
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EMERGENT DEXTERITY VIA DIVERSE RESETS AND
LARGE-SCALE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

Figure 1: OmniResetgenerates a large, diverse dataset in simulation which can be used to solve complex
real-world manipulation tasks when cotrained with a small amount of real-world data.

ABSTRACT

Reinforcement learning in GPU-enabled physics simulation has been the driv-
ing force behind many of the breakthroughs in sim-to-real robot learning. How-
ever, current approaches for data generation in simulation are unwieldy and task-
specific, requiring extensive human effort to engineer training curricula and re-
wards. Even with this engineering, these approaches still struggle to reliably solve
long-horizon, dexterous manipulation tasks. To provide a seamless tool for robotic
data generation in simulation, we introduce a simple framework that enables on-
policy reinforcement learning to reliably solve an array of such tasks with a sin-
gle reward function, set of algorithm hyper-parameters, no auto-curricula, and
no human demonstrations. Our key insight is careful usage of diverse simula-
tor resets for simplifying long-horizon exploration challenges. Our proposed sys-
tem, OmniReset automatically generates these resets with minimal human input
and gracefully scales with compute to solve dexterous, contact-rich long-horizon
tasks. OmniReset outperforms baselines on easier versions of our tasks, and
scales to tasks with complexities beyond the reach of existing techniques. Finally,
we use this data-generation methodology to create a large dataset of trajectories in
simulation, and show that augmenting it with a small amount of real-world data
enables successful real-world transfer for complex manipulation tasks. Project
webpage: https://sites.google.com/view/omnireset

1 INTRODUCTION

Reinforcement learning (RL) in massively GPU-parallelized simulation environments (Mittal et al.,
2023; Todorov et al., 2012) has powered recent success stories in robotics (Akkaya et al., 2019;
Hwangbo et al., 2019). The typical sim-to-real paradigm first trains a state-based policy with RL
and then distills this expert into a deployable visuomotor policy. In principle, once a robust expert
policy has been obtained, this framework enables generating vast datasets for robot learning with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

extensive coverage over initial conditions, tasks, and physical parameters. However, in practice,
obtaining such a capable expert requires extensive human effort in the form of task-specific reward
engineering or hand-crafted training curricula (Akkaya et al., 2019; Handa et al., 2023). Even with
this engineering, current RL techniques struggle to reliably scale to long-horizon dexterous manip-
ulation tasks Heo et al. (2023).

Figure 2: OmniResetapplied to drawer assembly and peg inser-
tion. We highlight drawer assembly where OmniReset learns to
push, flip, and insert the drawer from scratch.

The central challenge blocking
progress on such problems is the
high-dimensional search space in-
herent to long-horizon continuous
control problems. A unifying theme
behind prior works which leverage
RL for dexterous manipulation is to
lessen the exploration burden placed
on RL by implicitly restricting
the space of behaviors the algo-
rithm must search over. Current
state-of-the-art approaches leverage
demonstrations generated by either
human experts Bauza et al. (2025)
or motion planners Khandate et al. (2023) to bootstrap exploration. These approaches leverage a
wide array of techniques such as resetting from the demonstrations (Bauza et al., 2025), adding
demo-following auxiliary rewards (Peng et al., 2018), or adding explicit Behavior-Cloning terms
to RL objectives (Nair et al., 2018; Tang et al., 2024). Even when leveraging these priors, these
approaches often still require auto-curricula to stabilize training (Bauza et al., 2025; Tang et al.,
2024), adding significant algorithmic complexity.

We contend that these approaches have two key limitations, and instead argue that restricting rein-
forcement learning as little as possible is the key to unlocking its full potential for dexterous ma-
nipulation. The first limitation is that trajectories generated by human experts and motion planners
are overwhelmingly biased towards high quality behaviors (e.g. obtaining “good” grasp points on
an object). However, during training the current RL policy will inevitably produce sub-optimal be-
haviors (e.g. grasping objects at points from which it is infeasible to solve the task). Unfortunately,
expert trajectories alone do not provide RL algorithms with the coverage over behaviors that is re-
quired to learn to go from sub-optimal behaviors to optimal behaviors. Secondly, these approaches
will inevitably have gaps in coverage over the state-space. It is generally too costly to obtain human
demonstrations with dense coverage over a wide array of initial conditions, while motion planners
and other heuristics can often struggle to find viable plans for complex dexterous tasks.

We introduce OmniReset, a simple, scalable approach for generating diverse reset distributions
for manipulation tasks that enables PPO (Schulman et al., 2017) to master the tasks depicted in
Figure 2 without demonstrations, curricula or task-specific reward engineering. The philosophy
behind our approach is simple: bypass exploration challenges as much as possible by using resets to
approximately cover all ‘reasonable’ states on the path to the goal, and then let dexterous behaviors
naturally arise from the optimization. Attempting to cover this space of behaviors may initially
appear intractable, however, our key insight is that the space of ‘reasonable’ manipulation behaviors
is actually surprisingly small. Indeed, effective manipulation can be roughly broken down into
combinations of reaching towards objects, grasping, non-prehensile motions such as pushing or
flipping, and contact-rich behaviors that occur near goal states such as screwing or insertion.

