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ABSTRACT

The surge in multimodal AI’s success has sparked concerns over data privacy
in vision-and-language tasks. While CLIP has revolutionized multimodal learn-
ing through joint training on images and text, its potential to unintentionally
disclose sensitive information necessitates the integration of privacy-preserving
mechanisms. We introduce a differentially private adaptation of the Contrastive
Language-Image Pretraining (CLIP) model that effectively addresses privacy con-
cerns while retaining accuracy. Our proposed method, DP-CLIP, is rigorously
evaluated on benchmark datasets encompassing diverse vision-and-language tasks
such as image classification and image captioning. We demonstrate that our ap-
proach retains performance on par with the standard non-private CLIP model. Fur-
thermore, we analyze our proposed algorithm under linear representation settings.
We derive the convergence rate of our algorithm and show a trade-off between
utility and privacy when gradients are clipped per-batch and the loss function does
not satisfy smoothness conditions assumed in the literature for the analysis of DP-
SGD.

1 INTRODUCTION

The field of vision-language tasks has witnessed a revolutionary breakthrough with the introduc-
tion of Contrastive Language–Image Pre-training (CLIP) (Radford et al., 2021) by OpenAI. It has
redefined the benchmarks of various downstream vision-language tasks through its exceptional flex-
ibility and remarkable zero-shot learning ability (Li et al., 2021b; Dorbala et al., 2022). CLIP and
its successors have been widely used in vision-language tasks such as semantic segmentation, image
generation from captions, video summarization, and visual question answering (Galatolo. et al.,
2021; Narasimhan et al., 2021; Yao et al., 2021; Li et al., 2021c; Xu et al., 2022; Wang et al., 2022).

However, representations from contrastive learning are rich in information, which might be able to
unintentionally memorize more personal sensitive information. Carlini et al. (2023) shows that dif-
fusion models, which are built upon CLIP, can memorize individual images in the training data and
emit them at generation time, and is even less private compared to prior generative models such as
GANs. Liu et al. (2021) successfully conducts membership inference attacks on the image encoder
trained from CLIP. Furthermore, He & Zhang (2021) demonstrates that SimCLR, another frame-
work that employs contrastive learning for image representations, is more susceptible to attribute
inference attacks compared to standard supervised models.

Mitigating these privacy vulnerabilities requires privacy-preserving training methods for multimodal
models. The field of differential privacy (DP) has emerged as the gold standard for privacy-
preserving data analytics. It is a mathematical notion of privacy, which ensures that the output
distribution of computation is robust to one person’s data. DP is typically achieved by introducing
randomness in the computation. Differential privacy techniques have been employed in the con-
text of unimodal models (Peng Xu, 2022; Basu et al., 2021; Hoory et al., 2021; Yu et al., 2022; Li
et al., 2022b) However, differentially private training of multimodal models is currently understud-
ied. (Carlini et al., 2023) shows directly applying DP-SGD (Abadi et al., 2016) to diffusion models
on CIFAR-10 causes the training consistently diverge, even when low privacy guarantees.
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In this paper, we propose DP-CLIP, which safeguards vision-language tasks by learning differ-
entially private image and text representations. These representations can then be safely used for
various downstream multimodal tasks. It is worth emphasizing that our work represents one of the
first attempts to incorporate differential privacy into multimodal models, thus paving the way for
enhanced privacy protection in vision-language tasks. We hope that, by leveraging the information
contained in the pretrained embeddings using public data, our fine-tuned private representations can
maintain their utility in performing various downstream tasks. Since the CLIP loss function involves
contrasting data from different pairs, the standard DP deep learning approach, DP-SGD based on
per-sample clipping, cannot be directly applied. To address this challenge, we employ per-batch
clipping and show that our algorithm achieves high accuracy while protecting the desired level of
privacy, from both theoretical and empirical perspectives.

To demonstrate the strength of our proposed method, we evaluate our differentially private CLIP,
DP-CLIP, on benchmark datasets encompassing diverse vision-and-language tasks such as image
classification and visual question answering (VQA). The findings demonstrate that our privacy-
aware approach retains performance on par with the standard CLIP model while significantly reduc-
ing the risk of data exposure.

