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ABSTRACT

Membership Inference Attacks (MIAs) can be used by model owners to identify
privacy leakage of specific points in their machine learning models. In this setting,
the model owner (who is playing the role of the attacker) has perfect knowledge of
the training data but a limited computational budget. However, current MIAs have
limited effectiveness in this scenario: 1) They perform poorly against the most
vulnerable points 2) They require training too many models. To overcome this
weakness, we modify two limitations, in the initial/upstream stages of the MIA
framework, namely sampling bias (i.e., too many points dropped during sampling)
and attack aggregation (i.e., average attack results over all the data points instead
of only the most vulnerable ones). Our improvements carryover downstream and
boost attack accuracy of existing MIAs by increasing the TPR of existing attacks
at incredibly low FPRs (as low as zero) while achieving a near-perfect AUC. As
a consequence, our modifications enable the practical and effective application of
MIAs for identification of data-leakage in machine learning models.

1 INTRODUCTION

Figure 1: Original attack framework (dotted lines)
vs our improved one (solid lines) for CIFAR-100
using only one model per query. We achieve a
near perfect accuracy (both in terms of AUC and
TPR at zero FPR).

MIAs are attacks designed to quantify train-
ing data leakage by predicting whether or not
a point was used for training a given model.
The most popular and effective of these at-
tacks are the ones based on the shadow model
framework Salem et al. (2018); Zarifzadeh et al.
(2024); Carlini et al. (2022); Watson et al.
(2021); Long et al. (2020); Sablayrolles et al.
(2019); Song & Mittal (2021); Jayaraman et al.
(2020); Shokri et al. (2017); Yeom et al. (2018).
A model owner might be incentivized to use
these attacks to identify which specific points
are leaked by their model, so that they can take
preventative measures.

However, MIAs are not designed for this spe-
cific scenario. They are designed for settings
where the attacker has limited knowledge of the
training data, but a large computation budget
(in order to train dozens or even hundreds of
shadow models). In contrast, current MIA do
not fully leverage the availability of the train-
ing data, and unavailability of a large computa-
tion budget. As a result, even the most powerful
MIAs suffer from the same critical weakness:
low power at low false positive rates (FPRs). This is an important limitation because, as pointed
out by recent works, an attack is considered successful only if it reliably violates the privacy of data
points without mistakes Carlini et al. (2022); Stadler et al. (2022); Aerni et al. (2024). In contrast,
an attack that unreliably achieves a high aggregate success rate can be considered a failure. While a
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large computational budget can alleviate this issue, this might not be possible for most model owners
who do not have the budget to train multiple instances of their large commercial models.

Given the limited access to the target’s training data, most attacks only focus on modifying the final
stage of the pipeline (i.e., the hypothesis test) Carlini et al. (2022); Zarifzadeh et al. (2024); Bertran
et al. (2024); Ye et al. (2022); Yeom et al. (2018). In our case, we assume the model owner wants
to identify the leakage of specific points. As a result, we take a radically different approach. Instead
of attending to the last stage of the framework, we focus our efforts upstream. We investigate and
identify issues in the initial stages of the framework, and consequently, propose modifications. We
find that our improvements carryover downstream, and are able to drastically increase accuracy of
existing MIAs, at times, to near perfect (Figure 1). As a result, our modifications significantly
boost accuracy of existing MIAs and consistently achieves a high power across all FPRs (even
as low as 0), using any computational budget. In other words, we can reliably help a model owner
identify which of their data points are being leaked under a low computational budget.

Contributions: We investigate the shadow model framework used for MIA attacks (Figure 2). In
doing so, we uncover two limitations that upper bound the effectiveness of existing attacks.

The first limitation we encounter is at Step 2 of the framework (Figure 2), which we call sampling
bias (Section 3.1). This is a result of dropping too many points during data set generation. In
other words, when the drop rate is high, the attacks perform poorly for low FPRs. We find that
lowering the drop rate can significantly improve attack success. For example, lowering the rate
from 50%, commonly used in existing works Carlini et al. (2022); Zarifzadeh et al. (2024); Ye et al.
(2022), to just 10% improves attack accuracy by 2×. One might be tempted to mitigate sampling
bias by simply reducing the drop rate during data set generation. However, this will increases the
number of data set partitions, and therefore, requires training more shadow models, ballooning the
computational costs. For example, a 50% drop rate will result in 100%/50% = 2 partitions, while
a drop rate of 10% results in 100%/10% = 10 partitions. In order to address this issue, we develop
a robust partitioning method that uses a small drop rate without increasing the number of partitions.
We discuss this method towards the end of this Section.

