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Figure 1: OmniResetgenerates a large, diverse dataset in simulation which can be used to solve complex
real-world manipulation tasks when cotrained with a small amount of real-world data.

ABSTRACT

Reinforcement learning in GPU-enabled physics simulation has been the driv-
ing force behind many of the breakthroughs in sim-to-real robot learning. How-
ever, current approaches for data generation in simulation are unwieldy and task-
specific, requiring extensive human effort to engineer training curricula and re-
wards. Even with this engineering, these approaches still struggle to reliably solve
long-horizon, dexterous manipulation tasks. To provide a seamless tool for robotic
data generation in simulation, we introduce a simple framework that enables on-
policy reinforcement learning to reliably solve an array of such tasks with a sin-
gle reward function, set of algorithm hyper-parameters, no auto-curricula, and
no human demonstrations. Our key insight is careful usage of diverse simula-
tor resets for simplifying long-horizon exploration challenges. Our proposed sys-
tem, OmniReset automatically generates these resets with minimal human input
and gracefully scales with compute to solve dexterous, contact-rich long-horizon
tasks. OmniReset outperforms baselines on easier versions of our tasks, and
scales to tasks with complexities beyond the reach of existing techniques. Finally,
we use this data-generation methodology to create a large dataset of trajectories in
simulation, and show that augmenting it with a small amount of real-world data
enables successful real-world transfer for complex manipulation tasks. Project
webpage: https://sites.google.com/view/omnireset

1 INTRODUCTION

Reinforcement learning (RL) in massively GPU-parallelized simulation environments (Mittal et al.,
2023; Todorov et al., 2012) has powered recent success stories in robotics (Akkaya et al., 2019;
Hwangbo et al., 2019). The typical sim-to-real paradigm first trains a state-based policy with RL
and then distills this expert into a deployable visuomotor policy. In principle, once a robust expert
policy has been obtained, this framework enables generating vast datasets for robot learning with
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extensive coverage over initial conditions, tasks, and physical parameters. However, in practice,
obtaining such a capable expert requires extensive human effort in the form of task-specific reward
engineering or hand-crafted training curricula (Akkaya et al., 2019; Handa et al., 2023). Even with
this engineering, current RL techniques struggle to reliably scale to long-horizon dexterous manip-
ulation tasks Heo et al. (2023).

Figure 2: OmniResetapplied to drawer assembly and peg inser-
tion. We highlight drawer assembly where OmniReset learns to
push, flip, and insert the drawer from scratch.

The central challenge blocking
progress on such problems is the
high-dimensional search space in-
herent to long-horizon continuous
control problems. A unifying theme
behind prior works which leverage
RL for dexterous manipulation is to
lessen the exploration burden placed
on RL by implicitly restricting
the space of behaviors the algo-
rithm must search over. Current
state-of-the-art approaches leverage
demonstrations generated by either
human experts Bauza et al. (2025)
or motion planners Khandate et al. (2023) to bootstrap exploration. These approaches leverage a
wide array of techniques such as resetting from the demonstrations (Bauza et al., 2025), adding
demo-following auxiliary rewards (Peng et al., 2018), or adding explicit Behavior-Cloning terms
to RL objectives (Nair et al., 2018; Tang et al., 2024). Even when leveraging these priors, these
approaches often still require auto-curricula to stabilize training (Bauza et al., 2025; Tang et al.,
2024), adding significant algorithmic complexity.

We contend that these approaches have two key limitations, and instead argue that restricting rein-
forcement learning as little as possible is the key to unlocking its full potential for dexterous ma-
nipulation. The first limitation is that trajectories generated by human experts and motion planners
are overwhelmingly biased towards high quality behaviors (e.g. obtaining “good” grasp points on
an object). However, during training the current RL policy will inevitably produce sub-optimal be-
haviors (e.g. grasping objects at points from which it is infeasible to solve the task). Unfortunately,
expert trajectories alone do not provide RL algorithms with the coverage over behaviors that is re-
quired to learn to go from sub-optimal behaviors to optimal behaviors. Secondly, these approaches
will inevitably have gaps in coverage over the state-space. It is generally too costly to obtain human
demonstrations with dense coverage over a wide array of initial conditions, while motion planners
and other heuristics can often struggle to find viable plans for complex dexterous tasks.