Furthermore, we theoretically derive the privacy-utility trade-off of DP-CLIP under linear repre-
sentation settings with linearized loss. Previous works analyzed the convergence rate of DP-SGD
under certain smoothness conditions (Yu et al., 2019; Bassily et al., 2019; Feldman et al., 2020;
Chen et al., 2020a; Yang et al., 2022; Bu et al., 2022; Fang et al., 2023). However, we note that the
CLIP loss function is not convex nor satisfy smoothness conditions in these literature. We also note
that we deal with per-batch clipping instead of per-sample clipping analyzed in Abadi et al. (2016);
Chen et al. (2020a); Yang et al. (2022); Bu et al. (2022); Fang et al. (2023). Although the loss
function does not globally behave well, we exploit the fact that the linearized loss is locally smooth
and strongly convex, and provide a probabilistic bound with linear convergence in the number of
iterations.

The rest of this paper is organized as follows. We provide the necessary background for interpreting
our results in Section 2. In Section 3, we introduce our algorithm DP-CLIP. We present our exper-
iments setup and empirical results in Section 4, followed by our theoretical analysis in Section 5.
Finally, we conclude with our discussion in Section 6.

2 PRELIMINARIES

Differential Privacy Differential Privacy is a mathematical definition of privacy. It is used to
enable the analysis of sensitive data while preserving the privacy of individuals, because of its pow-
erful worse-cast guarantees. In essence, differential privacy requires a mechanism’s outputs on two
adjacent datasets, which differ in one arbitrary person’s data, should be indistinguishable. This is
achieved by introducing randomness into the computation.
Definition 1 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm M : X → Y
preserves (ϵ, δ)-differential privacy, if for all adjacent X,X ′ ∈ X s.t. ∀S ⊆ Y ,

Pr[M(X) ∈ S] ≤ eϵPr[M(X ′) ∈ S] + δ. (2.1)

Differentially private mechanisms typically add noise that scales with the sensitivity of the func-
tion being evaluated. The sensitivity of a function f is defined as the maximum change in f
between two neighboring sets: ∆f = maxX,X′ neighbors |f(X) − f(X ′)|. The Gaussian mecha-
nism with parameters (ϵ, δ) takes in a function q, dataset X , and outputs f(X) +N (0, σ2), where
σ =

√
2 log(1.25/δ)∆f/ϵ. This canonical mechanism serves as a base for DP-SGD, which is the

current state-of-the-art framework for DP deep learning.

Existing works have explored the effects of clipping and noise addition on the convergence and
performance of DP deep learning models. Bu et al. (2021) analyzed the impact of per-sample clip-
ping and noise addition on the convergence of DP deep learning models, characterizing these effects
through training dynamics and the neural tangent kernel. They also introduced a new technique
called global clipping that improves the convergence rate of DP-SGD. Wang et al. (2019) studied
the convergence properties of DP-SGD and showed that it converges to an approximate local min-
imum with high probability. Imtiaz & Sarwate (2017) conducted differentially private canonical
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correlation analysis (DP-CCA) experiments to evaluate the effectiveness of differential privacy in
preventing membership inference attacks. Yu et al. (2019) showed that gradient perturbation is ef-
ficient and accurate when the sample size is large and suggested that gradient perturbation may be
combined with other differential privacy techniques to achieve even better results.

CLIP The Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) is a multi-
modal vision and language model, trained on a variety of image and text pairs. It is used to produce
embeddings for both texts and images. Specifically, let f : Rd1 → Rr and f̃ : Rd2 → Rr be the
dual encoders. Given pairs of data {(xi, x̃i)}i∈[n] ⊂ Rd1+d2 , the CLIP loss can be formulated as
follows:

L(f, f̃) := − 1

n

∑
i∈[n]

log
esii/τ∑

j∈[n] e
sij/τ

− 1

n

∑
i∈[n]

log
esii/τ∑

j∈[n] e
sji/τ

, (2.2)

where sij := Sim(f(xi), f̃(x̃j)) is the cosine similarity of xi and x̃j measured in the feature space,
and τ > 0 is the temperature parameter. The loss in equation 2.2 is a type of contrastive loss, that
trains encoders by classifying based on whether a pair is observed or artifically paired. Intuitively,
the loss 2.2 maps images and texts, that refer to the same object, to vectors with high cosine similarity
and map images and texts that are unrelated to vectors with low cosine similarity. We provide the
details of the pretaining process to the Appendix B.

