
Published in Transactions on Machine Learning Research (06/2024)

Todyformer: Towards Holistic Dynamic Graph Transformers
with Structure-Aware Tokenization

Mahdi Biparva∗ mahdi.biparva@huawei.com
Huawei Noah’s Ark Lab

Raika Karimi∗ raika.karimi@huawei.com
Huawei Noah’s Ark Lab

Faezeh Faez faezeh.faez@huawei.com
Huawei Noah’s Ark Lab

Yingxue Zhang yingxue.zhang@huawei.com
Huawei Noah’s Ark Lab

Reviewed on OpenReview: https: // openreview. net/ forum? id= nAQSUqEspb

Abstract

Temporal Graph Neural Networks have garnered substantial attention for their capacity to
model evolving structural and temporal patterns while exhibiting impressive performance.
However, it is known that these architectures are encumbered by issues that constrain their
performance, such as over-squashing and over-smoothing. Meanwhile, Transformers have
demonstrated exceptional computational capacity to effectively address challenges related
to long-range dependencies. Consequently, we introduce Todyformer—a novel Transformer-
based neural network tailored for dynamic graphs. It unifies the local encoding capacity
of Message-Passing Neural Networks (MPNNs) with the global encoding of Transformers
through i) a novel patchifying paradigm for dynamic graphs to improve over-squashing, ii)
a structure-aware parametric tokenization strategy leveraging MPNNs, iii) a Transformer
with temporal positional-encoding to capture long-range dependencies, and iv) an encod-
ing architecture that alternates between local and global contextualization, mitigating over-
smoothing in MPNNs. Experimental evaluations on public benchmark datasets demonstrate
that Todyformer consistently outperforms the state-of-the-art methods for downstream
tasks. Furthermore, we illustrate the underlying aspects of the proposed model in effectively
capturing extensive temporal dependencies in dynamic graphs. The code is publicly avail-
able at https://github.com/huawei-noah/noah-research/tree/master/graph_atlas

1 Introduction

Dynamic graphs, driven by the surge of large-scale structured data on the internet, have become pivotal in
graph representation learning. Dynamic graphs are simply static graphs where edges have time attributes
(Kazemi et al., 2020). Representation learning approaches for dynamic graphs aim to learn how to effectively
encode recurring structural and temporal patterns for node-level downstream tasks. For instance, Future
Link Prediction (FLP) uses past interactions to predict future links, while Dynamic Node Classification
(DNC) focuses on predicting labels of upcoming nodes based on impending interactions (Xu et al., 2019a).
While models based on Message-Passing Neural Networks (MPNN) (Gilmer et al., 2017; Luo et al., 2021) have
demonstrated impressive performance on encoding dynamic graphs (Rossi et al., 2020; Wang et al., 2021; Jin
et al., 2022; Luo & Li, 2022), many approaches have notable limitations. Primarily, these methods often rely

∗equal contribution.

1

https://openreview.net/forum?id=nAQSUqEspb
https://github.com/huawei-noah/noah-research/tree/master/graph_atlas

Published in Transactions on Machine Learning Research (06/2024)

heavily on chronological training or use complex memory modules for predictions (Kumar et al., 2019; Xu
et al., 2020; Rossi et al., 2020; Wang et al., 2021), leading to significant computational overhead, especially
for dynamic graphs with many edges. Additionally, the use of inefficient message-passing procedures can be
problematic, and some methods depend on computationally expensive random-walk-based algorithms (Wang
et al., 2021; Jin et al., 2022). These methods often require heuristic feature engineering, which is specifically
tailored for edge-level tasks.

Moreover, there is a growing consensus within the community that the message-passing paradigm is in-
herently constrained by the hard inductive biases imposed by the graph structure (Kreuzer et al., 2021).
A central concern with conventional MPNNs revolves around the over-smoothing problem stemmed from
the exponential growth of the model’s computation graph (Dwivedi & Bresson, 2020). This issue becomes
pronounced when the model attempts to capture the higher-order long-range aspects of the graph structure.
Over-smoothing hurts model expressiveness in MPNNs where the network depth grows in an attempt to
increase expressiveness. However, the node embeddings tend to converge towards a constant uninformative
representation. This serves as a reminder of the lack of flexibility observed in early recurrent neural networks
used in Natural Language Processing (NLP), especially when encoding lengthy sentences or attempting to
capture long-range dependencies within sequences (Hochreiter & Schmidhuber, 1997). However, Transform-
ers have mitigated these limitations in various data modalities (Vaswani et al., 2017; Devlin et al., 2018; Liu
et al., 2021; Dosovitskiy et al., 2020; Dwivedi & Bresson, 2020). Over-squashing is another problem that
message-passing networks suffer from since the amount of local information aggregated repeatedly increases
proportionally with the number of edges and nodes (Hamilton, 2020; Topping et al., 2021).

MPNN-based models for learning dynamic graphs do not deviate from aforementioned drawbacks. To address
these challenges, we propose Todyformer1—a novel Graph Transformer model on dynamic graphs that unifies
the local and global message-passing paradigms by introducing patchifying, tokenization, and encoding
modules that collectively aim to improve model expressiveness through alleviating over-squashing and over-
smoothing in a systematic manner. To mitigate the neighborhood explosion (i.e, over-squashing), we employ
temporal-order-preserving patch generation, a mechanism that divides large dynamic graphs into smaller
dynamic subgraphs. This approach breaks the larger context into smaller subgraphs suitable for local
message-passing, instead of relying on the model to directly analyze the granular and abundant features of
large dynamic graphs.

Moreover, we adopt a hybrid approach to successfully encode the long-term contextual information, where we
use MPNNs for tasks they excel in, encoding local information, while transformers handle distant contextual
dependencies. In other words, our proposed architecture adopts the concept of learnable structure-aware
tokenization, reminiscent of the Vision Transformer (ViT) paradigm (Dosovitskiy et al., 2020), to mitigate
computational overhead. Considering the various contributions of this architecture, Todyformer dynami-
cally alternates between encoding local and global contexts, particularly when capturing information for
anchor nodes. This balances between the local and global computational workload and augments the model
expressiveness through the successive stacking of the MPNN and Transformer modules.

2 Related Work

Representation learning for dynamic graphs: Recently, the application of machine learning to
Continuous-Time Dynamic Graphs (CTDG) has drawn the attention of the graph community (Kazemi
et al., 2020). RNN-based methods such as JODIE (Divakaran & Mohan, 2020), Know-E (Trivedi et al.,
2017), and DyRep (Trivedi et al., 2019) typically update node embeddings sequentially as new edges ar-
rive. STAR (Xu et al., 2019b) is one of the early works that uses attentive approach for temporal graphs.
TGAT (Xu et al., 2020), akin to GraphSAGE (Hamilton et al., 2017) and GAT (Veličković et al., 2018), uses
attention-based message-passing to aggregate messages from historical neighbors of an anchor node. TGN
(Rossi et al., 2020) augments the message-passing with an RNN-based memory module that stores the history
of all nodes with a memory overhead. CAW (Wang et al., 2021) and NeurTWs (Jin et al., 2022) abandon the
common message-passing paradigm by extracting temporal features from temporally-sampled causal walks.
TRRN (Xu et al., 2021) is another memory-based model that benefit from self-attention to reason over set of

1We are going to open-source the code upon acceptance.

2

Published in Transactions on Machine Learning Research (06/2024)

memories. CAW operates directly within link streams and mandates the retention of the most recent links,
eliminating the need for extensive memory storage. Moreover, Souza et al. (2022) investigates the theoreti-
cal underpinnings regarding the representational power of dynamic encoders based on message-passing and
temporal random walks. DyG2Vec (Alomrani et al., 2022) proposes an efficient attention-based encoder-
decoder MPNN that leverages temporal edge encoding and window-based subgraph sampling to regularize
the representation learning for task-agnostic node embeddings. GraphMixer (Cong et al., 2023) simplifies
the design of dynamic GNNs by employing fixed-time encoding functions and leveraging the MLP-Mixer
architecture (Tolstikhin et al., 2021).

