Logic-Thinker: Teaching Large Language Models to Think more Logically.

Anonymous ACL submission

Abstract

Recent Large Reasoning Models (LRMs) have
demonstrated the ability to generate long chains
of thought (LongCoT) before arriving at a final
conclusion. Despite remarkable breakthroughs
in complex reasoning capabilities, LongCoT
still faces challenges such as redundancy and
logical incoherence. To address these issues,
we aim to equip large language models (LLMs)
with rigorous and concise logical reasoning
capabilities. In this work, we propose Logic-
Thinker, a neural-symbolic reasoning frame-
work that employs symbolic solvers to pre-
cisely solve problems and transforms their in-
ternal solving processes into concise and rigor-
ous chains of thought, referred to as Thinker-
CoT. Our experimental results demonstrate that
Logic-Thinker achieves state-of-the-art perfor-
mance in logical reasoning problems. Addition-
ally, LLMs fine-tuned with ThinkerCoT outper-
form models distilled from QwQ32B on logic
reasoning tasks, achieving an overall accuracy
improvement of 3.6% while reducing token out-
put by 73%-91%. Furthermore, ThinkerCoT
enhances the comprehensive reasoning capabil-
ities of LLMs, as evidenced by performance
improvements on reasoning benchmarks such
as GPQA and AIME.

1 Introduction

Large language models (LLMs), such as the GPT
series(OpenAl, 2023) and the Qwen series(Yang
et al., 2024), have demonstrated remarkable capa-
bilities across a wide range of natural language
understanding tasks(Chang et al., 2024; Kasneci
et al., 2023; Zhu et al., 2024). However, their per-
formance in complex reasoning problems has re-
mained suboptimal. To address this challenge, a
new type of model has emerged in recent years:
Large Reasoning Models (LRMs). By generat-
ing a long chain of thought (CoT)(Wei et al.,
2022) before reaching the final conclusion, these
models have achieved significant breakthroughs

in many challenging reasoning tasks(Patel et al.,
2024a; Rein et al., 2023; White et al., 2025).
This inference-time scaling paradigm was popu-
larized by OpenAl-01(OpenAl, 2024), DeepSeek-
RI1(DeepSeek-Al, 2025), and QwQ(Team, 2025),
gaining significant traction in the industry. Cur-
rently, a large number of studies are following this
paradigm in an effort to enhance the upper limits
of reasoning capabilities.

However, recent studies have highlighted several
issues with this LongCoT reasoning paradigm: 1)
Redundant Content, including question restate-
ments, verbose explanations and repetitive narra-
tives(Munkhbat et al., 2025), results in a large
amount of unnecessary token completion. 2) Over-
thinking, specifically manifested as the repeated
verification of some straightforward and direct
questions(Chen et al., 2025; Qu et al., 2025). 3)
Incoherent Reasoning, when dealing with com-
plex reasoning problems, LRMs may superficially
jump between approaches, leading to shallow, frag-
mented reasoning, rather than a deep, coherent anal-
ysis(Wang et al., 2025).

To address these issues, many studies have pro-
posed the idea of compressing LongCoT while re-
taining its critical reasoning steps. Through super-
vised fine-tuning (SFT), the refined CoT enables
LLMs to acquire the capability if concise reasoning.
Experiments have demonstrated that such meth-
ods can effectively reduce CoT redundancy while
maintaining reasoning accuracy. Rather than post-
processing LongCoT, some research has delved
deeper into the fundamental causes of these is-
sues, finding that LLMs allocate a large portion
of their output to text coherence rather than core
reasoning advancement(Su et al., 2025; Luo et al.,
2025). On the other hand, the LongCoT capabil-
ity of LRMs originates from the exploration of the
response space during the Reinforcement Learn-
ing (RL)(Sutton and Barto, 1998) stage, primarily
aiming at obtaining accuracy at the solution level,

while the consistency of the intermediate reasoning
process has been overlooked(Fatemi et al., 2025).
Based on these conclusions, we propose that the re-
dundancy, overthinking, and incoherent reasoning
issues of LLMs are primarily caused by the inabil-
ity of rigorous logic reasoning. Such rigorous logic
reasoning ability is particularly critical in many
logical reasoning tasks, including deduction, induc-
tion and hypothesis testing. Therefore, we focus on
logical reasoning problems and aim to translate the
inherent precise reasoning paths of neuro-symbolic
solvers into concise and logically rigorous CoTs,
thereby equipping LLMs with robust and concise
reasoning capabilities.

In this work, We introduce Logic-Thinker, a
neuro-symbolic reasoning framework that inte-
grates both logic problem-solving and reasoning
CoT generation capabilities. Logic-Thinker con-
sists of three core modules: a Formulator for
converting logical reasoning problems into sym-
bolic expressions, a LogicSolver for executing sym-
bolic expressions to solve problems, and a CoT-
Generator for transforming the solver’s internal
execution process into CoTs, referred to as Thinker-
CoT. We categorize common logical reasoning
problems into two types: FOL (First-Order Logic)
and CSP (Constraint Satisfaction Problems), and
implement them respectively in the three modules.

The rest of this paper is organized as follows.
section 2 presents related work. We present pre-
liminaries in section 3. Our approach is discussed
in section 4. We conduct comprehensive experi-
ments to evaluate the effectiveness of out proposed
methods in section 5 and we conclude the paper in
Section 6.

In summary, we make the following contribu-
tions in this paper.

* We propose Logic-Thinker, a novel neuro-
symbolic reasoning framework consists the
capability of logic reasoning and CoT gener-
ation. Our framework achieves state-of-the-
art (SOTA) performance on logical reasoning
tasks.

* We utilize Logic-Thinker to generate Long-
CoT data on several logical reasoning
datasets, our SFT experiments demonstrate
that ThinkerCoT significantly reduces the re-
dundancy of LongCoT while further enhanc-
ing logical reasoning capabilities.

* We conducted an extension experiment to

demonstrate that this rigorous logical reason-
ing capability can enhance the overall reason-
ing capabilities of LLMs.

2 Related Work

2.1 Concise Reasoning with SFT

SFT is a straightforward way to help models learn
how to follow the instructions. There exist serval
methods that fine-tune the models to achieve con-
cise and accurate reasoning. Token Budget-Aware
LLM Reasoning(Han et al., 2024b) first produces
the target output by prompting the model with a
CoT prompt that includes the optimized token bud-
get, then they train the model with SFT to produce
answers that adhere to the token budget. To elimi-
nate redundant information in the reasoning chain,
C30T(Kang et al., 2024) employs GPT-4(OpenAl,
2023) as a compressor, preserving key information
throughout the reasoning process. The model is
then fine-tuned to learn the relationship between
long and short CoTs. These works focus on con-
trolling the length of CoT generated by large LLMs
while maintaining the accuracy of reasoning. How-
ever, we take a different approach by relying on
solvers to generate absolutely rigorous reasoning
processes, rather than relying on LLMs for genera-
tion.

2.2 Neuro-Symbolic Reasoning

Neuro-symbolic approaches aim to enhance the log-
ical reasoning capabilities of LLMs by integrating
them with symbolic systems. In LINC (Olausson
et al., 2023), an LLM is used to generate statements
in First Order Logic (FOL), which are given to a
FOL solver. To mitigate formalization errors, they
generate K formalizations and make use of Kway
majority voting to decide on the correct response.
Logic-LM (Pan et al., 2023) is able to handle a
broader range of problem types by supporting mul-
tiple symbolic formalizations and solvers, More-
over, a self-refinement module is introduced, which
utilizes error messages from the symbolic solver to
modify the symbolic formalization. However, the
information loss during the formalization process
may lead to reasoning failures, furthermore, most
of these work only focus on the accuracy of the
final result, while the execution processes of the
solvers have either been overlooked or not effec-
tively utilized.

3 Preliminary

3.1 First-Order Logic Problem

First-Order Logic (FOL) problem is a form of logi-
cal deduction problem which extends propositional
logic by allowing quantification over individual
variables, enabling the expression of more com-
plex statements and concepts. It is widely used
in computer science, artificial intelligence, mathe-
matics, and philosophy for formal reasoning and
knowledge representation.

