvDyn,,.

Following Menapace et al. (2021), we adopt a probabilistic
formulation where InvDyn predicts the posterior distribu-
tion of scene dynamics, modeled as Gaussian:

Hay, Ta; = f(St, [ACT]). (6)

We then model the distribution of latent actions Z; as the
difference between the distributions of dynamics embed-
dings from two consecutive time steps:

it ~ N(/lzzt7 o_z?) Wlth {Nzt = Hdt+1 - Hdt? , (7)

2_ 2 2
O, = Odiy1 T 0ai,
from which we can sample the latent actions Z;.

To prevent the model from simply encoding the target scene
into Z;, we regularize the latent action space by enforcing
an information bottleneck. Specifically, we constrain the
latent action space to be low dimensional, i.e., D, << Dsg.
Furthermore, we parameterize the latent actions as the sum
of a discrete action prototype p, and an action variability
embedding v;, where p, is obtained by vector-quantizing
the latent actions Z;, i.e. p, = VQ(Z;). We empirically
verify that the information bottleneck enforced by vector
quantization achieves comparable performance to the one
proposed by (Menapace et al., 2021), while requiring sig-
nificantly fewer hyper-parameters.

This latent action parameterization ensures that our InvDyn
module encodes only the essential dynamics, effectively
capturing the agent’s interaction with the scene while learn-
ing semantically meaningful action prototypes. Moreover,
this hybrid factorization improves the controllability and
interpretability of the prediction process while maintaining
the ability to model complex scene dynamics.

3.3. Conditional Object-Centric Prediction

We employ a transformer-based (Vaswani et al., 2017)
module to autoregressively predict future object slots con-
ditioned on past object states and latent actions.

Our proposed predictor, cOCVP, is a transformer encoder
with Np.q layers. At each time step ¢, cOCVP takes as in-
put all previous slots Sy.;, action prototypes p;., and vari-
ability embeddings v .., all of which are first linearly pro-
jected into a shared token dimensionality. The slots are
then conditioned by adding them with the corresponding
projected action prototype and variability embeddings. Ad-
ditionally, we incorporate sinusoidal positional encodings
such that all slots from the same time step receive the same
encoding, thus preserving the inherent permutation equiv-
ariance of the objects.
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cOCVP forecasts the future slots St+1 by jointly modeling
the object dynamics and interactions from the past object
slots conditioned on the inferred latent actions. This pro-
cess is summarized as:

St1 = COCVP(f5(S1.e) + fo(Pre) + fi(Vi)s ()
where fs, f, and f, are learned linear layers.

The prediction process can be initiated from the slots of a
single reference frame S; and the corresponding inferred
latent actions Z;. This process is repeated autoregressively,
with the predicted slots being appended to the input at each
subsequent time step, allowing the generation of future ob-
ject representations for a desired number of time steps 7.

3.4. Learning Behaviors from Unlabeled Videos

Using a trained InvDyn module, we aim to learn a pol-
icy from unlabeled video expert demonstrations without the
need for action or reward information. For this purpose, we
compute with InvDyn a sequence of latent actions that ex-
plain the dynamics of the expert demonstrations, and then
train a policy model f to regress such latent actions using
the object slots from the corresponding time step.

At inference time, starting with a single observation Xj,
PlaySlot computes the corresponding object slots S; and
uses the policy to estimate a latent action Z;, which is de-
composed into an action prototype p; = VQ(Z1) and vari-
ability embedding v; = Z; — p,. These representations are
fed to cOCVP to forecast subsequent slots S,. This process
is repeated autoregressively, allowing the learned behavior
to unfold within the model’s latent imagination.

To map the latent actions generated by the policy f, to the
real action space, we introduce an action decoder D,. This
module, implemented as a three-layer MLP, is trained to
translate the latent actions inferred by InvDyn into the real-
world actions using a small action-labeled dataset.

This approach shares similarities with Schmidt & Jiang
(2024). However, whereas their method learns policies for
simple games with a small discrete set of actions, our flexi-
ble action representation and conditional object-centric de-
coder enable us to learn more complex robot behaviors.

3.5. Training

We differentiate three different training stages in PlaySlot.
We first train SAVi to parse video frames into object-centric
representations by minimizing a reconstruction loss:

T
Lsavi = Z || Dsavi(Esavi(Xt)) — X¢|[3, &)

t=1

where Esayi and Dgay; correspond to the scene parsing and
object rendering modules, respectively.

Second, given the pretrained SAVi model, we jointly train
InvDyn and cOCVP by minimizing a combined loss:

T+1

LpiaySiot = Z AlmgLimg + AsiotLsior + AvoLvg,  (10)
=2

Limg = [|X¢ — X4[[3, (11)

Lsior = |18t — Esavi(X1)|13, (12)

Lvq = l[sg2:] —pl| +0.25- |2 — sqlp,Jll, (13)

where sg is the stop-gradient operator. Ly, measures the
future frame prediction error, Lg), aligns the predicted ob-
ject slots with the actual object-centric representations, and
Lyq encourages the learning of meaningful action proto-
types while regularizing the latent actions to align with
their prototypes (Van Den Oord & Vinyals, 2017). We do
not employ teacher forcing, enabling the predictor model
to learn to handle its own imperfect predictions.

Finally, the policy model f, and action decoder D, are
trained to regress the inferred latent actions Z and ground
truth actions a, respectively:

T

L= 11fx(8) — zll, (14)
t=1
T

Lp, = |[Da(z) —ayl]. (15)
t=1

4. Experiments
4.1. Experimental Setup
4.1.1. DATASETS

We evaluate our method on three environments with dis-
tinct characteristics. Further details are provided in Ap-
pendix C.

ButtonPress This environment, based on MetaWorld (Yu
et al., 2020), features a Sawyer robot arm that must press a
red button. This environment depicts a non-object centric
task involving complex shapes and textures.

BlockPush: This environment, inspired by (Li et al., 2020),
features a robot arm and a table with multiple uni-colored
cubes of different colors. The robot must push the block
of distinct color into the location specified by a red target.
This task evaluates the capabilities of an agent to reason
about object relations and to model object collisions.

GridShapes: This dataset features two simple 2D shapes
moving in grid-like patterns, restricted to up, down, left, or
right directions on a colored background. The shapes ran-
domly change direction with a predefined probability, in-
troducing stochasticity to their motion. This simple dataset
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Table 1: Quantitative evaluation of several object-centric (OC) and controllable (Cont.) video prediction models. Given
six seed frames, all models predict the subsequent 15 frames. PlaySlot achieves the best results in datasets that require
modeling object interactions (BlockPush) or feature multiple moving objects (GridShapes), while maintaining competitive
performance on ButtonPress. Best two results are highlighted in boldface and underlined, respectively.