Graph Transformers: Transformers have been demonstrating remarkable efficacy across diverse data
modalities (Vaswani et al., 2017; Dosovitskiy et al., 2020). The graph community has recently started to
embrace them in various ways (Dwivedi & Bresson, 2020). Graph-BERT (Zhang et al., 2020) avoids message-
passing by mixing up global and relative scales of positional encoding. Kreuzer et al. (2021) proposes a
refined inductive bias for Graph Transformers by introducing a soft and learnable positional encoding (PE)
rooted in the graph Laplacian domain, signifying a substantive stride in encoding low-level graph structural
intricacies. Ying et al. (2021) is provably more powerful than 1-WL; it abandons Laplacian PE in favor of
spatial and node centrality PEs. Subsequently, SAT (Chen et al., 2022) argues that Transformers with PE
do not necessarily capture structural properties. Therefore, the paper proposes applying GNNs to obtain
initial node representations. Graph GPS (Rampášek et al., 2022) provides a recipe to build scalable Graph
Transformers, leveraging structural and positional encoding where MPNNs and Transformers are jointly
utilized to address over-smoothing, similar to SAT. TokenGT (Kim et al., 2022) demonstrates that standard
Transformers, without graph-specific modifications, can yield promising results in graph learning. It treats
nodes and edges as independent tokens and augments them with token-wise embeddings to capture the graph
structure. He et al. (2023) adapts MLP-Mixer (Tolstikhin et al., 2021) architectures to graphs, partitioning
the input graph into patches, applying GNNs to each patch, and fusing their information while considering
both node and patch PEs.

While the literature adapts Transformers to static graphs, a lack of attention is eminent on dynamic graphs.
In this work, we strive to shed light on such adaptation in a principled manner and reveal how dynamic
graphs can naturally benefit from a unified local and global encoding paradigm.

3 Todyformer: Tokenized Dynamic Graph Transformer

We begin this section by presenting the problem formulation of this work. Next, we provide the method-
ological details of the Todyformer architecture along with its different modules.

Problem Formulation: A Continuous-Time Dynamic Graph (CTDG) G = (V, E , X E , X v) with N = |V|
nodes and E = |E| edges can be represented as a sequence of interactions E = {e1, e2, . . . , eE}, where
X v ∈ RN×DV and X E ∈ RE×DE are the node and edge features, respectively. DV and DE are the dimensions
of the node and edge feature space, respectively. An edge ei = (ui, vi, ti, mi) links two nodes ui, vi ∈ V at
a continuous timestamp ti ∈ R, where mi ∈ X E is an edge feature vector. Without loss of generality, we
assume that the edges are undirected and ordered by time (i.e., ti ≤ ti+1). A temporal sub-graph Gij is
defined as a set consisting of all the edges in the interval [ti, tj], such that Eij = {ek | ti ≤ tk < tj}. Any
two nodes can interact multiple times throughout the time horizon; therefore, G is a multi-graph. Following
DyG2Vec (Alomrani et al., 2022), we adopt a window-based encoding paradigm for dynamic graphs to
control representation learning and balance the trade-off between efficiency and accuracy according to the
characteristics of the input data domain. The parameter W controls the size of the window for the input
graph Gij , where j = i + W . For notation brevity, we assume the window mechanism is implicit from the
context. Hence, we use G as the input graph unless explicit clarification is needed.

Based on the downstream task, the objective is to learn the weight parameters θ and γ of a dynamic graph
encoder Encoderθ and decoder Decoderγ respectively. Encoderθ projects the input graph G Decoder
to the node embeddings H ∈ RN×DH , capturing temporal and structural dynamics for the nodes. Meanwhile,
a decoder Decoderγ outputs the predictions given the node embeddings for the downstream task, enabling
accurate future predictions based on past interactions. More specifically:

3

Published in Transactions on Machine Learning Research (06/2024)

⋮

Lo
cal En

co
d

er

⋮

G
lo

b
al En

co
d

er

D
eco

d
er

Lo
ss Fu

n
ctio

n

× 𝐿
Encoder

Positional Encoding

𝑛𝑁𝑛𝑖𝑛1

𝑃𝑀

𝑃𝑀−1

𝑃2

𝑃1

𝑃𝑀

𝑃𝑀−1

𝑃2

𝑃1

⋮

𝑃𝑗 𝑃𝑗

⋮

⋮

⋮ ⋮

Patch
ifyin

g

Δ𝑡1

Δ𝑡2

Δ𝑡j

Δ𝑡M−1

Δ𝑡M

𝑡 = 0

𝑡 = 𝑊

Figure 1: Illustration of Todyformer encoding-decoding architecture. Before being fed into the Encoder, the
temporal graph is segmented into M non-overlapping subgraphs (patches) based on the timestamps of the
edges, with each subgraph containing an equal number of edges. This partitioning process divides the overall
time interval into M segments such that W =

∑M
k=1 ∆tk. Here, W denotes the window size, Pj represents

the j-th patch, ni denotes the i-th node of the graph, and L represents the number of encoder blocks.

H = Encoderθ(G) , Z = Decoderγ(H) , (1)

Here, Z represents predictions for the ground-truth labels. In this work, we focus on common downstream
tasks defined similarly to Alomrani et al. (2022) for training and evaluation: i) Future Link Prediction (FLP)
and ii) Dynamic Node Classification (DNC).

3.1 Encoder Architecture

Todyformer consists of L blocks of encoding Encoderθ = {(LocalEncoderl, GlobalEncoderl)}L
l=0

where LocalEncoder = {LocalEncoderl}L
l=0 and GlobalEncoder = {GlobalEncoderl}L

l=0 are
the sets of local and global encoding modules, respectively. As illustrated in Figure 1, the encoding network
of Todyformer benefits from an alternating architecture that alternates between local and global message-
passing. The local encoding is structural and temporal, according to the learnable local encoder, and the
global encoding in this work is defined to be temporal. We leave the structural and temporal global encoding
for future work. In the following, we define each encoding module in more detail.

3.2 Patch Generation

Inspired by Dosovitskiy et al. (2020), Todyformer begins by partitioning a graph into M subgraphs, each con-
taining an equal number of edges. This partitioning is performed based on the timestamp associated with each
edge. Specifically, the patchifier Patchifier evenly segments the input graph G with E = {e1, e2, . . . , eE}
edges into M non-overlapping subgraphs of equal size, referred to as patches. More concretely:

P = Patchifier(G; M) (2)

where P = {Gm |m ∈ {1, 2, ..., E
M }} and the m-th graph, denoted as Gm, consists of edges with indices in the

range {(m − 1) E
M + 1, · · · , m E

M }. Partitioning the input graph into M disjoint subgraphs helps message-
passing to be completely separated within each patch. Additionally, M manages the trade-off between
alleviating over-squashing and maintaining the local encoder’s expressiveness. Through ablation studies, we
empirically reveal how different datasets react to various M values.

4

Published in Transactions on Machine Learning Research (06/2024)

𝑛𝑁𝑛𝑖𝑛1

GNN
Tokenizer

Node
Packing

𝑛1
⋮

⋮

𝑛𝑖

𝑛𝑁

𝑁 ×𝑀

Transformer
Node

Unpacking

𝑛𝑁𝑛𝑖𝑛1

𝑛1
⋮

⋮

𝑛𝑖

𝑛𝑁

𝑁 ×𝑀

Global Encoder

⋮

Local Encoder

𝑃𝑀

𝑃𝑀−1

𝑃2

𝑃1

𝑃𝑀

𝑃𝑀−1

𝑃2

𝑃1

⋮

𝑃𝑀

𝑃𝑀−1

𝑃2

𝑃1

⋮

𝑃𝑗

⋮

𝑃𝑗

⋮ ⋮

𝑃𝑗

⋮ ⋮ ⋮ ⋮

⋮

⋮

⋮

⋮

Figure 2: Schematic depiction of the computation flow in the local and global encoding modules, particularly
highlighting node packing and unpacking modules in Todyformer.

3.3 Local Encoding: Structure-Aware Tokenization

Local encoding LocalEncoderl = (Tokenizerl, Packerl) contains two modules: the tokenization
Tokenizerl and the packing Packerl modules. The former handles local tokenization, and the latter
packs tokens into a sequential data structure that will be consumed by the global encoder.

Structure-Aware Tokenization: Following the recent trend in Graph Transformers, where tokenization is
structure-aware, local encoding in Todyformer utilizes a dynamic GNN to map the input node embeddings
to the latent embeddings that a Transformer will process later on. It should be noted that the local encoder
has learnable parameters to encode both structural and temporal patterns in the patches. Without loss of
generality, we use DyG2Vec (Alomrani et al., 2022) as a powerful attentive message-passing model to locally
encode input features into semantically meaningful node tokens.

Hl = Tokenizerl(H̄l−1) (3)

where Hl = {H l
i}

M−1
i=0 is the set of node embeddings Hi for M different patches, and H̄l−1 is the set of node

embeddings computed by the previous block. As illustrated in Figure 1, the output of one block from the
global encoder is transferred as the input into the local encoder of the subsequent block. It should be noted
that H̄0 = X for the first layer, where X = {Xi}M−1

i=0 is the set of node features for all patches.