The second limitation we observe is at Step 4 of the framework (Figure 2), known as attack aggre-
gation (Section 3.2). This is a well known issue in existing MIAs (not just shadow model ones), and
is defined as the averaging of attack accuracy over all the points in the data set Carlini et al. (2022);
Steinke & Ullman; Aerni et al. (2024). Instead, MIAs should focus only on the most vulnerable
ones Carlini et al. (2022); Steinke & Ullman. Therefore, our contribution is to develop means to
identify these vulnerable points, without having to run a MIA in the first place. We find that outlier
detection methods perform exceptionally by improving TPR, by as much as, 11× at zero FPR while
achieving near perfect AUC, even for large datasets like CIFAR-100 and Tiny Imagenet.

Having described both limitations, we now combine our modifications to ensure maximal attack
accuracy. We devise a sampling strategy that limits the number of partitions while simultaneously
using a small drop rate. Specifically, instead of creating data partitions from the entire set, we only
sample from the most vulnerable points (i.e., the outliers) (Section 4). After doing so, we perform an
extensive evaluation of our modified framework across different attacks and datasets. We find that
our modifications not only help achieve near perfect AUC but also near perfect TPR at zero FPR,
using only a single shadow model. In fact, a single shadow model with our modified framework can
out perform the original framework that uses 100 shadow models. To add to that, since our approach
makes upstream modifications, it gives us the unique ability to easily integrate with, and boost the
accuracy of, existing MIAs.

2 BACKGROUND AND RELATED WORK

2.1 THE MIA GAME

Before we discuss details of our modifications, lets take a moment to understand the MIA game.
The goal of MIA is to determine whether a specific data point x was used for training a given model
θ. MIA is defined by an indistinguishability game between a challenger and adversary (i.e., privacy
auditor) Ye et al. (2022); Carlini et al. (2022); Zarifzadeh et al. (2024); Shokri et al. (2017); Homer
et al. (2008); Sankararaman et al. (2009); Ye et al. (2022). The game models random experiments
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Figure 2: The figure shows the shadow model framework which is the cornerstone of the state-of-
the-art MIAs. The framework comprises five steps. While most papers propose changes to the final
step of the pipeline, we modify the upstream steps. In doing so, we can achieve significantly higher
attack success over existing works.

related to two scenarios; Hin: the model θ was trained on x; and Hout: x was not in θ’s training set
(the null hypothesis). The adversary has to decide whether or not point x was present in the trained
model θ, using his background knowledge about the training algorithm and data distribution.

Definition 2.1 (Membership Inference Game). Let π be the data distribution, and let A be the
training algorithm.

1. The challenger samples a training dataset S ∼ π, and trains a model θ ∼ A(S).
2. The challenger flips a fair coin b. If b = 1, it randomly samples a data point x from S.

Otherwise, it samples x ∼ π, such that x /∈ S. The challenger sends the target model θ and
the target data point x to the adversary.

3. The adversary, having access to the distribution over the population data π, computes
ScoreMIA(x; θ) and uses it to output a membership prediction bit b̂←MIA(x; θ).

A membership inference attack assigns a membership score ScoreMIA(x; θ) to every pair of (x, θ),
and performs the hypothesis testing by outputting a membership bit through comparing the score
with a threshold β:

MIA(x; θ) = IScoreMIA(x;θ)≥β (1)

The adversary’s power (true positive rate) and error (false positive rate) are quantified over numer-
ous repetitions of the MIA game experiment. The threshold β controls the false-positive error the
adversary is willing to tolerate Sankararaman et al. (2009); Ye et al. (2022); Bertran et al. (2024);
Carlini et al. (2022).

The ScoreMIA(x; θ) and the test equation (1) are designed to maximize the MIA test performance
as its power (True Positive Rate or TPR) for any False Positive Rate (FPR). The (lower-bound for
the) leakage of the ML algorithm is defined as the power-error trade-off curve (the ROC curve),
which is derived from the outcome of the game experiments across all values of β. We primarily
compare attacks based on their TPR-FPR curves but also analyze their computational efficiency and
their stability (i.e., how much their power changes when we vary the data distribution and attacker’s
computational budget).

2.2 SHADOW MODEL FRAMEWORK

The most effective and popular means of playing the MIA game is via the use of the shadow model
framework Salem et al. (2018); Zarifzadeh et al. (2024); Carlini et al. (2022); Watson et al. (2021);
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Long et al. (2020); Sablayrolles et al. (2019); Song & Mittal (2021); Jayaraman et al. (2020); Shokri
et al. (2017); Yeom et al. (2018). It involves training local (or shadow) models to mimic the target
model, using auxiliary data from the same distribution as the target. In doing so, an attacker can
understand how the target model might behave when a data point is present or absent, enabling
accurate membership inferences.

