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Abstract001

Recent Large Reasoning Models (LRMs) have002
demonstrated the ability to generate long chains003
of thought (LongCoT) before arriving at a final004
conclusion. Despite remarkable breakthroughs005
in complex reasoning capabilities, LongCoT006
still faces challenges such as redundancy and007
logical incoherence. To address these issues,008
we aim to equip large language models (LLMs)009
with rigorous and concise logical reasoning010
capabilities. In this work, we propose Logic-011
Thinker, a neural-symbolic reasoning frame-012
work that employs symbolic solvers to pre-013
cisely solve problems and transforms their in-014
ternal solving processes into concise and rigor-015
ous chains of thought, referred to as Thinker-016
CoT. Our experimental results demonstrate that017
Logic-Thinker achieves state-of-the-art perfor-018
mance in logical reasoning problems. Addition-019
ally, LLMs fine-tuned with ThinkerCoT outper-020
form models distilled from QwQ32B on logic021
reasoning tasks, achieving an overall accuracy022
improvement of 3.6% while reducing token out-023
put by 73%-91%. Furthermore, ThinkerCoT024
enhances the comprehensive reasoning capabil-025
ities of LLMs, as evidenced by performance026
improvements on reasoning benchmarks such027
as GPQA and AIME.028

1 Introduction029

Large language models (LLMs), such as the GPT030

series(OpenAI, 2023) and the Qwen series(Yang031

et al., 2024), have demonstrated remarkable capa-032

bilities across a wide range of natural language033

understanding tasks(Chang et al., 2024; Kasneci034

et al., 2023; Zhu et al., 2024). However, their per-035

formance in complex reasoning problems has re-036

mained suboptimal. To address this challenge, a037

new type of model has emerged in recent years:038

Large Reasoning Models (LRMs). By generat-039

ing a long chain of thought (CoT)(Wei et al.,040

2022) before reaching the final conclusion, these041

models have achieved significant breakthroughs042

in many challenging reasoning tasks(Patel et al., 043

2024a; Rein et al., 2023; White et al., 2025). 044

This inference-time scaling paradigm was popu- 045

larized by OpenAI-o1(OpenAI, 2024), DeepSeek- 046

R1(DeepSeek-AI, 2025), and QwQ(Team, 2025), 047

gaining significant traction in the industry. Cur- 048

rently, a large number of studies are following this 049

paradigm in an effort to enhance the upper limits 050

of reasoning capabilities. 051

However, recent studies have highlighted several 052

issues with this LongCoT reasoning paradigm: 1) 053

Redundant Content, including question restate- 054

ments, verbose explanations and repetitive narra- 055

tives(Munkhbat et al., 2025), results in a large 056

amount of unnecessary token completion. 2) Over- 057

thinking, specifically manifested as the repeated 058

verification of some straightforward and direct 059

questions(Chen et al., 2025; Qu et al., 2025). 3) 060

Incoherent Reasoning, when dealing with com- 061

plex reasoning problems, LRMs may superficially 062

jump between approaches, leading to shallow, frag- 063

mented reasoning, rather than a deep, coherent anal- 064

ysis(Wang et al., 2025). 065

To address these issues, many studies have pro- 066

posed the idea of compressing LongCoT while re- 067

taining its critical reasoning steps. Through super- 068

vised fine-tuning (SFT), the refined CoT enables 069

LLMs to acquire the capability if concise reasoning. 070

Experiments have demonstrated that such meth- 071

ods can effectively reduce CoT redundancy while 072

maintaining reasoning accuracy. Rather than post- 073

processing LongCoT, some research has delved 074

deeper into the fundamental causes of these is- 075

sues, finding that LLMs allocate a large portion 076

of their output to text coherence rather than core 077

reasoning advancement(Su et al., 2025; Luo et al., 078

2025). On the other hand, the LongCoT capabil- 079

ity of LRMs originates from the exploration of the 080

response space during the Reinforcement Learn- 081

ing (RL)(Sutton and Barto, 1998) stage, primarily 082

aiming at obtaining accuracy at the solution level, 083
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while the consistency of the intermediate reasoning084