We introduce OmniReset, a simple, scalable approach for generating diverse reset distributions
for manipulation tasks that enables PPO (Schulman et al., 2017) to master the tasks depicted in
Figure 2 without demonstrations, curricula or task-specific reward engineering. The philosophy
behind our approach is simple: bypass exploration challenges as much as possible by using resets to
approximately cover all ‘reasonable’ states on the path to the goal, and then let dexterous behaviors
naturally arise from the optimization. Attempting to cover this space of behaviors may initially
appear intractable, however, our key insight is that the space of ‘reasonable’ manipulation behaviors
is actually surprisingly small. Indeed, effective manipulation can be roughly broken down into
combinations of reaching towards objects, grasping, non-prehensile motions such as pushing or
flipping, and contact-rich behaviors that occur near goal states such as screwing or insertion.

In short, OmniReset introduces a set of scalable techniques for automatically generating diverse
reset distributions over these behaviors using minimal high-level problem specifications from the
user. Whereas prior works on manipulation found that naively scaling the number of parallel en-
vironments provides minimal performance gains for existing RL algorithms Singla et al. (2024),
we demonstrate that pairing the diverse resets from OmniReset with large-scale simulation en-
ables truly dexterous behaviors to emerge when training RL from scratch. As we detail in our
experiments, OmniReset provides RL with enough information to automatically solve problems
backwards from the end of the task, unlocking the true potential of large-scale approximate dynamic
programming and eschewing the need for explicitly designed curricula which attempt to mimic these
learning dynamics (Florensa et al., 2017).
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Our contributions are as follows - (1) We introduce OmniReset, a simple, scalable framework for
generating diverse but meaningful resets for training manipulation policies with RL. OmniReset
bypasses the need for prior demonstrations, auto-curricula and RL hyper-parameter or reward tuning,
(2) We demonstrate that OmniReset can effectively leverage large-scale simulation to naturally
scale to dexterous tasks beyond the reach of existing approaches, (3) We show this generated data
can be used to bootstrap visuomotor policy learning, be transferrable to the real-world with a small
amount of real-world co-training.

2 RELATED WORK

Exploiting Resets and in Reinforcement Learning: Exploiting simulator resets for RL is a natural
idea which has been explored in many contexts. Prior theoretical works (Kakade & Langford, 2002)
have suggested more uniform sampling over initial states, but do not provide practical algorithms.
The primary focus of many works is to make learning more tractable by generating an explicit
curriculum over resets(Tang et al., 2023; Dennis et al., 2020; Bauza et al., 2025), for instance through
a “reverse-curriculum” of states going backwards from the goal (Florensa et al., 2017) or using a
learned dynamics model to propose viable resets (Edwards et al., 2018; Ivanovic et al., 2019). In
contrast, a second category of methods leverage demonstrations (whether human or automatically
generated) to generate feasible pathways to the goal (Tao et al., 2024; Resnick et al., 2018; Salimans
& Chen, 2018; Bauza et al., 2025; Tang et al., 2024). In contrast to these prior works, we show
that neither human demonstrations, nor a curriculum is needed, but rather that the simple approach
for generating diverse resets in OmniReset naturally scales to various long-horizon manipulation
problems without added algorithmic complexity.