Packing: Once the node features are locally encoded into node tokens, the next step is to pack the set of
node embeddings Hl into the standard format required by Transformers. Since a node may appear in multiple
patches, to collect all the node embeddings for a particular node across the patches, a node-packing module
Packerl is utilized. This module collects the embeddings of all nodes across the patches and arranges them
in a sequential data format as follows:

H l = Packerl(Hl, P) (4)

where H l ∈ RN×M×DH such that N is the number of nodes in the input graph G, M is the total number of
patches, and DH is the dimension of the embedding space. The module Packerl uses P to figure out which
patches a node belongs to. Consequently, the output of the local encoding module is structured in a tensor
that can be easily consumed by a Transformer. The computation flow in the local encoder is shown in Figure
2. Since nodes may have interactions for a variable number of times in the input graph, it is necessary to
pad the short sequences with the [MASK] tokens at the end. Then, the mini-batch of sequences can be easily
packed into a dense tensor and fed as input to Transformers.

3.4 Global Encoding

The packed node tokens will be fed into the global encoding module to perform long-range message-
passing beyond the local context of the input patches. Therefore, Todyformer not only maximizes

5

Published in Transactions on Machine Learning Research (06/2024)

the parametric capacity of MPNNs to encode local context but also leverages the long-range capaci-
ties of Transformers to improve the model expressiveness. The global encoder GlobalEncoderl =
(PositionalEncoderl, Transl, Unpackerl) consists of the positional encoder PositionalEncoderl,
Transformer Transl, and unpacking module Unpackerl according to the details provided in the following.

Positional Encoding: Transformers are aware of the ordering in the input sequences through positional
encoding. Various systematic approaches have been investigated in the literature for the sake of improved
expressiveness (Dwivedi & Bresson, 2020; Kreuzer et al., 2021). Once the structural and temporal features
are locally mapped into node tokens, and the sequential input H l is packed at layer l, positional encoding is
needed to inform the Transformer of the temporal ordering of the node tokens on a global scale. The positional
encoding in Todyformer is defined based on the notion of the position and the encoding function. The position
can be explicitly defined as the global edge index of a node upon an interaction at a timestamp or implicitly
defined as the patch or occurrence indices. The encoding function can be a linear or sinusoidal mapping.
The positional encoding P is fused into the packed node embeddings through the addition modulation, as
follows:

H l = H l + P, P = PositionalEncoderl(P) ∈ RN×M×DH

(5)

Transformer: The global encoding updates node embeddings through a dot-product Multi-head Self-
Attention (MSA) Transformer architecture as follows: The global encoder computes a contextualized em-
bedding for each node based on the representation learned for that node across different patches. This is
accomplished by utilizing a Transformer architecture as follows:

H̄ l = Transl(H l), Transl = Transformer(Q, K, V) = softmax
(QKT

√
dk

)
V (6)

where Q = H lWq ∈ RN×M×Dk , K = H lWk ∈ RN×M×Dk , and V = H lWv ∈ RN×M×Dv are the query, key,
and value, respectively, and Wq, Wk ∈ RDH ×Dk and Wv ∈ RDH ×Dv are learnable matrices, which are shared
among all the graph nodes. We apply an attention mask to enforce directed connectivity between node tokens
through time, where a node token from the past is connected to all others in the future. The Transformer
module is expected to learn temporal inductive biases from the context on how to deploy attention on recent
interactions versus early ones.

Unpacking: For intermediate blocks, the unpacking module Unpackerl is necessary to transform the
packed, unstructured sequential node embeddings back into the structured counterparts that can be processed
alternately by the local encoder of the next block. It is worth mentioning that the last block L does not
require an unpacking module. Instead, a readout function Readout is defined to return the final node
embeddings consumed by the task-specific decoding head:

H̄l = Unpackerl(H̄ l), H̄L = Readout(H̄L−1) ∈ RN×DH

(7)

where H̄l = {H̄ l
i}

M−1
i=0 is the set of node embeddings H̄i for M different patches, Readout is the readout

function, and DH is the dimension of the output node embeddings. The readout function is defined to be a
MAX, MEAN, or LAST pooling layer.

3.5 Improving Over-Smoothing by Alternating Architecture

Over-smoothing is a critical problem in graph representation learning, where MPNNs fall short in encoding
long-range dependencies beyond a few layers of message-passing. This issue is magnified in dynamic graphs
when temporal long-range dependencies intersect with structural patterns. MPNNs typically fall into the
over-smoothing regime beyond a few layers (e.g., 3), which may not be sufficient to capture long-range
temporal dynamics. We propose to address this problem by letting the Transformer widen up the temporal
contextual node-wise scope beyond a few hops in an alternating manner. For instance, a 3-layer MPNN
encoder can reach patterns up to 9 hops away in Todyformer.

6

Published in Transactions on Machine Learning Research (06/2024)

Table 1: Future Link Prediction performance in AP (Mean ± Std) on the test set.

Setting Model MOOC LastFM Enron UCI SocialEvol.
Tr

an
sd

uc
tiv

e JODIE 0.797 ± 0.01 0.691 ± 0.010 0.785 ± 0.020 0.869 ± 0.010 0.847 ± 0.014
DyRep 0.840 ± 0.004 0.683 ± 0.033 0.795 ± 0.042 0.524 ± 0.076 0.885 ± 0.004
TGAT 0.793 ± 0.006 0.633 ± 0.002 0.637 ± 0.002 0.835 ± 0.003 0.631 ± 0.001
TGN 0.911 ± 0.010 0.743 ± 0.030 0.866 ± 0.006 0.843 ± 0.090 0.966 ± 0.001
CaW 0.940 ± 0.014 0.903 ± 1e-4 0.970 ± 0.001 0.939 ± 0.008 0.947 ± 1e-4
NAT 0.874 ± 0.004 0.859 ± 1e-4 0.924 ± 0.001 0.944 ± 0.002 0.944 ± 0.010

GraphMixer 0.835 ± 0.001 0.862 ± 0.003 0.824 ± 0.001 0.932 ± 0.006 0.935 ± 3e-4
Dygformer 0.892 ± 0.005 0.901 ± 0.003 0.926 ± 0.001 0.959 ± 0.001 0.952 ± 2e-4
DyG2Vec 0.980 ± 0.002 0.960 ± 1e-4 0.991 ± 0.001 0.988 ± 0.007 0.987 ± 2e-4

Todyformer 0.992 ± 7e-4 0.976 ± 3e-4 0.995 ± 6e-4 0.994 ± 4e-4 0.992 ± 1e-4

In
du

ct
iv

e

JODIE 0.707 ± 0.029 0.865 ± 0.03 0.747 ± 0.041 0.753 ± 0.011 0.791 ± 0.031
DyRep 0.723 ± 0.009 0.869 ± 0.015 0.666 ± 0.059 0.437 ± 0.021 0.904 ± 3e-4
TGAT 0.805 ± 0.006 0.644 ± 0.002 0.693 ± 0.004 0.820 ± 0.005 0.632 ± 0.005
TGN 0.855 ± 0.014 0.789 ± 0.050 0.746 ± 0.013 0.791 ± 0.057 0.904 ± 0.023
CaW 0.933 ± 0.014 0.890 ± 0.001 0.962 ± 0.001 0.931 ± 0.002 0.950 ± 1e-4
NAT 0.832 ± 1e-4 0.878 ± 0.003 0.949 ± 0.010 0.926 ± 0.010 0.952 ± 0.006

GraphMixer 0.814 ± 0.002 0.821 ± 0.004 0.758 ± 0.004 0.911 ± 0.004 0.918 ± 6e-4
Dygformer 0.869 ± 0.004 0.942 ± 9e-4 0.897 ± 0.003 0.945 ± 0.001 0.931 ± 4e-4
DyG2Vec 0.938 ± 0.010 0.979 ± 0.006 0.987 ± 0.004 0.976 ± 0.002 0.978 ± 0.010

Todyformer 0.948 ± 0.009 0.981 ± 0.005 0.989 ± 8e-4 0.983 ± 0.002 0.9821 ± 0.005

4 Experimental Evaluation

In this section, we evaluate the generalization performance of Todyformer through a rigorous empirical
assessment spanning a wide range of benchmark datasets across downstream tasks. First, the experimental
setup is explained, and a comparison with the state-of-the-art (SoTA) on dynamic graphs is provided. Next,
the quantitative results are presented. Later, in-depth comparative analysis and ablation studies are provided
to further highlight the role of the design choices in this work.