process has been overlooked(Fatemi et al., 2025).085

Based on these conclusions, we propose that the re-086

dundancy, overthinking, and incoherent reasoning087

issues of LLMs are primarily caused by the inabil-088

ity of rigorous logic reasoning. Such rigorous logic089

reasoning ability is particularly critical in many090

logical reasoning tasks, including deduction, induc-091

tion and hypothesis testing. Therefore, we focus on092

logical reasoning problems and aim to translate the093

inherent precise reasoning paths of neuro-symbolic094

solvers into concise and logically rigorous CoTs,095

thereby equipping LLMs with robust and concise096

reasoning capabilities.097

In this work, We introduce Logic-Thinker, a098

neuro-symbolic reasoning framework that inte-099

grates both logic problem-solving and reasoning100

CoT generation capabilities. Logic-Thinker con-101

sists of three core modules: a Formulator for102

converting logical reasoning problems into sym-103

bolic expressions, a LogicSolver for executing sym-104

bolic expressions to solve problems, and a CoT-105

Generator for transforming the solver’s internal106

execution process into CoTs, referred to as Thinker-107

CoT. We categorize common logical reasoning108

problems into two types: FOL (First-Order Logic)109

and CSP (Constraint Satisfaction Problems), and110

implement them respectively in the three modules.111

The rest of this paper is organized as follows.112

section 2 presents related work. We present pre-113

liminaries in section 3. Our approach is discussed114

in section 4. We conduct comprehensive experi-115

ments to evaluate the effectiveness of out proposed116

methods in section 5 and we conclude the paper in117

Section 6.118

In summary, we make the following contribu-119

tions in this paper.120

• We propose Logic-Thinker, a novel neuro-121

symbolic reasoning framework consists the122

capability of logic reasoning and CoT gener-123

ation. Our framework achieves state-of-the-124

art (SOTA) performance on logical reasoning125

tasks.126

• We utilize Logic-Thinker to generate Long-127

CoT data on several logical reasoning128

datasets, our SFT experiments demonstrate129

that ThinkerCoT significantly reduces the re-130

dundancy of LongCoT while further enhanc-131

ing logical reasoning capabilities.132

• We conducted an extension experiment to133

demonstrate that this rigorous logical reason- 134

ing capability can enhance the overall reason- 135

ing capabilities of LLMs. 136

2 Related Work 137

2.1 Concise Reasoning with SFT 138

SFT is a straightforward way to help models learn 139

how to follow the instructions. There exist serval 140

methods that fine-tune the models to achieve con- 141

cise and accurate reasoning. Token Budget-Aware 142

LLM Reasoning(Han et al., 2024b) first produces 143

the target output by prompting the model with a 144

CoT prompt that includes the optimized token bud- 145

get, then they train the model with SFT to produce 146

answers that adhere to the token budget. To elimi- 147

nate redundant information in the reasoning chain, 148

C3OT(Kang et al., 2024) employs GPT-4(OpenAI, 149

2023) as a compressor, preserving key information 150

throughout the reasoning process. The model is 151

then fine-tuned to learn the relationship between 152

long and short CoTs. These works focus on con- 153

trolling the length of CoT generated by large LLMs 154

while maintaining the accuracy of reasoning. How- 155

ever, we take a different approach by relying on 156

solvers to generate absolutely rigorous reasoning 157

processes, rather than relying on LLMs for genera- 158

tion. 159

2.2 Neuro-Symbolic Reasoning 160

Neuro-symbolic approaches aim to enhance the log- 161

ical reasoning capabilities of LLMs by integrating 162

them with symbolic systems. In LINC (Olausson 163

et al., 2023), an LLM is used to generate statements 164

in First Order Logic (FOL), which are given to a 165

FOL solver. To mitigate formalization errors, they 166

generate K formalizations and make use of Kway 167

majority voting to decide on the correct response. 168

Logic-LM (Pan et al., 2023) is able to handle a 169

broader range of problem types by supporting mul- 170

tiple symbolic formalizations and solvers, More- 171

over, a self-refinement module is introduced, which 172

utilizes error messages from the symbolic solver to 173

modify the symbolic formalization. However, the 174

information loss during the formalization process 175

may lead to reasoning failures, furthermore, most 176

of these work only focus on the accuracy of the 177

final result, while the execution processes of the 178

solvers have either been overlooked or not effec- 179

tively utilized. 180
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3 Preliminary181

3.1 First-Order Logic Problem182

First-Order Logic (FOL) problem is a form of logi-183

cal deduction problem which extends propositional184

logic by allowing quantification over individual185

variables, enabling the expression of more com-186

plex statements and concepts. It is widely used187

in computer science, artificial intelligence, mathe-188

matics, and philosophy for formal reasoning and189

knowledge representation.190

3.2 Constraint Satisfaction Problems191

A Constraint satisfaction problem (CSP) seeks so-192

lution by assigning values to a set of variables193

while satisfying a number of constraints or con-194

ditions. Formally, Given (X,D,C) where X =195

{X1, X2, ..., Xn} is the set of variables, D =196

{D1, D2, ..., Dn} represents their respective do-197

mains of values, C = {C1, C2, ..., Cm} is the set198

of constraints restricting variable assignments. For199

every constraint Cj ∈ C is a pair of ⟨Tj , Rj⟩where200

Tj ⊂ X and Rj defines the relationships that Tj201

should satisfy.202

4 Logic-Thinker203

Symbolic solvers possess an inherent capability204

for rigorous reasoning: 1) The symbolic system205

ensures that each step’s conclusion is determinis-206

tic rather than probabilistic and is verifiable. 2)207

Solvers follow a systematic search methodology,208

exploring the solution space exhaustively to ensure209

that no potential reasoning paths are overlooked.210

To enable LLMs to acquire such rigorous reason-211

ing capabilities, we propose Logic-Thinker, which212

enables the transformation of the symbolic solver’s213

internal execution process into concise and logi-214

cally rigorous CoT, named ThinkerCoT. As shown215

in Figure 1, Logic-Thinker consists of three mod-216

ules: A Formulator that formalizes natural lan-217

guage problems into symbolic expressions, a Log-218

icSolver that executes symbolic expressions and219

derives conclusions, and a CoT Generator that220

produce ThinkerCoT based on reasoning processes.221

4.1 Formulator222

In this module, we leverage the in-context learn-223

ing (ICL) capability of LLMs to translate natural224

language logic reasoning problems into symbolic225

representations. We implement a FOL Formulator226

and a CSP Formulator for these two categories of227

problems respectively.228

FOL Formulator 229

Some previous studies use First-Order Logic to for- 230

malize problems and utilized certain open source 231

FOL-solvers to address such problems. However, 232

their accuracy remains suboptimal especially in 233

complex problems, primarily due to information 234

loss during the formalization process. After care- 235

fully analysis of the bad cases, we found the pri- 236

mary information losses lies in semantic informa- 237

tion loss of Predicates. As shown in Figure 2, even 238

when the problem is correctly formalized into FOL 239

expressions, the solver is unable to deduce due to 240

the loss of the subClassOf relationship between 241

Gentleman and Man. 242

To address this issue, we combine certain se- 243

mantic properties of OpenSPG(Liang et al., 2024; 244

Yi et al., 2024), such as subClassOf, with FOL to 245

create a semantic-enhanced FOL expression, refer- 246

eed to as SeFOL. After the formalization of FOL 247

expressions, we introduce a Semantic Extraction 248

step to collect all the predicates and functions as 249

P, we then prompt LLMs to extract semantic rela- 250

tionships in P, ruseults in S, which will be passed 251

to the LogicSolver module along with the FOL ex- 252

pressions for reasoning. We provide an example of 253

formalization prompt in Appendix A.1 254

CSP Formulator 255

XCSP3(Boussemart et al., 2024) is a standard- 256

ized format for representing and exchanging con- 257

straint satisfaction problems and related optimiza- 258

tion problems. As the third iteration of the XML 259

CSP (XCSP) series, XCSP3 provides a simple, 260

readable, and parsable XML-based format that al- 261

lows researchers and developers to share models 262

of various types of constraint problems. To solve 263

CSP problems, we extended XCSP3 to support the 264

representation of question and option choices. An 265

example of prompt is provided in Appendix A.2 266

4.2 LogicSolver 267

The LogicSolver module is designed for solving 268

formalized problems and outputting the execution 269

process to the downstream CoT Generator module. 270

In addition, LogicSolver provides a syntax checker 271

to verify the syntax correctness of the formalized 272

problem. If there are syntax errors, it will provide 273

the error details to the upstream Formulator module 274

for re-formalization. 275
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Figure 1: System Overview of Logic-Thinker. The framework consists of three modules: (1) Formulator formalize
natural language problems into symbolic expressions. (2) LogicSolver conducts reasoning. (3) CoT-Generator
produces the concise and logically rigorous CoT.