Exploration Strategies for Reinforcement Learning: RL practitioners have designed a variety
of exploration strategies to effectively uncover goal-reaching paths for a fixed set of initial condi-
tions, with uninformative rewards. A major line of work is bonus-based exploration, where agents
receive intrinsic rewards for visiting novel or unpredictable states. Count-based methods reward
visits to rarely seen states (Ostrovski et al., 2017; Bellemare et al., 2016; Martin et al., 2017), while
curiosity-based methods provide bonuses based on prediction errors (Burda et al., 2018; Sancaktar
et al., 2022; Pathak et al., 2017). Other approaches (Osband et al., 2016; 2019; Russo et al., 2018)
promote temporally correlated exploration by injecting stochasticity at the policy or value-function
level. Finally, diversity-driven methods optimize for behavioral variety (Eysenbach et al., 2019;
Rajeswar et al., 2023). These approaches are complimentary to our work; our main contribution is
demonstrating that large scale-scale parallelization and resetting schemes lead to the emergence of
surprising levels of dexterity without the need for advanced exploration incentives.

Leveraging Demonstrations: An alternative is to increasingly rely on human demonstrations and
imitation learning to overcome difficult long-horizon exploration. Approaches include adding aux-
iliary BC loss terms to RL objectives (Nair et al., 2018; Hester et al., 2018; Rajeswaran et al., 2018),
simply adding demonstrations to the replay buffer (Vecerik et al., 2017), and introducing reward
shaping terms which encourage RL agent to follow demonstrations (Tang et al., 2024; Reddy et al.,
2019; Koprulu et al., 2024; Peng et al., 2018). Other works have sought to squeeze more information
out demonstrations by automatically translating existing demonstrations to new initial conditions
and scenes (Mandlekar et al., 2023) or by robustifying BC policies by promoting recovery behavior
(Ke et al., 2023; Ankile et al., 2024). While our work complementarily pushes the limits of what
behaviors can be learned entirely from scratch, we expect that demonstrations (when available) can
also be incorporated into our framework to further accelerate learning.

3 GENERATING DIVERSE RESETS FOR LEARNING DEXTEROUS
MANIPULATION

This section introduces OmniReset, a scalable framework for generating diverse reset distribu-
tions for complex contact-rich manipulation tasks from minimal high-level task descriptions from
the user. We show that these reset distributions, when used correctly, can enable simple RL algo-
rithms to produce surprisingly robust, long-horizon dexterous manipulation behavior with minimal
task-specific engineering. The core tenet behind our framework is to reduce the burden on the user,
enabling them to specify problems in a parsimonious fashion, while spending as little time as pos-
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Figure 3: Sim-to-Real Pipeline with OmniReset (1) After generating partial assemblies and grasps from
the simulator, (2) we collect reset states: reaching, near object, grasped, and near goal. (3) We then train a
state-based RL policy initialized from these reset states, which is used to (4) train student-teacher distillation
to get a RGB policy. (5) By finetuning this RGB policy on a mix of simulation data and small set of real
demonstrations, (6) we deploy the RGB-based policy in the real world.

sible tweaking rewards and algorithm hyperparameters. Towards this end, we begin by defining
notation used throughout the paper and formalizing the pieces of information the user is asked to
specify for each task.

Notation and Reinforcement Learning Problem: We will let s ∈ S denote the state space of the
simulator, and let a ∈ A denote the action taken by the robot. We will denote the transition dynamics
of the simulator by s′ ∼ P (·|s), and we will use the notation a ∼ π(·|s) to denote control policies
for the robot. Note that in simulation we will learn everything from compact state representations,
only moving to vision-based distillation for transfer to the real-world (Sec. 4).

Requirement 1 The user has specified a set of goal configurations G ⊂ S for the task.

Requirement 2 The user has provided a bounding box in the robots workspace W ⊂ S specifying
the range over which the robot is expected to successfully manipulate objects.

Requirement 3 The user has specified a bounding box of near-goal states G ⊂ NG ⊂ S which
contains the goal states and contact rich states the robot will encounter when solving the task.

Requirements 1 and 2 are standard components of defining manipulation tasks in simulation. We
provide an expanded discussion on Requirement 3 below, but Figure 4b provides examples illustrat-
ing how these near-goal states are very intuitive to design for new tasks. Roughly speaking, we only
ask the user to define ‘points of interest’ where contact-rich behaviors are expected to occur (in no
specific order), which we argue is a relatively weak ask from the user.