Specifically, this framework, shown in Figure 2, involves the following steps:

• Step 1 - Collect Data Set: The first step is to collect an auxiliary data set from the same
distribution as the target model’s training data. This data serves as a substitute for the
actual training data of the target model, which the attacker typically does not have access
to. Auxiliary data can be obtained from public data sets, augmentation, or similar sources.

• Step 2 - Generate Data Partitions: Split the data into multiple subsets or partitions. These
are used for training shadow models to simulate different scenarios of what the target model
might have been trained on. The more the partitions, the more the shadow models. In the
ideal world, subset generation should only remove a single point from the dataset (or run
a leave-one-out test). This will provide a precise understanding of how the model behaves
when a single point is removed. However, this setup is computationally infeasible for
even small datasets and models as it requires training as many models as points in the
set. To overcome this issue, data set generation partitions the data by dropping a specific
percentage of random points. As we discuss in the next Section, current MIAs drop too
many points during partitioning, leading to a sampling bias, and consequently, poor MIA
results. Therefore, we modify this step to improve MIA accuracy.

• Step 3 - Train Shadow Models: Train each shadow model on one of the partitions gen-
erated in the previous step. To improve the accuracy of the MIA, authors train multiple
shadow models per query, i.e., the number of models with a given point present/absent
from the training data. The total number of shadow models that the attacker will need to
train is partitions×models per query. The number of models per query can range from
a few dozen Zarifzadeh et al. (2024) to a few hundred Carlini et al. (2022). Fortunately, we
find that our proposed modifications can out perform existing the original framework while
requiring only a single model per query.

• Step 4 - Get Shadow Model Predictions: For each data point in the dataset, collect the
models’ predictions, confidence scores, loss values, or gradient information, etc. These are
then used by the final step to predict whether or not a given point was present in the training
data. As we discuss in the next Section, current MIAs collect predictions over all the points
in the set. Instead, we modify this step to focus on only the most vulnerable points, thereby
improving MIA accuracy.

• Step 5 - Hypothesis Test: Finally, the attacker uses statistical tests to over model predic-
tions to predict whether a data point was a present or absent during training. Most MIA
papers focus on this step Salem et al. (2018); Zarifzadeh et al. (2024); Carlini et al. (2022);
Watson et al. (2021); Long et al. (2020); Sablayrolles et al. (2019); Song & Mittal (2021);
Jayaraman et al. (2020); Shokri et al. (2017); Yeom et al. (2018), modifying the statistical
tests to scale up attack accuracy without having to train additional models.

2.3 THREAT MODEL

We assume a setting where the model owner wants to determine which points are most vulnerable
to privacy leakage. As a result, the model owner plays the role of the attacker and uses current
state-of-the-art MIAs for this purpose. We make two assumptions:

1. We assume that the attacker (in this case the model owner) has complete access to the
model was trained on (i.e., large overlap between shadow and target model). This is not a
realistic assumption for outside attackers as they are unlikely to have perfect knowledge of
the training data. However, in our case, since the model owner is also “attacker”, this is a
perfectly acceptable assumption Ye et al. (2022).

2. We assume that the model owner has a limited computation budget. This is means that
they can do not have the compute to train dozens or even hundreds of models, that are
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often required by current MIAs. This is also an acceptable assumption as training multiple
instances of large commercial models might not be possible for most entities.

Though effective in outside attacker scenario, current MIA have limited use in this setting. They
either perform poorly on the most vulnerable points, or require training too many models. Our
goal is to help bridge this gap by proposing modifications to existing MIAs that can help boost
performance in this scenario.

3 LIMITATIONS AND MODIFICATIONS TO THE EXISTING FRAMEWORK:

Having described the framework, we can now explore its limitations, and recommend modifications.
While most MIAs focus on the last step of the pipeline (Step 5), we focus upstream (Steps 2 and 4).
We find that our improvements are carried downstream thereby increasing overall MIA accuracy.

3.1 SAMPLING BIAS

Limitation: The first limitation we identify is at Step 2 of the MIA framework (Figure 2). This
step generates data partitions by dropping random points from the dataset. In most attacks, this drop
rate is around 50% Carlini et al. (2022); Zarifzadeh et al. (2024); Ye et al. (2022). This means,
for a set of 50,000 points (e.g., CIFAR-10), the MIA algorithm will drop at least 25,000 to create
a single partition. This leads to significant issue: The more points we drop, the further we stray
from the idealized leave-one-out experiment. As consequence, dropping too points can remove
entire sub-populations, leading to a sampling bias Abdullah (2024). If the partition does not contain
points from the small sub-population, the corresponding shadow models trained in the next step
stage (Step 3) will produce biased outputs (Step 4), resulting in poor attack accuracy (Step 5). As a
result, modifying this step has the potential to improve all the downstream tasks.