In short, OmniReset introduces a set of scalable techniques for automatically generating diverse
reset distributions over these behaviors using minimal high-level problem specifications from the
user. Whereas prior works on manipulation found that naively scaling the number of parallel en-
vironments provides minimal performance gains for existing RL algorithms Singla et al. (2024),
we demonstrate that pairing the diverse resets from OmniReset with large-scale simulation en-
ables truly dexterous behaviors to emerge when training RL from scratch. As we detail in our
experiments, OmniReset provides RL with enough information to automatically solve problems
backwards from the end of the task, unlocking the true potential of large-scale approximate dynamic
programming and eschewing the need for explicitly designed curricula which attempt to mimic these
learning dynamics (Florensa et al., 2017).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our contributions are as follows - (1) We introduce OmniReset, a simple, scalable framework for
generating diverse but meaningful resets for training manipulation policies with RL. OmniReset
bypasses the need for prior demonstrations, auto-curricula and RL hyper-parameter or reward tuning,
(2) We demonstrate that OmniReset can effectively leverage large-scale simulation to naturally
scale to dexterous tasks beyond the reach of existing approaches, (3) We show this generated data
can be used to bootstrap visuomotor policy learning, be transferrable to the real-world with a small
amount of real-world co-training.

2 RELATED WORK

Exploiting Resets and in Reinforcement Learning: Exploiting simulator resets for RL is a natural
idea which has been explored in many contexts. Prior theoretical works (Kakade & Langford, 2002)
have suggested more uniform sampling over initial states, but do not provide practical algorithms.
The primary focus of many works is to make learning more tractable by generating an explicit
curriculum over resets(Tang et al., 2023; Dennis et al., 2020; Bauza et al., 2025), for instance through
a “reverse-curriculum” of states going backwards from the goal (Florensa et al., 2017) or using a
learned dynamics model to propose viable resets (Edwards et al., 2018; Ivanovic et al., 2019). In
contrast, a second category of methods leverage demonstrations (whether human or automatically
generated) to generate feasible pathways to the goal (Tao et al., 2024; Resnick et al., 2018; Salimans
& Chen, 2018; Bauza et al., 2025; Tang et al., 2024). In contrast to these prior works, we show
that neither human demonstrations, nor a curriculum is needed, but rather that the simple approach
for generating diverse resets in OmniReset naturally scales to various long-horizon manipulation
problems without added algorithmic complexity.

Exploration Strategies for Reinforcement Learning: RL practitioners have designed a variety
of exploration strategies to effectively uncover goal-reaching paths for a fixed set of initial condi-
tions, with uninformative rewards. A major line of work is bonus-based exploration, where agents
receive intrinsic rewards for visiting novel or unpredictable states. Count-based methods reward
visits to rarely seen states (Ostrovski et al., 2017; Bellemare et al., 2016; Martin et al., 2017), while
curiosity-based methods provide bonuses based on prediction errors (Burda et al., 2018; Sancaktar
et al., 2022; Pathak et al., 2017). Other approaches (Osband et al., 2016; 2019; Russo et al., 2018)
promote temporally correlated exploration by injecting stochasticity at the policy or value-function
level. Finally, diversity-driven methods optimize for behavioral variety (Eysenbach et al., 2019;
Rajeswar et al., 2023). These approaches are complimentary to our work; our main contribution is
demonstrating that large scale-scale parallelization and resetting schemes lead to the emergence of
surprising levels of dexterity without the need for advanced exploration incentives.

Leveraging Demonstrations: An alternative is to increasingly rely on human demonstrations and
imitation learning to overcome difficult long-horizon exploration. Approaches include adding aux-
iliary BC loss terms to RL objectives (Nair et al., 2018; Hester et al., 2018; Rajeswaran et al., 2018),
simply adding demonstrations to the replay buffer (Vecerik et al., 2017), and introducing reward
shaping terms which encourage RL agent to follow demonstrations (Tang et al., 2024; Reddy et al.,
2019; Koprulu et al., 2024; Peng et al., 2018). Other works have sought to squeeze more information
out demonstrations by automatically translating existing demonstrations to new initial conditions
and scenes (Mandlekar et al., 2023) or by robustifying BC policies by promoting recovery behavior
(Ke et al., 2023; Ankile et al., 2024). While our work complementarily pushes the limits of what
behaviors can be learned entirely from scratch, we expect that demonstrations (when available) can
also be incorporated into our framework to further accelerate learning.