FOL Solver276

To support the semantic features of SPG, we in-277

troduced the logical reasoning engine Thinker of278

OpenSGP as the core engine of FOLSolver, and279

built a SeFOL-Parser for syntax parsing. Thinker280

is built on the SPO framework and incorporates281

forward, backward, and hybrid reasoning engines.282

The hybrid reasoning engine supports capabilities283

such as hypothesis-based reasoning and contrapo-284

sition inference.285

CSP Solver286

A constraint satisfaction problem is to find as-287

signments for all variables that satisfy all con-288

straints. Common algorithms include backtrack-289

ing, constraint propagation, and local search vari-290

ants. For implementation, we introduce the Choco-291

solver(Prud’homme and Fages, 2022) library, a292

Java-based tool designed for Constraint Program-293

ming as the core engine of CSP Solver.294

4.3 CoT Generator295

The execution process of LogicSolver includes all296

possible reasoning paths, of which the truly effec-297

tive reasoning path is a part. To ensure the concise-298

ness of the output CoT, the CoT Generator module299

is designed for extracting the key reasoning paths300

and converting them to CoT. In addition, a style301

alignment procedure is employed to ensures the 302

diversity of language styles. 303

FOL CoT Generator 304

Fol Solver utilizes a tree structure to record execu- 305

tion processes. However, redundant nodes can arise 306

from noth duplicate recordings and excessive gran- 307

ularity, in addition, cyclic or contrapositive rules 308

might introduce reasoning loops. To tackle this, 309

we transform the tree into a directed acyclic graph 310

(DAG) and implement optimizations such as merg- 311

ing duplicate nodes, eliminating negation nodes, 312

and removing intermediate results. The DAG is 313

composed of: conclusion nodes (terminals), fac- 314

t/assumption nodes (starts), and deduction nodes 315

(intermediates). We maintain a store of statement 316

templates where each node is mapped to a natu- 317

ral language (NL) statement template based on its 318

type. A CoT is generated through a traversal of the 319

DAG, as shown in Algorithm 1. And a more de- 320

tailed and complete example is shown in Figure 4 321

of Appendix B. 322

CSP CoT Generator 323

CSP Solver employs Implications to record CSP 324

reasoning processes. Implications is a list structure 325

that records the detailed changes of each variable 326

under the influence of different constraints. Since 327

this information is overly detailed, in order to gen- 328
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Figure 2: An example of reasoning failure caused by
information loss. In the left part, the formalization of
FOL is accurate, but Gentleman and Man are treated
as two independent predicates in solvers, resulting an
incorrect reasoning outcome. To address this, we in-
corporated semantic information extraction during the
formalization process and supported these features in
FoL Solver, ultimately achieving the correct reasoning
result.

erate a concise and accurate COT, we first convert329

the Implications into a graph G, nodes in G repre-330

sent variables and their corresponding values, while331

edges indicate a change in the value of a variable x332

from v1 to v2 under the influence of a constraint c.333

Then use breadth-first search (BFS) to extract the334

reasoning process as shown in Algorithm 2. And a335

more detailed and complete example is shown in336

Figure 5 of Appendix C.337

5 Experiment338

To comprehensively evaluate the effectiveness of339

Logic-Thinker, we designed experiments from two340

perspectives:341

1. Logical reasoning capabilities of Logic-Thinker.342

2. The effectiveness of ThinkerCoT.343

We first introduce the datasets of logical reasoning344

problems used in the two experiments, followed345

by a detailed description of the two experiments,346

including their settings, baselines, experimental347

results, and analysis. Then, we conducted an ex-348

periment to verify whether applying ThinkerCoT349

to real-world SFT tasks could enhance the compre-350

hensive reasoning capabilities of LLMs. Finally,351

we conduct a detailed case study to analyze the ef-352

fectiveness of ThinkerCoT compared to LongCoT.353

5.1 Datasets354

Consistent with related work, we selected five logi-355

cal reasoning datasets for our experiments. PrOn-356

Algorithm 1 FOL CoT Generate
Input: G← reasoning DAG,T← Template
Output: C← CoT

1: S← Stack()
2: S.push(getConclusion(G))
3: while S ̸= ∅ do
4: cur← S.pop()
5: if cur.visited then
6: C.remove(cur)

7: cur.visited← true
8: C.append(makeStatement(G, cur,T))
9: childList← getChild(G, cur)

10: if childList ̸= ∅ then
11: S.push(childList)

12: return reverse(C)

Algorithm 2 CSP CoT Generate

Input: G← (V,E) ▷ reasoning graph
Output: C← CoT

1: Xpre ← {v | v ∈ V, inDegree(v) = 0}
2: Xcur ← ∅
3: while True do
4: for c ∈ getOutEdge(G,Xpre) do
5: ∆X← getOutNeighbor(G,Xpre, c)
6: Xcur ← update(Xpre,∆X)
7: C← append (C, ⟨Xpre, c,Xcur⟩)
8: Xpre ← Xcur

9: if Xpre == Xcur then
10: break
11: return C

toQA(Saparov and He, 2022), ProofWriter(Tafjord 357

et al., 2021), FOLIO(Han et al., 2024a), Log- 358

icalDeduction(Srivastava et al., 2023) and AR- 359

LSAT(Zhong et al., 2022). 360

5.2 Reasoning Performance of Logic-Thinker 361

Experiment Setup 362

We divided the five datasets into two categories: 363

FOL and CSP, and solved them using Logic- 364

Thinker. In the formalization stage, we employed 365

a few-shot approach for each dataset to guide the 366

LLM in converting the problem into symbolic ex- 367

pression. The details of each dataset are shown in 368

Table 1 369

For the baselines, we compared our method 370

with three state-of-the-art (SOTA) neural-symbolic 371

reasoning systems: Logic-LM(Pan et al., 2023), 372

LINC(Olausson et al., 2023), and SymbolCoT(Xu 373

et al., 2024). Logic-LM and LINC formalize the 374
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DataSet
Size