4.1 Experimental Setup

Baselines: The performance of Todyformer is compared with a wide spectrum of dynamic graph encoders,
ranging from random-walk based to attentive memory-based approaches: DyRep (Trivedi et al., 2019),
JODIE (Kumar et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CaW (Wang et al., 2021),
NAT (Luo & Li, 2022), and DyG2Vec (Alomrani et al., 2022). CAW samples temporal random walks and
learns temporal motifs by counting node occurrences in each walk. NAT constructs temporal node represen-
tations using a cache that stores a limited set of historical interactions for each node. DyG2Vec introduces
a window-based MPNN that attentively aggregates messages in a window of recent interactions. Recently,
GraphMixer (Cong et al., 2023) has been presented as a simple yet effective MLP-Mixer-based dynamic
graph encoder. Dygformer (Yu et al., 2023) also presents a Transformer architecture that encodes the
one-hop node neighborhoods. In the Dygformer framework, patchifying entails the application of historical
interaction analysis to a specific node’s context. In other words, the interaction history of a node within
the one-hop context is retrieved and encoded using Transformers. In contrast to Dygformer’s node-level ap-
proach, our methodology involves the extraction of subgraphs and subsequent higher-order message-passing
within a patch, without strict emphasis on individual one-hop node neighborhoods. Consequently, our ap-
proach to patchifying and tokenization operates at the graph level where the input to Transformers is the
encoded node embedding returned from the local encoding. This process ensures that the embeddings gener-
ated from MPNN are updated utilizing message-passing information from all nodes within the corresponding
subgraphs.

Downstream Tasks: We evaluate all models on both FLP and DNC. In FLP, the goal is to predict the
probability of future edges occurring given the source and destination nodes, and the timestamp. For each
positive edge, we sample a negative edge that the model is trained to predict as negative. The DNC task

7

Published in Transactions on Machine Learning Research (06/2024)

Table 2: Future Link Prediction performance on the test set of TGBL datasets measured using Mean
Reciprocal Rank (MRR). The baseline results are directly taken from Huang et al. (2023).

Model Wiki Review Coin Comment Flight Avg. Rank ↓
Dyrep 0.366 ± 0.014 0.367 ± 0.013 0.452 ± 0.046 0.289 ± 0.033 0.556 ± 0.014 4.4
TGN 0.721 ± 0.004 0.532 ± 0.020 0.586 ± 0.037 0.379 ± 0.021 0.705 ± 0.020 2
CAW 0.791 ± 0.015 0.194 ± 0.004 OOM OOM OOM 4.4
TCL 0.712 ± 0.007 0.200 ± 0.010 OOM OOM OOM 4.8

GraphMixer 0.701 ± 0.014 0.514 ± 0.020 OOM OOM OOM 4.4
EdgeBank 0.641 0.0836 0.1494 0.364 0.580 4.6

Todyformer 0.7738 ± 0.004 0.5104 ± 86e-4 0.689 ± 18e-4 0.762 ± 98e-4 0.777 ± 0.014 1.6

involves predicting the ground-truth label of the source node of a future interaction. Both tasks are trained
using the binary cross-entropy loss function. For FLP, we evaluate all models in both transductive and
inductive settings. The latter is a more challenging setting where a model makes predictions on unseen
nodes. The Average Precision (AP) and the Area Under the Curve (AUC) metrics are reported for the FLP
and DNC tasks, respectively. DNC is evaluated using AUC due to the class imbalance issue.

Datasets: In the first set of experiments, we use 5 real-world datasets for FLP: MOOC, and LastFM (Kumar
et al., 2019); SocialEvolution, Enron, and UCI (Wang et al., 2021). Three real-world datasets including
Wikipedia, Reddit, MOOC (Kumar et al., 2019) are used for DNC as well. These datasets span a wide range
of the number of nodes and interactions, timestamp ranges, and repetition ratios. The dataset statistics
are presented in Appendix A.2. We employ the same 70%-15%-15% chronological split for all datasets,
as outlined in Wang et al. (2021). The datasets are split differently under two settings: Transductive and
Inductive. All benchmark datasets are publicly available. We follow similar experimental setups to Alomrani
et al. (2022); Wang et al. (2021) on these datasets to split them into training, validation, and test sets under
the transductive and inductive settings.

In the second set of experiments, we evaluate Todyformer on the Temporal Graph Benchmark for link pre-
diction datasets (TGBL) (Huang et al., 2023). The goal is to target large-scale and real-world experimental
setups with a higher number of negative samples generated based on two policies: random and historical.
The deliberate inclusion of such negative edges aims to address the substantial bias inherent in negative
sampling techniques, which can significantly affect model performance. Among the five datasets, three are
extra-large-scale, where model training on a regular setup may take weeks of processing. We follow the
experimental setups similar to Huang et al. (2023) to evaluate our model on TGBL (e.g., number of trials
or negative sampling).

Model Hyperparameters: Todyformer has a large number of hyperparameters to investigate. There are
common design choices, such as activation layers, normalization layers, and skip connections that we assumed
the results are less sensitive to in order to reduce the total number of trials. We chose L = 3 for the number
of blocks in the encoder. The GNN and Transformers have three and two layers, respectively. The neighbor
sampler in the local encoder uniformly samples (64, 1, 1) number of neighbors for 3 hops. The model employs
uniform sampling within the window instead of selecting the latest N neighbors of a node (Xu et al., 2020;
Rossi et al., 2020). For the DNC task, following prior work by Rossi et al. (2020), the decoder is trained on
top of the frozen encoder pre-trained on FLP.

4.2 Experimental Results

Future Link Prediction: We present a comparative analysis of AP scores on the test set for future link
prediction (both transductive and inductive) across several baselines in Table 1. Notably, a substantial
performance gap is evident in the transductive setting, with Todyformer outperforming the second-best
model by margins exceeding 1.2%, 1.6%, 0.6%, and 0.5% on the MOOC, LastFM, UCI, and SocialEvolve
datasets, respectively. Despite the large scale of the SocialEvolve dataset with around 2 million edges, our
model achieves SoTA performance on this dataset. This observation reinforces the conclusions drawn in Xu
et al. (2020), emphasizing the pivotal role played by recent temporal links in the future link prediction task.
Within the inductive setting, Todyformer continues to exhibit superior performance across all datasets. The
challenge posed by predicting links over unseen nodes impacts the overall performance of most methods.
However, Todyformer consistently outperforms the baselines’ results on all datasets in Table 1. These
empirical results support the hypothesis that model expressiveness has significantly improved while enhancing
the generalization under the two experimental settings. Additionally, Todyformer outperforms the two latest

8

Published in Transactions on Machine Learning Research (06/2024)

Table 3: Dynamic Node Classification performance in AUC (Mean ± Std) on the test set. Avg. Rank reports
the mean rank of a method across all datasets.

Model Wikipedia Reddit MOOC Avg. Rank ↓

TGAT 0.800 ± 0.010 0.664 ± 0.009 0.673 ± 0.006 3.6
JODIE 0.843 ± 0.003 0.566 ± 0.016 0.672 ± 0.002 4.6
Dyrep 0.873 ± 0.002 0.633 ± 0.008 0.661 ± 0.012 4
TGN 0.828 ± 0.004 0.655 ± 0.009 0.674 ± 0.007 3.3

DyG2Vec 0.824 ± 0.050 0.649 ± 0.020 0.785 ± 0.005 3.3
Todyformer 0.861 ± 0.017 0.656 ± 0.005 0.745 ± 0.009 2

SoTA methods, namely GraphMixer (Cong et al., 2023) and Dygformer (Yu et al., 2023). The results further
validate that dynamic graphs require encoding of long-range dependencies that cannot be simply represented
by short-range one-hop neighborhoods. This verifies that multi-scale encoders like Todyformer are capable
of learning inductive biases across various domains.

Additionally, the performance of Todyformer on two small and three large TGBL datasets is presented
in Table 2. On extra-large TGBL datasets (Coin, Comment, and Flight), Todyformer outperforms the
SoTA with significant margins, exceeding 11%, 39%, and 7%, respectively. This interestingly supports
the hypothesis behind the expressive power of the proposed model to scale up to the data domains with
extensive long-range interactions. In the case of smaller datasets like TGBL-Wiki and TGBL-Review, our
approach attains the second and third positions in the ranking, respectively. It should be noted that the
hyperparameter search has not been exhausted during experimental evaluation. The average ranking reveals
that Todyformer is ranked first, followed by TGN in the second place in this challenging experimental
setup. Notably, datasets like TGBLFlight, TGBLCoin, and TGBLComment, characterized by imbalanced
labels, represent particularly challenging tasks for models, making the achievements of todyformer even more
remarkable. Additionally, Figure 7 depicts experiments conducted with a large number of layers. Notably,
the figure illustrates that the alternating mode results in a slight performance increase as the number of
layers grows. Conversely, stacking layers of MPNN-based models such as dyg2vec leads to a drop in model
performance.