Modification: We hypothesize that these biased predictions will result in a low power at a low FPR.
Therefore, in order to overcome the issue, we need to drop fewer points during sampling.

Setup: To evaluate this hypothesis, we follow the training parameters laid out in previous work Car-
lini et al. (2022); Zarifzadeh et al. (2024). We use different drop rates (50%, 40%, 30%, 20%, 10%)
and record the corresponding change in attack success. Due to the computationally intensive nature
of this experiment (repeating it for different drop rates), we run the evaluation only over CIFAR-10,
a benchmark dataset commonly used for MIA Carlini et al. (2022); Zarifzadeh et al. (2024); Aerni
et al. (2024). While we do use more complex datasets (CIFAR-100 and Imagenet) in the rest of
the paper, our goal for this experiment is to reveal limitations in the existing framework. Therefore,
using just a single dataset is sufficient, at least for this experiment Aerni et al. (2024). Next, we train
RESNET-18 models on each of the partitions. We use a batch size of 512, with a triangular learning
rate of 0.4, and weight decay of 5e4. We use the FFCV library Leclerc et al. (2023) to improve the
training speed. Having trained the models, we now run the RMIA Zarifzadeh et al. (2024), Attack-
R Ye et al. (2022), and LiRA Carlini et al. (2022) attack, which is the most effective one in the
current literature. We use attack implementations available in the Privacy Meter repository Kumar
& Shokri (2020). We use the standard metrics, notably FPR versus TPR curve, and the Area Under
the Curve (AUC), for analyzing attack success. Unless otherwise specified, we use these models and
metrics for all the experiments of this work.

Figure 3: The ROC curves at different drop rates.
As the drop rate decreases, the attack success rate
increases. This means, modifying Step 2 of the
framework (Figure 2), to reduce the drop rate, will
improve the attack TPR at low FPR.

Results: Figure 3 shows the results of running
the RMIA attack across different drop rates, av-
eraged over 10 target models. We can see as the
drop rate decreases, the attack success rate in-
creases. Specifically, decreasing the drop rate
from 50% to 10%, improves TPR at zero FPR
by 2× (0.73 to 1.41). This trend is consis-
tent across the remaining two attacks as well
(Figure A.1). This clearly shows that dropping
too many points does lead to a sampling bias,
thereby lowering attack success.
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However, simply using a lower drop rate dur-
ing data set partitioning would be flawed. As
we discussion in Section 1. This is precisely
why MIAs do not execute the ideal leave-one-
out approach (i.e., create a partition by drop-
ping only a single point), even though it yields
the most accurate results. In the next section,
we propose a robust sampling method to over-
come this challenge . For now, it is important
to remember that the lower the drop rate, the
better the MIA results.

3.2 ATTACK AGGREGATION:

Limitation: The next limitation we identify is at Step 4 of the framework. Here, the MIA extracts
the output statistics (such as output confidence, logit value, etc) from the shadow models. Usually,
MIAs generate the output for every point in the data set. However, recent work has shown that
privacy is not an average case metric and an ideal MIA should only focus on the most vulnerable
points Carlini et al. (2022); Steinke & Ullman; Aerni et al. (2024). While the idea itself is well
known, what is not clear is how to identify these vulnerable points in the first place.

There are a few simple (yet flawed) approaches one could take here. For example, recent work has
proposed using of artificial canaries to mimic vulnerable data Aerni et al. (2024). However, this
approach is unsound for three reasons reasons. First, artificial points do not represent the actual
training distribution. Therefore, findings from artificial studying artificial points might not even ap-
ply to real data Abdullah et al. (2023). Second, MIAs are used for auditing model privacy. Model
owners are more concerned with privacy exposure of existing training points instead of the artifi-
cial ones. Lastly, training models on artificial data can hurt generalization, thereby limiting model
utility Arpit et al. (2017); Raghunathan et al. (2019).

Another simple approach would be to run the MIA to extract the most vulnerable points. However,
this too has a number of serious limitations. First, under the current framework, MIAs require
training many additional models, making it infeasible for any real-world use case. Second, current
MIAs themselves have a number of limitations, which is the main point of this work. Therefore,
using MIA for outlier detection is flawed1.

Modification: To that end, we hypothesize that outliers constitute the most vulnerable points to
membership inference. Therefore, we can significantly improve MIA success by first identifying
and then attacking only the outlier points.