Type Formalization
Train Valid

PrOntoQA 300 200
FOL SeFOLProofWriter 3000 600

FOLIO 1204 204

LogicalDeduction 1200 300
CSP XCSP3

AR-LSAT 1585 231

Table 1: The sizes of Train and Valid split, problem type
and formaliation corresponding to each logical reason-
ing dataset. The original PrOntoQA dataset consists
of a single split of 500 samples. We used the first 300
entries as the Train split, while the remaining entries
were used as the Valid split for experiments.

problem using a LLM and combine it with an ex-375

ternal solver for reasoning. SymbolCoT, on the376

other hand, utilizes symbolic CoT to guide the377

LLM reasoning directly. To ensure a fair com-378

parison, similar to these works, we used GPT-4 for379

the formalization process in our experiments. Con-380

sidering that all five datasets are multiple-choice381

questions, we use accuracy as the evaluation met-382

ric. For reproducibility, we set the temperature to 0383

and select the response with the highest probability384

from LLMs. Additionally, to validate the gains of385

neuro-symbolic methods, we also report the met-386

rics of problem reasoning. based on GPT-4 directly387

and GPT-4 with CoT prompt.388

Results and Analysis389

We report the accuracy results of Logic-Thinker390

and other baselines on the valid split of each dataset391

in Table 2. The key observations are as follows.392

Overall, Logic-Thinker achieves the second-best393

performance on FOLIO and outperforms other394

baselines on all other four datasets. In terms of395

average accuracy, Logic-Thinker reaches the state-396

of-the-art (SOTA) performance and demonstrates a397

significant improvement (over 5% accuracy gain)398

compared to the second-best baseline.399

Compared to directly using GPT-4 for reasoning400

or employing the CoT-prompting method, Logic-401

Thinker achieves significant accuracy improve-402

ments across five datasets, with average accuracy403

increasing by 24.47% and 15.68%, respectively.404

Our experimental results effectively demonstrate405

that Logic-Thinker can significantly enhance the406

problem-solving capabilities of LLMs on logical407

reasoning tasks.408

Compared to other symbolic solver framework,409

Logic-Thinker outperforms Logic-LM and LINC410

across all five datasets. For the FOLIO dataset, 411

using SeFOL as the symbolic expression, Logic- 412

Thinker mitigates the problem of information loss 413

through Semantic Extension achieving improve- 414

ments of 1.18% and 7.60% over Logic-LM and 415

LINC, respectively. 416

Compared to SymbolCoT, Logic-Thinker 417

achieves 100% accuracy on both the ProntoQA 418

and ProofWriter datasets, demonstrating the 419

advantages of symbolic reasoning over LLMs 420

in accurate reasoning. However, we observe 421

that SymbolCoT outperforms Logic-Thinker on 422

FOLIO by 2.23%. This is because FOLIO contains 423

a large number of complex semantic relationships 424

in addition to logical relations. Our approach still 425

has some issues with information loss, which we 426

will further discuss in the Limitation section. 427

5.3 Effectiveness of ThinkerCoT 428

Experiment Setup 429

We utilize Logic-Thinker to perform reasoning 430

on the training split of each dataset, generating 431

ThinkerCoT for correctly answered questions. In 432

the style alignment stage, we employed Qwen2.5- 433

72b-Instruct for style rewriting. The temperature 434

was set to 0.7 to ensure more diverse language ex- 435

pressions. Additionally, we incorporated a result 436

validation process to ensure that the reasoning re- 437

sults after style rewriting remained correct. For 438

the baseline, we selected QwQ32B(Team, 2025) to 439

generate LongCoT for the same set of questions. To 440

ensure a fair comparison, we only retained the ques- 441

tions for which both methods provided correct an- 442

swers as the training data. We chose Qwen2.5-7b- 443

Instruct as the base model for SFT and conducted 444

experiments using full fine-tuning. For training 445

hyperparameters, we set the learning rate to 2e-5, 446

warm-up ratio to 0.06, and max tokenslength to 447

8192. Both ThinkerCoT and LongCoT were used 448

to fine-tune the model under the same settings for 449

5 epochs. For evaluation, we used the fine-tuned 450

models to perform reasoning on the valid split of 451

each dataset. We recorded the accuracy of the rea- 452

soning results and the average output token con- 453

sumption for both models across the five datasets 454

to assess the effectiveness of ThinkerCoT. 455

Results and Analysis 456

We reports the result of accuracy and output token 457

length of ThinkerCoT and other baselines on valid 458

split of each dataset in Table 2. The key observa- 459

tions are as follows. 460
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Type Method
FOL CSP

Avg.
PrOntoQA ProofWriter FOLIO LogicalDeduction AR-LSAT

Neuro-Symbolic

Logic-Thinker 100.00 100.00 80.10 99.33 46.75 85.24
Logic-LM 83.20 79.66 78.92 87.63 43.04 74.49

LINC - 98.30 72.50 - - -
SymbolCoT 99.60 82.50 83.33 93.00 43.91 80.47

Natural Language
GPT-4 77.40 52.67 69.11 71.33 33.33 60.77

GPT - CoT 98.79 68.11 70.58 72.25 35.06 69.56

Table 2: Comparison of the accuracy results of Logic-Thinker and other baselines on five logic reasoning datasets.
We report the results of Logic-LM, LINC and SymbolCoT in their respective papers. The results of Logic-LM
are those with the LLM fall back in case of recurring non-executable errors. To provide a more intuitive overall
comparison, we additionally report the average accuracy of each method across five datasets. The best results per
dataset are put in bold.