3 GENERATING DIVERSE RESETS FOR LEARNING DEXTEROUS
MANIPULATION

This section introduces OmniReset, a scalable framework for generating diverse reset distribu-
tions for complex contact-rich manipulation tasks from minimal high-level task descriptions from
the user. We show that these reset distributions, when used correctly, can enable simple RL algo-
rithms to produce surprisingly robust, long-horizon dexterous manipulation behavior with minimal
task-specific engineering. The core tenet behind our framework is to reduce the burden on the user,
enabling them to specify problems in a parsimonious fashion, while spending as little time as pos-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Sim-to-Real Pipeline with OmniReset (1) After generating partial assemblies and grasps from
the simulator, (2) we collect reset states: reaching, near object, grasped, and near goal. (3) We then train a
state-based RL policy initialized from these reset states, which is used to (4) train student-teacher distillation
to get a RGB policy. (5) By finetuning this RGB policy on a mix of simulation data and small set of real
demonstrations, (6) we deploy the RGB-based policy in the real world.

sible tweaking rewards and algorithm hyperparameters. Towards this end, we begin by defining
notation used throughout the paper and formalizing the pieces of information the user is asked to
specify for each task.

Notation and Reinforcement Learning Problem: We will let s ∈ S denote the state space of the
simulator, and let a ∈ A denote the action taken by the robot. We will denote the transition dynamics
of the simulator by s′ ∼ P (·|s), and we will use the notation a ∼ π(·|s) to denote control policies
for the robot. Note that in simulation we will learn everything from compact state representations,
only moving to vision-based distillation for transfer to the real-world (Sec. 4).

Requirement 1 The user has specified a set of goal configurations G ⊂ S for the task.

Requirement 2 The user has provided a bounding box in the robots workspace W ⊂ S specifying
the range over which the robot is expected to successfully manipulate objects.

Requirement 3 The user has specified a bounding box of near-goal states G ⊂ NG ⊂ S which
contains the goal states and contact rich states the robot will encounter when solving the task.

Requirements 1 and 2 are standard components of defining manipulation tasks in simulation. We
provide an expanded discussion on Requirement 3 below, but Figure 4b provides examples illustrat-
ing how these near-goal states are very intuitive to design for new tasks. Roughly speaking, we only
ask the user to define ‘points of interest’ where contact-rich behaviors are expected to occur (in no
specific order), which we argue is a relatively weak ask from the user.

Reinforcement Learning Problem: OmniReset uses the specifications defined by Requirements
1-3 to automatically construct reinforcement learning problems for dexterous manipulation tasks.
We formalize this as a Markov decision process (MDP) defined by the tuple (S,A, P, r, γ, ρ), where
r is the reward and γ is the discount factor, and s0 ∼ ρ is the distribution over initial conditions.
Of critical importance in our system is the initial state distribution ρ. While this is typically as-
sumed to be a fixed distribution provided by the user, we propose that in OmniReset(Sec. 3.1),
we will specifically generate an extremely broad distribution of interesting reset-states ρ. Given
this generated set of initial states, we can then optimize for the discounted sum of rewards -
J(π) = Es0∼ρ[

∑∞
t=0 γ

tr(st, at)], where the expectation is also taken w.r.t the actions generated by
π. In practice, we also parameterize the MDP with dynamics parameters such as friction coefficients,
masses, etc. We find empirically that the right choice of generating ρ makes the above-mentioned
objective very effective at solving complex, dexterous, long-horizon problems. In Sec. 3.1, we will
show how to practically generate a broad reset distribution ρ from minimal user specifications, and
then in Sec. 3.2 we will show how ρ can be used with large-scale RL to learn complex behavior.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 GENERATING DIVERSE RESETS

We now describe the core techniques which comprise OmniReset and enable users to construct
diverse, meaningful reset distributions for dexterous manipulation by providing the high-level spec-
ification defined by Requirements 1-3. Before describing the reset distributions in detail, we first
discuss several key considerations which guided the development of our pipeline.

(a) Grasp Sampling. We dis-
play the grasp poses sampled for
the table leg. The grasp sampling
ranges are broad, moderate, and
narrow from left-to-right. Our
method uses the broad range.

(b) Near-Goal States. The user
specifies bounding boxes around
(portions of objects) which com-
prise Near-Goal States.

Figure 4: Tools for reset gener-
ation

Challenges in Generating Feasible Resets: Generating feasible
reset states in physics simulation environments – i.e. states where
contact constraints are satisfied – is non-trivial. Failing to do so can
lead to objects getting ‘stuck’ inside of one another or explosions
in velocities as the simulator attempts to resolve contacts. Such
pathologies are detrimental to learning and must be systematically
filtered out. Collision checkers can be used to filter out invalid state
proposals, but there are still several key challenges to consider - (1)
Collision checkers are subject to fundamental trade-offs between
accuracy and computation time, especially for complex non-convex
geometries, (2) A large number of invalid states may need to be
rejected before a valid sample is found, especially true for high-
precision problems, (3) Massively parallelized simulators (Mittal
et al., 2023) take environment steps in lock step to maximize GPU
utilization, leading to pipelining challenges. Thus, we use an ini-
tial offline phase and collision checker to generate a dataset D of
feasible resets using the sampling strategies described below.