MIA and Outliers vs Inliers: Before we evaluate our hypothesis, let’s first discuss the relationship
between outliers, inliers, and membership inference. An outlier is a data point that significantly
deviates from the other observations in a dataset. Outliers can include: rare points (e.g., a single
pink cat in a dataset of white cats), malformed inputs (e.g., a blurry or garbled cat), or even mis-
labeled points (e.g., a cat mislabeled as an ORANGE), etc. Outliers have few (if any) overlapping
features with the remaining points in the label set (i.e., rare, malformed, and mislabeled inputs do
not look like the other images in the label set). As a result, the features learned from the rest of the
label distribution are not useful for classifying these points Feldman (2020); Abdullah et al. (2023);
Abdullah (2024). Therefore, the model ability to classify these points correctly is largely subject to
their inclusion in the training data. In other words, the shadow model output for outliers will differ
based on whether these points were present in the training data. For example, the cat mislabeled as
an ORANGE will likely be classified as an orange when it is present in the shadow model data but
might be classified as CAT when absent. As a result, membership inference of outliers is easiest
compared to other points in the rest of the dataset Carlini et al. (2022; 2023; 2021); Somepalli et al.
(2023); Ye et al. (2022).

In contrast, inlier points are the least vulnerable to membership inference attacks. They are classified
correctly even when absent from the dataset. This is because these points have overlapping features
with the rest of the distribution. Features learned from remaining points in the dataset are sufficient to

1For completeness, we still do evaluate this approach in the Appendix A.2.
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Table 1: Performance of RMIA over different data sets using various outlier detection methods
using only 5,000 points. We use only one shadow model per query and average the results over 10
random models. ApB (in bold) outperforms all other methods across all data sets. It achieves either
very high or near perfect AUC. Incredibly, it also achieves a near perfect TPR at 0% FPR against
tiny-Imagenet, a large and complex dataset.

Baseline SPP MD ApB

AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR
0% 1% 0% 1% 0% 1% 0% 1%

CIFAR-10 65.87 2.99 8.98 83.3 7.1 22.04 80.08 7.25 18.96 95.81 11.81 45.29
CIFAR-100 89.71 17.1 38.75 97.1 32.48 61.63 91.15 16.45 41.08 99.94 74.46 98.87

Tiny-Imagenet 94.71 9.35 47.71 99.63 42.43 89.76 95.1 14.2 47.99 100.0 99.83 100.0

correctly classify the missing inliers. As a result, the shadow model output will not vary for inliers,
thereby making membership inference harder. Therefore, our goal differentiate the (vulnerable)
outliers from the (invulnerable) inliers, in order to be able to improve MIA accuracy.

Setup: We now evaluate our hypothesis. We execute our evaluation on CIFAR-10 and CIFAR-100
datasets. To further validate our hypothesis, we also run our evaluation on Tiny-Imagenet, which
consists of 100,000 images across 200 classes. We use the same experimental setup outlined earlier.

We compare different outlier detection methods for this purpose, one from each of three broad fam-
ilies: probability-based, distance-based, and memorization-based. Specifically, use SPP (Softmax
Prediction Probability) Hendrycks & Gimpel (2016), MD (Mahanobis Distance) McLachlan (1999),
and ApB (Accuracy per Batch) Abdullah (2024) (we provide details of each of these methods in the
Appendix). We train a single model on the full dataset to identify the outliers according to each of
these methods. We pick the 1250, 2500, and 5000 points with the highest outlier score i.e., ones that
are most likely to be outliers. We also sample an equal number of random points from the dataset,
as a baseline, to compare the outlier results. Finally, we run the RMIA attacks, the strongest one in
current literature, and compare our findings.

Results: Table 1 and Table 2 shows the experimental results. We can make three observations:

• Every outlier detection method outperforms the baseline by significant margins: We can
see this trend hold across every data set in Table 1. The AUC increases by as much as 30
percentage points (CIFAR-10) and the TPR at FPR increases by as much as 11× (Tiny-
Imagenet). This demonstrates that outliers provide a good means of identifying points
vulnerable to MIAs and should be used for evaluating the privacy metric.

• ApB is the most effective outlier detection method: Of the three outlier detection methods
we evaluate (SPP, MD, and ApB), ApB is most effective against every data set in Table 1.
We can observe that ApB improves the AUC by as much as 11 percentage points in the
case of CIFAR-10. Similarly, for CIFAR-100 and Tiny-Imagenet, ApB helps achieve a
near perfect AUC, and even a near perfect TPR at zero FPR for Tiny-Imagenet.