Firstly, compared to the base model, the model461

fine-tuned with ThinkerCoT demonstrates a sig-462

nificant improvement in logical reasoning, achiev-463

ing an average accuracy improvement of 12.96%.464

Notably, the fine-tuned model reaches 100% ac-465

curacy on the PrOntoQA dataset and exhibits466

substantial improvements on Proofwriter and LD467

datasets, with accuracy improvements of 23.5%468

and 28.33%, respectively. These three datasets469

are code-synthesis-based, which requires relatively470

less understanding of semantic information and471

emphasizes pure logical reasoning abilities. This472

result validates our hypothesis that ThinkerCoT ef-473

fectively enables models to acquire rigorous logical474

reasoning capabilities.475

Secondly, for the comparison with LongCoT,476

ThinkerCoT achieves a 3.6% overall accuracy im-477

provement while significantly reducing output to-478

ken consumption, requiring only 9% to 27% of the479

output tokens used by LongCoT. This result vali-480

dates the conciseness and logical rigor of Thinker-481

CoT.482

Ablation Study483

We conducted an ablation study to evaluate the im-484

pact of style alignment process in CoT Generator.485

Based on the setup of experiment in 5.3, we re-486

moved the style alignment process and used it as a487

control group compared to the original ThinkerCoT.488

The results are shown in Figure 3. We observed that489

by introducing style alignment, the output tokens490

further decreases by 25.4%-47.7%, and there was491

a 6.5% improvement in accuracy on the AR-LSAT,492

while the other data remained stable.493

PrOntoQA ProofWriter FOLIO LogicalDeduction AR-LSAT
Dataset
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Figure 3: Comparison of output tokens and accuracy
of ThinkerCoT and ThinkerCoT without the style align-
ment process.

5.4 How does ThinkerCoT impact LLM’s 494

Comprehensive Reasoning Capabilities? 495

We designed an experiment to verify whether 496

Logic-Thinker and ThinkerCoT can enhance the 497

comprehensive reasoning abilities of LLMs in real- 498

world SFT stage of training a reasoning model. 499

We selected several public benchmarks from the 500

domains of science, mathematics, and logic to 501

evaluate the comprehensive reasoning capabilities 502

of the model. For the science domain, we used 503

GPQA(Rein et al., 2024) as the benchmark. For 504

mathematics, we selected multiple benchmarks of 505

varying difficulty levels, including GSM8K(Cobbe 506

et al., 2021), MATH(Hendrycks et al., 2021), 507

OlympiadBench(He et al., 2024), LiveBench- 508

Math(White et al., 2025) and AIME24. For logical 509

reasoning, we chose Multi-LogiEval(Patel et al., 510

2024b) and LiveBench-Reasoning(White et al., 511

2025) as evaluation benchmarks. 512

For the baseline setup, we randomly sampled 513

10,000 examples from a reasoning CoT dataset, 514

NaturalReasoning(Yuan et al., 2025), and con- 515

ducted SFT on Qwen2.5-7B-Instruct (SFTNR). 516
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Size Method
FOL CSP

PrOntoQA ProofWriter FOLIO LD AR-LSAT Avg.

Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens

7B

Base Model 98.60 0.34K 64.50 0.53K 64.22 0.30K 66.00 0.45K 20.35 0.71K 62.73 0.46K

LongCoT 88.18 3.51K 85.50 5.62K 72.55 5.14K 95.67 2.52K 18.61 6.84K 72.10 4.73K
ThinkerCoT 100.00 0.51K 88.00 0.65K 74.02 0.47K 94.33 0.69K 22.08 1.17K 75.69 0.70K

Table 3: Comparison of ThinkerCoT and LongCoT across different logic reasoning datasets. The best accuracy
result per dataset are put in bold. ThinkerCoT outperforms LongCoT with an overall accuracy improvement of 3.6%
while reducing token output by 73%-91%

Domain Benchmark SFTNR SFTNR+ThinkerCoT SFTNR+LongCoT

Science GPQA 9.09 14.90 6.19

Mathmatic

GSM8K 81.80 82.26 82.41
MATH 59.36 58.80 55.98

OlympiadBench 26.96 27.70 27.56
Livebench-Math 17.42 21.19 18.54

AIME24 4.17 4.58 4.12

Reasoning
Multi-LogiEval 32.09 69.82 58.41

Livebench-Reasoning 30.67 34.00 16.67

Table 4: Comparison of different fine-tuned models on
all benchmarks.