Reinforcement Learning Problem: OmniReset uses the specifications defined by Requirements
1-3 to automatically construct reinforcement learning problems for dexterous manipulation tasks.
We formalize this as a Markov decision process (MDP) defined by the tuple (S,A, P, r, γ, ρ), where
r is the reward and γ is the discount factor, and s0 ∼ ρ is the distribution over initial conditions.
Of critical importance in our system is the initial state distribution ρ. While this is typically as-
sumed to be a fixed distribution provided by the user, we propose that in OmniReset(Sec. 3.1),
we will specifically generate an extremely broad distribution of interesting reset-states ρ. Given
this generated set of initial states, we can then optimize for the discounted sum of rewards -
J(π) = Es0∼ρ[

∑∞
t=0 γ

tr(st, at)], where the expectation is also taken w.r.t the actions generated by
π. In practice, we also parameterize the MDP with dynamics parameters such as friction coefficients,
masses, etc. We find empirically that the right choice of generating ρ makes the above-mentioned
objective very effective at solving complex, dexterous, long-horizon problems. In Sec. 3.1, we will
show how to practically generate a broad reset distribution ρ from minimal user specifications, and
then in Sec. 3.2 we will show how ρ can be used with large-scale RL to learn complex behavior.
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3.1 GENERATING DIVERSE RESETS

We now describe the core techniques which comprise OmniReset and enable users to construct
diverse, meaningful reset distributions for dexterous manipulation by providing the high-level spec-
ification defined by Requirements 1-3. Before describing the reset distributions in detail, we first
discuss several key considerations which guided the development of our pipeline.

(a) Grasp Sampling. We dis-
play the grasp poses sampled for
the table leg. The grasp sampling
ranges are broad, moderate, and
narrow from left-to-right. Our
method uses the broad range.

(b) Near-Goal States. The user
specifies bounding boxes around
(portions of objects) which com-
prise Near-Goal States.

Figure 4: Tools for reset gener-
ation

Challenges in Generating Feasible Resets: Generating feasible
reset states in physics simulation environments – i.e. states where
contact constraints are satisfied – is non-trivial. Failing to do so can
lead to objects getting ‘stuck’ inside of one another or explosions
in velocities as the simulator attempts to resolve contacts. Such
pathologies are detrimental to learning and must be systematically
filtered out. Collision checkers can be used to filter out invalid state
proposals, but there are still several key challenges to consider - (1)
Collision checkers are subject to fundamental trade-offs between
accuracy and computation time, especially for complex non-convex
geometries, (2) A large number of invalid states may need to be
rejected before a valid sample is found, especially true for high-
precision problems, (3) Massively parallelized simulators (Mittal
et al., 2023) take environment steps in lock step to maximize GPU
utilization, leading to pipelining challenges. Thus, we use an ini-
tial offline phase and collision checker to generate a dataset D of
feasible resets using the sampling strategies described below.

Generating Diverse Reset Distributions: We compose the set of
reset-states D from four different components using the specifica-
tions provided by the user in Requirements 1-3 - D = DR∪DNO∪
DG ∪DNG, where DR is a reaching dataset, DNO is a near-object
dataset, DG is a grasped dataset, and DNG is a near-goal dataset.
We then define the reset distribution ρ ∼ Uniform(D). Before
generating these datasets, we first use the built in grasp sampler
from IsaacLab (Mittal et al., 2023) (see Figure 4a) to generate a
large dataset of feasible grasp points on the objects, recording the
relative pose between the gripper and the object. We then generate
proposed resets for each of the distributions as follows:

1) Reaching Resets: We spawn the object at random posses slightly above the tabletop within the
workspace W , and allow them to come fall and come to rest.

2) Near-Object Resets: We first spawn the objects at the states from DR. We then select a grasp
point on the object, spawn the gripper at that point with some pose offset randomization, and spawn
the gripper in open or closed configurations with 50% probability each.

3) StableGrasp Resets: We randomly spawn the objects that are to be manipulated in the air at
random poses throughout W . We then select a grasp point on the object and spawn the gripper at
that point, with the gripper closed on the object. We run the simulation for several steps to ensure
the grasp is stable and objects have settled.