Generating Diverse Reset Distributions: We compose the set of
reset-states D from four different components using the specifica-
tions provided by the user in Requirements 1-3 - D = DR∪DNO∪
DG ∪DNG, where DR is a reaching dataset, DNO is a near-object
dataset, DG is a grasped dataset, and DNG is a near-goal dataset.
We then define the reset distribution ρ ∼ Uniform(D). Before
generating these datasets, we first use the built in grasp sampler
from IsaacLab (Mittal et al., 2023) (see Figure 4a) to generate a
large dataset of feasible grasp points on the objects, recording the
relative pose between the gripper and the object. We then generate
proposed resets for each of the distributions as follows:

1) Reaching Resets: We spawn the object at random posses slightly above the tabletop within the
workspace W , and allow them to come fall and come to rest.

2) Near-Object Resets: We first spawn the objects at the states from DR. We then select a grasp
point on the object, spawn the gripper at that point with some pose offset randomization, and spawn
the gripper in open or closed configurations with 50% probability each.

3) StableGrasp Resets: We randomly spawn the objects that are to be manipulated in the air at
random poses throughout W . We then select a grasp point on the object and spawn the gripper at
that point, with the gripper closed on the object. We run the simulation for several steps to ensure
the grasp is stable and objects have settled.

4) Near-Goal Resets: We randomly sample objects in the set of near-goal states NG. Next we step
the simulator while applying small random forces for two seconds, taking inspiration from (Tang
et al., 2024). Finally, we then move the gripper to one of the precomputed grasp points. We found
that the jostling provided by the second step helped provide more uniform coverage over NG as the
simulator resolves contacts.

These reset distributions are depicted pictorially in Fig 3 (Panel 2). Together, we found that each of
these datasets was necessary for arriving at a single reset formulation which enables RL to solve the
diversity of tasks we consider. Together, the reaching dataset DR and grasped dataset DG provide
broad coverage over the state-space and enable the RL algorithm to learn effective policies over all
of the workspace W with no gaps in coverage. We found that the near object dataset DNO and
near-goal dataset DNG were necessary to provide dense coverage over contact rich states, enabling
behaviors such pushing, flipping, screwing, and insertion to emerge naturally from RL training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As we depict in Figure 4b, we found that specifying the near-goal states NG was typically quite
natural. In practice, to specify NG we simply specified a bounding box around the parts of different
object which must inherently interact in order to reach the goal, such as the threads on the table
leg and the corresponding hole it must be screwed into, or a drawer and the corresponding slot
on a dresser. The goal of this work is to understand what properties reset distributions must have
to enable scalable RL training for contact rich tasks, and to take an initial step towards making
the generation of these resets as automatic as possible. While OmniReset still requires a small
amount of human effort to specify new task descriptions, our experimental results demonstrate that
this approach enables us to scale to tasks far beyond the complexity of current methods.

3.2 DESIGN DECISIONS FOR SCALABLE RL TRAINING

Once OmniResethas generated a broad set of initial reset-states, these are used to seed a large-scale
RL process to learn dynamic control policies for performing long-horizon, contact-rich manipula-
tion. In this section, we discuss the design decisions that are necessary for an RL algorithm to solve
the complexity of tasks we consider, when combined with the resets proposed in Sec. 3.1.

Sufficient Reset Coverage: We consistently found that increasing the diversity of meaningful re-
set states the policy is exposed to simplified training and yielded more capable, robust policies.
For example, we found generating a wide range of sub-optimal grasps for the task accelerated and
stabilized training substantially. We ablate this design decision in more detail in Sec.5.

Scaling Parallel Environments: Scaling the number of parallel environments is an equally im-
portant decision. When combined with increasing reset diversity, we found that scaling the batch
size used by PPO consistently simplified the process of training a performant policy, enabling us to
obviate curricula and task dependent rewards. We ablate the number of parallel environments below.

Asymmetric Actor-Critic: We asymmetric actor-critic approach (Pinto et al., 2017) for our learning
architecture. The actor observations include a history of the five previous time-steps for the state of
the robot, the poses of all objects in the scene, and the previous actions taken by the policy. The
critic takes in these observations as well as additional privileged parameters of the environment. We
found that conditioning the actor on larger observation spaces led to less stable training and led us
to only provide this information to the critic.

Generalized State-Dependent Exploration Noise: We employ the policy noise parameterization
from (Raffin et al., 2022). In short, gSDE has a separate prediction head which determines the
gaussian exploration noise at each time-step and is conditioned on the features of the final layer of the
policy network. This approach enables the actor to learn different temporally-correlated exploration
strategies in different regions of the state-space, crucial for solving heterogeneous multi-stage tasks.