3 DP-CLIP: PRIVATE AND ACCURATE REPRESENTATIONS

In this section, we introduce our DP-CLIP that incorporates differential privacy into the CLIP
model, presented formally in Algorithm 1. Given initial representation functions, the algorithm
trains encoders based on per-batch noisy SGD to ensure privacy. The CLIP loss (Radford et al.,
2021) is the contrastive cross-entropy loss function computed from pseudo-labels distinguishing
whether a pair is observed or artificially generated. Since the CLIP loss function, by definition,
contains the similarity between data from multiple pairs, it cannot be written as a sum of losses of
individual pairs. Thus we cannot directly apply per-sample clipping technique as in the original
DP-SGD. Instead, we employ per-batch clipping, and we show that can still guarantee the desired
level of privacy, which we discuss in details below.

More specifically, we consider the following setups. Let fθ1 and f̃θ2 be the dual encoders to be
trained, parameterized by θ1 and θ2, respectively. Let θ(t) = (θ

(t)
1 , θ

(t)
2 ) be the parameters at t-

th iteration. We obtain a sequence of parameters (θ(t))Tt=1 through mini-batch stochastic gradient
descent, where T is the number of iterations. For any subset B ⊂ [n], define L( · ;B) be the
loss 2.2 computed only with pairs {(xi, x̃i)}i∈B. At iteration t, we uniformly sub-sample a mini-
batch B(t) of size b from [n] and compute the partial derivative of L(fθ1 , f̃θ2 ;B(t)), the loss com-
puted with mini-batch, with respect to θ evaluated at θ1 = θ

(t)
1 and θ2 = θ

(t)
2 . We denote this

as ∂θL(fθ(t)1
, f̃
θ
(t)
2
;B) for brevity. Then, we clip the mini-batch gradient with a clipping threshold

c > 0. Let h(t) = min{1, c/∥∂θL(fθ(t)1
, f̃
θ
(t)
2
;B(t))∥F }, and we update θ(t) as follows:

θ(t+1) = θ(t) − η
{
h(t)∂θL

(
f
θ
(t)
1
, f̃
θ
(t)
2
;B(t)

)
+ σcΓ(t)

}
,

where η > 0 is the learning rate and vec(Γ(t)) ∼ N(0, Ird) is the noise added to ensure differential
privacy. We formally present the algorithm in 1.

We show that this algorithm is differentially private. In particular, the following result suggests that
by carefully choosing σ, it can achieve desired differential privacy guarantee.
Proposition 3.1. Choose b < n/10. There exists universal constants Cϵ, Cσ > 0 such that
for any ϵ ≤ Cϵb

2T/n2 and δ > 0, DP-CLIP is (ϵ, δ)-differentially private if we choose σ ≥
Cσ
√
T log(1/δ)/(nϵ).

The proof is deferred to the Appendix.
Remark 3.1. For implementation of DP-CLIP, we can utilize the existing microbatch SGD (McMa-
han et al., 2018) implementation in Tensorflow privacy library by setting the number of microbatches
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Algorithm 1 DP-CLIP

1: Input: observed pairs of data {(xi, x̃i)}ni=1, number of iterations T , noise scale σ, clipping
threshold c, learning rate η, mini-batch size b, initial parameters θ = (θ

(0)
1 , θ

(0)
2 ).

2: for t ∈ {0, . . . , T − 1} do
3: Uniformly sample mini-batch B(t) of size b from [n].
4: Compute mini-batch gradient g(t) ← ∂θL(fθ(t)1

, f̃
θ
(t)
2
;B).

5: Clip Gradient ḡ(t) ← min{1, c/∥g(t)∥F }g(t).
6: Add Noise g̃(t) ← ḡ(t) + σcN (0, I).
7: Descent θ(t+1) ← θ(t) − ηg̃(t).
8: end for
9: return θ(T )

to 1. However, we note that the rationale behind our method and microbatch SGD differs. The
microbatch clipping approach is designed to consider the setting of multiple queries per user and
enhance training efficiency by leveraging larger number of microbatches. In fact, setting the number
of microbatches to 1 in microbatch SGD is atypical (McMahan et al., 2018; Bu et al., 2020; Dupuy
et al., 2022). On the other hand, our method specifically implements per-batch clipping due to the
fact that the CLIP loss is non-decomposable.

4 EXPERIMENTS

In this section, we evaluate our DP-CLIP on image classification and image captioning tasks, and we
defer the Visual Question Answering (VQA) task to Appendix C.2. We first introduce the training
details in Section 4.1, then we provide a detailed experimental results in Section C.1 and Section
4.3. Our code is available in the supplementary materials.