3.2 Constraint Satisfaction Problems

A Constraint satisfaction problem (CSP) seeks so-
lution by assigning values to a set of variables
while satisfying a number of constraints or con-
ditions. Formally, Given (X, D, (') where X =
{X1, X2, ..., Xy} is the set of variables, D =
{D1,Da, ..., D, } represents their respective do-
mains of values, C = {C4,Cy, ...,Cy, } is the set
of constraints restricting variable assignments. For
every constraint C; € C'is a pair of (7};, R;) where
T; C X and R; defines the relationships that T}
should satisty.

4 Logic-Thinker

Symbolic solvers possess an inherent capability
for rigorous reasoning: 1) The symbolic system
ensures that each step’s conclusion is determinis-
tic rather than probabilistic and is verifiable. 2)
Solvers follow a systematic search methodology,
exploring the solution space exhaustively to ensure
that no potential reasoning paths are overlooked.
To enable LLMs to acquire such rigorous reason-
ing capabilities, we propose Logic-Thinker, which
enables the transformation of the symbolic solver’s
internal execution process into concise and logi-
cally rigorous CoT, named ThinkerCoT. As shown
in Figure 1, Logic-Thinker consists of three mod-
ules: A Formulator that formalizes natural lan-
guage problems into symbolic expressions, a Log-
icSolver that executes symbolic expressions and
derives conclusions, and a CoT Generator that
produce ThinkerCoT based on reasoning processes.

4.1 Formulator

In this module, we leverage the in-context learn-
ing (ICL) capability of LLMs to translate natural
language logic reasoning problems into symbolic
representations. We implement a FOL Formulator
and a CSP Formulator for these two categories of
problems respectively.

FOL Formulator

Some previous studies use First-Order Logic to for-
malize problems and utilized certain open source
FOL-solvers to address such problems. However,
their accuracy remains suboptimal especially in
complex problems, primarily due to information
loss during the formalization process. After care-
fully analysis of the bad cases, we found the pri-
mary information losses lies in semantic informa-
tion loss of Predicates. As shown in Figure 2, even
when the problem is correctly formalized into FOL
expressions, the solver is unable to deduce due to
the loss of the subClassOf relationship between
Gentleman and Man.

To address this issue, we combine certain se-
mantic properties of OpenSPG(Liang et al., 2024;
Yi et al., 2024), such as subClassOf, with FOL to
create a semantic-enhanced FOL expression, refer-
eed to as SeFOL. After the formalization of FOL
expressions, we introduce a Semantic Extraction
step to collect all the predicates and functions as
P, we then prompt LL.Ms to extract semantic rela-
tionships in P, ruseults in S, which will be passed
to the LogicSolver module along with the FOL ex-
pressions for reasoning. We provide an example of
formalization prompt in Appendix A.1

CSP Formulator

XCSP3(Boussemart et al., 2024) is a standard-
ized format for representing and exchanging con-
straint satisfaction problems and related optimiza-
tion problems. As the third iteration of the XML
CSP (XCSP) series, XCSP? provides a simple,
readable, and parsable XML-based format that al-
lows researchers and developers to share models
of various types of constraint problems. To solve
CSP problems, we extended XCSP? to support the
representation of question and option choices. An
example of prompt is provided in Appendix A.2

4.2 LogicSolver

The LogicSolver module is designed for solving
formalized problems and outputting the execution
process to the downstream CoT Generator module.
In addition, LogicSolver provides a syntax checker
to verify the syntax correctness of the formalized
problem. If there are syntax errors, it will provide
the error details to the upstream Formulator module
for re-formalization.

i i ThinkerCoT

Given Statements:

Gentleman(Harry)

Fact1: Harry is gentleman

Rule1: A man is either kind or evil.
Rule2

Rule2: All gentleman are not evil.

FOL Problem ‘ormalization Reasoning
i Facts
| [Gentleman(Harry)
A man is either kind or evil. All gentleman are | ! :
: i i Rules : Semantic
i not evil. Harry is a gentleman. : = :
H wx (Gentleman(x) > -Evil(x)) P (Man(Harry|)
vx (Man(x) - Kind(x) ® Evil(x)) :

i Question Pl] "
H . Semantic Extension

-Evil(Harry)
Step-by-step Analysis:
Rule’
Rule1

C1: From Statement Fact1 and Rule2, Harry is not evil.

i Is it true, false or uncertain? ubClassOf(Gentleman, Man) Kind(Harry) C2: Scinece gentleman is sub class of man. Harry is man.
! Harry is Kind. H : {1 C3:From C1, C2, Rulel: Harry is kind.
H . | Question H H
: Kind(Harry) i 1 Final Answer: True
Formulator L CoT Generator
{: FOL Formulator Syntax B Reasoning Generate
Self Refine Alignment
csp Formu\ator] :] Check Gecsening Recorder CoT
g Gepproblpm L i Fermaiization T Reasoning T ThinkerGof 77T
: Varibles Given C

i Context

C1. Station wagon is the oldest

i Inan antique car show, there are three vehicles: a

t | <varid="C" note=""> 1..3 </var>

H {var‘wd:"s" note=""> 1..3 </var>

i station wagon, a convertible, and a minivan. The

i |<varid="M" note=""> 1..3 <jvar>

(S‘lS)(C 13)<M 13)

o C2. Minivan is newer than the convertible

C3. All age ranks are different

i station wagon is the oldest. The minivan is newer

H H M=1,2 Step-by-step Analysis:
i than the convertible. s i)
H § || Cintansion note=""> ea(5, 3 <I> a i 1 1. Station wagon is the oldest:
: 1 | <intension note=""> It(M, C) </..> H SHEMemnler2
i Question . - M=1)i i 2 Minivan is newer than the convertible:
H 1 |<aliDifferent note=""> :
i Which of the following is true? SO ¢ s P ossscaz M
i A) The station wagon is second-newest. v 1 i i Option Analysis:
i JsDiterent R o Fase) |
i B) The convertible is second-newest. H ey i1 A) false. B)true. C)false.
i ! Question :

i C) The minivan is second-newest.

H Gopﬂon id="A" type="is_sat"> eq(s, 2) <.

Final Answer:

Conclusion:B

B) The convertible is the second-newest.

Figure 1: System Overview of Logic-Thinker. The framework consists of three modules: (1) Formulator formalize

natural language problems into symbolic expressions.
produces the concise and logically rigorous CoT.

FOL Solver

To support the semantic features of SPG, we in-
troduced the logical reasoning engine Thinker of
OpenSGP as the core engine of FOLSolver, and
built a SeFOL-Parser for syntax parsing. Thinker
is built on the SPO framework and incorporates
forward, backward, and hybrid reasoning engines.
The hybrid reasoning engine supports capabilities
such as hypothesis-based reasoning and contrapo-
sition inference.

CSP Solver

A constraint satisfaction problem is to find as-
signments for all variables that satisfy all con-
straints. Common algorithms include backtrack-
ing, constraint propagation, and local search vari-
ants. For implementation, we introduce the Choco-
solver(Prud’homme and Fages, 2022) library, a
Java-based tool designed for Constraint Program-
ming as the core engine of CSP Solver.

4.3 CoT Generator

The execution process of LogicSolver includes all
possible reasoning paths, of which the truly effec-
tive reasoning path is a part. To ensure the concise-
ness of the output CoT, the CoT Generator module
is designed for extracting the key reasoning paths
and converting them to CoT. In addition, a style

(2) LogicSolver conducts reasoning. (3) CoT-Generator

alignment procedure is employed to ensures the
diversity of language styles.

FOL CoT Generator

Fol Solver utilizes a tree structure to record execu-
tion processes. However, redundant nodes can arise
from noth duplicate recordings and excessive gran-
ularity, in addition, cyclic or contrapositive rules
might introduce reasoning loops. To tackle this,
we transform the tree into a directed acyclic graph
(DAG) and implement optimizations such as merg-
ing duplicate nodes, eliminating negation nodes,
and removing intermediate results. The DAG is
composed of: conclusion nodes (terminals), fac-
t/assumption nodes (starts), and deduction nodes
(intermediates). We maintain a store of statement
templates where each node is mapped to a natu-
ral language (NL) statement template based on its
type. A CoT is generated through a traversal of the
DAG, as shown in Algorithm 1. And a more de-
tailed and complete example is shown in Figure 4
of Appendix B.