BlockPush ButtonPress GridShapes;op;s
Model OC Cont. PSNRt SSIMt{ LPIPS) PSNRT SSIMT LPIPS] PSNRt SSIMtT LPIPS|
SVG X 4 20.96 0.898  0.096 3223 0950 0.011 38.10 0.988  0.002
CADDY X v 21.18 0901 0.090 2458 0.853  0.028 39.16 0.986  0.006
SlotFormer 4 X 1722 0729 0.134 1952 0.762  0.111 19.74  0.795 0.149
OCVP v X 1726 0.751  0.134 19.55 0.762 0.115 1886 0.791  0.154
PlaySlot (Ours) v v 2141 0.890  0.066 26.03 0.878  0.025 54.09 0.996 0.001

serves as benchmark to evaluate a model’s ability to jointly
predict the motion of multiple moving agents in the scene.

4.1.2. IMPLEMENTATION DETAILS

All our models are implemented in PyTorch (Paszke
et al.,, 2017) and trained on a single NVIDIA A100
GPU. PlaySlot uses SAVi (Kipf et al., 2022) with 128-
dimensional object slots, as well as a convolutional encoder
and spatial broadcast decoder as scene parsing and render-
ing modules, respectively. The conditional predictor and
inverse dynamics modules are transformer encoders with
four layers and a token dimension of 256. For the But-
tonPress and BlockPush datasets, we use the InvDyng vari-
ant with eight different 16-dimensional action prototypes,
whereas for GridShapes we use InvDyn,,; with five distinct
eight-dimensional action prototypes. Further implementa-
tion details are provided in Appendix B.

4.2. Video Prediction

We evaluate PlaySlot for video prediction and compare
it with different baselines, including the object-centric
video prediction models SlotFormer (Wu et al., 2023a)
and OCVP-Seq (Villar-Corrales et al., 2023), the stochastic
video prediction model SVG-LP (Denton & Fergus, 2018)
and the playable video generation model CADDY (Mena-
pace et al., 2021). For a fair comparison, all models are
trained with six seed frames to predict the subsequent eight,
and evaluated for 15 predictions. For CADDY, PlaySlot
and SVG, we predict future frames conditioned on latent
actions or vectors inferred from the ground truth sequence.
Additionally, on the BlockPush and ButtonPress datasets
all models are trained using sequences with random explo-
ration policies, and evaluated on expert demonstrations.

We evaluate the quality of the predicted frames using
standard metrics: PSNR, SSIM (Wang et al., 2004) and
LPIPS (Zhang et al., 2018). A quantitative comparison of
the methods is presented in Tab. 1. As expected, determin-
istic object-centric models (i.e. SlotFormer and OCVP)
perform poorly, as they cannot infer the agent’s actions
and simply average over multiple possible futures. Our

proposed method outperforms all other models on both
the BlockPush and GridShapes datasets, demonstrating
PlaySlot’s superior ability to forecast future video frames
in environments involving multiple object interactions and
moving agents, respectively.

Fig. 3 depicts a qualitative comparison of the best perform-
ing methods on the ButtonPress and BlockPush datasets,
respectively. On the ButtonPress dataset, as shown in
Fig. 3a), all methods accurately model the motion of the
robot arm. However, on the more complex BlockPush task,
depicted in Fig. 3b), SVG and CADDY fail to model the
object collisions, leading to blurriness and vanishing ob-
jects. In contrast, PlaySlot maintains sharp object represen-
tations and correctly models interactions between objects,
leading to accurate frame predictions. Further qualitative
evaluations are provided in Appendix E.

4.3. Model Analysis

Impact of Number of Moving Objects: We evaluate the
performance of our method for different number of moving
objects. For this purpose, we train two PlaySlot variants
with the InvDyng and InvDyn,, inverse dynamics modules,
respectively, and compare them with the SVG and CADDY
baselines on several variants of the GridShapes dataset fea-
turing a different number of objects, ranging from one to
five moving shapes. The results are depicted in Fig. 4.
CADDY and PlaySlot with InvDyng, which encode scene
dynamics using a single latent action, perform strongly
when jointly forecasting one or two objects, but experience
a sharp drop in performance as the number of objects in-
creases. SVG scales to multiple moving objects but en-
codes the dynamics of all objects into a single distribution,
limiting its flexibility and control over the predictions. In
contrast, PlaySlot with InvDyn,, uses a latent action per
object, allowing to scale seamlessly to a large number of
moving agents by individually modeling the motion of each
object, thus outperforming all baselines.

Action Representation: In Tab. 2 we compare the hybrid
latent action representation used in PlaySlot with three dif-
ferent variants that use continuous latent actions, a discrete
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Figure 3: Qualitative comparison on (a) ButtonPress and (b) BlockPush datasets. PlaySlot accurately predicts the scene
dynamics, whereas baselines fail to predict object interactions, leading to blurriness and disappearing objects.
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Figure 4: Quantitative results on the GridShapes dataset
with different number of objects. PlaySlot outperforms the
baselines, particularly for a higher number of objects.

set of latent actions, and an oracle variant with access to
ground truth actions. Additionally, we evaluate the models
on two different BlockPush variants, including a set with
random exploration sequences, similar to the training dis-
tribution, and another set featuring expert demonstrations.

On the random exploration set, PlaySlot with a hybrid la-
tent action performs comparably to the oracle, highlighting
the ability of our InvDyn module to infer latent dynamics
from unlabeled sequences. However, PlaySlot’s video pre-
diction performance drops on the expert demonstrations,
where the variant using unconstrained continuous latent ac-
tions outperforms it. We attribute this to the large discrep-
ancy between the action distribution of expert sequences
and the training distribution, which challenges the general-
ization of the learned action prototypes.

Learned Actions: Fig. 5 depicts the effect of differ-
ent action prototypes learned by PlaySlot on the Block-
Push dataset. Given a single seed frame, we forecast
15 frames by repeatedly conditioning the predictor on the
same action prototype. Furthermore, we visualize the pre-
dictions obtained using the latent actions inferred by our in-
verse dynamics module from the ground truth sequence; as
well as the instance segmentation maps obtained by assign-

Table 2: Quantitative comparison of PlaySlot with variants
using continuous and discrete latent actions, as well as an
oracle model with access to the ground truth actions.