• The stronger the outlier, the better the MIA results: Table 2 shows how the attack accuracy
improves when we pick the top N most outlying points for the CIFAR-10 data set. In every
case, we see that the outliers out perform the baseline. For example, top 1250 outliers
improve AUC by at least 20 percentage points. Additionally, we can see the difference
between the outlier method also growing, with ApB out performing all other methods.
Specifically, at 1250 points, ApB helps achieve near perfect AUC and improving TPR at
FPR by 13× over the baseline.

Collectively, these results confirm our hypothesis that outliers are most vulnerable to MIAs. There-
fore, executing MIA on just the outliers can significantly improve the attack success rate. And of all
the methods evaluated, the ApB score is by far the most effective.
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Table 2: RMIA attack performance on CIFAR-10 across the top outlier points (first column) based
on outlier detection methods. The top points represents the strongest outliers according to each
of the detection methods. We use only one shadow model per query and average the results over
10 random targets. Similar to Table 1, ApB (in bold) outperforms all other methods, improving
TPR (over the baseline) by at least 3×, respectively. Therefore, further strengthening the case for
modifying Step 4 (Figure 2) to only use the outliers.

Top
Outliers

Baseline SPP MD ApB

AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR
0% 1% 0% 1% 0% 1% 0% 1%

1250 66.27 4.7 9.52 88.76 16.1 29.89 86.07 16.24 26.95 99.49 55.29 81.81
2500 65.97 3.49 7.81 86.48 10.88 24.54 83.51 10.37 22.08 98.47 24.78 68.68
5000 65.87 2.99 8.98 83.3 7.1 22.04 80.08 7.25 18.96 95.81 11.81 45.29

4 COMBINING MODIFICATION

In the last section, we explored the limitations of the existing framework and proposed two modifi-
cations to mitigate them. The first involves reducing the drop rate during dataset partitioning (Step
2 Figure 2). The second involves running the MIA against only the outliers, instead of the entire
dataset (Step 4 Figure 2). In this section, we combine these modifications to achieve maximal MIA
performance and then compare the results against the original framework.

4.1 COMBINING MODIFICATIONS

The simple (yet flawed) strategy to combine the modifications would be to first generate partitions
using a small drop rate, train the models, and get the output statistics for only the vulnerable points.
For example, use a drop rate of 5% to produce 100/5 = 20 partitions. Train one shadow model per
query on each partition, resulting in 20 models. Subsequently, use each models output statistics to
execute the MIA. However, this strategy has a clear limitation as it requires training 20 models.

We propose to fix this issue by creating partitions from only vulnerable points. Specifically, 1) we
train a single model on all points in the dataset of size k and identify the vulnerable ones (i.e.,
outliers). 2) We split the dataset into two sets: vulnerable v and non-vulnerable points v′, where
k = v + v′. 3) During dataset generation, we sample from only the vulnerable points by randomly
dropping a fraction of them. If the drop rate is d, then each partition will be of size (1 − d) · v. 4)
We append the non-vulnerable set to the vulnerable partitions. Each data shard will contain all the
non-vulnerable points but only a sub-sample of the vulnerable ones. As a result, each partition will
be of the size v′ + (1− d) · v.

This setup will overcome the aforementioned limitations. If we select the 5,000 vulnerable points, a
drop rate is 50% over them will result in 100/50 = 2 partitions of 2,500 points each. This is 5% of
the total dataset for CIFAR-10/CIFAR-100. This means we can use a drop rate of 5% over the total
data but only have to train two models, instead of 20.

4.2 EVALUATION

Setup: We use the same setup as described in the earlier sections. Due to the overwhelming attack
efficacy of the ApB detection method, we employ it for the rest of this section. For a fair comparison,
we select 5,000 random points for the baseline and compare the results against 5,000 ApB outliers.

How effective are our modifications over the original framework?

Figures 1 and 4 show the ROC curves for the three datasets across three different attacks when
using a single shadow model per query. Table 3 shows the specific TPR at FPR values in addition
to the AUC scores for each experiment. We can see that our modified attacks (solid line) strictly
outperform the original ones (dotted line) in every single case. Additionally, the original framework
has single digit TPR across all attacks at zero FPR. In stark contrast, our modifications lead to
significantly better results. In fact, in the case of CIFAR-100 and Tiny-Imagenet, our modified
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Figure 4: Original attack framework (dotted lines) vs our improved one (solid lines) using one
shadow model per query. Left: Tiny-Imagenet. Right: CIFAR-10. Our modifications outperform
the original framework by significant margins.

Table 3: The original attack compared against our combined modifications. Our modifications
outperform the corresponding unmodified pipeline in every case, even when the original uses 100
models.