CSP CoT Generator

CSP Solver employs Implications to record CSP
reasoning processes. Implications is a list structure
that records the detailed changes of each variable
under the influence of different constraints. Since
this information is overly detailed, in order to gen-

First-Order Logic(FOL) Reasoning Problem

Q: Amanis either kind or evil. All gentleman are not evil. Harry is a gentleman. Base on given information, is it TRUE,
FALSE, or UNKNOWN? Harry is kind.

A: TRUE

SeFOL Formalizati

FOL For

Rules: Rules:
wx Man(x) - Kind(x) ® Evil(x) vx Man(x) - Kind(x) ® Evil(x)
vx Gentelman(x) - =Evil(x) wx Gentelman(x) - ~Evil(x)
Facts: Facts:

Gentelman(Harry) Gentelman (Harry)
Question:

Kind(Harry)
Semantic Extension:

Question:
Kind (Harry)

subClassOf(Gentleman, Man)

Result:TRUE

[Result: UNKNOWN] [

Figure 2: An example of reasoning failure caused by
information loss. In the left part, the formalization of
FOL is accurate, but Gentleman and Man are treated
as two independent predicates in solvers, resulting an
incorrect reasoning outcome. To address this, we in-
corporated semantic information extraction during the
formalization process and supported these features in
FoL Solver, ultimately achieving the correct reasoning
result.

erate a concise and accurate COT, we first convert
the Implications into a graph G, nodes in G repre-
sent variables and their corresponding values, while
edges indicate a change in the value of a variable x
from v; to vo under the influence of a constraint c.
Then use breadth-first search (BFS) to extract the
reasoning process as shown in Algorithm 2. And a
more detailed and complete example is shown in
Figure 5 of Appendix C.

5 Experiment

To comprehensively evaluate the effectiveness of
Logic-Thinker, we designed experiments from two
perspectives:

1. Logical reasoning capabilities of Logic-Thinker.
2. The effectiveness of ThinkerCoT.

We first introduce the datasets of logical reasoning
problems used in the two experiments, followed
by a detailed description of the two experiments,
including their settings, baselines, experimental
results, and analysis. Then, we conducted an ex-
periment to verify whether applying ThinkerCoT
to real-world SFT tasks could enhance the compre-
hensive reasoning capabilities of LLMs. Finally,
we conduct a detailed case study to analyze the ef-
fectiveness of ThinkerCoT compared to LongCoT.

5.1 Datasets

Consistent with related work, we selected five logi-
cal reasoning datasets for our experiments. PrOn-

Algorithm 1 FOL CoT Generate

Input: G < reasoning DAG,T <+ Template
Output: C < CoT

1: S+ Stack()

2: S.push(getConclusion(G))

3. while S # () do

4 cur < S.pop()

5 if cur.visited then
6: C.remove(cur)
7
8
9

cur.visited < true
C.append(makeStatement(G, cur, T))
: childList + getChild(G, cur)
10: if childList # () then
11 S.push(childList)

12: return reverse(C)

Algorithm 2 CSP CoT Generate
Inmput: G + (V,E)
Output: C <~ CoT

1: Xpre = {v|v € V,inDegree(v) =0}

2: Xeur ¢ 0

3: while True do

4 for c € getOutEdge(G, Xpre) do

5: AX < getOutNeighbor(G,Xpre, ¢)
6: Xeur ¢ update(Xpre, AX)
7
8
9

> reasoning graph

C <« append (C, (Xpre, ¢, Xcur))
Xpre — Xcur
if Xre == Xcur then
10: break
11: return C

toQA(Saparov and He, 2022), ProofWriter(Tafjord
et al., 2021), FOLIO(Han et al., 2024a), Log-
icalDeduction(Srivastava et al., 2023) and AR-
LSAT(Zhong et al., 2022).

5.2 Reasoning Performance of Logic-Thinker

Experiment Setup

We divided the five datasets into two categories:
FOL and CSP, and solved them using Logic-
Thinker. In the formalization stage, we employed
a few-shot approach for each dataset to guide the
LLM in converting the problem into symbolic ex-
pression. The details of each dataset are shown in
Table 1

For the baselines, we compared our method
with three state-of-the-art (SOTA) neural-symbolic
reasoning systems: Logic-LM(Pan et al., 2023),
LINC(Olausson et al., 2023), and SymbolCoT(Xu
et al., 2024). Logic-LLM and LINC formalize the

DataSet ‘ L ‘ Type ‘ Formalization
| Train Valid | \

PrOntoQA 300 200

ProofWriter 3000 600 | FOL SeFOL

FOLIO 1204 204

LogicalDeduction | 1200 300 3

AR-LSAT 1585 231 ‘ csp ‘ XCsP

Table 1: The sizes of Train and Valid split, problem type
and formaliation corresponding to each logical reason-
ing dataset. The original PrOntoQA dataset consists
of a single split of 500 samples. We used the first 300
entries as the Train split, while the remaining entries
were used as the Valid split for experiments.

problem using a LLM and combine it with an ex-
ternal solver for reasoning. SymbolCoT, on the
other hand, utilizes symbolic CoT to guide the
LLM reasoning directly. To ensure a fair com-
parison, similar to these works, we used GPT-4 for
the formalization process in our experiments. Con-
sidering that all five datasets are multiple-choice
questions, we use accuracy as the evaluation met-
ric. For reproducibility, we set the temperature to 0
and select the response with the highest probability
from LL.Ms. Additionally, to validate the gains of
neuro-symbolic methods, we also report the met-
rics of problem reasoning. based on GPT-4 directly
and GPT-4 with CoT prompt.

Results and Analysis

We report the accuracy results of Logic-Thinker
and other baselines on the valid split of each dataset
in Table 2. The key observations are as follows.

Overall, Logic-Thinker achieves the second-best
performance on FOLIO and outperforms other
baselines on all other four datasets. In terms of
average accuracy, Logic-Thinker reaches the state-
of-the-art (SOTA) performance and demonstrates a
significant improvement (over 5% accuracy gain)
compared to the second-best baseline.

Compared to directly using GPT-4 for reasoning
or employing the CoT-prompting method, Logic-
Thinker achieves significant accuracy improve-
ments across five datasets, with average accuracy
increasing by 24.47% and 15.68%, respectively.
Our experimental results effectively demonstrate
that Logic-Thinker can significantly enhance the
problem-solving capabilities of LLMs on logical
reasoning tasks.

Compared to other symbolic solver framework,
Logic-Thinker outperforms Logic-LM and LINC

across all five datasets. For the FOLIO dataset,
using SeFOL as the symbolic expression, Logic-
Thinker mitigates the problem of information loss
through Semantic Extension achieving improve-
ments of 1.18% and 7.60% over Logic-LM and
LINC, respectively.

Compared to SymbolCoT, Logic-Thinker
achieves 100% accuracy on both the ProntoQA
and ProofWriter datasets, demonstrating the
advantages of symbolic reasoning over LLMs
in accurate reasoning. However, we observe
that SymbolCoT outperforms Logic-Thinker on
FOLIO by 2.23%. This is because FOLIO contains
a large number of complex semantic relationships
in addition to logical relations. Our approach still
has some issues with information loss, which we
will further discuss in the Limitation section.

5.3 Effectiveness of ThinkerCoT

Experiment Setup

We utilize Logic-Thinker to perform reasoning
on the training split of each dataset, generating
ThinkerCoT for correctly answered questions. In
the style alignment stage, we employed Qwen2.5-
72b-Instruct for style rewriting. The temperature
was set to 0.7 to ensure more diverse language ex-
pressions. Additionally, we incorporated a result
validation process to ensure that the reasoning re-
sults after style rewriting remained correct. For
the baseline, we selected QwQ32B(Team, 2025) to
generate LongCoT for the same set of questions. To
ensure a fair comparison, we only retained the ques-
tions for which both methods provided correct an-
swers as the training data. We chose Qwen2.5-7b-
Instruct as the base model for SFT and conducted
experiments using full fine-tuning. For training
hyperparameters, we set the learning rate to 2e-5,
warm-up ratio to 0.06, and max tokenslength to
8192. Both ThinkerCoT and LongCoT were used
to fine-tune the model under the same settings for
5 epochs. For evaluation, we used the fine-tuned
models to perform reasoning on the valid split of
each dataset. We recorded the accuracy of the rea-
soning results and the average output token con-
sumption for both models across the five datasets
to assess the effectiveness of ThinkerCoT.