Results

RobotDB  Model Variant PSNR{ SSIM{ LPIPS|
PlaySlot 26.64 0944  0.016
Random w/ Cont. Z 26.24 0.924 0.019
Exploration w/ Discrete Z 20.60  0.849  0.040
w/ GT Actions  27.77 0.955 0.016
PlaySlot 21.41 0.890  0.065
Expert w/ Cont. Z 22.00 0.900 0.061
Demos. w/ Discrete Z 18.00 0.791 0.109
w/ GT Actions 2230 0904  0.058

ing a different color to each slot mask. PlaySlot learns to
infer precise robot actions from visual observations and the
physics of interacting objects, while distinctly representing
each object in a different slot. Additionally, Fig. 5 shows
that PlaySlot learns consistent and semantically meaningful
actions, such as moving the robot towards the right (action
2), left (action 7), or upwards (action 4).

Real-World Robotic Videos: We validate the applica-
bility of PlaySlot to real-world robotic videos using the
Sketchy (Cabi et al., 2020) dataset, which features a robotic
gripper interacting with diverse objects. Fig. 6 shows a
qualitative result of PlaySlot on Sketchy. Our model accu-
rately infers the scene’s inverse dynamics, reconstructing
the ground truth sequence from a single reference frame.
Furthermore, PlaySlot learns semantically meaningful and
consistent action prototypes, capturing diverse behaviors
such as opening the gripper (action 6), moving the robot
downwards (action 2), or upwards (action 4).

4.4. Learning Behaviors from Expert Demonstrations

We evaluate the quality of PlaySlot’s object-centric repre-
sentations and inferred latent actions for a downstream be-
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Figure 5: PlaySlot predictions given different latent ac-
tions, including inferred inverse dynamics and three action
prototypes. PlaySlot learns accurate object-centric repre-
sentations and semantically consistent action prototypes.

havior learning task. To this end, we train a policy model
and an action decoder, as described in Sec. 3.4, to imitate
ButtonPress and BlockPush behaviors from a limited set of
expert demonstrations. Fig. 7. illustrates the learned la-
tent policies on the (a) ButtonPress and (b) BlockPush en-
vironments, respectively. The top row in each sequence
(labeled Latent Pred.) shows predicted trajectories within
PlaySlot’s latent imagination, where the model, starting
from a single reference frame, autoregressively generates
latent actions using the policy model and predicts future
scene states in the latent space. The bottom row (la-
beled Sim. Actions) depicts the simulated execution of the
decoded latent actions in the corresponding environment.
PlaySlot learns to solve both tasks within its latent imagi-
nation, successfully reasoning about object properties and
generating a precise sequence of latent actions, which can
be decoded into executable motions. Further results can be
found in Appendix E.2.

5. Conclusion

We introduced PlaySlot, a novel framework for control-
lable object-centric video prediction. PlaySlot parses video
frames into object slots, infers the scene’s inverse dynam-
ics, and predicts future object states and video frames
by modeling the object dynamics and interactions, condi-
tioned on inferred latent actions. Through extensive ex-
periments, we demonstrated that PlaySlot learns a seman-
tically rich and meaningful action space, allowing for ac-
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Dynamics

‘Go Down’
Act. 2

‘Go Up’
Act. 4

‘Open’
Act. 6

Figure 6: Qualitative results on a real-world robotics se-
quence. PlaySlot accurately predicts possible futures con-
ditioned on a single reference frame and latent actions.
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Figure 7: Predicted frames using latent actions generated
by the learned policy, and sequences simulated by execut-
ing the decoded latent actions for a) ButtonPress and b)
BlockPush learned behaviors.

curate video frame predictions. Our method outperforms
several baseline models, offering superior controllability
and interpretability. Moreover, we demonstrated that the
learned object representations and latent actions inferred by
PlaySlot can be utilized to predict future frames with pre-
cise robot control, while also enabling the model to learn
complex robot behaviors from unlabeled video demonstra-
tions. This versatility makes PlaySlot a powerful and in-
terpretable world model suitable for various tasks in au-
tonomous systems.



PlaySlot: Learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning

Acknowledgment

This work was funded by grant BE 2556/16-2 (Research
Unit FOR 2535 Anticipating Human Behavior) of the Ger-
man Research Foundation (DFG)

Impact Statement

This paper presents work whose goal is to advance the field
of machine learning by introducing PlaySlot — an object-
centric video prediction model that forecasts future video
frames conditioned on inferred object-centric representa-
tions and latent actions, enhancing its interpretability and
controllability, as well as learning representations that can
be used for action planning. This advancement is particu-
larly relevant for domains such as robotics and autonomous
systems, where understanding and predicting complex en-
vironments are essential for correct and safe operation.
However, the deployment of such models in real systems
requires careful consideration for ethical and safety chal-
lenges, such as biases in the training data or lack of trans-
parency on the decision-making process.

References

Assouel, R., Castrejon, L., Courville, A., Ballas, N., and
Bengio, Y. Vim: Variational independent modules for
video prediction. In Conference on Causal Learning and
Reasoning, pp. 70-89. PMLR, 2022.

Aydemir, G., Xie, W., and Guney, F. Self-supervised
object-centric learning for videos. Advances in Neural
Information Processing Systems (NeurlPS), 36:32879—
32899, 2023.

Bao, Z., Tokmakov, P., Wang, Y.-X., Gaidon, A., and
Hebert, M. Object discovery from motion-guided to-
kens. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2023), pp. 2297222981, 2023.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI), 35(8):1798-1828, 2013.

Biza, O., Van Steenkiste, S., Sajjadi, M. S., Elsayed, G. F,,
Mahendran, A., and Kipf, T. Invariant slot attention:
Object discovery with slot-centric reference frames. In
International Conference on Machine Learning (ICML),
2023.

Brandfonbrener, D., Nachum, O., and Bruna, J. Inverse dy-
namics pretraining learns good representations for mul-
titask imitation. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Bruce, J., Dennis, M. D., Edwards, A., Parker-Holder, J.,
Shi, Y., Hughes, E., Lai, M., Mavalankar, A., Steiger-
wald, R., Apps, C., et al. Genie: Generative interactive

environments. In International Conference on Machine
Learning (ICML), 2024.

Burgess, C. P, Matthey, L., Watters, N., Kabra, R., Hig-
gins, 1., Botvinick, M., and Lerchner, A. Monet:
Unsupervised scene decomposition and representation.
arXiv:1901.11390, 2019.

Cabi, S., Colmenarejo, S. G., Novikov, A., Konyushkova,
K., Reed, S., Jeong, R., Zolna, K., Aytar, Y., Budden,
D., Vecerik, M., et al. Scaling data-driven robotics with
reward sketching and batch reinforcement learning. In
Robotics: Science and Systems (RSS), 2020.