Reward Structure: Employing the previous design decisions enabled us to converge on a simple,
common reward function for all tasks of the form:

r(st, at) = Success(st) + DenseSuccess(st) + Dense(st) + Smooth(st, at), (1)
where Success(st) is a binary {0, 1} reward which is activated on the goal set G,
DenseSuccess(st) = 0.1∗ [exp(−doxyz)+exp(−dorp)] where doxyz and dorp are l2 distances on object
displacement from the goal, Dense(st) = 1− tanh dgxyz where dgxyz is l2 distance on displacement
from gripper to object origin, and Smooth(st, at) = −0.0001 ∗ [∥at∥ + ∥at − at−1∥ + ∥vt∥] is an
action penalty encouraging smooth robot actions. We found that each of these terms was necessary
to stabilize training. However, performance of the algorithm was generally insensitive to the choice
of weights for the different components, which are kept fixed across experiments.

4 DISTILLATION AND REAL-WORLD TRANSFER

We highlight the utility of our learned data generation policies by performing distillation into visuo-
motor policies that can be deployed directly in the real world from pixels. The robot has access to
224 × 224 RGB camera images from a front-facing camera, a side-facing camera an a wrist cam-
era. We use the photo-realistic rendering capabilities of IsaacLab (Mittal et al., 2023) to generate a
visuomotor dataset of 10, 000 expert rollouts and action labels while recording the associated cam-
era views, which can then be used to perform standard student-teacher training Chen et al. (2021).
The student RGB policy is composed of a Gaussian-MLP policy head, uses a pre-trained ResNet-18
encoder as a visual backbone, and takes in the last five observations and actions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Visual Randomizations To tackle the visual gap, we following DextrAH-G (Singh et al., 2025)
to create realistic scenes. Every four seconds of simulation steps, we randomize dome-light HDRI
backgrounds and light intensity. We additionally randomize object color, robot color, workspace
colors (table, background curtains). For better sim2real transfer, we calibrate our three cameras in
real and match their pose in simulation. We additionally randomize camera pose and FOV slightly
to be robust to calibration error. In addition to these randomizations, we also add data augmentations
such as color jitter, gaussian blur, random grayscale, and gaussian noise.

Co-Training with Real World Data: To enable successful transfer, we developed a simple co-
training recipe for improving the simulation-trained policy by incorporating a small number number
of demonstrations collected in the real world. While direct finetuning on real world data leads to poor
performance, we experiment with different co-training recipes - finetuning on different combinations
of data from simulation and reality and freezing different components of the network. The best
results we obtained are reported in more detail in Sec.5, and involve freezing the ResNet encoder
during finetuning with a data mixture of 95% simulated data and 5% real world data.

5 EXPERIMENTS

We aim to address the following questions experimentally - (Q1) Does OmniResetoutperform
baselines and scale to tasks beyond current methods? (Q2) How do our key design decisions affect
performance? (Q3) Can our experts be used to generate diverse data for sim-to-real transfer?

5.1 TASK DESCRIPTIONS

We consider the three tasks described below. We will refer to the distributions we define below as
the Entire Task Distributions, as they define the actual set of initial conditions we intend to solve
the task from. These three tasks are depicted in Figures 1 and 2. For each task we consider both
Easy and Hard settings, but note our renderings in Figures 1 and 2 are all from Hard settings.

We emphasize that the policies depicted in Figures 1 and 2 were trained on the Hard settings.

1) Drawer: The Drawer task is based on the task by the same name from (Heo et al., 2023). For
Drawer Hard, the drawer is spawned over the of x-y coordinates (x − y) ∈ [−0.2, 0.2] ×
[−.15, .15], the orientation of the drawer is drawn completely at random. Drawer Easy keeps
the drawer at a fixed orientation with (x, y) ∈ [−0.1, 0.12]× [−.10, .12].

2) Screw: The Screw task is based on the square table task from (Heo et al., 2023). To
solve the task the agent must pick up the a table leg, insert it into the table, then screw it in.
Both settings the orientation of the leg is randomized completely. Screw Hard uses (x, y) ∈
[−0.2, 0.2]× [−.15, .15] and Screw Easy uses (x, y) ∈ [0.08, 0.13]× [−0.025, 0.025].

3) Peg: We design a custom peg insertion task where the robot must grasp a rectangular peg and
insert it into a receptacle. This involves precise grasping and insertion motions. For both settings
we randomize the orientation of the leg uniformly. Peg Hard uses (x, y) ∈ [−0.2, 0.2] ×
[−.15, .15] and Peg Easy uses (x, y) ∈ [0.08, 0.13]× [−0.025, 0.025].

5.2 BASELINE ALGORITHMS

We compare to the following baselines, which bootstrap learning with expert demonstrations, pro-
viding them more prior information about how to solve the task than OmniReset.