10 15 20 25 30
Number of Patches

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Av
er

ag
e

Pr
ec

is
io

n

50K 100K 150K 200K 250K
Input Window Size

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

LastFM
MOOC

Figure 3: Sensitivity analysis on the number of patches
and input window size values on MOOC and LastFM.
The plot on the left has a fixed input window size of
262144, while the one on the right has 32 patches.

Dynamic Node classification: Todyformer has
undergone extensive evaluation across three datasets
dedicated to node classification. In these datasets,
dynamic sparse labels are associated with nodes
within a defined time horizon after interactions.
This particular task grapples with a substantial im-
balanced classification challenge. Table 3 presents
the AUC metric, known for its robustness toward
class imbalance, across various methods on the three
datasets. Notably, Todyformer demonstrates re-
markable performance, trailing the best by only 4%
on the MOOC dataset and 1% on both the Red-
dit and Wikipedia datasets. Across all datasets,
Todyformer consistently secures the second-best po-
sition. However, it is important to acknowledge that
no model exhibits consistent improvement across all
datasets, primarily due to the presence of data im-
balance issues inherent in anomaly detection tasks (Ranshous et al., 2015). To establish the ultimate best
model, we have computed the average ranks of various methods. Todyformer emerges as the top performer
with an impressive rank of 2, validating the overall performance improvement.

9

Published in Transactions on Machine Learning Research (06/2024)

0 250 500 750 1000 1250 1500 1750 2000
Inference Time (Seconds)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
P

DyG2Vec
Todyformer

NAT

TGN

CaW

TGAT

Jodie
DyRep

Speed vs Performance: LastFM

0 500 1000 1500 2000 2500 3000 3500 4000
Inference Time (Seconds)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
P

DyG2VecTodyformer

NAT
TGN

CaW

TGAT

Jodie

DyRep

Speed vs Performance: SocialEvol

0 100 200 300 400 500
Inference Time (Seconds)

0.80

0.85

0.90

0.95

1.00

Te
st

 A
P

DyG2Vec
Todyformer

NAT

TGN

CaW

TGATJodie

DyRep

Speed vs Performance: MOOC

Figure 4: The performance versus inference time across LastFM, SocialEvol, and MOOC datasets.

4.3 Ablation Studies and sensitivity analysis

We conducted an evaluation of the model’s performance across various parameters and datasets to assess
the sensitivity of the major hyperparameters. Figure 3 illustrates the sensitivity analysis regarding the win-
dow size and the number of patches, with one parameter remaining constant while the other changes. As
highlighted in Xu et al. (2020), recent and frequent interactions display enhanced predictability of future
interactions. This predictability is particularly advantageous for datasets with extensive long-range depen-
dencies, favoring the utilization of larger window size values to capture recurrent patterns. Conversely, in
datasets where recent critical interactions reflect importance, excessive emphasis on irrelevant information
becomes prominent when employing larger window sizes. Our model, complemented by uniform neighbor
sampling, achieves a balanced equilibrium between these contrasting sides of the spectrum. As an example,
the right plot in Figure 3 demonstrates that with a fixed number of patches (i.e., 32), an increase in window
size leads to a corresponding increase in the validation AP metric on the LastFM dataset. This trend is
particularly notable in LastFM, which exhibits pronounced long-range dependencies, in contrast to datasets
like MOOC and UCI with medium- to short-range dependencies.

In contrast, in Figure 3 on the left side, with a window size of 262k, we vary the number of patches.
Specifically, for the MOOC dataset, performance exhibits an upward trajectory with an increase in the
number of patches from 8 to 16; however, it experiences a pronounced decline when the number of patches
reaches 32. This observation aligns with the inherent nature of MOOC datasets, characterized by their
relatively high density and reduced prevalence of long-range dependencies. Conversely, when considering
LastFM data, the model maintains consistently high performance even with 32 patches. In essence, this
phenomenon underscores the model’s resilience on datasets featuring extensive long-range dependencies,
illustrating a trade-off between encoding local and contextual features by tweaking the number of patches.

In Table 4, we conducted ablation studies on the major design choices of the encoding network to assess the
roles of the three hyperparameters separately: a) Global encoder, b) Alternating mode, and c) Positional
Encoding. Across the four datasets, the alternating approach exhibits significant performance variation
compared to others, ensuring the mitigation of over-smoothing and the capturing of long-range dependencies.
The outcomes of the single-layer vanilla transformer as a global encoder attain the second-best position,
affirming the efficacy of our global encoder in enhancing expressiveness. Finally, the global encoder without
PE closely resembles the model with only a local encoder (i.e., DyG2Vec MPNN model).

4.4 Training/Inference Speed

In this section, an analysis of Figure 4 is provided, depicting the performance versus inference time across
three sizable datasets. Considering the delicate trade-off between performance and complexity, our model
surpasses all others in terms of Average Precision (AP) while concurrently positioning in the left segment

10

Published in Transactions on Machine Learning Research (06/2024)

Table 4: Ablation studies on three major components: Global Encoder (G. E.), Positional Encoder (P. E.),
and number of alternating blocks (Alt. 3).

Dataset G. E. P. E. Alt. 3 AP

MOOC

✗ ✗ ✗ 0.980
✓ ✗ ✗ 0.981
✓ ✓ ✗ 0.987
✓ ✓ ✓ 0.992

LastFM

✗ ✗ ✗ 0.960
✓ ✗ ✗ 0.961
✓ ✓ ✗ 0.965
✓ ✓ ✓ 0.976

UCI

✗ ✗ ✗ 0.981
✓ ✗ ✗ 0.983
✓ ✓ ✗ 0.987
✓ ✓ ✓ 0.993

SocialEvolution

✗ ✗ ✗ 0.987
✓ ✗ ✗ 0.987
✓ ✓ ✗ 0.989
✓ ✓ ✓ 0.991

of the diagrams, denoting the lowest inference time. Notably, as depicted in Figure 4, Todyformer remains
lighter and less complex than state-of-the-art (SOTA) models like CAW across all datasets.

5 Conclusion

We propose Todyformer, a tokenized graph Transformer for dynamic graphs, where over-smoothing and over-
squashing are empirically improved through a local and global encoding architecture. We present how to
adapt the best practices of Transformers in various data domains (e.g., Computer Vision) to dynamic graphs
in a principled manner. The primary novel components are patch generation, structure-aware tokenization
using typical MPNNs that locally encode neighborhoods, and the utilization of Transformers to aggregate
global context in an alternating fashion. The consistent experimental gains across different experimental
settings empirically support the hypothesis that the SoTA dynamic graph encoders severely suffer from
over-squashing and over-smoothing phenomena, especially on the real-world large-scale datasets introduced
in TGBL. We hope Todyformer sheds light on the underlying aspects of dynamic graphs and opens up the
door for further principled investigations on dynamic graph transformers.

References
Mohammad Ali Alomrani, Mahdi Biparva, Yingxue Zhang, and Mark Coates. Dyg2vec: Representation

learning for dynamic graphs with self-supervision. arXiv preprint arXiv:2210.16906, 2022.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation
learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR, 2022.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and Mehrdad
Mahdavi. Do we really need complicated model architectures for temporal networks? arXiv preprint
arXiv:2302.11636, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Aswathy Divakaran and Anuraj Mohan. Temporal link prediction: A survey. New Generation Computing,
38(1):213–258, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

11

Published in Transactions on Machine Learning Research (06/2024)

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. arXiv
preprint arXiv:2012.09699, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning. PMLR, 2017.

William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proc. Adv. Neural Inf. Proc. Systems, 2017.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A generalization
of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp. 12724–12745. PMLR,
2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure
Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph benchmark
for machine learning on temporal graphs. arXiv preprint arXiv:2307.01026, 2023.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning on
continuous-time dynamic graphs. In Thirty-Sixth Conference on Neural Information Processing Systems,
2022.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay Thakur,
Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a vector represen-
tation of time. arXiv preprint arXiv:1907.05321, 2019.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal
Poupart. Representation learning for dynamic graphs: A survey. Journal of Machine Learning Research,
2020.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon Hong.
Pure transformers are powerful graph learners. Advances in Neural Information Processing Systems, 35:
14582–14595, 2022.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34:
21618–21629, 2021.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proc. Int. Conf. on Knowledge Discovery & Data Mining, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang. Learn-
ing to drop: Robust graph neural network via topological denoising. In Proceedings of the 14th ACM
international conference on web search and data mining, pp. 779–787, 2021.

Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning. In The
First Learning on Graphs Conference, 2022.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better evaluation for
dynamic link prediction. Advances in Neural Information Processing Systems, 35:32928–32941, 2022.