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder—decoder for
statistical machine translation. In Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
2014.

Creswell, A., Kabra, R., Burgess, C., and Shanahan, M.
Unsupervised object-based transition models for 3D par-
tially observable environments. Advances in Neural In-
formation Processing Systems (NeurIPS), 2021.

Cui, Z. J., Pan, H., Iyer, A., Haldar, S., and Pinto, L.
DynaMo: In-Domain Dynamics Pretraining for Visuo-
Motor Control. arXiv preprint arXiv:2409.12192, 2024.

Daniel, T. and Tamar, A. DDLP: Unsupervised Object-
centric Video Prediction with Deep Dynamic Latent Par-
ticles. Transactions on Machine Learning Research
(TMLR), 2024.

Denton, E. and Fergus, R. Stochastic video generation with
a learned prior. In International Conference on Machine
Learning (ICML), 2018.

Dittadi, A., Papa, S., De Vita, M., Scholkopf, B., Winther,
0., and Locatello, F. Generalization and robustness im-
plications in object-centric learning. In International
Conference on Machine Learning (ICML), 2022.

Edwards, A., Sahni, H., Schroecker, Y., and Isbell, C. Im-
itating latent policies from observation. In International
Conference on Machine Learning (ICML), 2019.

Elsayed, G. F., Mahendran, A., van Steenkiste, S., Greff,
K., Mozer, M. C., and Kipf, T. SAVi++: Towards end-
to-end object-centric learning from real-world videos.

In Advances in Neural Information Processing Systems
(NeurlIPS), 2022.



PlaySlot: Learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning

Ferraro, S., Mazzaglia, P., Verbelen, T., and Dhoedt, B. Fo-
cus: Object-centric world models for robotics manipu-
lation. Advances in Neural Information Processing Sys-
tems Workshops (NeurIPSw), 2023.

Greff, K., Van Steenkiste, S., and Schmidhuber, J. On
the binding problem in artificial neural networks. arXiv
preprint arXiv:2012.05208, 2020.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Jiang, J., Deng, F., Singh, G., and Ahn, S. Object-centric
slot diffusion. Advances in Neural Information Process-
ing Systems (NeurlPS), 2023.

Jiang, J., Deng, F., Singh, G., Lee, M., and Ahn, S.
SlotSSMs:  Slot State Space Models. In Advances
in Neural Information Processing Systems (NeurlPS),
2024.

Johnson, S. P. Object perception. In Oxford Research En-
cyclopedia of Psychology. 2018.

Kahneman, D., Treisman, A., and Gibbs, B. J. The review-
ing of object files: Object-specific integration of infor-
mation. Cognitive psychology, 24(2):175-219, 1992.

Kingma, D. P. and Ba, J. A method for stochastic optimiza-
tion. In International Conference on Learning Represen-
tations (ICLR), 2015.

Kipf, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour,
S., Heigold, G., Jonschkowski, R., Dosovitskiy, A., and
Greff, K. Conditional Object-Centric Learning from

Video. In International Conference on Learning Rep-
resentations (ICLR), 2022.

Li, R., Jabri, A., Darrell, T., and Agrawal, P. Towards
practical multi-object manipulation using relational re-
inforcement learning. In IEEE International Conference
on Robotics and Automation (ICRA), 2020.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S.,
Scholkopf, B., and Bachem, O. Challenging common as-
sumptions in the unsupervised learning of disentangled
representations. In International Conference on Machine
Learning (ICML), pp. 4114-4124, 2019.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahen-
dran, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and
Kipf, T. Object-centric learning with slot attention. In In-
ternational Conference on Neural Information Process-
ing Systems (NeurIPS), 2020.

Mamaghan, A. M. K., Papa, S., Johansson, K. H., Bauer,
S., and Dittadi, A. Exploring the effectiveness of object-
centric representations in visual question answering:

10

Comparative insights with foundation models. arXiv

preprint arXiv:2407.15589, 2024.

Menapace, W., Lathuiliere, S., Tulyakov, S., Siarohin, A.,
and Ricci, E. Playable video generation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

Menapace, W., Lathuiliere, S., Siarohin, A., Theobalt, C.,
Tulyakov, S., Golyanik, V., and Ricci, E. Playable en-
vironments: Video manipulation in space and time. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Meo, C., Nakano, A., Licd, M., Didolkar, A., Suzuki, M.,
Goyal, A., Zhang, M., Dauwels, J., Matsuo, Y., and Ben-
gio, Y. Object-centric temporal consistency via condi-
tional autoregressive inductive biases. arXiv preprint
arXiv:2410.15728, 2024.

Mosbach, M., Niklas Ewertz, J., Villar-Corrales, A., and
Behnke, S. SOLD: Reinforcement Learning with Slot
Object-Centric Latent Dynamics. In arXiv preprint
arXiv:2410.08822, 2024.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. Automatic differentiation in PyTorch. In Inter-

national Conference on Neural Information Processing
Systems Workshops (NeurIPS-W), 2017.

Schmidt, D. and Jiang, M. Learning to act without ac-

tions. In International Conference on Learning Repre-
sentations (ICLR), 2024.

Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao,
T., Simon-Gabriel, C.-J., He, T., Zhang, Z., Scholkopf,
B., Brox, T., et al. Bridging the gap to real-world object-
centric learning. In International Conference on Learn-
ing Representations (ICLR), 2023.

Singh, G., Deng, F., and Ahn, S. Illiterate dall-e learns to
compose. arXiv preprint arXiv:2110.11405, 2021.

Singh, G., Wu, Y.-F,, and Ahn, S. Simple unsuper-
vised object-centric learning for complex and naturalis-
tic videos. Advances in Neural Information Processing
Systems (NeurIPS), 35:18181-18196, 2022.

Struckmeier, O. and Kyrki, V. ILPO-MP: Mode Priors Pre-
vent Mode Collapse when Imitating Latent Policies from
Observations. Transactions on Machine Learning Re-
search (TMLR), 2023.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In I[EEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2012.



PlaySlot: Learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning

Van Den Oord, A. and Vinyals, O. Neural discrete repre-
sentation learning. 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in Neural Information
Processing Systems (NeurlPS), 2017.

Villar-Corrales, A., Wahdan, 1., and Behnke, S. Object-
centric video prediction via decoupling of object dynam-
ics and interactions. In IEEE International Conference
on Image Processing (ICIP), 2023.

Wang, X., Li, X., Hu, Y., Zhu, H., Hou, C,, Lan, C., and
Chen, Z. Tiv-diffusion: Towards object-centric move-
ment for text-driven image to video generation. arXiv
preprint arXiv:2412.10275, 2024.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
Image quality assessment: from error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,
13(4):600-612, 2004.