Results and Analysis

We reports the result of accuracy and output token
length of ThinkerCoT and other baselines on valid
split of each dataset in Table 2. The key observa-
tions are as follows.

Type ‘ Method ‘ FOL ‘ csp ‘ Avg.
\ | PrOntoQA | ProofWriter | FOLIO | LogicalDeduction | AR-LSAT |

Logic-Thinker | 100.00 100.00 | 80.10 99.33 46.75 | 85.24
Neuro-Svmbolic | LogicLM 83.20 79.66 78.92 87.63 43.04 | 7449

HrOmSyIRot LINC - 9830 | 72.50 - - -
SymbolCoT 99.60 82.50 83.33 93.00 4391 | 8047
Natural Laneuase GPT-4 77.40 52.67 69.11 71.33 3333 | 60.77
8198€ 1 GPT- coT 98.79 68.11 70.58 7225 3506 | 69.56

Table 2: Comparison of the accuracy results of Logic-Thinker and other baselines on five logic reasoning datasets.
We report the results of Logic-LM, LINC and SymbolCoT in their respective papers. The results of Logic-LM
are those with the LLM fall back in case of recurring non-executable errors. To provide a more intuitive overall
comparison, we additionally report the average accuracy of each method across five datasets. The best results per

dataset are put in bold.

Firstly, compared to the base model, the model

2000

~@~- ThinkerCoT (Accuracy)
~@~ w/o alignment (Accuracy)

=3 ThinkerCoT (Tokens)
=1 w/o alignment (Tokens)

fine-tuned with ThinkerCoT demonstrates a sig-
nificant improvement in logical reasoning, achiev-
ing an average accuracy improvement of 12.96%.
Notably, the fine-tuned model reaches 100% ac-
curacy on the PrOntoQA dataset and exhibits
substantial improvements on Proofwriter and LD
datasets, with accuracy improvements of 23.5%
and 28.33%, respectively. These three datasets
are code-synthesis-based, which requires relatively
less understanding of semantic information and
emphasizes pure logical reasoning abilities. This
result validates our hypothesis that ThinkerCoT ef-
fectively enables models to acquire rigorous logical
reasoning capabilities.

Secondly, for the comparison with LongCoT,
ThinkerCoT achieves a 3.6% overall accuracy im-
provement while significantly reducing output to-
ken consumption, requiring only 9% to 27% of the
output tokens used by LongCoT. This result vali-
dates the conciseness and logical rigor of Thinker-
CoT.

Ablation Study

We conducted an ablation study to evaluate the im-
pact of style alignment process in CoT Generator.
Based on the setup of experiment in 5.3, we re-
moved the style alignment process and used it as a
control group compared to the original ThinkerCoT.
The results are shown in Figure 3. We observed that
by introducing style alignment, the output tokens
further decreases by 25.4%-47.7%, and there was
a 6.5% improvement in accuracy on the AR-LSAT,
while the other data remained stable.

1750

1500

1250

100.0%

®
o 8.0%
mo.N.

74.0%

S 2

94.3%
)

91\
1203

70.1%

80

Y
]

1000

Tokens
Accuracy (%)

=
S

750

500

N
S

250

FoLIo
Dataset

ProntoQA ProofWriter LogicalDeduction AR-LSAT

Figure 3: Comparison of output tokens and accuracy
of ThinkerCoT and ThinkerCoT without the style align-
ment process.

5.4 How does ThinkerCoT impact LLM’s
Comprehensive Reasoning Capabilities?

We designed an experiment to verify whether
Logic-Thinker and ThinkerCoT can enhance the
comprehensive reasoning abilities of LLMs in real-
world SFT stage of training a reasoning model.
We selected several public benchmarks from the
domains of science, mathematics, and logic to
evaluate the comprehensive reasoning capabilities
of the model. For the science domain, we used
GPQA(Rein et al., 2024) as the benchmark. For
mathematics, we selected multiple benchmarks of
varying difficulty levels, including GSM8K(Cobbe
et al.,, 2021), MATH(Hendrycks et al., 2021),
OlympiadBench(He et al., 2024), LiveBench-
Math(White et al., 2025) and AIME24. For logical
reasoning, we chose Multi-LogiEval(Patel et al.,
2024b) and LiveBench-Reasoning(White et al.,
2025) as evaluation benchmarks.

For the baseline setup, we randomly sampled
10,000 examples from a reasoning CoT dataset,
NaturalReasoning(Yuan et al., 2025), and con-
ducted SFT on Qwen2.5-7B-Instruct (SFTnR).

FOL

\ CSP \

|

\ PrOntoQA | ProofWriter | ~ FOLIO | LD | AR-LSAT | Avg.

‘ ‘ Acc Tokens ‘ Acc Tokens ‘ Acc Tokens ‘ Acc Tokens ‘ Acc Tokens ‘ Acc Tokens

| Base Model | 98.60 0.34K | 64.50 053K | 6422 030K | 66.00 045K |20.35 071K | 62.73 0.46K
7B ‘ LongCoT ‘ 88.18 3.51K ‘85.50 5.62K ‘72.55 5.14K ‘95.67 2.52K ‘ 18.61 6.84K ‘72.10 473K

ThinkerCoT | 100.00 0.51K | 88.00 0.65K | 74.02 047K | 9433 0.69K | 22.08 1.17K | 75.69 0.70K

Table 3: Comparison of ThinkerCoT and LongCoT across different logic reasoning datasets. The best accuracy
result per dataset are put in bold. ThinkerCoT outperforms LongCoT with an overall accuracy improvement of 3.6%

while reducing token output by 73%-91%

Domain | Benchmark | SFTxR | SFTNR+Thinkercor | SFTNR+LongCoT

Science | GPQA | 9.09 | 14.90 | 6.19
GSM8K 81.80 82.26 8241

MATH 59.36 58.80 55.98

Mathmatic OlympiadBench 26.96 27.70 27.56
Livebench-Math 17.42 21.19 18.54

AIME24 4.17 4.58 4.12

Reasonin Multi-LogiEval 32.09 69.82 58.41
ne Livebench-Reasoning | 30.67 34.00 16.67

Table 4: Comparison of different fine-tuned models on
all benchmarks.

Concurrently, we generated 5,000 ThinkerCoT
and QwQ32B LongCoT data entries across five
logical reasoning datasets, mixed them with the
sampled NaturalReasoning entries, and then con-
ducted SFT on Qwen2.5-7B-Instruct respectively,
the fine-tuned models are SF'TNR+ ThinkerCoT and
SFTNR+LongCoT respectively. We report the
scores of the three models on the all benchmarks
in Table 4. It was observed that ThinkerCoT
achieved the best performance on all benchmarks
in the science and logic domains. Notably, on
the Multi-LogiEval dataset, ThinkerCoT outper-
formed SFTNg and SF'TNR+ThinkercoT bY 37.73
and 11.41 points, respectively. In the mathemat-
ics domain, ThinkerCoT achieved the best perfor-
mance on three datasets and ranked second on the
remaining two, with score differences of less than
one point from the best results. From the perspec-
tive of difficulty levels, ThinkerCoT was shown
to effectively enhance the model’s ability to solve
more challenging mathematical problems. These
experimental results demonstrate that the ability to
perform rigorous logical reasoning can effectively
improve the model’s comprehensive reasoning ca-
pabilities.

5.5 Case Study

In this section, we conducted a case study to ex-
plore the effectiveness of ThinkerCoT compared to
LongCoT. We selected a question from PrOntoQA
dataset and presented the details of ThinkerCoT

and LongCoT, as shown in Figure 6 of Appendix
D. ThinkerCoT arrived at the correct conclusion
through concise and rigorous reasoning. In contrast,
the reasoning errors in LongCoT can be attributed
to the following: 1. Correctly deducing "Sam is a
rompus" but failing to proceed further, prematurely
altering the reasoning path. 2. Hallucination issues,
positing "vumpus is zumpus" as a premise, which
was not mentioned in the context. Despite utiliz-
ing a substantial number of tokens for reflection
and verification afterward, it ultimately reasoned
incorrectly. These observations further confirm the
issue of logical incoherence of LongCoT while also
demonstrating the rigorous reasoning capability of
ThinkerCoT.