12

Published in Transactions on Machine Learning Research (06/2024)

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Faloutsos, and Nagiza F. Sama-
tova. Anomaly detection in dynamic networks: a survey. WIREs Computational Statistics, 7(3):223–247,
2015.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bron-
stein. Temporal graph networks for deep learning on dynamic graphs. In ICML Workshop on Graph
Representation Learning, 2020.

Amauri Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal graph net-
works. Advances in Neural Information Processing Systems, 35:32257–32269, 2022.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture
for vision. Advances in Neural Information Processing Systems, 34:24261–24272, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning for
dynamic knowledge graphs. In Proc. Int. Conf. on Machine Learning, pp. 3462–3471. PMLR, 2017.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning representa-
tions over dynamic graphs. In Proc. Int. Conf. on Learning Representations, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. In ICLR, 2018.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation learning in
temporal networks via causal anonymous walks. In Proc. Int. Conf. on Learning Representations, 2021.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representation
learning on temporal graphs. Proc. Int. Conf. on Representation Learning, 2020.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Yameng Gu, Xiao Liu, Jingchao Ni, Bo Zong, Haifeng Chen,
and Xiang Zhang. Adaptive neural network for node classification in dynamic networks. In 2019 IEEE
International Conference on Data Mining (ICDM), pp. 1402–1407. IEEE, 2019a.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. Spatio-temporal attentive rnn for
node classification in temporal attributed graphs. In IJCAI, pp. 3947–3953, 2019b.

Dongkuan Xu, Junjie Liang, Wei Cheng, Hua Wei, Haifeng Chen, and Xiang Zhang. Transformer-style
relational reasoning with dynamic memory updating for temporal network modeling. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 4546–4554, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New architecture
and unified library. arXiv preprint arXiv:2303.13047, 2023.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for learning
graph representations. arXiv preprint arXiv:2001.05140, 2020.

13

Published in Transactions on Machine Learning Research (06/2024)

A Appendix

A.1 Table of Notations

Table 5: Overall notation table of the main symbols in the paper.

basic notations

N The number of nodes.
E The number of edges.

DH The dimension of the embedding space.
W The window size.
L The number of blocks.

Sets and Matrices

G A Continuous-Time Dynamic Graph (CTDG).
E The sequence of interactions.
V The set of vertices.

X E The node features.
X v The edge features.
P The set of patches.
X The set of node features for all patches.
Q The query.
K The key.
V The value.
H The final node embeddings.
Hl The set of node embeddings after applying the local encoder.
H̄ l The set of node embeddings after applying the global encoder.
H l The set of node embeddings after packing.
Z The predictions for the ground truth labels.
H̄l The set of node embeddings after unpacking.

Learnable Parameters

θ The weight parameters of the encoder.
γ The weight parameters of the decoder.

Wq The learnable matrix of the query.
Wk The learnable matrix of the key.
Wv The learnable matrix of the value.

Functions and Modules

Encoderθ The dynamic graph encoder.
Decoderγ The decoder.

LocalEncoder The set of local encoding modules.
GlobalEncoder The set of global encoding modules.

Patchifier The graph partitioning module.
Tokenizerl The tokenization module.

Packerl The packing module.
Unpackerl The unpacking module.

PositionalEncoderl The positional encoder.
Transl The Transformer module.

Readout The readout function.

A.2 Dataset Statistics

In this section, we provide an overview of the statistics pertaining to two distinct sets of datasets utilized
for the tasks of Future Link Prediction (FLP) and Dynamic Node Classification (DNC). The initial set,
detailed in Table 6, presents information regarding the number of nodes, edges, and unique edges across
seven datasets featured in Table 1 and Table 3. For these three datasets, namely Reddit, Wikipedia, and
MOOC, all edge features have been incorporated, where applicable. Furthermore, within this table, the last
column represents the percentage of Repetitive Edges, which signifies the proportion of edges that occur
more than once within the dynamic graph.

Table 6: Dynamic Graph Datasets. % Repetitive Edges: % of edges which appear more than once in the
dynamic graph.

Dataset # Nodes # Edges # Unique Edges Edge Features Node Labels Bipartite % Repetitive Edges
Reddit 11,000 672,447 78,516 ✓ ✓ ✓ 54%

Wikipedia 9,227 157,474 18,257 ✓ ✓ ✓ 48%
MOOC 7,144 411,749 178,443 ✓ ✓ ✓ 53%
LastFM 1980 1,293,103 154,993 ✓ 68%

UCI 1899 59,835 13838 ✓ 62%
Enron 184 125,235 2215 92%

SocialEvolution 74 2,099,519 2506 97%

A.2.1 Temporal Graph Benchmark (TGB) dataset

In this section, we present the characteristics of datasets as proposed by the Dynamic Graph Encoder
Leaderboard (Huang et al., 2023). Similar to previous benchmark datasets, we have conducted comparisons
regarding the number of nodes, edges, and types of graphs. Additionally, we report the Number of Steps

14

Published in Transactions on Machine Learning Research (06/2024)

and the Surprise Index, as defined in Poursafaei et al. (2022), which illustrates the ratio of test edges that
were not observed during the training phase.

Table 7: Statistics of TGBL Dynamic Graph Datasets

Dataset # Nodes # Edges # Steps Edge Features Bipartite Surprise Index Poursafaei et al. (2022)
Wiki 9,227 157,474 152,757 ✓ ✓ 0.108

Review 352,637 4,873,540 6,865 ✓ ✓ 0.987
Coin 638,486 22,809,486 1,295,720 ✓ 0.120

Comment 994,790 44,314,507 30,998,030 ✓ 0.823
Flight 18143 67,169,570 1,385 ✓ 0.024

A.3 Implementation details

In this section, we elucidate the intricacies of our implementation, providing a comprehensive overview of the
specific parameters our model accommodates during hyperparameter optimization. Subsequently, we delve
into a discussion of the optimal configurations and setups that yield the best performance for our proposed
architecture.

Furthermore, in addition to an in-depth discussion of the baselines incorporated into our paper, we also offer
a comprehensive overview of the respective hyperparameter configurations in this section. We are confident
that with the open-sourcing of our code upon acceptance and the thorough descriptions of our model and
baseline methodologies presented in the paper, our work is fully reproducible.

A.3.1 Supplementary Methodology

Figure 5: In-depth illustration of model architecture, encompassing packing and unpacking mechanisms,
positional encoding, and encoder components.

15

Published in Transactions on Machine Learning Research (06/2024)

A.3.2 Evaluation Protocol

Transductive Setup: Under the transductive setting, a dataset is split normally by time, i.e., the model
is trained on the first 70% of links, validated on %15 and tested on the rest.

Inductive Setup: In the inductive setting, we strive to test the model’s prediction performance on edges
with unseen nodes. Therefore, following (Wang et al., 2021), we randomly assign 10% of the nodes to the
validation and test sets and remove any interactions involving them in the training set. Additionally, to
ensure an inductive setting, we remove any interactions not involving these nodes from the test set.

A.3.3 Loss Function

As previously discussed in the main body of this paper, we focus on two specific downstream tasks: FLP,
and DNC. For the former, we employ the binary cross-entropy loss, while for the latter, our model is trained
through the minimization of the cross-entropy loss function. The formula for the binary cross-entropy loss
is presented below:

H(y, ŷ) = − (y · log(ŷ) + (1 − y) · log(1 − ŷ)) (8)
where y ∈ {0, 1} is the true label, and ŷ is the predicted probability that the instance belongs to class 1.
Moreover, the formulation of the cross-entropy loss is as follows:

H(y, ŷ) = −
∑

i

yi · log(ŷi) (9)

where i represents the index over all classes, yi is the true probability of the sample belonging to class i,
encoded as a one-hot vector. It is 1 for the true class and 0 for all other classes. Finally, ŷi is the predicted
probability of the sample belonging to class i.

A.3.4 Best Hyperparameters for Benchmark datasets.

Table 8 displays the hyperparameters that have been subjected to experimentation and tuning for each
dataset. For each parameter, a range of values has been tested as follows:

• Window Size (W): This parameter signifies the window length chosen for selecting the input subgraph
based on edge timestamps. It falls within the range of ∈ { 16384, 32768 ,65536, 262144 }.

• Number of Patches: This parameter indicates the count of equal and non-overlapping chunks for
each input subgraph. It is the range of ∈ {8, 16, 32}.

• #Local Encoders: This parameter represents the number of local encoder layers within each block,
and its value falls within the range of ∈ {1, 2}.

• Neighbor Sampling (NS) mode: ∈ {uniform, last}. In the case of a uniform Neighbor Sampler
(NS), it uniformly selects samples from the 1-hop interactions of a given node. Conversely, in last
mode, it samples from the most recent interactions.