Watters, N., Matthey, L., Burgess, C. P., and Lerchner, A.
Spatial broadcast decoder: A simple architecture for dis-
entangled representations in VAEs, 2019. URL https:
//openreview.net/forum?id=S1x7WjnzdV.

Wu, Z., Dvornik, N., Greff, K., Kipf, T., and Garg, A. Slot-
Former: Unsupervised visual dynamics simulation with
object-centric models. In International Conference on
Learning Representations (ICLR), 2023a.

Wu, Z., Hu, J., Lu, W,, Gilitschenski, 1., and Garg, A.
Slotdiffusion: Object-centric generative modeling with
diffusion models. In Advances in Neural Information
Processing Systems (NeurIPS), volume 36, pp. 50932—
50958, 2023b.

Ye, S., Jang, J., Jeon, B., Joo, S., Yang, J., Peng, B., Man-
dlekar, A., Tan, R., Chao, Y.-W., Lin, B. Y., et al. Latent
action pretraining from videos. International Conference
on Learning Representations (ICLR), 2024.

Ye, W., Zhang, Y., Abbeel, P., and Gao, Y. Become a pro-
ficient player with limited data through watching pure
videos. In International Conference on Learning Repre-
sentations (ICLR), 2022.

Yoon, J., Wu, Y.-F,, Bae, H., and Ahn, S. An investiga-
tion into pre-training object-centric representations for
reinforcement learning. In International Conference on
Machine Learning (ICML), 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalu-
ation for multi-task and meta reinforcement learning. In
Conference on Robot Learning (CoRL), pp. 1094—1100,
2020.

11

Zadaianchuk, A., Seitzer, M., and Martius, G. Object-
centric learning for real-world videos by predicting tem-
poral feature similarities. Advances in Neural Informa-
tion Processing Systems (NeurlPS), 36, 2024.

Zhang, C., Gupta, A., and Zisserman, A. Is an object-
centric video representation beneficial for transfer? In
Asian Conference on Computer Vision (ACCV), pp.
1976-1994, 2022.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and
Wang, O. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
586-595, 2018.

Zoran, D., Kabra, R., Lerchner, A., and Rezende, D. J.
Parts: Unsupervised segmentation with slots, attention
and independence maximization. In IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pp.
10439-10447, 2021.


https://openreview.net/forum?id=S1x7WjnzdV
https://openreview.net/forum?id=S1x7WjnzdV

PlaySlot: Learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning

A. Limitations & Future Work

We recognize two main limitations that currently limit the scope of our PlaySlot framework to simple tabletop robotic
scenarios, preventing it from generalizing to more complex domains.

Limited Decomposition Model The first limitation arises from the SAVi object-centric decomposition model used at
the core of our framework. SAVi achieves a great decomposition performance on datasets with objects of simple shapes
and textures. However, it fails to generalize to complex real-world robotic scenarios, hence limiting the current scope of
PlaySlot to robotic tabletop simulations, or simple real-world environments as in Sketchy.

Single Latent Action The second limitation lies at the representational capability of our latent actions and action proto-
types. In robotic scenarios, several actions often happen simultaneously, such as moving and rotating the robot, as well as
opening or closing the gripper. Our current latent action representation jointly models the scene’s inverse dynamics, en-
coding together all actions into a single latent space. This entangled representation limits our ability to control the agents
in the scene with greater precision.

Future Work In future work, we plan to extend our proposed PlaySlot framework with more capable decomposition
models, such as DINOSAUR (Seitzer et al., 2023) or SOLV (Aydemir et al., 2023), as well as scale our inverse dynamics
and predictor models. Furthermore, we can employ factorized latent action vectors, which represent in a disentangled
manner different actions that happen simultaneously, such as moving the robot arm and opening the gripper. We believe
that this architectural modifications will enable us to use PlaySlot on more complex robotic simulations and perform real-
world robotic experiments.

B. Implementation Details

In this section, we describe the network architecture and training details for each of the components in our PlaySlot
framework. Our models are implemented in PyTorch (Paszke et al., 2017) and are trained on a single NVIDIA A100 GPU.

B.1. Object-Centric Learning

We closely follow Kipf et al. (2022) for the implementation of the SAVi object-centric decomposition model, which we
employ as scene parsing and object rendering modules. We strictly adhere to the architecture of their proposed CNN-based
image encoder Esayi, slot decoder Dsayi, transformer-based dynamics transition module, and Slot Attention corrector. We
use a variable number of 128-dimensional object slots, depending of the dataset. Namely, we employ eight object slots
on BlockPush, four object slots on ButtonPress, and three object slots on GridShapes. On all datasets, we sample the
initial object slots Sy from a Gaussian distribution with learned mean and covariance. Furthermore, we use three Slot
Attention iterations for the initial video frame to obtain a good initial object-centric decomposition, and a single iteration
for subsequent frames, which suffices to recursively update the slot representation state given the newly observed image
features.

B.2. Inverse Dynamics Module
We propose two variants of our InvDyn module.

InvDyng: InvDyng jointly processes the objects slots from a single time step S; along with an additional token [ACT] us-
ing a transformer encoder. We use a four-layer transformer encoder with a 256-dimensional tokens, four 64-dimensional
heads and hidden dimension of 1024. This module aggregates information from the object slots into the [ACT] token, and
outputs a single latent action Z, that captures the agent’s action, making it well-suited for single-agent environments.

InvDyn,;: InvDyn,, independently processes each object slot with a shared MLP, thus generating Ng latent action em-
beddings, each representing the action of a specific object in the scene. This design makes InvDyn,,; well-suited for
environments with multiple moving agents. We employ a two-layer MLP, featuring a ReLU nonlinear activation and layer
normalization.

As described in Sec. 3.2.2, the generated latent actions Z; are vector-quantized to assign them to their corresponding action
prototype p,. On the ButtonPress, BlockPush, and Sketchy datasets, we use the InvDyng variant with eight different
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16-dimensional action prototypes, whereas for GridShapes we use InvDyn,,; with five distinct eight-dimensional action
prototypes. Following common practice, we update the action prototypes using the exponential moving average updates of
cluster assignment counts (Van Den Oord & Vinyals, 2017).

B.3. Conditional Object-Centric Predictor

Our conditional object-centric predictor (cOCVP) is inspired by the transformer-based SlotFormer (Wu et al., 2023a)
architecture. Our cOCVP module features four layers, 256-dimensional tokens, eight 64-dimensional attention heads, and
hidden dimension of 512.