6 Conclusion

We introduce a novel neuro-symbolic logic rea-
soning framework, named Logic-Thinker, which
can transform the reasoning process of solvers
into a rigorous and concise CoT, referred to as
ThinkerCOT. The proposed framework consists
of three modules: Formulator, LogicSolver and
CoT-Generator. We categorize logical reasoning
problems into two types and implement them re-
spectively in three modules. The experimental
results demonstrated that Logic-Thinker outper-
forms other state-of-the-art frameworks in logical
reasoning capability. Additionally, ThinkerCoT
achieves a 3.6% improvement in accuracy while
reducing token output by 73%-91% compaed to
LongCoT. Furthermore, the logical reasoning data
synthesized through ThinkerCoT can effectively en-
hance the overall reasoning ability of LLMs, such
as in mathematics and scientific reasoning, which
demonstrates the significant value of our methods
in practical LLM training tasks.

Limitations

Our current work has some limitations. First, our
formalization process still suffers from a certain de-
gree of information loss, which affects the accuracy
on datasets like FOLIO and AR-LSAT, making it
less than ideal. In the future, we plan to leverage
more SPG semantic features to improve the quality
of the formalization process.

Furthermore, we have not yet achieved a uni-
fied formalization process for FOL and CSP. Our
long-term goal is to achieve a unified symbolic rep-
resentation for two types of problems and employ
a single unified solver along with a CoT genera-
tion pipeline. This would enable the framework
to provide a unified solution for logical reasoning
tasks.

References

Frederic Boussemart, Christophe Lecoutre, Gilles Aude-
mard, and Cédric Piette. 2024. Xcsp3: An integrated
format for benchmarking combinatorial constrained
problems. Preprint, arXiv:1611.03398.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2024. A survey on evaluation of large language mod-
els. ACM Trans. Intell. Syst. Technol., 15(3).

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2025. Do
not think that much for 2+3=? on the overthinking of
ol-like llms. Preprint, arXiv:2412.21187.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and
Kartik Talamadupula. 2025. Concise reasoning via
reinforcement learning. Preprint, arXiv:2504.05185.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,
Alexander Wardle-Solano, Hannah Szabd, Ekaterina
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,
Brian Wong, Malcolm Sailor, and 16 others. 2024a.
FOLIO: Natural language reasoning with first-order

logic. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 22017-22031, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiqing Ma, and Zhenyu Chen. 2024b.
Token-budget-aware 1lm reasoning. arXiv preprint
arXiv:2412.18547.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei
Zou. 2024. C3ot: Generating shorter chain-of-
thought without compromising effectiveness. CoRR,
abs/2412.11664.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, George Louis Groh, Stephan Giinne-
mann, Eyke Hiillermeier, Stephan Krusche, Gitta
Kutyniok, Tilman Michaeli, Claudia Nerdel, Jiirgen
Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht
Schmidt, Tina Seidel, and 4 others. 2023. Chatgpt
for good? on opportunities and challenges of large
language models for education. Learning and Indi-
vidual Differences.

Lei Liang, Mengshu Sun, Zhengke Gui, Zhongshu Zhu,
Zhouyu Jiang, Ling Zhong, Peilong Zhao, Zhongpu
Bo, Jin Yang, and 1 others. 2024. Kag: Boosting Ilms
in professional domains via knowledge augmented
generation. arXiv preprint arXiv:2409.13731.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naigiang Tan, Xiaochun Cao,
and Dacheng Tao. 2025. Ol-pruner: Length-
harmonizing fine-tuning for ol-like reasoning prun-
ing. Preprint, arXiv:2501.12570.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin
Yang, Yujin Kim, and Se-Young Yun. 2025. Self-
training elicits concise reasoning in large language
models. Preprint, arXiv:2502.20122.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang,
Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. 2023. LINC: A neurosymbolic approach
for logical reasoning by combining language models
with first-order logic provers. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5153-5176, Singapore.
Association for Computational Linguistics.

https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://arxiv.org/abs/1611.03398
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.05185
https://arxiv.org/abs/2504.05185
https://arxiv.org/abs/2504.05185
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://doi.org/10.48550/ARXIV.2412.11664
https://doi.org/10.48550/ARXIV.2412.11664
https://doi.org/10.48550/ARXIV.2412.11664
https://api.semanticscholar.org/CorpusID:257445349
https://api.semanticscholar.org/CorpusID:257445349
https://api.semanticscholar.org/CorpusID:257445349
https://api.semanticscholar.org/CorpusID:257445349
https://api.semanticscholar.org/CorpusID:257445349
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2502.20122
https://arxiv.org/abs/2502.20122
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

OpenAl. 2024. Learning to reason with Ilms.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806-3824, Singapore. Association for Computa-
tional Linguistics.

Bhrij Patel, Souradip Chakraborty, Wesley A. Sut-
tle, Mengdi Wang, Amrit Singh Bedi, and Dinesh
Manocha. 2024a. Aime: Ai system optimization via
multiple llm evaluators. Preprint, arXiv:2410.03131.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and
Chitta Baral. 2024b. Multi-logieval: Towards eval-
uating multi-step logical reasoning ability of large
language models. ArXiv, abs/2406.17169.

Charles Prud’homme and Jean-Guillaume Fages. 2022.
Choco-solver: A java library for constraint program-
ming. Journal of Open Source Software, 7(78):4708.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shuxian
Liang, Junxian He, and 1 others. 2025. A survey of
efficient reasoning for large reasoning models: Lan-
guage, multimodality, and beyond. arXiv preprint
arXiv:2503.21614.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
Gpqa: A graduate-level google-proof qa benchmark.
Preprint, arXiv:2311.12022.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Abulhair Saparov and He He. 2022. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. ArXiv, abs/2210.01240.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex
Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, and 431 others. 2023. Beyond
the imitation game: Quantifying and extrapolating
the capabilities of language models. Trans. Mach.
Learn. Res., 2023.

Dilia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuan-
dong Tian, and Qinqing Zheng. 2025. Token as-
sorted: Mixing latent and text tokens for improved
language model reasoning. CoRR, abs/2502.03275.

10

R Sutton and A Barto. 1998. Reinforcement Learn-
ing:An Introduction. Reinforcement Learning:An
Introduction.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621-3634, Online.
Association for Computational Linguistics.

Qwen Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li,
Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao
Mi, and Dong Yu. 2025. Thoughts are all over the
place: On the underthinking of ol-like llms. Preprint,
arXiv:2501.18585.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal,
Benjamin Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-
Agrawal, Sandeep Singh Sandha, Siddartha Venkat
Naidu, Chinmay Hegde, Yann LeCun, Tom Gold-
stein, Willie Neiswanger, and Micah Goldblum. 2025.
Livebench: A challenging, contamination-free LLM
benchmark. In The Thirteenth International Confer-
ence on Learning Representations.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical
reasoning via symbolic chain-of-thought. Preprint,
arXiv:2405.18357.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 23 oth-
ers. 2024. Qwen?2.5 technical report. arXiv preprint
arXiv:2412.15115.

Peng Yi, Lei Liang, Da Zhang, Yong Chen, Jinye Zhu,
Xiangyu Liu, Kun Tang, Jialin Chen, Hao Lin, Lei-
jie Qiu, and Jun Zhou. 2024. Kgfabric: A scalable
knowledge graph warehouse for enterprise data inter-
connection. Proc. VLDB Endow., 17(12):3841-3854.