• Anchor Node Mode: ∈ {GlobalTarget, LocalInput, LocalTarget} depending on the mechanism of
neighbor sampling we can sample from nodes within all patches (LocalInput), nodes within the next
patch (LocalTarget), or global target nodes (GlobalTarget).

• Batch Size: ∈ {8, 16, 32, 64}

• Positional Encoding: ∈ {SineCosine, T ime2V ec, Identity, Linear}

SineCosine is utilized as the Positional Encoding (PE) method following the experiments conducted in
Appendix A.4.3.

Selecting Best Checkpoint: Throughout all experiments, the models undergo training for a duration of
100 epochs, with the best checkpoints selected for testing based on their validation Average Precision (AP)
performance.

16

Published in Transactions on Machine Learning Research (06/2024)

Table 8: Best parameters of the model pipeline after hyperparameter search.

Dataset Window Size (W) Number of Patches #Local Encoders NS Mode Anchor Node Mode Batch Size
Reddit 262144 32 2 uniform GlobalTarget 200

Wikipedia 65536 8 2 uniform GlobalTarget 200
MOOC 65536 8 2 uniform GlobalTarget 200
LastFM 262144 32 2 uniform GlobalTarget 200

UCI 65536 8 2 uniform GlobalTarget 200
Enron 65536 8 2 uniform GlobalTarget 200

SocialEvolution 65536 8 2 uniform GlobalTarget 200

A.3.5 Best Hyperparameters for TGB dataset

In this section, we present the optimal hyperparameters used in our architecture design for each TGBL
dataset. We conducted hyperparameter tuning for all TGBL datasets; however, due to time constraints, we
explored a more limited set of parameters for the large-scale dataset. Despite Todyformer outperforming
its counterparts on these datasets, there remains potential for further improvement through an extensive
hyperparameter search.

Table 9: Optimal window size W for downstream training.

Dataset Window Size (W) Number of Patches First-hop NS size NS Mode Anchor Node Mode Batch Size
Wiki 262144 32 256 uniform GlobalTarget 32

Review 262144 32 64 uniform GlobalTarget 64
Comment 65536 8 64 uniform GlobalTarget 256

Coin 65536 8 64 uniform GlobalTarget 96
Flight 65536 8 64 uniform GlobalTarget 128

A.4 More Experimental Result

In this section, we present the additional experiments conducted and provide an analysis of the derived
results and conclusions.

A.4.1 FLP result on Benchmark Datasets

Table 10 is an extension of Table 1, now incorporating the Wikipedia and Reddit datasets. Notably, for these
two datasets, Todyformer attains the highest test Average Precision (AP) score in the Transductive setup.
However, it secures the second-best and third-best positions in the Inductive setup for these Wikipedia and
Reddit respectively. While the model does not attain the top position on these two datasets for inductive
setup, its performance is only marginally below that of state-of-the-art (SOTA) models, which have previously
achieved accuracy levels exceeding 99% Average Precision (AP).

A.4.2 FLP validation result on TGBL dataset

As discussed in the paper, Todyformer has been compared to baseline methods using the TGBL dataset.
Table 11 represents an extension of Table 2 specifically for validation (MRR). The results presented in both
tables are in line with counterpart methods outlined by Huang et al. (2023). It is important to note that
for the larger datasets, TCL, GraphMIxer, and EdgeBank were found to be impractical due to memory
constraints, as mentioned in the paper.

A.4.3 Complementary Sensitivity Analysis and Ablation Study

In this section, we have presented the specifics of sensitivity and ablation experiments, which, while of lesser
significance in our hyper-tuning mechanism, contribute valuable insights. In all tables, the Average Precision
scores reported in the table are extracted from the same epoch on the validation set. Table 12 showcases

17

Published in Transactions on Machine Learning Research (06/2024)

Table 10: Future Link Prediction performance in AP (Mean ± Std). Bold font and ul font represent
first-best and second-best performance respectively.

Setting Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol.

Tr
an

sd
uc

tiv
e JODIE 0.956 ± 0.002 0.979 ± 0.001 0.797 ± 0.01 0.691 ± 0.010 0.785 ± 0.020 0.869 ± 0.010 0.847 ± 0.014

DyRep 0.955 ± 0.004 0.981 ± 1e-4 0.840 ± 0.004 0.683 ± 0.033 0.795 ± 0.042 0.524 ± 0.076 0.885 ± 0.004
TGAT 0.968 ± 0.001 0.986 ± 3e-4 0.793 ± 0.006 0.633 ± 0.002 0.637 ± 0.002 0.835 ± 0.003 0.631 ± 0.001
TGN 0.986 ± 0.001 0.985 ± 0.001 0.911 ± 0.010 0.743 ± 0.030 0.866 ± 0.006 0.843 ± 0.090 0.966 ± 0.001
CaW 0.976 ± 0.007 0.988 ± 2e-4 0.940 ± 0.014 0.903 ± 1e-4 0.970 ± 0.001 0.939 ± 0.008 0.947 ± 1e-4
NAT 0.987 ± 0.001 0.991 ± 0.001 0.874 ± 0.004 0.859 ± 1e-4 0.924 ± 0.001 0.944 ± 0.002 0.944 ± 0.010

GraphMixer 0.974 ± 0.001 0.975 ± 0.001 0.835 ± 0.001 0.862 ± 0.003 0.824 ± 0.001 0.932 ± 0.006 0.935 ± 3e-4
Dygformer 0.991 ± 0.0001 0.992 ± 0.0001 0.892 ± 0.005 0.901 ± 0.003 0.926 ± 0.001 0.959 ± 0.001 0.952 ± 2e-4
DyG2Vec 0.995 ± 0.003 0.996 ± 2e-4 0.980 ± 0.002 0.960 ± 1e-4 0.991 ± 0.001 0.988 ± 0.007 0.987 ± 2e-4

Todyformer 0.996 ± 2e-4 0.998 ± 8e-5 0.992 ± 7e-4 0.976 ± 3e-4 0.995 ± 6e-4 0.994 ± 4e-4 0.992 ± 1e-4

In
du

ct
iv

e

JODIE 0.891 ± 0.014 0.865 ± 0.021 0.707 ± 0.029 0.865 ± 0.03 0.747 ± 0.041 0.753 ± 0.011 0.791 ± 0.031
DyRep 0.890 ± 0.002 0.921 ± 0.003 0.723 ± 0.009 0.869 ± 0.015 0.666 ± 0.059 0.437 ± 0.021 0.904 ± 3e-4
TGAT 0.954 ± 0.001 0.979 ± 0.001 0.805 ± 0.006 0.644 ± 0.002 0.693 ± 0.004 0.820 ± 0.005 0.632 ± 0.005
TGN 0.974 ± 0.001 0.954 ± 0.002 0.855 ± 0.014 0.789 ± 0.050 0.746 ± 0.013 0.791 ± 0.057 0.904 ± 0.023
CaW 0.977 ± 0.006 0.984 ± 2e-4 0.933 ± 0.014 0.890 ± 0.001 0.962 ± 0.001 0.931 ± 0.002 0.950 ± 1e-4
NAT 0.986 ± 0.001 0.986 ± 0.002 0.832 ± 1e-4 0.878 ± 0.003 0.949 ± 0.010 0.926 ± 0.010 0.952 ± 0.006

GraphMixer 0.966 ± 2e-4 0.952 ± 2e-4 0.814 ± 0.002 0.821 ± 0.004 0.758 ± 0.004 0.911 ± 0.004 0.918 ± 6e-4
Dygformer 0.985 ± 3e-4 0.988 ± 2e-4 0.869 ± 0.004 0.942 ± 9e-4 0.897 ± 0.003 0.945 ± 0.001 0.931 ± 4e-4
DyG2Vec 0.992 ± 0.001 0.991 ± 0.002 0.938 ± 0.010 0.979 ± 0.006 0.987 ± 0.004 0.976 ± 0.002 0.978 ± 0.010

Todyformer 0.989 ± 6e-4 0.983 ± 0.002 0.948 ± 0.009 0.981 ± 0.005 0.989 ± 8e-4 0.983 ± 0.002 0.9821 ± 0.005

the influence of varying input window sizes and patch sizes on two datasets. Table 13 illustrates the effects
of various PEs, including SineCosine, Time2Vec (Kazemi et al., 2019), Identity, Linear, and a configuration
utilizing Local Input as the Anchor Node Mode. The table presents a comparison of results for these different
PEs. Notably, the architecture appears to be relatively insensitive to the type of PE used, as the results all
fall within a similar range. However, it is worth mentioning that SineCosine PE slightly outperforms the
others. Consequently, SineCosine PE will be selected as the primary module for all subsequent experiments.