4.1 EXPERIMENTS SETUP

In all of our tasks, given pretrained embeddings, we continue to privately train them using contrastive
loss on private datasets (e.g., MNIST, which is treated as private in our paper). We use this two-stage
approach to incorporate private data to further update the public pretrained multimodal foundation
models. This two-stage approach was also established in Yu et al. (2023), which builds a DP vision
foundation model. Apart from their work, we address private multimodal self-supervised learning.

For image classification, we use the pretrained CLIP, and then, for each of the four datasets listed
below, we further privately train using DP-CLIP and report the accuracy on the testing set. For
each image, we encode the image using CLIP’s image encoder and then encode each of the text of
the classes with prompt using CLIP’s text encoder. We calculate the cosine similarity between the
image and text encoders for classes. The predicted class is the one with the highest cosine similarity,
following Radford et al. (2021).

We also demonstrate that our DP-CLIP framework can be applied to a broad class of Vision-
Language Pre-training models and can therefore be leveraged to perform more complex vision-
language tasks. One such task is image captioning. To this end, for image captioning, we use
the pretrained Bootstrapping Language Image Pre-training (BLIP) Li et al. (2022a), which achieves
state-of-the-art performance on a wide range of vision-language tasks, as the backbone. The detailed
background of BLIP is deferred to Appendix C. We apply the same per-batch clipping framework
and noise injection process described in Algorithm 1 on BLIP loss function. We call this DP-BLIP.

Datasets For image classification, we consider four benchmark image classification datasets ,
namely MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky,
2009), and SVHN (Netzer et al., 2011). MNIST is a collection of greyscale images belonging to
handwritten digits, with a training set of 60,000 images and a test set of 10,000 images. Fashion-
MNIST is a collection of greyscale images of fashion products belonging to 10 categories, with a
training set of 60,000 images and a test set of 10,000 images. CIFAR-10 is a collection of color
images belonging to one of 10 classes, such as airplane, automobile, and bird, with a training set
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of 60,000 images and a test set of 10,000 images. Finally, SVHN is a collection of color images
representing street house view numbers, which are images of printed digits of house number plates.
We use the training set of 73,257 samples and extra set of 531,131 samples for training, and using
testing set of 26,032 samples for evaluation, where the evaluation metric is the classification accu-
racy. For different datasets, we use different prompts to feed into the model, and we will discuss the
details below.

For image captioning task, we employ partial data from the vizwiz image captioning dataset (Gurari
et al., 2020), which consists of a training set of 5k image-caption pairs (out of 23k) and a test set of
1k image-caption pairs (out of 8k). We use vizwiz evaluation api to evaluate our results, including
BLEU, METEOR, Rouge L, CIDEr, and SPICE.

Model Architecture For image classification, the base model is OpenAI’s CLIP model pretrained
on the ImageNet dataset (Deng et al., 2009). It consist of a ViT-L/14-336px Transformer architecture
as an image encoder and a masked self-attention Transformer as a text encoder. The vision Trans-
former consists of 24 layers with width of 1024 and 16 heads. The text Transformer consists of 12
layers with width of 768 and 12 heads.

For image captioning, the base model is BLIP pretrained on two human-annotated datasets, COCO
(Lin et al., 2014) and Visual Genome (Krishna et al., 2017), and three web datasets, Conceptual
Captions (Sharma et al., 2018), Conceptual 12M (Changpinyo et al., 2021), and SBU captions (Or-
donez et al., 2011), consisting of an unimodal image encoder, an image-grouded text encoder and
an answer decoder, as illustrated in Figure 1b in Appendix C.

Training Details The value of the noise multiplier, σ, is determined by the size of the training
set n, the batch size b, the number of iterations T , and privacy parameters (ϵ, δ). Proposition 3.1
provides a guidance on the choice of these parameters. We use TensorFlow Privacy1 for privacy
accounting. Throughout the experiments, we set δ = 1

2n where n is the size of the training set. All
our models are implemented in PyTorch (Paszke et al., 2019) using one NVIDIA A100 80G GPU.