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe,
Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun Cho,
Yuandong Tian, Jason E. Weston, and Xian Li. 2025.
Naturalreasoning: Reasoning in the wild with 2.8m
challenging questions. CoRR, abs/2502.13124.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Yining Chen, Jiahai Wang, Jian Yin, Ming
Zhou, and Nan Duan. 2022. Analytical reasoning of

https://doi.org/10.48550/ARXIV.2303.08774
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2410.03131
https://api.semanticscholar.org/CorpusID:270710993
https://api.semanticscholar.org/CorpusID:270710993
https://api.semanticscholar.org/CorpusID:270710993
https://api.semanticscholar.org/CorpusID:270710993
https://api.semanticscholar.org/CorpusID:270710993
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://arxiv.org/abs/2311.12022
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://api.semanticscholar.org/CorpusID:252693237
https://api.semanticscholar.org/CorpusID:252693237
https://api.semanticscholar.org/CorpusID:252693237
https://api.semanticscholar.org/CorpusID:252693237
https://api.semanticscholar.org/CorpusID:252693237
https://api.semanticscholar.org/CorpusID:271601672
https://api.semanticscholar.org/CorpusID:271601672
https://api.semanticscholar.org/CorpusID:271601672
https://api.semanticscholar.org/CorpusID:271601672
https://api.semanticscholar.org/CorpusID:271601672
https://doi.org/10.48550/ARXIV.2502.03275
https://doi.org/10.48550/ARXIV.2502.03275
https://doi.org/10.48550/ARXIV.2502.03275
https://doi.org/10.48550/ARXIV.2502.03275
https://doi.org/10.48550/ARXIV.2502.03275
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2501.18585
https://arxiv.org/abs/2501.18585
https://arxiv.org/abs/2501.18585
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
https://arxiv.org/abs/2405.18357
https://arxiv.org/abs/2405.18357
https://arxiv.org/abs/2405.18357
https://doi.org/10.14778/3685800.3685810
https://doi.org/10.14778/3685800.3685810
https://doi.org/10.14778/3685800.3685810
https://doi.org/10.14778/3685800.3685810
https://doi.org/10.14778/3685800.3685810
https://doi.org/10.48550/ARXIV.2502.13124
https://doi.org/10.48550/ARXIV.2502.13124
https://doi.org/10.48550/ARXIV.2502.13124
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177

text. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 2306-2319,
Seattle, United States. Association for Computational
Linguistics.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqgi Tong, Conghui He, and Yu Cheng. 2024.
LLaMA-MoE: Building mixture-of-experts from
LLaMA with continual pre-training. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 15913—-15923,
Miami, Florida, USA. Association for Computational
Linguistics.

A Prompt Examples

In this section, we provide examples of prompts
used by the formulator module of Logic-Thinker.
The prompt consists of five components: a task de-
scription, context, question, options, and a domain-
specific symbolic program. For simplicity, we
present only one example for each type of logic
reasoning problems in the following sections.

A.1 Prompt for FOL Formalization

Task Description: You are a logic expert specializing in translating natural language
problems into First-Order Logic (FOL) expressions. Given a logical reasoning problem
consisting of a premises and conclusion, perform the following steps:

Translation Steps:

1. Summarize the predicates from the text (both premises and conclusion)

2. Define the individual constants from the text and symbolize them.

3. Based on the outputs from steps 1 and 2, combine them with logical symbols to form
first-order predicate expressions. Each sentence in the text should correspond to one
expression. You can use the following logical symbols:

(... more context here ...)

4. Based on the outputs from steps 1, summarize the hierarchical relationships within
predicates and describe them using subClassOf.

QOutput Format

(... more context here ...)

*+*Input**:

Premises: [BG] There are four seasons in a year: Spring, Summer, Fall, and Winter. All
students who want to have a long vacation love summer the most. Emma’s favorite season
is summer. Mia’s favorite season is not the same as Emma’s. James wants to have a long
vacation.

Conclusion: James’s favorite season is summer.

*#*Qutput®*:

Define Predicates:

Season(x) ::: X is a season.

(... more context here ...)

Define Constants:

Emma ::: represent the student of Emma

(... more context here ...)

Translate Premises:

Emma’s favorite season is summer. ::: Favorite(Emma, Summer)

(... more context here ...)

Translate Conclusion:

James’s favorite season is summer. ::: Favorite(James, Summer)

Hierarchical Relationships:

subClassOf(Spring, Season)

(... more context here ...)

A.2 Prompt for CSP Formalization

Task Description: Given a constraint satisfaction problem that includes a context and
a question in natural language. The task is to describe the problem using the XCSP3
extension modeling language, consisting three parts: Variables, Constraints, and Options.
You can use the following operators:

Arithmetic Opposite: neg(x) ::: -x

Logical Not: not(x) ::: =x

(... more context here ...)

Context: On Tuesday Vladimir and Wendy each eat exactly four separate meals: breakfast,
lunch, dinner, and a snack. (... more context here ...) Wendy eats an omelet for lunch.
Question: Vladimir must eat which one of the following foods?

Option:

(A) fish

(B) hot cakes

(C) macaroni

(D) omelet

(E) poached eggs

Program:

(... more context here ...)

B CoT Generation for FOL Problem

As shown in Figure 4(a), a concrete problem exam-
ple is presented from the FOLIO dataset. We first
perform formalization, abstracting the content and
the question into symbolic representations. The
content is divided into Facts and Rules, as illus-
trated in Figure 4(b). Subsequently, we employ
Fol Solver to deduce the problem and record the
complete solution tree, as shown in Figure 4(c).

Next, we convert the tree into a graph struc-
ture and apply several optimizations, including
intermediate result removal(indicated by the red
dashed box in Figure 4(c)) and duplicate node merg-
ing(marked by the green dashed box in Figure 4(c)).
As a result, we obtain a simplified directed acyclic
graph (DAG), shown in Figure 4(d), where the
assumption node serves as the starting node, the
conclusion node as the end node, and the remaining
nodes represent deduction nodes.

Finally, we apply Algorithm 1 to traverse the
graph and generate the reasoning statement for each
type of node based on the Chain-of-Thought (CoT)
template. This process results in the complete CoT
output, as shown in Figure 4(e).

C CoT Generation for CSP Problem

As shown in Figure 5, we selected a specific prob-
lem from the AR-LSAT dataset. First, we formal-
ized the Context and Question into the XCSP? for-
mat using the formulator. The content is divided
into Variables, Constraints, and Options, as illus-
trated in Figure 5(Formalization). Then, we used
CSPSolver to solve the problem, obtained the in-
termediate reasoning process, and converted it into
a graph, as shown in Figure 5(ReasoningGraph).
Finally, we traversed ReasoningGraph following
the process outlined in Algorithm 2 to generate

https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2024.emnlp-main.890
https://doi.org/10.18653/v1/2024.emnlp-main.890
https://doi.org/10.18653/v1/2024.emnlp-main.890

the CoT. The traversal process, marked by colored
edges, is shown in Figure 5(ReasoningGraph). The
final CoT is presented in Figure 5(CoT).

D Comparison of ThinkerCoT and
LongCoT

We select a specific problem from the test split
of PrOntoQA dataset. We utilize the model fine-
tuned on ThinekrCoT and LongCoT to predict the
problem respectively. The completions of the two
models are shown in Figure 6.

12

Context Facts

If people make their own matcha teas every morning with ceremonial-grade matcha powder, then they do not wake up late fact1: ((PreferHome(Clay) A Matcha(Clay)) ® ~((PreferHome(Clay) V Matcha(Clay)))

and start their schedules past noon regularly. If people live in California and attend yoga classes regularly, then they make

their own matcha teas every morning with ceremonial-grade matcha powder. If people work in the entertainment industry Rules

as high-profile celebrities, then they wake up late and start their schedules past noon regularly. If people do not have rule?: vx Matcha(x) - ~(WakeUpLate(x))

regular 9-5 jobs, then they work in the entertainment industry as high-profile celebrities. All people who prefer working at 1. formalization I — B

home over going to the office every day do not have regular 9-5 jobs. Clay either both prefers to work at home over going T C) e)

to the office every day and makes his own matcha teas every morning with ceremonial-grade matcha powder, or he neither ruled: vx —(Regulardob(x}) - Celebrity(x)
prefers to work at home over going to the office every day nor makes his own matcha teas every morning with ceremonial- R e =G
grade matcha powder.