1) BC-PPO: We add a Behavior-Cloning (BC) loss to the PPO objective to construct a baseline
emblematic of numerous works combining BC and RL objectives (Hester et al., 2018; Rajeswaran
et al., 2017). When training this algorithm, the environment is always reset from the standard reset
distributions ρS described above and uses our standard reward structure (Eq 1)

2) DeepMimic: We use DeepMimic-style reward augmentation (Peng et al., 2018) on top of our
reward structure from Equation 1. During resets, a random demonstration is chosen, and the
agent is reset from a random point along the demonstration and is incentivizes to stay close to the
demonstration by the auxiliary reward.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3) Demo Curriculum: This baseline defines an auto curriculum over resets from the standard reset
distribution ρS and the demos provided by the user. This demo is constructed in the spirit of the
one used in (Bauza et al., 2025), but we instead use PPO as the base RL algorithm to ensure a fair
comparison. This approach biases samples towards resets from which the policy achieves some
success, as these resets provide a strong learning signal. This approach uses our standard rewards.

5.3 POLICY TRAINING AND EVALUATION IN SIMULATION

Figure 5: Success rates during RL training. We plot
success rates over learning process for tasks described
in Sec.5. We see that OmniResetyields significant im-
provements in success.

We scale OmniResetto the Hard versions of
each task, providing full learning curves in Fig-
ure 9 in the Appendix. Here, in Fig 5, we pri-
marily compare to baselines on the Easy ver-
sions of the tasks, since the baselines struggled
to make any meaningful progress on the harder
variants of the tasks. We report success rates
for each method when initialized over the en-
tire task distribution, as well as when explicitly
spawned from states near the goal. Looking
at the Easy versions of the tasks, we see that
the baselines can make some progress towards
solving the task from the near-goal states, but
struggle to solve the entire task from the be-
ginning. This is even more pronounced on
the Screw Hard variant, where the baselines
achieve near-zero success rates. In contrast,
OmniResetreliably achieves a final success
rate of >97% success on each of the tasks.

To give a more thorough picture of the per-
formance of OmniReset, we analyze the ro-
bustness of learned policies in simulation via
a series of scatter plots (Fig 6). These plots
show success rates over various initial con-
ditions for both OmniResetand Demo Cur-
riculum (the most successful baseline) on the
Screw tasks. For each plot we show the suc-
cess rate over 1000 sampled initial conditions
from the full task distribution. This plot demon-
strates how the baseline struggles to achieve
achieve consistent success across the distribu-
tion of initial conditions it was trained on, while
OmniResetachieves high degrees of coverage. Finally, we conduct a robustness analysis on the
learned policies (Fig 7). We sample an initial condition from one of the demonstrations, perturb the
initial condition with forces of different magnitudes and report policy success from these perturbed
initial conditions. We find that baseline performance quickly degrades under small perturbations,
while the performance of OmniResetis barely affected, even under large perturbations.

We further ablate the key design decisions behind OmniReset. While we defer the detailed de-
scription to the Appendix, we find having sufficient coverage over two factors matters significantly
for performance - 1) the number of parallel environments (and correspondingly RL batch size) and
2) the range of reset randomization used by OmniReset.

5.4 REAL-WORLD TRANSFER

We deploy our policies on a 6 DoF UR5e arm with a 2F-85 Robotiq Gripper mounted. We mount
one Intel Realsense D435 and one Intel Realsense D455 camera rigidly on the table. We also mount
one Intel Realsense D415 camera on the wrist of the arm. The real robot setup is shown in 8. The
UR5e low-level impedance control runs at 500Hz and 2F-85 binary gripper control runs at 200 Hz.

We evaluate our method on Screw task from a narrow range of initial leg poses next to the tabletop.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Success states of RL policy. For the screwing task, we plot the xy configurations from which RL
polices trained with Demo Curriculum and OmniResetsucceed when trained on the full reset distribution
and on a narrow reset distribution. We find that OmniResetsucceeds from a much broader range of initial
conditions.

Figure 7: Success rate over perturbations. We plot the decline in success rate (measured by ratio of success
rate between no perturbations and current level of perturbations). We find that OmniResetis robust to pertur-
bations while performance of baselines drops significantly.

Figure 8: Sim-to-Real Setup. Real-world setup for
evaluating transfer on the leg screwing task.

Evaluating our distilled RGB policy on 10,000
simulation trajectories zero-shot in real has a
success rate of zero. Qualitatively, the robot can
grasp leg but cannot align it with the tabletop
hole successfully. We collect 100 real demon-
strations of this task and finetune our distilled
RGB policy on this via sim-real cotraining. The
co-trained policy achieves 30% success in all
areas of reaching, grasping, inserted, and twist-
ing. Interestingly, if we train an RGB policy on
just the 100 real demonstrations, the policy gets a 0% success rate, not even succeeding at grasping.
Full results are shown in Table 1.

Table 1: Columns compare success rates of (i) a distilled RGB policy trained in simulation, (ii) a policy
trained only on 100 real expert demonstrations, and (iii) a distilled simulation policy fine-tuned with sim+real
co-training data.