Concurrently, we generated 5,000 ThinkerCoT517

and QwQ32B LongCoT data entries across five518

logical reasoning datasets, mixed them with the519

sampled NaturalReasoning entries, and then con-520

ducted SFT on Qwen2.5-7B-Instruct respectively,521

the fine-tuned models are SFTNR+ThinkerCoT and522

SFTNR+LongCoT respectively. We report the523

scores of the three models on the all benchmarks524

in Table 4. It was observed that ThinkerCoT525

achieved the best performance on all benchmarks526

in the science and logic domains. Notably, on527

the Multi-LogiEval dataset, ThinkerCoT outper-528

formed SFTNR and SFTNR+ThinkerCoT by 37.73529

and 11.41 points, respectively. In the mathemat-530

ics domain, ThinkerCoT achieved the best perfor-531

mance on three datasets and ranked second on the532

remaining two, with score differences of less than533

one point from the best results. From the perspec-534

tive of difficulty levels, ThinkerCoT was shown535

to effectively enhance the model’s ability to solve536

more challenging mathematical problems. These537

experimental results demonstrate that the ability to538

perform rigorous logical reasoning can effectively539

improve the model’s comprehensive reasoning ca-540

pabilities.541

5.5 Case Study542

In this section, we conducted a case study to ex-543

plore the effectiveness of ThinkerCoT compared to544

LongCoT. We selected a question from PrOntoQA545

dataset and presented the details of ThinkerCoT546

and LongCoT, as shown in Figure 6 of Appendix 547

D. ThinkerCoT arrived at the correct conclusion 548

through concise and rigorous reasoning. In contrast, 549

the reasoning errors in LongCoT can be attributed 550

to the following: 1. Correctly deducing "Sam is a 551

rompus" but failing to proceed further, prematurely 552

altering the reasoning path. 2. Hallucination issues, 553

positing "vumpus is zumpus" as a premise, which 554

was not mentioned in the context. Despite utiliz- 555

ing a substantial number of tokens for reflection 556

and verification afterward, it ultimately reasoned 557

incorrectly. These observations further confirm the 558

issue of logical incoherence of LongCoT while also 559

demonstrating the rigorous reasoning capability of 560

ThinkerCoT. 561

6 Conclusion 562

We introduce a novel neuro-symbolic logic rea- 563

soning framework, named Logic-Thinker, which 564

can transform the reasoning process of solvers 565

into a rigorous and concise CoT, referred to as 566

ThinkerCOT. The proposed framework consists 567

of three modules: Formulator, LogicSolver and 568

CoT-Generator. We categorize logical reasoning 569

problems into two types and implement them re- 570

spectively in three modules. The experimental 571

results demonstrated that Logic-Thinker outper- 572

forms other state-of-the-art frameworks in logical 573

reasoning capability. Additionally, ThinkerCoT 574

achieves a 3.6% improvement in accuracy while 575

reducing token output by 73%-91% compaed to 576

LongCoT. Furthermore, the logical reasoning data 577

synthesized through ThinkerCoT can effectively en- 578

hance the overall reasoning ability of LLMs, such 579

as in mathematics and scientific reasoning, which 580

demonstrates the significant value of our methods 581

in practical LLM training tasks. 582

8



Limitations583

Our current work has some limitations. First, our584

formalization process still suffers from a certain de-585

gree of information loss, which affects the accuracy586

on datasets like FOLIO and AR-LSAT, making it587

less than ideal. In the future, we plan to leverage588

more SPG semantic features to improve the quality589

of the formalization process.590

Furthermore, we have not yet achieved a uni-591

fied formalization process for FOL and CSP. Our592

long-term goal is to achieve a unified symbolic rep-593

resentation for two types of problems and employ594

a single unified solver along with a CoT genera-595

tion pipeline. This would enable the framework596

to provide a unified solution for logical reasoning597

tasks.598
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A Prompt Examples812

In this section, we provide examples of prompts813

used by the formulator module of Logic-Thinker.814

The prompt consists of five components: a task de-815

scription, context, question, options, and a domain-816

specific symbolic program. For simplicity, we817

present only one example for each type of logic818

reasoning problems in the following sections.819

A.1 Prompt for FOL Formalization820

Task Description: You are a logic expert specializing in translating natural language
problems into First-Order Logic (FOL) expressions. Given a logical reasoning problem
consisting of a premises and conclusion, perform the following steps:
**Translation Steps**:
1. Summarize the predicates from the text (both premises and conclusion)
2. Define the individual constants from the text and symbolize them.
3. Based on the outputs from steps 1 and 2, combine them with logical symbols to form
first-order predicate expressions. Each sentence in the text should correspond to one
expression. You can use the following logical symbols:
(... more context here ...)
4. Based on the outputs from steps 1, summarize the hierarchical relationships within
predicates and describe them using subClassOf.
**Output Format**
(... more context here ...)
**Input**:
Premises: [BG] There are four seasons in a year: Spring, Summer, Fall, and Winter. All
students who want to have a long vacation love summer the most. Emma’s favorite season
is summer. Mia’s favorite season is not the same as Emma’s. James wants to have a long
vacation.
Conclusion: James’s favorite season is summer.
**Output**:
Define Predicates:
Season(x) ::: x is a season.
(... more context here ...)
Define Constants:
Emma ::: represent the student of Emma
(... more context here ...)
Translate Premises:
Emma’s favorite season is summer. ::: Favorite(Emma, Summer)
(... more context here ...)
Translate Conclusion:
James’s favorite season is summer. ::: Favorite(James, Summer)
Hierarchical Relationships:
subClassOf(Spring, Season)
(... more context here ...)

A.2 Prompt for CSP Formalization 821

Task Description: Given a constraint satisfaction problem that includes a context and
a question in natural language. The task is to describe the problem using the XCSP3
extension modeling language, consisting three parts: Variables, Constraints, and Options.
You can use the following operators:
Arithmetic Opposite: neg(x) ::: -x
Logical Not: not(x) ::: ¬x
(... more context here ...)
Context: On Tuesday Vladimir and Wendy each eat exactly four separate meals: breakfast,
lunch, dinner, and a snack. (... more context here ...) Wendy eats an omelet for lunch.
Question: Vladimir must eat which one of the following foods?
Option:
(A) fish
(B) hot cakes
(C) macaroni
(D) omelet
(E) poached eggs
Program:
(... more context here ...)

B CoT Generation for FOL Problem 822

As shown in Figure 4(a), a concrete problem exam- 823

ple is presented from the FOLIO dataset. We first 824

perform formalization, abstracting the content and 825

the question into symbolic representations. The 826

content is divided into Facts and Rules, as illus- 827

trated in Figure 4(b). Subsequently, we employ 828

Fol Solver to deduce the problem and record the 829

complete solution tree, as shown in Figure 4(c). 830

Next, we convert the tree into a graph struc- 831

ture and apply several optimizations, including 832

intermediate result removal(indicated by the red 833

dashed box in Figure 4(c)) and duplicate node merg- 834

ing(marked by the green dashed box in Figure 4(c)). 835

As a result, we obtain a simplified directed acyclic 836

graph (DAG), shown in Figure 4(d), where the 837

assumption node serves as the starting node, the 838

conclusion node as the end node, and the remaining 839

nodes represent deduction nodes. 840

Finally, we apply Algorithm 1 to traverse the 841

graph and generate the reasoning statement for each 842

type of node based on the Chain-of-Thought (CoT) 843

template. This process results in the complete CoT 844

output, as shown in Figure 4(e). 845

C CoT Generation for CSP Problem 846

As shown in Figure 5, we selected a specific prob- 847

lem from the AR-LSAT dataset. First, we formal- 848

ized the Context and Question into the XCSP3 for- 849

mat using the formulator. The content is divided 850

into Variables, Constraints, and Options, as illus- 851

trated in Figure 5(Formalization). Then, we used 852

CSPSolver to solve the problem, obtained the in- 853

termediate reasoning process, and converted it into 854

a graph, as shown in Figure 5(ReasoningGraph). 855

Finally, we traversed ReasoningGraph following 856

the process outlined in Algorithm 2 to generate 857
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the CoT. The traversal process, marked by colored858