4) Near-Goal Resets: We randomly sample objects in the set of near-goal states NG. Next we step
the simulator while applying small random forces for two seconds, taking inspiration from (Tang
et al., 2024). Finally, we then move the gripper to one of the precomputed grasp points. We found
that the jostling provided by the second step helped provide more uniform coverage over NG as the
simulator resolves contacts.

These reset distributions are depicted pictorially in Fig 3 (Panel 2). Together, we found that each of
these datasets was necessary for arriving at a single reset formulation which enables RL to solve the
diversity of tasks we consider. Together, the reaching dataset DR and grasped dataset DG provide
broad coverage over the state-space and enable the RL algorithm to learn effective policies over all
of the workspace W with no gaps in coverage. We found that the near object dataset DNO and
near-goal dataset DNG were necessary to provide dense coverage over contact rich states, enabling
behaviors such pushing, flipping, screwing, and insertion to emerge naturally from RL training.
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As we depict in Figure 4b, we found that specifying the near-goal states NG was typically quite
natural. In practice, to specify NG we simply specified a bounding box around the parts of different
object which must inherently interact in order to reach the goal, such as the threads on the table
leg and the corresponding hole it must be screwed into, or a drawer and the corresponding slot
on a dresser. The goal of this work is to understand what properties reset distributions must have
to enable scalable RL training for contact rich tasks, and to take an initial step towards making
the generation of these resets as automatic as possible. While OmniReset still requires a small
amount of human effort to specify new task descriptions, our experimental results demonstrate that
this approach enables us to scale to tasks far beyond the complexity of current methods.

3.2 DESIGN DECISIONS FOR SCALABLE RL TRAINING

Once OmniResethas generated a broad set of initial reset-states, these are used to seed a large-scale
RL process to learn dynamic control policies for performing long-horizon, contact-rich manipula-
tion. In this section, we discuss the design decisions that are necessary for an RL algorithm to solve
the complexity of tasks we consider, when combined with the resets proposed in Sec. 3.1.

Sufficient Reset Coverage: We consistently found that increasing the diversity of meaningful re-
set states the policy is exposed to simplified training and yielded more capable, robust policies.
For example, we found generating a wide range of sub-optimal grasps for the task accelerated and
stabilized training substantially. We ablate this design decision in more detail in Sec.5.

Scaling Parallel Environments: Scaling the number of parallel environments is an equally im-
portant decision. When combined with increasing reset diversity, we found that scaling the batch
size used by PPO consistently simplified the process of training a performant policy, enabling us to
obviate curricula and task dependent rewards. We ablate the number of parallel environments below.

Asymmetric Actor-Critic: We asymmetric actor-critic approach (Pinto et al., 2017) for our learning
architecture. The actor observations include a history of the five previous time-steps for the state of
the robot, the poses of all objects in the scene, and the previous actions taken by the policy. The
critic takes in these observations as well as additional privileged parameters of the environment. We
found that conditioning the actor on larger observation spaces led to less stable training and led us
to only provide this information to the critic.

Generalized State-Dependent Exploration Noise: We employ the policy noise parameterization
from (Raffin et al., 2022). In short, gSDE has a separate prediction head which determines the
gaussian exploration noise at each time-step and is conditioned on the features of the final layer of the
policy network. This approach enables the actor to learn different temporally-correlated exploration
strategies in different regions of the state-space, crucial for solving heterogeneous multi-stage tasks.

Reward Structure: Employing the previous design decisions enabled us to converge on a simple,
common reward function for all tasks of the form:

r(st, at) = Success(st) + DenseSuccess(st) + Dense(st) + Smooth(st, at), (1)
where Success(st) is a binary {0, 1} reward which is activated on the goal set G,
DenseSuccess(st) = 0.1∗ [exp(−doxyz)+exp(−dorp)] where doxyz and dorp are l2 distances on object
displacement from the goal, Dense(st) = 1− tanh dgxyz where dgxyz is l2 distance on displacement
from gripper to object origin, and Smooth(st, at) = −0.0001 ∗ [∥at∥ + ∥at − at−1∥ + ∥vt∥] is an
action penalty encouraging smooth robot actions. We found that each of these terms was necessary
to stabilize training. However, performance of the algorithm was generally insensitive to the choice
of weights for the different components, which are kept fixed across experiments.