4.2 IMAGE CLASSIFICATION RESULTS

To obtain optimal results, we conduct hyperparameter tuning and prompt engineering. Because the
baseline methods in Papernot et al. (2020) and Vinaroz & Park (2023) did not account for the privacy
loss on tuning, we do the same to ensure a fair comparison. We set the learning rate η = 10−5, since
we find it yields the best performance across the datasets. We vary the clipping threshold c from 0.1
to 1, and batch size b from 16 to 128. We train the model for 15 to 30 epochs. Regarding prompt
engineering, we employ the prompts provided in the CLIP GitHub repository2. Our experiments
indicated that the inclusion of these prompts enhanced the accuracy of our model by 1− 2%.

Table 1: Evaluation of the Classification Accuracy vs. Privacy of DP-CLIP

MNIST Fashion-MNIST CIFAR-10 SVHN

ϵ = 10 98.78 91.52 95.74 93.69
ϵ = 3 98.56 91.27 95.62 93.23
ϵ = 1 98.44 90.65 94.81 92.92
ϵ = 0.5 98.40 90.02 94.47 91.03
ϵ = 0.25 95.62 89.09 93.51 87.65

We present the classification accuracy of DP-CLIP on the four datasets under various ϵ in table
1. We observe that DP-CLIP is able to recover features under the regime with stringent privacy
parameters. In particular, for all datasets, ϵ = 1 performs within 1% of ϵ = 10, which indicates the
strong potential of DP-CLIP to offer better privacy guarantees while maintaining utility.

To further evaluate the performance of DP-CLIP, we compare our DP-CLIP against other differ-
entially private image classification methods that achieve state-of-the-art results on these datasets.

1https://github.com/tensorflow/privacy
2https://github.com/openai/CLIP.
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We consider DP-Sinkhorn (Cao et al., 2021), DP-KIP (Vinaroz & Park, 2023), DP-SGD with Tem-
pered Sigmoid (DP-SGD (TS) for short) (Papernot et al., 2020), Private-kNN (Zhu et al., 2020), and
Active Learning (Zhao et al., 2019), and DP-SGD on over-parameterized models (DP-SGD (large)
for short) De et al. (2022). We present the comparisons in Table 2 below. For brevity, only the best
results from each paper are included.

Table 2: Comparison with state-of-the-art DP methods on MNIST, FashionMNIST, CIFAR-10 and
SVHN, with varying parameter ϵ.

MNIST Fashion-MNIST

ϵ Accuracy ϵ Accuracy

DP-Sinkhorn 10 83.2 DP-Sinkhorn 10 73.0
DP-KIP 10 97.96 DP-KIP 10 90.2
DP-CLIP 10 98.78 DP-CLIP 10 91.52
Active Learning 3 97.3
DP-CLIP 3 98.56
DP-SGD (TS) 2.93 98.1 DP-SGD (TS) 2.7 86.1
DP-KIP 1 97.78 DP-KIP 1 88.3
DP-CLIP 1 98.44 DP-CLIP 1 90.65
Private-kNN 0.47 98.8
DP-CLIP 0.5 98.40

CIFAR-10 SVHN

ϵ Accuracy ϵ Accuracy

DP-SGD (large) 4 96.1 Active Learning 6 85.0
DP-CLIP 3 95.62 DP-CLIP 3 91.75
DP-SGD (large) 1 94.7 Private-kNN 0.49 91.6
DP-CLIP 1 94.81 DP-CLIP 0.5 91.03

From Table 2, we can see that for most cases, DP-CLIP outperforms all other methods on all four
datasets while a smaller or equal ϵ. This accuracy improvement is by leveraging both pretraining and
using extra caption data for DP-CLIP, which is not present for DP-SGD. Although the performance
of Private-kNN is comparable to DP-CLIP on the MNIST and SVHN datasets when ϵ < 0.5. Our
DP-CLIP offers more flexibility compared to Private-kNN, as it is only for classification tasks,
whereas DP-CLIP can be used for a variety of more complex downstream tasks.

4.3 IMAGE CAPTIONING RESULTS

Recent years have seen growing interest in image captioning because of its potential to aid the blind
community (Gurari et al., 2020). We adopt BLIP for this task, training the private visual and textual
representations jointly using caption-image pairs. Prior to this work, differential privacy has not
been applied to image captioning, which is more complex than classification. We establish the first
baselines on differentially private image captioning tasks.

We train BLIP privately on a subset of the Vizwiz Image Captioning dataset (Gurari et al., 2020).
We present several common evaluation results for various privacy parameters: ϵ = 0.0001, 0.5, 5.