To enable predictions conditioned on the inferred latent actions, cOCVP maps the action prototypes p,.;, variability em-
beddings o,?., and object slots into the token dimensionality. The slots are then conditioned by adding them with the
projected action prototype and variability embedding from the corresponding time step. Furthermore, following Wu et al.
(2023a), we augment these representations with a temporal sinusoidal positional encoding.

B.4. Policy Model and Action Decoder

The policy model f, follows a similar architecture to InvDyng. f is a four layer transformer that jointly processes the
objects slots from a single time step S; and an additional token [ACT]in order to regress a latent action.

The action decoder is a three-layer MLP with a hidden dimension of 128 that maps latent action vectors into real-world
actions.

B.S. Training Details

SAVi Training: SAVi is trained for object-centric decomposition using the Adam optimizer (Kingma & Ba, 2015), a batch
size of 64, sequences of length eight frames, and a base learning rate of 10, which is linearly warmed-up for the first
4000 steps, followed by cosine annealing for the remaining of the training process. Moreover, we clip the gradients to a
maximum norm of 0.05.

InvDyn and cOCVP Training: We jointly train our InvDyn and cOCVPmodules given a pretrained SAVi decomposition
model. These modules are trained with the Adam optimizer (Kingma & Ba, 2015), batch size of 64, and a base learning
rate of 2 x 10~%, which decreases during training with a cosine annealing schedule. To stabilize the training, we clip the
gradients to a maximum norm of 0.05. We set the loss weights t0 Ajmg = 1, Agior = 1, and Ayq = 0.25.

f= and D, Training: We train the f, and D, modules given pretrained and frozen SAVi, InvDyn and cOCVPmodules.
These modules are trained with the Adam optimizer (Kingma & Ba, 2015), batch size of 64, and a fixed learning rate of
2 x 1074

C. Dataset Details
C.1. BlockPush

This environment, inspired by Li et al. (2020) and simulated using MuJoCo (Todorov et al., 2012), features a robot arm on
a tabletop interacting with multiple uni-colored blocks. We use two different dataset variants.

The first variant consists of a robot controlled by a random exploration policy, moving in the environment with minimal
meaningful object interactions. This easily simulated dataset includes 20,000 training sequences and 2,000 validation
sequences. We use this dataset variant for training SAVi, as well as for jointly training our inverse dynamics and conditional
predictor modules.

The second variant contains a smaller subset of expert demonstrations where the robot is tasked to push the block of distinct
color to a target location marked with a red sphere. This task evaluates the capabilities of an agent to reason about object
relations and model object collisions. We collect 5,000 expert demonstrations using a pretrained policy (Mosbach et al.,
2024) with a success rate of &~ 80% for this pushing task. We split this dataset into 4,500 training sequences, which are
used for training the policy model and action decoder; and 500 evaluation sequences that are used for benchmarking the
prediction models.
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C.2. ButtonPress

This environment, based on MetaWorld (Yu et al., 2020) features a Sawyer robot arm tasked with pressing a red button.
Unlike BlockPush, it involves a non-object-centric task with complex shapes and textures. As before, we use two different
dataset variants.

The first variant contains 10,000 sequences, split into 9,000 training and 1,000 validation videos, with the robot controlled
by a random exploration policy. We use this dataset variant to train SAVi, as well as our inverse dynamics and conditional
predictor modules.

The second variant includes a small subset of expert demonstrations where the robot successfully presses the red button.
We collect 1,000 expert demonstrations using an expert policy, from which 900 are used for training the policy model and
action decoder, and 100 demonstrations are used for benchmarking the prediction models.

C.3. GridShapes

This dataset features one or more simple 2D shapes moving in a grid-like pattern on top of a colored background. The
shapes can be either a ball, triangle or square, and have a random color. These shapes can move up, down, left, right or
remain still, and revert their motion when an image boundary is reached, thus emulating a bouncing effect. To introduce
some stochasticity into the motion, the shapes randomly change direction with a predefined probability of 0.25. We train
and evaluate the models on several variants of the GridShapes dataset featuring different number of objects, ranging from
one single moving shape, to five objects moving independently in the same sequence. This simple dataset serves as
benchmark to evaluate a model’s ability to jointly predict the motion of multiple moving agents in the scene.

D. Baselines

In our experiments, we compare our approach with different baseline models, including the stochastic and playable video
prediction models SVG (Denton & Fergus, 2018) and CADDY (Menapace et al., 2021), as well as the object-centric video
prediction models SlotFormer (Wu et al., 2023a) and OCVP (Villar-Corrales et al., 2023).

D.1.SVG

SVG (Denton & Fergus, 2018) is a generative model for video prediction that captures both deterministic dynamics and
stochastic variations in video sequences. It combines a variational autoencoder (VAE) with recurrent neural networks
(RNNs) to model stochastic temporal dynamics. SVG represents a probabilistic framework, where the next frame XH 11s
generated based on the previous frame X; and a latent sample Z; drawn from a latent distribution. In our experiments, we
adapt the original implementation' and use an SVG variant with a learned prior, VGG-like encoder and decoders, and two
recurrent predictor layers.

Main Difference with PlaySlot: SVG operates with holistic scene representations, whereas our proposed method employs
a structured object-centric representation. Furthermore, SVG encodes the stochastic scene dynamics into a single contin-
uous latent vector. In contrast, PlaySlot follows a hybrid approach in which the latent action vectors are composed of an
action prototype and action variability embeddings, making the prediction process more controllable and interpretable.

D.2. CADDY

CADDY (Menapace et al., 2022) is a recurrent encoder-decoder model designed for playable video generation, enabling
user-controllable future video prediction. CADDY infers latent actions that encode the agent’s actions between consecutive
pairs of frames. These latent actions are parameterized with a discrete one-hot action label, which determines the high-level
action taking place; and a high-dimensional action variability embedding, which describes the variability of each action
and captures the possible non-determinism in the environment. We adapt the original implementation® for our experiments.

Main Difference with PlaySlot: CADDY operates with holistic scene representations, i.e. CNN features, whereas our
proposed method employs a structured object-centric representation. Moreover, despite both methods using a hybrid
parameterization of the latent actions, they differ in their implementation. CADDY learns a discrete one-hot action label

'"https://github.com/edenton/svg
https://github.com/willi-menapace/PlayableVideoGeneration
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by minimizing multiple regularization objectives, including an action matching loss and several Kullback-Leibler (KL)
divergences losses. In contrast, PlaySlot employs a discrete set of high-dimensional action prototypes, which are learned
via vector-quantization of the latent space. We empirically verify that both approaches achieve comparable performance.
However, our vector quantization approach requires significantly fewer hyper-parameters and is easier to tune.