Distilled Sim Policy Real-Only Policy Sim+Real Co-Training

Success Rate (Sim) 98% 0% N/A
Success Rate (Real) 0% 0% 30%

6 CONCLUSION

In this work we presented OmniReset, a simple and scalable system for data generation in simu-
lation for complex, dexterous tasks. The primary insight in OmniResetis showing that a diverse,
minimally structured set of reset states paired with large-batch on-policy reinforcement learning
in simulation can lead to the emergence of surprisingly complex dexterous behavior. We provide
a general purpose recipe to instantiate data generators across a variety of manipulation tasks, and
demonstrate both the efficacy of this paradigm in simulation and it’s ability to bootstrap real world
policy learning. The presented work is currently still single-task and object, making a multi-task
extension in future work a promising direction of investigation. Furthermore, OmniResetopens
up the possibility of more systematically studying scaling laws for policy learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We have made efforts to ensure reproducibility of our results by describing the steps of our data
generation and training pipeline (Sec.3), our distillation and transfer pipeline (Sec.4), and our ex-
perimental results (Sec.5). Additional ablation studies are provided in the Appendix.

REFERENCES

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019. 1, 2

Lars Ankile, Anthony Simeonov, Idan Shenfeld, and Pulkit Agrawal. Juicer: Data-efficient imitation
learning for robotic assembly. In 2024 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5096–5103. IEEE, 2024. 3

Maria Bauza, Jose Enriaue Chen, Valentin Dalibard, Nimrod Gileadi, Roland Hafner, Murilo F
Martins, Joss Moore, Rugile Pevceviciute, Antoine Laurens, Dushyant Rao, et al. Demostart:
Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots. In 2025
IEEE International Conference on Robotics and Automation (ICRA), pp. 6756–6763. IEEE, 2025.
2, 3, 8

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016. 3

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018. 3

Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation. In
Aleksandra Faust, David Hsu, and Gerhard Neumann (eds.), Conference on Robot Learning, 8-11
November 2021, London, UK, volume 164 of Proceedings of Machine Learning Research, pp.
297–307. PMLR, 2021. URL https://proceedings.mlr.press/v164/chen22a.
html. 6

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020. 3

Ashley D Edwards, Laura Downs, and James C Davidson. Forward-backward reinforcement learn-
ing. arXiv preprint arXiv:1803.10227, 2018. 3

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions (ICLR), 2019. 3

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017. 2, 3

Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5977–5984. IEEE, 2023. 2

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J Lim. Furniturebench: Reproducible real-
world benchmark for long-horizon complex manipulation. The International Journal of Robotics
Research, pp. 02783649241304789, 2023. 2, 7

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018. 3, 7

10

https://proceedings.mlr.press/v164/chen22a.html
https://proceedings.mlr.press/v164/chen22a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019. 1

Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen, and Marco Pavone. Barc: Backward
reachability curriculum for robotic reinforcement learning. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 15–21. IEEE, 2019. 3

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the nineteenth international conference on machine learning, pp. 267–274, 2002.
3

Liyiming Ke, Yunchu Zhang, Abhay Deshpande, Siddhartha Srinivasa, and Abhishek Gupta.
Ccil: Continuity-based data augmentation for corrective imitation learning. arXiv preprint
arXiv:2310.12972, 2023. 3

Gagan Khandate, Siqi Shang, Eric T Chang, Tristan Luca Saidi, Yang Liu, Seth Matthew Dennis,
Johnson Adams, and Matei Ciocarlie. Sampling-based exploration for reinforcement learning of
dexterous manipulation. arXiv preprint arXiv:2303.03486, 2023. 2

Cevahir Koprulu, Po-han Li, Tianyu Qiu, Ruihan Zhao, Tyler Westenbroek, David Fridovich-Keil,
Sandeep Chinchali, and Ufuk Topcu. Dense dynamics-aware reward synthesis: Integrating prior
experience with demonstrations. arXiv preprint arXiv:2412.01114, 2024. 3

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. arXiv preprint arXiv:2310.17596, 2023. 3

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based explo-
ration in feature space for reinforcement learning. arXiv preprint arXiv:1706.08090, 2017. 3

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. doi:
10.1109/LRA.2023.3270034. 1, 5, 6

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018. 2, 3

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in Neural Information Processing Systems (NeurIPS), 2016. 3

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized
value functions. J. Mach. Learn. Res., 20:124:1–124:62, 2019. URL https://jmlr.org/
papers/v20/18-339.html. 3

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017. 3

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017. 3

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1–14, 2018. 2, 3, 7

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017. 6

11

https://jmlr.org/papers/v20/18-339.html
https://jmlr.org/papers/v20/18-339.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on robot learning, pp. 1634–1644. PMLR, 2022. 6

Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron C. Courville,
and Alexandre Lacoste. Mastering the unsupervised reinforcement learning benchmark from
pixels. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 28598–28617. PMLR, 2023. URL https://proceedings.mlr.press/
v202/rajeswar23a.html. 3

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017. 7

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations, 2018. URL https://arxiv.org/abs/1709.10087. 3

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019. 3

Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alexander Peysakhovich, Kyunghyun Cho, and
Joan Bruna. Backplay:” man muss immer umkehren”. arXiv preprint arXiv:1807.06919, 2018. 3

Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on
thompson sampling. Found. Trends Mach. Learn., 11(1):1–96, 2018. doi: 10.1561/2200000070.
URL https://doi.org/10.1561/2200000070. 3

Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single demonstration. arXiv
preprint arXiv:1812.03381, 2018. 3

Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured world
models yields zero-shot object manipulation. Advances in Neural Information Processing Sys-
tems, 35:24170–24183, 2022. 3

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 2

Ritvik Singh, Arthur Allshire, Ankur Handa, Nathan Ratliff, and Karl Van Wyk. Dextrah-rgb:
Visuomotor policies to grasp anything with dexterous hands, 2025. URL https://arxiv.
org/abs/2412.01791. 7

Jayesh Singla, Ananye Agarwal, and Deepak Pathak. Sapg: split and aggregate policy gradients.
arXiv preprint arXiv:2407.20230, 2024. 2

Bingjie Tang, Michael A Lin, Iretiayo Akinola, Ankur Handa, Gaurav S Sukhatme, Fabio Ramos,
Dieter Fox, and Yashraj Narang. Industreal: Transferring contact-rich assembly tasks from simu-
lation to reality. arXiv preprint arXiv:2305.17110, 2023. 3

Bingjie Tang, Iretiayo Akinola, Jie Xu, Bowen Wen, Ankur Handa, Karl Van Wyk, Dieter Fox,
Gaurav S Sukhatme, Fabio Ramos, and Yashraj Narang. Automate: Specialist and generalist
assembly policies over diverse geometries. arXiv preprint arXiv:2407.08028, 1(2), 2024. 2, 3, 5

Stone Tao, Arth Shukla, Tse-kai Chan, and Hao Su. Reverse forward curriculum learning
for extreme sample and demonstration efficiency in reinforcement learning. arXiv preprint
arXiv:2405.03379, 2024. 3

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. 1

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nico-
las Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstra-
tions for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017. 3

12

https://proceedings.mlr.press/v202/rajeswar23a.html
https://proceedings.mlr.press/v202/rajeswar23a.html
https://arxiv.org/abs/1709.10087
https://doi.org/10.1561/2200000070
https://arxiv.org/abs/2412.01791
https://arxiv.org/abs/2412.01791

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ABLATIONS

We ablate the key design decisions that allow our approach to reliably scale to the Hard versions of
the tasks we consider. We ablate 1) the number of parallel environments (and PPO batch size) and
2) the range of reset randomization used by OmniReset. Due to the high-compute cost needed to
solve the full Hard tasks, we restrict this study to Screw Hard. We find that more environments
during PPO training and broader grasp samples in the reset distribution dramatically improve sample
efficiency and converged final success rate. Moreover, we plot success rates from each of the sub-
reset distributions (DR, DNO, DG and DNG) as they provide an indication of how OmniReset
works backwards from the end of the problem without requiring any explicit curricula, first achieving
a high success rate on the near goal states DNG then making progress on reset distributions which
correspond to earlier portions of the task. Refer to Figures 9 and 10 in the appendix for details.

0 500 1000 1500 2000
Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success From
Near-Goal Resets

0 500 1000 1500 2000
Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success from
Near-Object Resets

0 500 1000 1500 2000
Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success from
Grasped Resets

0 500 1000 1500 2000
Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success
Entire Task

65536 environments 32768 environments 16384 environments 8192 environments 4096 environments

Figure 9: Ablation on number of environments. We plot the success rates over course of RL training using
different number of environments. We find that the number of environments significantly impacts training
performance.

0 500 1000 1500 2000
Updates

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Entire Task
Broad Grasp Sampling Range
Moderate Grasp Sampling Range
Narrow Grasp Sampling Range

Figure 10: Ablation on grasp sampling range. For this ablation on the screwing task, we find that training
RL on narrower grasp sampling ranges leads to worse sample efficiency and lower converged success rate.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used the help of LLMs for formatting some of the figures in LaTeX and spell check for the paper.
We also used it as a code assist tool during the research process for writing some of the code for our
experiments.

13

	Introduction
	Related Work
	Generating Diverse Resets for Learning Dexterous Manipulation
	Generating Diverse Resets
	Design Decisions for Scalable RL Training

	Distillation and Real-World Transfer
	Experiments
	Task Descriptions
	Baseline Algorithms
	Policy Training and Evaluation in Simulation
	Real-World Transfer

	Conclusion
	Reproducibility Statement
	Appendix
	Ablations
	The Use of Large Language Models (LLMs)