Question Question
Clay lives in California and attends yoga classes regularly. CaliforniaYoga(Clay)
(a)
2. solve
CaliforniaYoga(Clay)
FALSE
rule2 CaliforniaYoga(Clay) -> FALSE: <rule2>

Raiche(Clay) —(vx Matcha(x)) -> TRUE |
FALSE v
“Matcha(Clay) -> FALSE nodeType=TripleCondition: <if:[2]>

—Matcha(Clay) -> TRUE: <conflict:Celebrity(Clay)>

<conflict:Celebrity (Clay)>

f—~(Celebrity(Clay)) -> TRUE: <rule3>

~(Celebrity(Clay)) Celebrity(Clay) 3. tree to DAG | — (vx WakeUpLate(x)) -> TRUE
(TRUE > C TRUE) rea | | ' WakeUpLate(Clay) -> FALSE <rule1>
| —Matcha(Clay) -> TRUE <if:[1]>
Celebrity(Clay) -> TRUE: <ruled>
—=(vx Re"gu’l'ar.’l;b'(’xn -> TRUE

RegularJob(Clay)
FALSE

rule3 <ruled>

rule5

PreferHome(Clay)
TRUE

WakeUpLate(Clay)
FALSE

—RegularJob(Clay) -> FALSE <rule5>

Merge —PreferHome(Clay) -> TRUE <fact1>
rule1 Tactl ConclusionNode —Meatcha(Clay) -> TRUE: <if:[1]>
Matcha(Clay) DeductionNode
Ul AssumeNode
(d) (c)

4. generate CoT

Rephrase

Let me try to rephrase the premises to understand them better.

- Rule 1: vx Matcha(x) > ~(WakeUpLate(x)): "If people make their own matcha teas every morning with ceremonial-grade matcha powder, then they do not wake up late and start their schedules past noon regularly."
- Rule 2: vx CaliforniaYoga(x) - Matcha(x): *If people live in California and attend yoga classes regularly, then they make their own matcha teas every morning with ceremonial-grade matcha powder."

- Rule 3: vx Celebrity(x) » WakeUpLate(x): "If people work in the entertainment industry as high-profile celebrities, then they wake up late and start their schedules past noon regularly."

- Rule 4: vx ~(RegularJob(x)) > Celebrity(x): "If people do not have regular 9-5 jobs, then they work in the entertainment industry as high-profile celebrities."

- Rule 5: vx PreferHome(x) - ~(RegularJob(x)): "All people who prefer working at home over going to the office every day do not have regular 9-5 jobs."
- Fact 1: ((PreferHome(Clay) A Matcha(Clay)) ® ~((PreferHome(Clay) V Matcha(Clay)))): "Clay either both prefers to work at home over going to the office every day and makes his own matcha teas every morning with ceremonial-grade matcha
powder, or he neither prefers to work at home over going to the office every day nor makes his own matcha teas every morning with ceremonial-grade matcha powder."

Symbolized Question

We can abstract the question into the following logical expression, and then determine whether the expression holds?

- CaliforniaYoga(Clay)

Breakdown:

- we assume Matcha(Clay) is TRUE.

- base on Fact 1 "((PreferHome(Clay) A Matcha(Clay)) ® =((PreferHome(Clay) V Matcha(Clay))))", we conclude that PreferHome(Clay) status is TRUE.

- base on Rule 5 "vx PreferHome(x) - (RegularJob(x))", we conclude that RegularJob(Clay) status is FALSE.

- base on Rule 4 "vx ~(RegularJob(x)) - Celebrity(x)", we conclude that Celebrity(Clay) status is TRUE. ---> **conclusion1**

- base on Rule 1 "vx Matcha(x) - ~(WakeUpLate(x))", we conclude that WakeUpLate(Clay) status is FALSE.

conclusion2

- base on Rule 3 "vx Celebrity(x) > WakeUpLate(x)", we conclude that ~(Celebrity(Clay)) status is TRUE.
- under the assumption that PreferHome(Clay) is TRUE, we obtain contradictory **conclusion1, 2**, so the assumption that Matcha(Clay)=TRUE is wrong.
- Thus we can know that Matcha(Clay) is FALSE

- base on Rule 2 "vx CaliforniaYoga(x) -» Matcha(x)", we conclude that CaliforniaYoga(Clay) status is FALSE.

Conclusion:

Through the analysis above, the result of question=CaliforniaYoga(Clay) is FALSE. Therefore, the final answer is **FALSE**.

(e)

Figure 4: A complete example of FOL CoT generation which consists of five parts: (a) the original question (b) the
symbolic representation after formalizing (c) the complete record tree of SeFolSolver (d) the simplified DAG (e) the
final complete CoT.

13

Problem

Context: On Tuesday Vladimir and Wendy each eat exactly four separate meals: breakfast, lunch, dinner, and a snack. The following is all that is known about what they eat during that day:
At no meal does Vladimir eat the same kind of food as Wendy. Neither of them eats the same kind of food more than once during the day. For breakfast, each eats exactly one of the
following: hot cakes, poached eggs, or omelet. For lunch, each eats exactly one of the following: fish, hot cakes, macaroni, or omelet. For dinner, each eats exactly one of the following: fish,
hot cakes, macaroni, or omelet. For a snack, each eats exactly one of the following: fish or omelet. Wendy eats an omelet for lunch.

Question: Vladimir must eat which one of the following foods?

(A) fish (B) hot cakes (C) macaroni (D) omelet (E) poached eggs

Formalization

<instance format="XCSP3" type="CSP">
<variables>
<var id="V_b" note="Vladimir's breakfast:1=hot cakes, 2=poached eggs, 3=omelet"> 1 2 3 </var>

<var id="V_s" note="Vladimir's snack:3=omelet, 4=fish"> 3 4 </var>
<var id="W_b" note="Wendy's breakfast:1=hot cakes, 2=poached eggs., 3=omelet"> 1 2 3 </var>

<var id="W_s" note="Wendy's snack:3=omelet, 4=fish"> 3 4 </var>
</variables>
<constraints>
<intension note="Wendy eats an omelet for lunch"> eq(W_l, 3)</intension>
<intension note="At no meal does Vladimir eat the same kind of food as Wendy"> ne(V_b, W_b) </intension>

<allDifferent note="Neither of them eats the same kind of food more than once during the day">
<list> V_b V_1 V_d V_s </list>
</allDifferent>

</constraints>
<options>
<question> Vladimir must eat which one of the following foods? </question>

<option id="D" type="must_sat" note="Vladimir must eat omelet">
or(eq(V_b, 3), eq(V_l, 3), eq(V_d, 3), eq(V_s, 3))
</option>

</options>

</instance>

ReasoningGraph

Q. b=1,2D —>(VU_b=1
Y

s

c2 ’ wmmmm

c1 L3 c2 Step1
Step?
. Step3 I
=138 WI=1.4D— =1
“e3 c3- Step4
—

> steps

CoT

#i## Let’s rephrase the constraint for better understanding:

- cl: Wendy eats an omelet for lunch

- ¢2: At no meal does Vladimir eat the same kind of food as Wendy

- ¢3: Neither of them eats the same kind of food more than once during the day
Breakdown:

To figure this out, we analyze the given constraints step-by-step:

#i### Define variables:

- V_b: {1,2,3}, Vladimir’s breakfast: 1=hot cakes, 2=poached eggs, 3=omelet

_s: {3,4}, Vladimir’s snack:3=omelet, 4=fish
{1,2,3} , Wendy’s breakfast:1=hot cakes, 2=poached eggs, 3=omelet
- W_s: {3,4} , Wendy’s snack:3=omelet, 4=fish
#it##H# Let’s begin to analyse according to constraints:
1. Base on cl, we conclude that: ...,.W_1:3,...
2. Base on ¢3, we conclude that: _b:{1,2},W_d:{1.4,5},W_s:{4},...
3. Base on ¢3, we conclude that: _d:{1,5},...
4. Base on ¢2: we conclude that: _1:{1,4,5},V_s:{3}....
5. Base on ¢3: we conclude that: ...,V_b:{1,2},V_d:{1,4,5}....
Option Analysis:
###H# Option A("Vladimir must eat fish")

Figure 5: An example of CSP problem, which selected from the AR-LSAT dataset showcases the results of three

stages in the LogicThinker pipeline: formalization, reasoning, and CoT generation.The ReasoningGraph highlights
the process of generating the CoT.