edges, is shown in Figure 5(ReasoningGraph). The859

final CoT is presented in Figure 5(CoT).860

D Comparison of ThinkerCoT and861

LongCoT862

We select a specific problem from the test split863

of PrOntoQA dataset. We utilize the model fine-864

tuned on ThinekrCoT and LongCoT to predict the865

problem respectively. The completions of the two866

models are shown in Figure 6.867
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Figure 4: A complete example of FOL CoT generation which consists of five parts: (a) the original question (b) the
symbolic representation after formalizing (c) the complete record tree of SeFolSolver (d) the simplified DAG (e) the
final complete CoT.
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Problem
Context: On Tuesday Vladimir and Wendy each eat exactly four separate meals: breakfast, lunch, dinner, and a snack. The following is all that is known about what they eat during that day:
At no meal does Vladimir eat the same kind of food as Wendy. Neither of them eats the same kind of food more than once during the day. For breakfast, each eats exactly one of the
following: hot cakes, poached eggs, or omelet. For lunch, each eats exactly one of the following: fish, hot cakes, macaroni, or omelet. For dinner, each eats exactly one of the following: fish,
hot cakes, macaroni, or omelet. For a snack, each eats exactly one of the following: fish or omelet. Wendy eats an omelet for lunch.
Question: Vladimir must eat which one of the following foods?
(A) fish (B) hot cakes (C) macaroni (D) omelet (E) poached eggs

Formalization
< i n s t a n c e f o r m a t ="XCSP3" t y p e ="CSP">

< v a r i a b l e s >
< v a r i d ="V_b" n o t e =" Vlad imi r ' s b r e a k f a s t : 1 = h o t cakes , 2= poached eggs , 3= om e l e t "> 1 2 3 < / v a r >

. . . . . .
< v a r i d =" V_s " n o t e =" Vlad imi r ' s s n a c k : 3 = omele t , 4= f i s h "> 3 4 < / v a r >
< v a r i d ="W_b" n o t e ="Wendy ' s b r e a k f a s t : 1 = h o t cakes , 2= poached eggs , 3= om e le t "> 1 2 3 < / v a r >

. . . . . .
< v a r i d ="W_s" n o t e ="Wendy ' s s n a c k : 3 = omele t , 4= f i s h "> 3 4 < / v a r >

< / v a r i a b l e s >
< c o n s t r a i n t s >

< i n t e n s i o n n o t e ="Wendy e a t s an ome le t f o r l u n c h "> eq ( W_l , 3 ) < / i n t e n s i o n >
< i n t e n s i o n n o t e =" At no meal does V l a d i m i r e a t t h e same k ind of food as Wendy"> ne ( V_b , W_b) < / i n t e n s i o n >
. . . . . .
< a l l D i f f e r e n t n o t e =" N e i t h e r o f them e a t s t h e same k ind of food more t h a n once d u r i n g t h e day ">

< l i s t > V_b V_l V_d V_s < / l i s t >
< / a l l D i f f e r e n t >
. . . . . .

< / c o n s t r a i n t s >
< o p t i o n s >

< q u e s t i o n > V l a d i m i r must e a t which one of t h e f o l l o w i n g f o o d s ? < / q u e s t i o n >
. . . . . .
< o p t i o n i d ="D" t y p e =" m u s t _ s a t " n o t e =" V l a d i m i r must e a t om e le t ">

or ( eq ( V_b , 3 ) , eq ( V_l , 3 ) , eq ( V_d , 3 ) , eq ( V_s , 3 ) )
< / o p t i o n >
. . . . . .

< / o p t i o n s >
< / i n s t a n c e >

CoT
### Let’s rephrase the constraint for better understanding:
- c1: Wendy eats an omelet for lunch
- c2: At no meal does Vladimir eat the same kind of food as Wendy
- c3: Neither of them eats the same kind of food more than once during the day
### Breakdown:
To figure this out, we analyze the given constraints step-by-step:
#### Define variables:
- V_b: {1,2,3} , Vladimir’s breakfast:1=hot cakes, 2=poached eggs, 3=omelet
... ...
- V_s: {3,4} , Vladimir’s snack:3=omelet, 4=fish
- W_b: {1,2,3} , Wendy’s breakfast:1=hot cakes, 2=poached eggs, 3=omelet
... ...
- W_s: {3,4} , Wendy’s snack:3=omelet, 4=fish
#### Let’s begin to analyse according to constraints:
1. Base on c1, we conclude that: ...,W_l:3,...
2. Base on c3, we conclude that: ...,W_b:{1,2},W_d:{1,4,5},W_s:{4},...
3. Base on c3, we conclude that: ...,W_d:{1,5},...
4. Base on c2: we conclude that: ...,V_l:{1,4,5},V_s:{3},...
5. Base on c3: we conclude that: ...,V_b:{1,2},V_d:{1,4,5},...
### Option Analysis:
#### Option A("Vladimir must eat fish")
... ...

Figure 5: An example of CSP problem, which selected from the AR-LSAT dataset showcases the results of three
stages in the LogicThinker pipeline: formalization, reasoning, and CoT generation.The ReasoningGraph highlights
the process of generating the CoT.
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Problem

Problem: Zumpuses are dull. Every vumpus is not transparent. Vumpuses are numpuses. Numpuses are blue. Numpuses are wumpuses. Wumpuses are liquid. Each wumpus is a
tumpus. Tumpuses are not spicy. Tumpuses are rompuses. Each rompus is not dull. Rompuses are yumpuses. Every yumpus is floral. Every yumpus is an impus. Impuses are hot.
Each impus is a jompus. Every jompus is large. Jompuses are dumpuses. Sam is a vumpus. Is the following statement true or false? Sam is not dull.
Answer: True.

ThinkerCoT

To solve this problem, let’s break down the given premises and follow the logical steps to determine if Sam is not dull.
Initial Setup:
We have a series of statements about different types of creatures and their properties. We need to determine if Sam, who is a vumpus, is not dull.

Premises:
1. Zumpuses are dull. 2. Every vumpus is not transparent. 3. Vumpuses are numpuses. 4. Numpuses are blue. 5. Numpuses are wumpuses. 6. Wumpuses are liquid. 7. Each
wumpus is a tumpus. 8. Tumpuses are not spicy. 9. Tumpuses are rompuses. 10. Each rompus is not dull. 11. Rompuses are yumpuses. 12.. Every yumpus is floral. 13. Every
yumpus is an impus. 14. Impuses are hot. 15. Each impus is a jompus. 16. Every jompus is large. 17. Jompuses are dumpuses. 18. Sam is a vumpus.