Models
Per Query

Attack
CIFAR-10 CIFAR-100 Tiny Imagenet

AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR
0% 1% 0% 1% 0% 1%

1 LiRA 53.22 2.12 6.29 75.6 6.34 27.48 82.56 3.82 34.28
100 LiRA 55.03 2.72 8.44 80.68 19.49 43.55 88.19 15.87 53.0
1 our LiRA 80.84 12.49 28.68 99.37 70.0 92.48 99.84 80.22 96.2
1 Attack-R 63.72 2.14 9.48 85.7 6.73 36.71 90.79 2.3 33.63

100 Attack-R 64.37 4.68 10.85 85.17 30.14 46.95 90.72 37.36 57.35
1 our Attack-R 92.25 15.31 44.43 99.92 95.33 99.12 100.0 99.37 99.99
1 RMIA 65.87 2.99 8.98 89.71 17.1 38.75 94.71 9.35 47.71

100 RMIA 68.3 5.46 13.37 92.26 36.12 51.31 96.2 38.94 60.76
1 our RMIA 94.39 18.63 38.71 99.94 88.75 98.7 99.99 97.54 99.92

ATTACK-R achieves not only near-perfect AUC but also a near-perfect TPR at zero FPR. This
means our modified MIA can successfully exploit 5% of the total data in Tiny-Imagenet, and 10%
from CIFAR-100, without making any mistakes.

Does the framework boost the accuracy of each MIA?

Our modifications are made in the earlier stages of the pipeline. And the results show that they
carry over downstream and improve the accuracy of each MIA we evaluate. In fact, relative attack
accuracies remain consistent after modifications i.e., attacks that were strongest before modifications
are also the strongest after modifications. For example, RMIA is the most accurate, followed by
Attack-R and LiRA since it has the highest AUC. After our modifications, the attack accuracy order
remains unchanged, with RMIA having the highest AUC (in all but one dataset), followed by Attack-
R and LiRA. This shows that upstream improvements carry into the downstream stages, improving
the overall attack results.

How does the attack perform against large datasets?

We can see that the larger and more complex the dataset, the better the attack accuracy. For exam-
ple, in Table 3, the AUC of CIFAR-100 and Tiny-Imagenet are near perfect, with the TPR at zero

9
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FPR reaching near 100% on both our version of RMIA and Attack-R. In contrast, the attacks with
the original framework achieve, at best, 9.35 TPR at zero FPR and AUC of 94.71 when using a
single model per query. This means our modifications improve the TPR by 11×. Therefore, our
modifications are particularly effective against large and more complex datasets.

Why do our improvements perform better on large datasets than the smaller ones?

One interesting observation to note is that attack accuracy for CIFAR-10 using our method is slightly
lower than for CIFAR-100 and Tiny-Imagenet. A natural question that emerges is, why? Popular
belief would indicate that larger datasets should be harder to attack Zarifzadeh et al. (2024); Bertran
et al. (2024). Instead, our experiments demonstrate the contrary. Fortunately, a simple explana-
tion exists. Recent work from the space of memorization has shown that models memorize more
points from larger, more complex datasets (e.g., CIFAR-100, Tiny-Imagenet) Abdullah et al. (2023).
However, when the dataset is small and simple (e.g., CIFAR-10), models can generalize better, re-
sulting in less memorization. Since there is more memorization in large datasets, more of these
points should be vulnerable to MIAs. Our results corroborate these findings by showing that the top
outliers are easily detectable using MIAs.

Is the cost of training an extra model for outlier detection worth the results?

An astute reader will remember that our modification in Step 4 requires training one additional
model on the full data to identify the outlier points. Having demonstrated the overwhelming efficacy
of our attacks, a natural question that emerges is whether the cost is worth the improvement in attack
success. Therefore, we compare the modified attack with just one shadow model per query (plus one
extra model for outlier detection) against an original attack with 100 shadow models per query in
Table 3. Even in this extreme case, where the original framework has two orders of magnitude more
shadow models, our modified attack (with just one shadow model) wins by significant margins. In
fact, the original framework fails to reach 100% accuracy across any metric. In contrast, our method
achieves perfect AUC and TPR at zero FPR scores across multiple datasets.

How can the model owner identify all the leaked points?

While this paper only targets the top 5,000 for evaluation purposes, it is easy to see how a model
owner can extend it to the rest of the dataset. Table 2 shows that the stronger a point’s outlier score,
the more vulnerable it is to membership inference. The attacker can use this leverage this knowledge
to asses overall leakage: 1) Select the top N points, where N is less than dataset size, 2) partition
the N points, 3) train the shadow models, and 4) run the MIA. Up to now, the attacker is doing
exactly what we do in Section 4. However, in order to evaluate the privacy of the remaining points,
the attacker can now select the next N points and repeat steps 1-4. The attacker can continue to do
this until they start noticing a significant reduction in attack success. At this point, the attacker has
reached the inlier points and may decide not to proceed further. This enables the attacker to use
their computational resources efficiently: Spend computation on attacking only the outliers without
wasting computation on inliers.