14

Problem

Problem: Zumpuses are dull. Every vumpus is not transparent. Vumpuses are numpuses. Numpuses are blue. Numpuses are wumpuses. Wumpuses are liquid. Each wumpus is a
tumpus. Tumpuses are not spicy. Tumpuses are rompuses. Each rompus is not dull. Rompuses are yumpuses. Every yumpus is floral. Every yumpus is an impus. Impuses are hot.
Each impus is a jompus. Every jompus is large. Jompuses are dumpuses. Sam is a vumpus. Is the following statement true or false? Sam is not dull.

Answer: True.

ThinkerCoT

To solve this problem, let’s break down the given premises and follow the logical steps to determine if Sam is not dull.
Initial Setup:
‘We have a series of statements about different types of creatures and their properties. We need to determine if Sam, who is a vumpus, is not dull.

Premises:

1. Zumpuses are dull. 2. Every vumpus is not transparent. 3. Vumpuses are numpuses. 4. Numpuses are blue. 5. Numpuses are wumpuses. 6. Wumpuses are liquid. 7. Each
tumpus. 8. Tumpuses are not spicy. 9. Tumpuses are rompuses. 10. Each rompus is not dull. 11. Rompuses are yumpuses. 12.. Every yumpus is floral. 13. Every
s is an impus. 14. Impuses are hot. 15. Each impus is a jompus. 16. Every jompus is large. 17. Jompuses are dumpuses. 18. Sam is a vumpus.

Step-by-Step Analysis:

1. Sam is a vampus (Premise 18).

2. Vumpuses are numpuses (Premise 3): - Since Sam is a vampus, Sam is also a numpus.
3. Numpuses are wumpuses (Premise 5): - Since Sam is a numpus, Sam is also a wumpus.
4. Each wumpus is a tumpus (Premise 7): - Since Sam is a wumpus, Sam is also a tumpus.
5. Tumpuses are rompuses (Premise 9): - Since Sam is a tumpus, Sam is also a rompus.

6. Each rompus is not dull (Premise 10): - Since Sam is a rompus, Sam is not dull.

Conclusion:
By following the chain of logical implications, we can conclude that Sam, being a vumpus, is also a numpus, wumpus, tumpus, and rompus. Since every rompus is not dull, Sam is
not dull.

Final Answer:
True

LongCoT

<think>

Okay, let’s see. I need to figure out if the statement "Sam is not dull" is true or false based on the given information. Let me start by listing out all the information provided and then
see how it connects to Sam.

First, the given statements:

1. Zumpuses are dull. 2. Every vumpus is not transparent. 3. Vumpuses are numpuses. 4. Numpuses are blue. 5. Numpuses are wumpuses. 6. Wumpuses
are liquid. 7. Each wumpus is a tumpus. 8. Tumpuses are not spicy. 9. Tumpuses are rompuses. 10. Each rompus is not dull. 11. Rompuses are yumpuses. 12.
Every yumpus isfloral. 13. Every yumpus is animpus. 14. Impuses are hot. 15. Eachimpus is a jompus. 16. Every jompus is large. 17. Jompuses are dumpuses. 18. Sam is a vampus.

Now, the question is whether "Sam is not dull" is true or false. Let’s break this down step by step.

Starting with Sam: From statement 18, Sam is a vumpus. Then, looking at the other statements, we can see that vumpuses are numpuses (statement 3). So Sam is a vumpus, which
is a numpus.

Now, numpuses are wumpuses (statement 5). So Sam is also a wumpus. Then, wumpuses are liquid (statement 6), so Sam is liquid. Each wumpus is a tumpus (statement 7), so
Sam is a tumpus.

Tumpuses are rompuses (statement 9). Therefore, Sam is a rompus. Now, looking at statement 10: Tumpuses are not spicy. Since Sam is a tumpus, that means Sam is not
spicy. But that might not be directly relevant to the question about being dull.

Next,rompuses are yumpuses (statement 11). So Sam is a yumpus. Then, every yumpus is floral (statement 12) and every yumpus is an impus (statement 13). Therefore, Sam is
both florally and an impus. Since impuses are hot (statement 14), Sam must be hot. Also, eachimpus is a jompus (statement 15), so Sam is a jompus. And every jompus is large
(statement 16), so Sam is large. Finally, jompuses are dumpuses (statement 17), so Sam is a dumpus.

Now, the key point here is whether Sam is dull. The first statement says "Zumpuses are dull." But does that mean all zumpuses are dull, or just that zumpuses can be dull? The
wording is a bit ambiguous. However, in the given information, the first statement is "Zumpuses are dull." Since zumpuses are a type of vumpus (from statement 3, since vumpuses
are numpuses, and numpuses are wumpuses, etc.), but wait, actually, the first statement says "Zumpuses are dull." Wait, but in the chain, Sam is a vumpus, which is a numpus,
which is a wumpus, which is a tumpus, which is a rompus, which is a yumpus. So Sam is a yumpus. But yumpus is a type of vumpus? Wait, let me check the statements again.

‘Wait, statement 3 says "Vumpuses are numpuses." So vumpus is a subset of numpus. Then statement 5 says "Numpuses are wumpuses," so numpus is a subset of wumpus. So
vumpus is a wumpus. Then statement 11 says "Rompuses are yumpuses," so rompus is a subset of yumpus. Therefore, yumpus is a type ofrompus, which is a type of wumpus,
which is a type of numpus, which is a type of vumpus. So Sam is a vumpus, which is a numpus, which is a wumpus, which is a tumpus, which is arompus, which is a yumpus. So
Sam is a yumpus.

Now, the first statement says "Zumpuses are dull." Since Sam is a vumpus, which is a numpus, which is a wumpus, which is a tumpus, which is a rompus, which is a yumpus. So
Sam is a yumpus. But the first statement says "Zumpuses are dull." Since zumpuses are a type of vumpus, and vumpus is a type of numpus, etc., but the first statement is a general
statement about zumpuses. However, the problem is that the first statement might not be saying that all zumpuses are dull, but just that zumpuses are dull in general. Since Sam is a
vumpus, which is a zumpuse, then according to the first statement, zumpuses are dull, so Sam would be dull. But wait, the question is whether Sam is not dull. So if the first

statement is that zumpuses are dull, then Sam, being a zumpus, would be dull, making the statement "Sam is not dull" false. But hold on, maybe there’s a contradiction or another
rule that could override this?

‘Wait, let me check again. The first statement is "Zumpuses are dull." Since zumpuses are a type of vumpus, and vumpus is a type of numpus, etc., so all the way down to Sam being
a yumpus, which is a type of vumpus. Therefore, Sam is a zumpus, so according to the first statement, zumpuses are dull, so Sam must be dull. Therefore, the statement "Sam is not
dull" would be false. But wait, maybe there’s another rule that could make Sam not dull?

Therefore, I think the answer is false.
</think>

Figure 6: An example of ThinkerCoT and LongCoT in PrOntoQA, where ThinkerCoT provides the correct answer,
whereas LongCoT does not. The specific reasons for LongCoT’s errors are highlighted in bold red, which include:
1. Correctly deducing "Sam is a rompus" but failing to proceed further, prematurely altering the reasoning path. 2.
Hallucination issues, positing "vumpus is zumpus" as a premise, which was not mentioned in the context. Despite
utilizing a substantial number of tokens for reflection and verification afterward, it ultimately reasoned incorrectly.

15

	Introduction
	Related Work
	Concise Reasoning with SFT
	Neuro-Symbolic Reasoning

	Preliminary
	First-Order Logic Problem
	Constraint Satisfaction Problems

	Logic-Thinker
	Formulator
	LogicSolver
	CoT Generator

	Experiment
	Datasets
	Reasoning Performance of Logic-Thinker
	Effectiveness of ThinkerCoT
	How does ThinkerCoT impact LLM's Comprehensive Reasoning Capabilities?
	Case Study

	Conclusion
	Prompt Examples
	Prompt for FOL Formalization
	Prompt for CSP Formalization

	CoT Generation for FOL Problem
	CoT Generation for CSP Problem
	Comparison of ThinkerCoT and LongCoT