4 DISTILLATION AND REAL-WORLD TRANSFER

We highlight the utility of our learned data generation policies by performing distillation into visuo-
motor policies that can be deployed directly in the real world from pixels. The robot has access to
224 × 224 RGB camera images from a front-facing camera, a side-facing camera an a wrist cam-
era. We use the photo-realistic rendering capabilities of IsaacLab (Mittal et al., 2023) to generate a
visuomotor dataset of 10, 000 expert rollouts and action labels while recording the associated cam-
era views, which can then be used to perform standard student-teacher training Chen et al. (2021).
The student RGB policy is composed of a Gaussian-MLP policy head, uses a pre-trained ResNet-18
encoder as a visual backbone, and takes in the last five observations and actions.
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Visual Randomizations To tackle the visual gap, we following DextrAH-G (Singh et al., 2025)
to create realistic scenes. Every four seconds of simulation steps, we randomize dome-light HDRI
backgrounds and light intensity. We additionally randomize object color, robot color, workspace
colors (table, background curtains). For better sim2real transfer, we calibrate our three cameras in
real and match their pose in simulation. We additionally randomize camera pose and FOV slightly
to be robust to calibration error. In addition to these randomizations, we also add data augmentations
such as color jitter, gaussian blur, random grayscale, and gaussian noise.

Co-Training with Real World Data: To enable successful transfer, we developed a simple co-
training recipe for improving the simulation-trained policy by incorporating a small number number
of demonstrations collected in the real world. While direct finetuning on real world data leads to poor
performance, we experiment with different co-training recipes - finetuning on different combinations
of data from simulation and reality and freezing different components of the network. The best
results we obtained are reported in more detail in Sec.5, and involve freezing the ResNet encoder
during finetuning with a data mixture of 95% simulated data and 5% real world data.

5 EXPERIMENTS

We aim to address the following questions experimentally - (Q1) Does OmniResetoutperform
baselines and scale to tasks beyond current methods? (Q2) How do our key design decisions affect
performance? (Q3) Can our experts be used to generate diverse data for sim-to-real transfer?

5.1 TASK DESCRIPTIONS

We consider the three tasks described below. We will refer to the distributions we define below as
the Entire Task Distributions, as they define the actual set of initial conditions we intend to solve
the task from. These three tasks are depicted in Figures 1 and 2. For each task we consider both
Easy and Hard settings, but note our renderings in Figures 1 and 2 are all from Hard settings.

We emphasize that the policies depicted in Figures 1 and 2 were trained on the Hard settings.

1) Drawer: The Drawer task is based on the task by the same name from (Heo et al., 2023). For
Drawer Hard, the drawer is spawned over the of x-y coordinates (x − y) ∈ [−0.2, 0.2] ×
[−.15, .15], the orientation of the drawer is drawn completely at random. Drawer Easy keeps
the drawer at a fixed orientation with (x, y) ∈ [−0.1, 0.12]× [−.10, .12].

2) Screw: The Screw task is based on the square table task from (Heo et al., 2023). To
solve the task the agent must pick up the a table leg, insert it into the table, then screw it in.
Both settings the orientation of the leg is randomized completely. Screw Hard uses (x, y) ∈
[−0.2, 0.2]× [−.15, .15] and Screw Easy uses (x, y) ∈ [0.08, 0.13]× [−0.025, 0.025].

3) Peg: We design a custom peg insertion task where the robot must grasp a rectangular peg and
insert it into a receptacle. This involves precise grasping and insertion motions. For both settings
we randomize the orientation of the leg uniformly. Peg Hard uses (x, y) ∈ [−0.2, 0.2] ×
[−.15, .15] and Peg Easy uses (x, y) ∈ [0.08, 0.13]× [−0.025, 0.025].