In Table14, an additional ablation study has been conducted to elucidate the influence of positions tagged
to each node before being input to the Positional Encoder module. Various mechanisms for adding positions
are delineated as follows:

• Without PE: No position is utilized or tagged to the nodes.

• Random Index: An index is randomly generated and added to the embeddings of a given node.

• Patch Index: The index of the patch from which the embedding of the given node originates is used
as a position.

• Edge Time: The most recent edge time within its patch is employed as a position.

• Edge Index: The index of the most recent interaction within the corresponding patch is utilized as
a position.

As evident from the findings in this table, the validation performance exhibits high sensitivity to the positional
encoder’s outcomes. Specifically, the model without positional encoder (PE) and the model with random

Table 11: (Validation) Future Link Prediction performance in Validation MRR on TGB Leaderboard
datasets.

Model TGBWiki TGBReview TGBCoin TGBComment TGBFlight Avg. Rank ↓
Dyrep 0.411 ± 0.015 0.356 ± 0.016 0.512 ± 0.014 0.291 ± 0.028 0.573 ± 0.013 4.2
TGN 0.737 ± 0.004 0.465 ± 0.010 0.607 ± 0.014 0.356 ± 0.019 0.731 ± 0.010 2.2

CAWN 0.794 ± 0.014 0.201 ± 0.002 OOM OOM OOM 3
TCL 0.734 ± 0.007 0.194 ± 0.012 OOM OOM OOM 5

GraphMixer 0.707 ± 0.014 0.411 ± 0.025 OOM OOM OOM 4
EdgeBank 0.641 0.0894 0.1244 0.388 0.492 4.6

Todyformer 0.799 ± 0.0092 0.4321 ± 0.0040 0.6852 ± 0.0021 0.7402 ± 0.0037 0.7932 ± 0.014 1.2

18

Published in Transactions on Machine Learning Research (06/2024)

indices manifest the lowest performance among all available options. Consistent with our expectations from
previous experiments, the patch index yields the highest performance, providing a compelling rationale for
its incorporation into the architecture.

In Table 4, which presents the ablation study, we meticulously assess the impact of various components
of the model architecture, particularly those associated with the alternating mode, such as packing and
unpacking. This section has been comprehensively updated in the paper’s appendix. The table delineates
different scenarios:

• If the model lacks any of the three components (G.E, P.E, Alt.3), it signifies that the model solely
relies on an MPNN-based encoder (local encoder).

• If it includes only G.E, it indicates the presence of packing alongside one block of Local and Global
encoders without any unpacking.

• If G.E and P.E are present without Alt.3, this suggests the inclusion of one global and local encoder
block coupled with patch positional encoding.

• Finally, if all components are present, it signifies the incorporation of three blocks of local and global
encoders with positional encoding, as well as packing and unpacking modules within each block.

Table 12: Sensitivity analysis on the number of patches and the target window size.

dataset Input Window size Number of Patches Average Precision ↑

LastFM 262144 8 0.9772
LastFM 262144 16 0.9791
LastFM 262144 32 0.9758
MOOC 262144 8 0.9811
MOOC 262144 16 0.9864
MOOC 262144 32 0.9696
LastFM 16384 32 0.9476
LastFM 32768 32 0.9508
LastFM 65536 32 0.9591
LastFM 262144 32 0.9764
MOOC 16384 32 0.9798
MOOC 32768 32 0.9695
MOOC 65536 32 0.9685
MOOC 262144 32 0.9726

Table 13: Ablation study on positional encoding options on the MOOC Dataset. This table compares the
validation performance at the same epoch across various setups.

Positional Encoding Anchor_Node_Mode Average Precision ↑

SineCosinePos global target 0.9901
Time2VecPos global target 0.989
IdentityPos global target 0.99
LinearPos global target 0.9886

SineCosinePos local input 0.9448

19

Published in Transactions on Machine Learning Research (06/2024)

Table 14: Ablation study on the input of positional encoding on the MOOC Dataset. This table compares
the validation performance at the same epoch across various types of positions tagged to nodes before PE
layer.

Positional Encoding (PE) Input Average Precision ↑

without PE 0.9872
random index 0.9873
patch index 0.9889
edge time 0.9886
edge index 0.9877

A.5 Computational Complexity

A.5.1 Qualitative Analysis for Time and Memory Complexities

In this section, we delve into the detailed measurement and discussion of the computational complexity of
Todyformer. Initially, we adopt the assumption that the time complexity of Transformers is O(X2) for an
input sequence of length X. The primary complexity of Todyformer encompasses both the complexity of the
Message Passing Neural Network (MPNN) component and the complexity of the Transformer. To elaborate
further, assuming we have a sparse dynamic graph with temporal attributes, we can replace the complexity
of MPNNs with O(l×(N +E)), where N and E represent the number of nodes and edges within the temporal
input subgraph, and l is the number of MPNN layers for the Graph Neural Network (GNN) local encoder.
In the transformer part, N unique nodes are fed into the Multihead-Attention module. If the maximum
length of the sequence fed to the Transformer is Na, then the complexity of the Multihead-Attention module
is O(N2

a). Notably, Na is at most equal to M , the number of patches. This scenario occurs when a node
appears in all M patches and has interactions in all patches. Consequently, if L is the number of blocks, the
final complexity is given by:

O(L × l × (N + E) + L × N × M2) ≈ O(N + E) (10)

The LHS part of Equation 10 can be simplified to RHS if we assume that L, l, and M2 are negligible
compared to N and E. The RHS of this equation is the time complexity of GNNs for sparse graphs.

A.5.2 Training/Inference Speed

In this section, an analysis of Figure 4 is provided, depicting the performance versus inference time across
three sizable datasets. Considering the delicate trade-off between performance and complexity, our model
surpasses all others in terms of Average Precision (AP) while concurrently positioning in the left segment
of the diagrams, denoting the lowest inference time. Notably, as depicted in Figure 4, Todyformer remains
lighter and less complex than state-of-the-art (SOTA) models like CAW across all datasets.

A.6 Discussion on Over-Smoothing and Over-Squashing

In Figure 6, the blue curve illustrates the Average Precision performance of dynamic graph Message Passing
Neural Networks (MPNNs) across varying numbers of layers. Notably, an observed trend indicates that
as the number of layers increases, the performance experiences a decline—a characteristic manifestation of
oversmoothing and oversquashing phenomena.

Within the same figure, the red circle dots represent the performance of MPNNs augmented with trans-
formers, specifically Todyformer with a single block. It is noteworthy that the increase in the number of
MPNN layers from 3 to 9 in this configuration results in a comparatively minor performance drop compared
to traditional MPNNs.

Furthermore, the green stars denote the performance of Todyformer with an alternating mode, where the
total number of MPNNs is 9, and three blocks are incorporated. In this setup, a transformer is introduced

20

Published in Transactions on Machine Learning Research (06/2024)

after every 3 MPNN layers. Strikingly, this configuration outperforms all others, especially those that stack a
similar number of MPNN layers without the insertion of a transformer layer in the middle of the architecture.
This empirical observation serves as a significant study, highlighting the efficacy of our architecture in
addressing oversmoothing and oversquashing challenges.

3 4 5 6 7 8 9
Number of Layers

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

Av
er

ag
e

Pr
ec

is
io

n

Sensitivity Analysis on the Number of Layers and Blocks
3 Blocks
1 Block
No Block

Figure 6: Sensitivity analysis on the number of layers and blocks conducted on the MOOC dataset.

To demonstrate the resilience of our model against oversmoothing, we have devised a novel experiment under
a distinct setup. Due to constraints in computing resources and to accommodate models with a considerable
number of layers on GPUs, we have opted for a smaller dataset. Furthermore, considering the significant
stacking of layers (approximately 50), we have adjusted the neighbor sampling size to one for layers beyond
the initial layer, primarily to mitigate memory consumption and ensure compatibility with GPU memory
constraints.

In Figure 7, we present a comparative analysis of Average Precision (AP) scores across different models,
including MPNN-based model such as dyg2vec, and todyformer, varying in the number of layers. Notably,
the performance of MPNN exhibits a decline with an increase in the number of layers. Despite employing an
approximation technique during neighbor sampling to accommodate a larger number of layers, the decline in
performance is relatively modest. However, the observed decreasing trend suggests a hypothetical association
with the issue of oversmoothing. Conversely, for todyformer, we observe a reverse pattern, with a minor
improvement in performance as the number of layers increases. This empirical observation further strengthens
the argument that todyformer is resilient to the effects of oversmoothing.

21

Published in Transactions on Machine Learning Research (06/2024)

Figure 7: Sensitivity analysis on the number of layers conducted on the Enron dataset. The neighbor
sampling size is configured to be one for subsequent layers following the initial layer.

22