Table 3 compares the image captioning accuracy for different datasets. We include the result from
IBM Research AI, which is currently on the top of the VizWiz leaderboard (Code). We can observe
that our DP-BLIP achieves comparable performance to the non-private results, and even outper-
forms them on some metrics. This is likely because our training relies on a model pre-trained on
a large public dataset, so the additional private training yields better performance. Another factor
is that our private training method preserves representations well and is robust to noise added for
privacy. The pre-trained model and robustness of DP-CLIP allow our private approach to achieving
strong performance.
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Table 3: Evaluation of the Classification Accuracy vs. Privacy of DP-CLIP

ϵ = 0.0001 ϵ = 0.5 ϵ = 5 IBM Research AI (non-private, ϵ =∞)

Bleu 1 69.8 70.2 70.3 72.77
Bleu 2 51.6 52.7 54.2 54.17
Bleu 3 32.5 38.3 41.4 38.97
Bleu 4 18.9 33.1 33.1 27.44

ROUGE L 43.6 45.1 45.3 50.2
CIDEr 71.5 72.4 75.2 81.04
SPICE 10.9 12.9 13.3 17.0

METEOR 16.9 17.9 21.4 22.25

5 THEORETICAL ANALYSIS OF DP-CLIP

In this section, we analyze the feature learning capacity of DP-CLIP and derive the privacy-utility
trade-off under the linear representation and loss setting. Such a simplified setting has been com-
monly used in the deep learning theory literature to shed light on understanding complicated deep
learning phenomena. For example, the linearized loss function for analyzing representation learning
has been used in metric learning (Schroff et al., 2015; He et al., 2018), contrastive learning (Ji et al.,
2021) and multimodal contrastive learning (Won et al., 2021; Alsan et al., 2021; Nakada et al., 2023).
The linear representation setting has been widely adopted in transfer learning and self-supervised
learning (Jing et al., 2021; Tian et al., 2021; Ji et al., 2021; Wu et al., 2022; Tian, 2022; Nakada
et al., 2023).

Concretely, suppose that we observe n pairs of data {(xi, x̃i)}ni=1 ⊂ Rd1 × Rd2 . Let r be the
dimension of the representation space (r < d). We train dual linear representations f(x) = G1x and
f̃(x) = G2x, where G1 ∈ Rr×d1 and G2 ∈ Rr×d2 , simultaneously with the following contrastive
linear loss through noisy gradient descent. For notational brevity, let G ≜ [G1, G2] ∈ Rr×d, where
d ≜ d1 + d2.

We aim to obtain G1 and G2 that minimize the following linearized loss function:

LL(G1, G2) = −
1

n

∑
i

⟨G1xi, G2x̃i⟩+
1

n(n− 1)

∑
i̸=j

⟨G1xi, G2x̃j⟩+Π(G), (5.1)

where the penalty term Π(G) ≜ (α/4)∥GG⊤− I∥2F with α > 0 is added to normalize G. Note that
the CLIP loss 2.2 becomes equivalent to loss 5.1 without penalty when τ →∞.

For observed data {(xi, x̃i)}ni=1 ⊂ Rd1+d2 , we consider the following spiked covariance model
(Johnstone, 2001; Bai & Yao, 2012; Yao et al., 2015; Zhang et al., 2018; Zeng et al., 2019; Ji et al.,
2021; Nakada et al., 2023) as the data generation process.

xi = U∗
1 zi + ξi, x̃i = U∗

2 zi + ξ̃i. (5.2)

where U∗
1 and U∗

2 are d1 × r and d2 × r orthogonal matrces, respectively. Since the model equa-
tion 5.2 is only identifiable up to rotation, we assume that Σz is a diagonal matrix. Without loss of
generality, we further assume that ∥Σz∥ = 1. We assume that zi, ξi and ξ̃i are mean 0 sub-Gaussian
random variables with parameters bounded by a universal constant. Furthermore, we assume the
independence of variables; zi ⊥⊥ ξi, z̃i ⊥⊥ ξ̃i, and ξi ⊥⊥ ξ̃i.