5.2 BASELINE ALGORITHMS

We compare to the following baselines, which bootstrap learning with expert demonstrations, pro-
viding them more prior information about how to solve the task than OmniReset.

1) BC-PPO: We add a Behavior-Cloning (BC) loss to the PPO objective to construct a baseline
emblematic of numerous works combining BC and RL objectives (Hester et al., 2018; Rajeswaran
et al., 2017). When training this algorithm, the environment is always reset from the standard reset
distributions ρS described above and uses our standard reward structure (Eq 1)

2) DeepMimic: We use DeepMimic-style reward augmentation (Peng et al., 2018) on top of our
reward structure from Equation 1. During resets, a random demonstration is chosen, and the
agent is reset from a random point along the demonstration and is incentivizes to stay close to the
demonstration by the auxiliary reward.
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3) Demo Curriculum: This baseline defines an auto curriculum over resets from the standard reset
distribution ρS and the demos provided by the user. This demo is constructed in the spirit of the
one used in (Bauza et al., 2025), but we instead use PPO as the base RL algorithm to ensure a fair
comparison. This approach biases samples towards resets from which the policy achieves some
success, as these resets provide a strong learning signal. This approach uses our standard rewards.

5.3 POLICY TRAINING AND EVALUATION IN SIMULATION

Figure 5: Success rates during RL training. We plot
success rates over learning process for tasks described
in Sec.5. We see that OmniResetyields significant im-
provements in success.

We scale OmniResetto the Hard versions of
each task, providing full learning curves in Fig-
ure 9 in the Appendix. Here, in Fig 5, we pri-
marily compare to baselines on the Easy ver-
sions of the tasks, since the baselines struggled
to make any meaningful progress on the harder
variants of the tasks. We report success rates
for each method when initialized over the en-
tire task distribution, as well as when explicitly
spawned from states near the goal. Looking
at the Easy versions of the tasks, we see that
the baselines can make some progress towards
solving the task from the near-goal states, but
struggle to solve the entire task from the be-
ginning. This is even more pronounced on
the Screw Hard variant, where the baselines
achieve near-zero success rates. In contrast,
OmniResetreliably achieves a final success
rate of >97% success on each of the tasks.

To give a more thorough picture of the per-
formance of OmniReset, we analyze the ro-
bustness of learned policies in simulation via
a series of scatter plots (Fig 6). These plots
show success rates over various initial con-
ditions for both OmniResetand Demo Cur-
riculum (the most successful baseline) on the
Screw tasks. For each plot we show the suc-
cess rate over 1000 sampled initial conditions
from the full task distribution. This plot demon-
strates how the baseline struggles to achieve
achieve consistent success across the distribu-
tion of initial conditions it was trained on, while
OmniResetachieves high degrees of coverage. Finally, we conduct a robustness analysis on the
learned policies (Fig 7). We sample an initial condition from one of the demonstrations, perturb the
initial condition with forces of different magnitudes and report policy success from these perturbed
initial conditions. We find that baseline performance quickly degrades under small perturbations,
while the performance of OmniResetis barely affected, even under large perturbations.

We further ablate the key design decisions behind OmniReset. While we defer the detailed de-
scription to the Appendix, we find having sufficient coverage over two factors matters significantly
for performance - 1) the number of parallel environments (and correspondingly RL batch size) and
2) the range of reset randomization used by OmniReset.

5.4 REAL-WORLD TRANSFER

We deploy our policies on a 6 DoF UR5e arm with a 2F-85 Robotiq Gripper mounted. We mount
one Intel Realsense D435 and one Intel Realsense D455 camera rigidly on the table. We also mount
one Intel Realsense D415 camera on the wrist of the arm. The real robot setup is shown in 8. The
UR5e low-level impedance control runs at 500Hz and 2F-85 binary gripper control runs at 200 Hz.