5 CONCLUSION

In our work, we demonstrate the effectiveness of modifying the initial stages of the shadow model
framework to improve MIA accuracy. Despite advancements, current state-of-the-art methods do
not fully leverage the complete availability present when a model owner wants to evaluate data
leakage on a limited computation budget. To overcome this challenge, we address two critical issues
in the initial stages of the MIA process: sampling bias and attack aggregation. By resolving them,
we dramatically enhance the TPR of existing attacks, particularly in low false positive rate FPR,
achieving perfect scores across multiple metrics. As a result, our modifications make MIAs far
more practical and reliable for assessing privacy risks in machine learning models.
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A APPENDIX

A.1 OUTLIER DETECTION METHODS

However, there are a number of outlier detection algorithms that we can evaluate. Generally speak-
ing, outlier detection algorithms can be divided into three broad categories2 (Exploring the Limits
of Out-of-Distribution Detection):

• Probability Based: A standard method for detecting OOD inputs are ones based on
model’s output probabilityHendrycks & Gimpel (2016). The higher the label probability,
the lower the point is an outlier. Despite being somewhat less effective compared to other
methods, its ease of implementation and solid performance make it a valuable baseline
approach.

• Distance Based: Here, the point embeddings are used to find ones furthest from the
class center. The further the point, the higher the likelihood of it being an outlier. One
of the most popular distance based methods is ones based on Mahanobis Distance ?.
These use a Gaussian distribution fit to class-specific embeddings for OOD detection. Let
f(x) represent the embedding (for instance, the output from the penultimate layer before

2As a reminder to the readers, this is not an exhaustive list of outliers detection methods from the rich
existing literature. Instead, we focus on a three very broad categories, and leave evaluation using other methods
for future researchers.
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the logits) of an input x. A Gaussian distribution is fitted to the embeddings from the
training data, calculating the per-class mean µc = 1

Nc

∑
i:yi=c f(xi) and a shared co-

variance matrix Σ = 1
N

∑K
c=1

∑
i:yi=c (f(xi)− µc) (f(xi)− µc)

⊤
. The Mahalanobis

score (which is the negative of the distance) is then determined as: scoreMaha(x) =

−minc

(
1
2 (f(x)− µc)

⊤
Σ−1 (f(x)− µc)

)
.

• Memorization Based: These are based on the idea that points that are easiest to “mem-
orize” are most likely to be outliers . Here, memorization score is the number of shadow
model that correctly classify the points when it is present in the dataset, compared to when
it is absent. However, memorization scores require training thousands of models and there-
fore it is computationally expensive even for small data sets, and intractable for large ones.
To overcome this limitation, researchers have proposed a proxy for memorization scores
known as Accuracy Per Batch (ApB) . Here, the user trains a single model on the full
dataset and counts the number of times a point is classified correctly at the end of each
batch. The lower the ApB, the harder it was for the model to learn the point, and higher the
likelihood the point is an outlier.

A.2 MIA BASED OUTLIERS VIS APB

In Section 3.2, we evaluate with different outlier detection methods to see which one identifies the
most vulnerable to MIA attacks. In this subsection, we evaluate one more technique: specifically,
we use MIAs to extract outliers. As mentioned earlier in Section 3.2, outliers are most vulnerable to
MIAs. Therefore, one way to identify outliers is to execute the attack and mark the inferred points
as outliers.

To do so, we use RMIA, the most powerful of all the MIA attacks that we evaluate in this work.
We use a drop out rate of 50% on the CIFAR-10 data set, resulting in two partitions, and therefore
two shadow models. We use one shadow model per query. Next, we train a single target model to
identify the points that were inferred correctly. We select the top 5,000 points and mark them as
outliers. This is a total of three models (two shadow and one target). For attack evaluation, we run
RMIA attack on 10 different target models and aggregate the attack success over only these 5,000
points. Next, we use the 5,000 outliers from ApB algorithm and aggregate the RMIA attack success
over 10 target models.

Table 4 shows the results of our experiments. We can see that even though it required 3 models to
extract the RMIA outliers, ApB outliers have a higher attack success. This means even using the
most powerful MIA algorithm to extract the vulnerable points is not a viable alternative to existing
outliers methods.
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Total Models
CIFAR-10

AUC TPR@FPR
0% 1%

RMIA Outliers 3 89.04 7.67 27.04
ApB Outliers 1 95.81 11.81 45.29

Table 4: Comparison between outliers extracted via RMIA against ApB.
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