Step-by-Step Analysis:
1. Sam is a vumpus (Premise 18).
2. Vumpuses are numpuses (Premise 3): - Since Sam is a vumpus, Sam is also a numpus.
3. Numpuses are wumpuses (Premise 5): - Since Sam is a numpus, Sam is also a wumpus.
4. Each wumpus is a tumpus (Premise 7): - Since Sam is a wumpus, Sam is also a tumpus.
5. Tumpuses are rompuses (Premise 9): - Since Sam is a tumpus, Sam is also a rompus.
6. Each rompus is not dull (Premise 10): - Since Sam is a rompus, Sam is not dull.

Conclusion:
By following the chain of logical implications, we can conclude that Sam, being a vumpus, is also a numpus, wumpus, tumpus, and rompus. Since every rompus is not dull, Sam is
not dull.

Final Answer:
True

LongCoT

<think>
Okay, let’s see. I need to figure out if the statement "Sam is not dull" is true or false based on the given information. Let me start by listing out all the information provided and then
see how it connects to Sam.
First, the given statements:
1. Zumpuses are dull. 2. Every vumpus is not transparent. 3. Vumpuses are numpuses. 4. Numpuses are blue. 5. Numpuses are wumpuses. 6. Wumpuses
are liquid. 7. Each wumpus is a tumpus. 8. Tumpuses are not spicy. 9. Tumpuses are rompuses. 10. Each rompus is not dull. 11. Rompuses are yumpuses. 12.
Every yumpus isfloral. 13. Every yumpus is animpus. 14. Impuses are hot. 15. Eachimpus is a jompus. 16. Every jompus is large. 17. Jompuses are dumpuses. 18. Sam is a vumpus.

Now, the question is whether "Sam is not dull" is true or false. Let’s break this down step by step.

Starting with Sam: From statement 18, Sam is a vumpus. Then, looking at the other statements, we can see that vumpuses are numpuses (statement 3). So Sam is a vumpus, which
is a numpus.
Now, numpuses are wumpuses (statement 5). So Sam is also a wumpus. Then, wumpuses are liquid (statement 6), so Sam is liquid. Each wumpus is a tumpus (statement 7), so
Sam is a tumpus.
Tumpuses are rompuses (statement 9). Therefore, Sam is a rompus. Now, looking at statement 10: Tumpuses are not spicy. Since Sam is a tumpus, that means Sam is not
spicy. But that might not be directly relevant to the question about being dull.

Next,rompuses are yumpuses (statement 11). So Sam is a yumpus. Then, every yumpus is floral (statement 12) and every yumpus is an impus (statement 13). Therefore, Sam is
both florally and an impus. Since impuses are hot (statement 14), Sam must be hot. Also, eachimpus is a jompus (statement 15), so Sam is a jompus. And every jompus is large
(statement 16), so Sam is large. Finally, jompuses are dumpuses (statement 17), so Sam is a dumpus.

Now, the key point here is whether Sam is dull. The first statement says "Zumpuses are dull." But does that mean all zumpuses are dull, or just that zumpuses can be dull? The
wording is a bit ambiguous. However, in the given information, the first statement is "Zumpuses are dull." Since zumpuses are a type of vumpus (from statement 3, since vumpuses
are numpuses, and numpuses are wumpuses, etc.), but wait, actually, the first statement says "Zumpuses are dull." Wait, but in the chain, Sam is a vumpus, which is a numpus,
which is a wumpus, which is a tumpus, which is a rompus, which is a yumpus. So Sam is a yumpus. But yumpus is a type of vumpus? Wait, let me check the statements again.

Wait, statement 3 says "Vumpuses are numpuses." So vumpus is a subset of numpus. Then statement 5 says "Numpuses are wumpuses," so numpus is a subset of wumpus. So
vumpus is a wumpus. Then statement 11 says "Rompuses are yumpuses," so rompus is a subset of yumpus. Therefore, yumpus is a type ofrompus, which is a type of wumpus,
which is a type of numpus, which is a type of vumpus. So Sam is a vumpus, which is a numpus, which is a wumpus, which is a tumpus, which is arompus, which is a yumpus. So
Sam is a yumpus.

Now, the first statement says "Zumpuses are dull." Since Sam is a vumpus, which is a numpus, which is a wumpus, which is a tumpus, which is a rompus, which is a yumpus. So
Sam is a yumpus. But the first statement says "Zumpuses are dull." Since zumpuses are a type of vumpus, and vumpus is a type of numpus, etc., but the first statement is a general
statement about zumpuses. However, the problem is that the first statement might not be saying that all zumpuses are dull, but just that zumpuses are dull in general. Since Sam is a
vumpus, which is a zumpuse, then according to the first statement, zumpuses are dull, so Sam would be dull. But wait, the question is whether Sam is not dull. So if the first
statement is that zumpuses are dull, then Sam, being a zumpus, would be dull, making the statement "Sam is not dull" false. But hold on, maybe there’s a contradiction or another
rule that could override this?

Wait, let me check again. The first statement is "Zumpuses are dull." Since zumpuses are a type of vumpus, and vumpus is a type of numpus, etc., so all the way down to Sam being
a yumpus, which is a type of vumpus. Therefore, Sam is a zumpus, so according to the first statement, zumpuses are dull, so Sam must be dull. Therefore, the statement "Sam is not
dull" would be false. But wait, maybe there’s another rule that could make Sam not dull?

......
Therefore, I think the answer is false.
</think>

Figure 6: An example of ThinkerCoT and LongCoT in PrOntoQA, where ThinkerCoT provides the correct answer,
whereas LongCoT does not. The specific reasons for LongCoT’s errors are highlighted in bold red, which include:
1. Correctly deducing "Sam is a rompus" but failing to proceed further, prematurely altering the reasoning path. 2.
Hallucination issues, positing "vumpus is zumpus" as a premise, which was not mentioned in the context. Despite
utilizing a substantial number of tokens for reflection and verification afterward, it ultimately reasoned incorrectly.
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