We evaluate our method on Screw task from a narrow range of initial leg poses next to the tabletop.
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Figure 6: Success states of RL policy. For the screwing task, we plot the xy configurations from which RL
polices trained with Demo Curriculum and OmniResetsucceed when trained on the full reset distribution
and on a narrow reset distribution. We find that OmniResetsucceeds from a much broader range of initial
conditions.

Figure 7: Success rate over perturbations. We plot the decline in success rate (measured by ratio of success
rate between no perturbations and current level of perturbations). We find that OmniResetis robust to pertur-
bations while performance of baselines drops significantly.

Figure 8: Sim-to-Real Setup. Real-world setup for
evaluating transfer on the leg screwing task.

Evaluating our distilled RGB policy on 10,000
simulation trajectories zero-shot in real has a
success rate of zero. Qualitatively, the robot can
grasp leg but cannot align it with the tabletop
hole successfully. We collect 100 real demon-
strations of this task and finetune our distilled
RGB policy on this via sim-real cotraining. The
co-trained policy achieves 30% success in all
areas of reaching, grasping, inserted, and twist-
ing. Interestingly, if we train an RGB policy on
just the 100 real demonstrations, the policy gets a 0% success rate, not even succeeding at grasping.
Full results are shown in Table 1.

Table 1: Columns compare success rates of (i) a distilled RGB policy trained in simulation, (ii) a policy
trained only on 100 real expert demonstrations, and (iii) a distilled simulation policy fine-tuned with sim+real
co-training data.

Distilled Sim Policy Real-Only Policy Sim+Real Co-Training

Success Rate (Sim) 98% 0% N/A
Success Rate (Real) 0% 0% 30%

6 CONCLUSION

In this work we presented OmniReset, a simple and scalable system for data generation in simu-
lation for complex, dexterous tasks. The primary insight in OmniResetis showing that a diverse,
minimally structured set of reset states paired with large-batch on-policy reinforcement learning
in simulation can lead to the emergence of surprisingly complex dexterous behavior. We provide
a general purpose recipe to instantiate data generators across a variety of manipulation tasks, and
demonstrate both the efficacy of this paradigm in simulation and it’s ability to bootstrap real world
policy learning. The presented work is currently still single-task and object, making a multi-task
extension in future work a promising direction of investigation. Furthermore, OmniResetopens
up the possibility of more systematically studying scaling laws for policy learning.

9
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7 REPRODUCIBILITY STATEMENT

We have made efforts to ensure reproducibility of our results by describing the steps of our data
generation and training pipeline (Sec.3), our distillation and transfer pipeline (Sec.4), and our ex-
perimental results (Sec.5). Additional ablation studies are provided in the Appendix.
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A APPENDIX

A.1 ABLATIONS

We ablate the key design decisions that allow our approach to reliably scale to the Hard versions of
the tasks we consider. We ablate 1) the number of parallel environments (and PPO batch size) and
2) the range of reset randomization used by OmniReset. Due to the high-compute cost needed to
solve the full Hard tasks, we restrict this study to Screw Hard. We find that more environments
during PPO training and broader grasp samples in the reset distribution dramatically improve sample
efficiency and converged final success rate. Moreover, we plot success rates from each of the sub-
reset distributions (DR, DNO, DG and DNG) as they provide an indication of how OmniReset
works backwards from the end of the problem without requiring any explicit curricula, first achieving
a high success rate on the near goal states DNG then making progress on reset distributions which
correspond to earlier portions of the task. Refer to Figures 9 and 10 in the appendix for details.
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Figure 9: Ablation on number of environments. We plot the success rates over course of RL training using
different number of environments. We find that the number of environments significantly impacts training
performance.
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Figure 10: Ablation on grasp sampling range. For this ablation on the screwing task, we find that training
RL on narrower grasp sampling ranges leads to worse sample efficiency and lower converged success rate.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used the help of LLMs for formatting some of the figures in LaTeX and spell check for the paper.
We also used it as a code assist tool during the research process for writing some of the code for our
experiments.
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