D.3. SlotFormer

SlotFormer (Wu et al., 2023a) is an object-centric video prediction model that builds upon slot-based representations.
First, it uses Slot Attention to decompose an image into object-centric latent representations, called slots. SlotFormer
then employs a transformer-based autoregressive predictor module, which jointly processes all input slots in order to
forecast future object representations. Finally, the predicted slots are decoded into object images and video frames. In our
experiments, we adapt the original implementation®.

Main Difference with PlaySlot: SlotFormer forecasts future slots in an unconditional manner, thus not being able to
model stochastic environments or agents such as robots. PlaySlot addresses this challenge by inferring the scene inverse
dynamics and using them to condition the prediction process.

D.4. OCVP

OCVP (Villar-Corrales et al., 2023), similar to SlotFormer, is a slot-based object-centric video prediction model. Differing
from SlotFormer, OCVP leverages to specialized decoupled attention mechanisms, relation and temporal attention, which
model the object interactions and dynamics, respectively. In our experiments, we use the OCVP-Seq variant with default
settings adapted from original implementation®.

Main Difference with PlaySlot: OCVP forecasts future slots in an unconditional manner, thus not being able to model
stochastic environments or agents such as robots. PlaySlot addresses this challenge by inferring the scene inverse dynamics
and using them to condition the prediction process.

E. Additional Results
E.1. Effect of the Number of Actions

In Tab. 3 we evaluate on the BlockPush dataset multiple PlaySlot variants using a different number of learned action
prototypes. We show that using eight learned action prototypes achieves the best video prediction performance, while
learning a concise semantically meaningful set of action prototypes.

Table 3: Evaluation of PlaySlot variants on the BlockPush dataset using a different number of learned action prototypes.

BlockPush
# Actions PSNRT  SSIMtT  LPIPS|
5 21.26 0.886 0.071
8 21.41 0.890 0.066
10 21.36 0.889 0.067
15 21.38 0.889 0.067

E.2. Learned Behaviors from Expert Demonstrations

We evaluate the ability of PlaySlot to learn robot behaviors from a small set of expert demonstrations. As outlined
in Sec. 4.4, we train a policy model and an action decoder to imitate ButtonPress and BlockPush behaviors from a small
set of expert demonstrations. We compare PlaySlot to oracle baselines that have direct access to expert action labels. This
comparison allows us to assess the effectiveness of object-centric representations and inferred latent actions for downstream
robotic tasks.

ButtonPress Behavior: We quantitatively compare our learned policy model, which imitates the ButtonPress behavior,
against oracle baselines. These models have access to all available expert demonstrations and directly regress the ground-

*https://github.com/pairlab/SlotFormer
4https ://github.com/AIS-Bonn/OCVP-object-centric-video-prediction
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Figure 8: Success rate (%) as a function of the number of expert demonstrations for different models on the a) But-
tonPress and b) BlockPush environments. Object-centric models (Slot Oracle, PlaySlot and SOLD) outperform their
non-object centric counterparts. PlaySlot consistently improves with more expert demonstrations, outperforming CADDY.

truth actions from object-centric representations (Slot Oracle), ResNet feature maps (ResNet Oracle), and from feature
maps output by the CADDY encoder (CADDY Oracle), respectively. Unlike these oracles, PlaySlot autoregressively
predicts latent actions within its latent imagination before decoding them into executable actions. Additionally, we compare
with a modified CADDY variant, which includes a small policy model and action decoder designed output latent actions
from observed feature maps and decode them into real-world actions, respectively.

The results, shown in Fig. 8a), demonstrate that PlaySlot consistently outperforms CADDY across all training regimes.
With as few as 200 demonstrations, PlaySlot achieves comparable performance to the CADDY Oracle, which has direct
access to more expert demonstrations and ground-truth actions. As the number of demonstrations increases, PlaySlot
continues to improve, approaching the performance of the oracle models, while CADDY struggles to generalize. These
findings highlight the effectiveness of PlaySlot’s object-centric representations in capturing meaningful action dynamics,
enabling efficient behavior learning from limited expert data. Additionally, we observe that slot-based object-centric mod-
els outperform their holistic counterparts, further emphasizing the advantage of structured object-centric representations
for learning robot behaviors.

Fig. 9 illustrates PlaySlot’s learned behavior in the ButtonPress environment. The top row in each sequence (labeled
as Latent Behavior) shows predicted trajectories within PlaySlot’s latent imagination, where the model autoregressively
generates actions using the policy model and predicts future scene states in the latent space. The bottom row (labeled Sim.
Actions) depicts the simulated execution of the decoded latent actions in the environment. PlaySlot learns to solve the task
within its latent imagination, successfully reasoning about the required action sequences before translating its latent actions
into executable motions. Fig. 9b) shows a failure case where PlaySlot predicts within its latent imagination a trajectory
that leads to successfully pressing the button. However, accumulated errors during action decoding cause the simulated
execution to miss the button.

BlockPush Behavior: We quantitatively evaluate PlaySlot on the challenging BlockPush task, which requires reasoning
about specific object properties. In this task, our learned policy model imitates the behavior based on expert demonstrations,
with only approximately 80% of these demonstrations being successful. The imperfect nature of the expert data adds an
extra layer of difficulty to the learning process.

We compare PlaySlot against two model-based reinforcement learning models with holistic (DreamerV3 (Hafner et al.,
2023)) and object-centric (SOLD (Mosbach et al., 2024)) latent spaces, both of which learn the robot behavior by interact-
ing with the environment. The results are shown in Fig. 8b). As the number of demonstrations increases, PlaySlot closes
the gap with the baseline models, demonstrating its ability to generalize effectively from limited data.

Fig. 11 illustrates PlaySlot’s learned behavior in the BlockPush environment. The top row in each sequence (labeled
as Latent Behavior) shows predicted trajectories within PlaySlot’s latent imagination, where the model autoregressively
generates actions using the policy model and predicts future scene states in the latent space. The bottom row (labeled Sim.
Actions) depicts the simulated execution of the decoded latent actions in the environment. PlaySlot learns to solve the task
within its latent imagination, successfully reasoning about object properties and generating a precise sequence of latent
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Figure 9: Predicted frames using latent actions from the learned policy, and sequences simulated by executing the decoded
latent actions for two ButtonPress scenarios. a) PlaySlot successfully plans the trajectory within its latent imagination and
translates latent actions into executable motions. b) PlaySlot fails to decode its latent actions into correct robot motion,
missing the button.

actions, which can be decoded into executable motions. Fig. 11c) shows a failure case where PlaySlot controls the robot to
interact with the correct block, but fails to place it in the target location.

E.3. Qualitative Results
E.3.1. COMPARISON WITH BASELINES

Fig. 10 depicts a qualitative comparison between SVG, CADDY and PlaySlot on the ButtonPress and BlockPush datasets,
respectively. On the ButtonPress dataset, as shown in Fig. 10a), all methods accurately model the trajectory of the robot
arm. However, on the complex BlockPush task, depicted in Fig. 10b), SVG and CADDY fail to model the object col-
lisions, failing to move the block of distinct color to the target location, and leading disappearing objects. In contrast,
PlaySlot maintains sharp object representations and correctly models interactions between objects, leading to accurate
frame predictions.

E.3.2. BLOCKPUSH DATASET

Fig. 12 shows two qualitative comparisons between PlaySlot, CADDY and SVG on the BlockPush dataset. Our proposed
method, which explicitly models object interactions, preserves sharp object representations and accurately predicts future
frames. In contrast, SVG and CADDY, which rely on holistic scene features for forecasting, struggle to model object
collisions, resulting in blurry predictions and disappearing objects.

Fig. 13 shows the predicted video frames, slot masks, and objects representations on a BlockPush sequence. PlaySlot
parses the scene into precise object images and masks, which can be assigned a unique color to obtain a segmentation of
the scene. Our approach decomposes the BlockPush environment using eight object slots, where one slot represents the
background, five slots to different blocks, one slot to the red target, and one slot to the robot arm. The sharp object images
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Figure 10: Qualitative comparison on (a) ButtonPress and (b) BlockPush datasets. Our method accurately predicts the
scene dynamics, whereas the baselines fail to model object physics and interactions, leading to disappearing objects and
failing to predict the pushing of the cyan block to the target location.

and masks demonstrate that PlaySlot encodes into each slot features from the corresponding object. This allows our method
to directly reason about object properties, dynamics and interactions, allowing for accurate future frame predictions.

Fig. 14 depicts the effect each action prototype learned by PlaySlot on the BlockPush dataset. PlaySlot learns consistent
semantically meaningful action prototypes that control the robot arm to move in a specific direction. We note that some
actions prototypes, e.g, action 5 and 7, perform semantically similar actions but with different velocities.

E.3.3. BUTTONPRESS DATASET

Fig. 15 shows a comparisons between PlaySlot, CADDY and SVG on the ButtonPress dataset. All methods successfully
predict the ground truth sequence by inferring and modeling the robot’s dynamics,

Fig. 16 shows PlaySlot’s predictions and object representations on a ButtonPress sequence. We visualize the ground truth
sequence, the predicted frames, segmentation obtained by assigning a different color to each slot mask, as well as the object
reconstructions for four slots. PlaySlot assigns one slot to the background, one slot for box and red button, and two slots
for different parts of the robot arm.

Fig. 17 depicts the effect each action prototype learned by PlaySloton the ButtonPress dataset.

E.3.4. GRIDSHAPES DATASET

Fig. 18 depicts the effect each action prototype learned by PlaySlot on a variant of GridShapes with three shapes. PlaySlot
successfully captures the five possible object movements—up, down, left, right, and stay—predicting future frames by
modeling the motion of each object independently. However, we observe that PlaySlot sometimes generates artifacts when
shapes reach the image boundaries. We attribute this to the training data, where objects change direction upon reaching the
boundary mimicking a bouncing effect. This leads to poor prediction performance when conditioning the model to predict
outside its training distribution.

E.3.5. SKETCHY DATASET

Fig. 19 shows PlaySlot’s predictions and object representations on a Sketchy sequence. We visualize the ground truth
sequence, the predicted frames, segmentation obtained by assigning a different color to each slot mask, as well as the
object reconstructions for four slots. PlaySlot assigns two slots to the workspace and background, two slots for each part
of the robot gripper, and two slots for different objects present in the scene.
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Sim. Actions Latent Behavior
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Sim. Actions Latent Behavior

Figure 11: Predicted frames using latent actions from the learned policy, and simulation computed by executing the decoded
latent actions for three BlockPush scenarios. a) & b) PlaySlot identifies the block of distinct color and generates executable
latent actions to push it to the target location. ¢) PlaySlot identifies the block but fails to push it into the target location.
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Figure 12: Qualitative comparison on BlockPush. Our method accurately predicts the scene dynamics and object interac-
tions, whereas the baselines fail to model object collisions, leading to blurry or disappearing objects.
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Figure 13: PlaySlot predictions and object representations on a BlockPush sequence. We visualize the ground truth se-
quence, the predicted frames, segmentation obtained by assigning a different color to each slot mask, as well as the object
reconstructions for five slots. PlaySlot assigns one slot to the background, one slot for the robot, one slot for the red target,
and the remaining slots to the blocks.
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Figure 14: PlaySlot predictions conditioned on different latent actions, including the inferred inverse dynamics, as well as
each action prototypes learned on BlockPush. We generate a sequence by repeatedly conditioning the prediction process
on a a single action prototype. The model learns action prototypes that control the robot to move consistently on a specific
direction.
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Figure 15: Qualitative comparison on ButtonPress. All methods successfully reconstruct the ground truth sequence by
inferring the robot’s trajectory.
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Figure 16: PlaySlot predictions and object representations on a ButtonPress sequence. We visualize the ground truth
sequence, the predicted frames, segmentation obtained by assigning a different color to each slot mask, as well as the
object reconstructions for four slots. PlaySlotassigns one slot to the background, one slot for box and red button, and two
slots for different parts of the robot arm.
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Figure 17: PlaySlot predictions conditioned on different latent actions, including the inferred inverse dynamics, as well as
each action prototypes learned on ButtonPress. We generate a sequence by repeatedly conditioning the prediction process
on a a single action prototype. The model learns action prototypes that control the robot to move consistently on a specific
direction.
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Figure 18: PlaySlot predictions conditioned on different latent actions, including the inferred inverse dynamics, as well
as each action prototypes learned on the GridShapes dataset. We generate a sequence by repeatedly conditioning the
prediction process on a a single action prototype. The model learns the five possible actions and achieves sharp predictions
by forecasting the motion of each object individually.
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Figure 19: PlaySlot predictions and object representations on a Sketchy sequence. We visualize the ground truth sequence,
the predicted frames, segmentation obtained by assigning a different color to each slot mask, as well as the object recon-
structions for four slots. PlaySlot assigns two slots to the workspace and background, two slots for each part of the robot
gripper, and two slots for different objects present in the scene.
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