There have been several works on analyzing the convergence of DP-SGD (Abadi et al., 2016) with
per-sample clipping (Yu et al., 2019; Bassily et al., 2019; Feldman et al., 2020; Chen et al., 2020a;
Yang et al., 2022; Bu et al., 2022; Fang et al., 2023). Closely related works are Yang et al. (2022) and
Fang et al. (2023). However, the contrastive loss function of CLIP cannot be decomposed into the
sum of per-sample losses, since CLIP learns by contrasting modalities across sampled pairs. This is
the reason why DP-CLIP employs per-mini-batch clipping. In addition, in spite of the linearization,
our loss function equation 5.1, like the original CLIP loss, is neither convex nor globally Lipschitz,
which makes the theoretical analysis highly nontrivial.
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5.1 PRIVACY-UTILITY TRADE-OFF OF DP-CLIP

Let G∗
1, G

∗
2 be the minimizer of the population loss E[LL(G)]. For simplicity, we assume the reg-

ularization parameter α = Θ(1) is of constant order. Since pretrained encoder is often used in
downstream tasks, where the output of the encoder is fed into neural networks or linear probes, the
essential information of the learned representation is contained in the linear transformation. For this
reason, we measure the performance of the learned representations through the excess loss of infor-
mation defined as minA∈Rr×r ∥AG1−G∗

1∥F ∨minA∈Rr×r ∥AG2−G∗
2∥F . For “good” encoders, we

expect that a certain linear transformation of it is close to the representations obtained using infinite
number of training samples.

Before presenting our results, we introduce notations. For two sequences of positive numbers {ak}k
and {bk}k, we write ak ≲ bk if and only if there exists a constant C > 0, independent of the index k,
such that supk∈K(ak/bk) < C. Moreover, we write ak ≪ bk when supk∈K(ak/bk) ≤ Cu holds for
a sufficiently large universal constant Cu > 0 common throughout the paper. For any matrix A, we
denote ∥A∥ and ∥A∥F as the operator norm and Frobenius norm of A respectively. For any matrix
A, let λmin(A) and λmax(A) be the minimum and maximum singular values of A, respectively. For
any zero-mean random variable X , we define its covariance matrix as ΣX ≜ E[XX⊤]. Let the
signal-to-noise ratio for x and x̃ be s21 ≜ ∥Σz∥/∥Σξ∥ and s22 ≜ ∥Σz∥/∥Σξ̃∥, respectively.

Assumption 5.1. Assume that d > r and n ≫ r(r + s−2
1 re(Σξ) + s−2

2 re(Σξ̃))
2 log3(T (n + d)),

where re is the effective rank defined as re(A) ≜ Tr(A)/∥A∥ for any square matrix A.
Assumption 5.2 (Signal-to-noise Ratio). Assume that min{s21, s22} ≳ 1.
Assumption 5.3 (Signal Condition Number). Assume that κ ≜ λmax(Σz)/λmin(Σz) ≲ 1.

Assumption 5.1 ensures that we have an effective number of samples to separate the core signal from
the noise. Assumption 5.2 is a mild condition on the signal-to-noise ratio. It allows the noise to be
the same strength as signal. Assumption 5.3 ensures that core features are strongly shared between
the two modalities.

Here we introduce the privacy-utility trade-off of DP-CLIP under linear loss.
Theorem 5.1 (Privacy-utility Trade-off). Suppose Assumptions 5.1, 5.2 and 5.3 hold. Assume that
α = Θ(1). Let G(T ) be the representation obtained from the algorithm 1 with loss LL(G). Suppose
that the initial representation G(0) satisfies minO∈Rr×r:O⊤O=I ∥OG(0)−Ĝ∥F ≪ 1. Choose c≫ 1,
b = ⌈νn⌉, where ν ∈ (0, 1) is a constant. Also choose η > 0 and σ > 0 as
η = {σ

√
T (rd+ log(T (n+ d)))}−1, σ = Cσ

√
T log(1/δ)/(nϵ), where Cσ is a constant appear-

ing in Proposition 3.1. Then, Algorithm 1 under loss LL is (ϵ, δ)-DP and for sufficiently large T ,

min
A∈Rr×r

∥AG
(T )
1 −G∗

1∥F ∨ min
A∈Rr×r

∥AG
(T )
2 −G∗

2∥F

≲ exp

(
− nϵ

8κCσ

√
log(1/δ){rd+ log(T (n+ d))}

)
︸ ︷︷ ︸

optimization error

+
log1/4(1/δ){rd+ log(T (n+ d))}1/4√

nϵ︸ ︷︷ ︸
cost of privacy

+

√
r(r + s−2

1 re(Σξ) + s−2
2 re(Σξ̃))

2 log3(n+ d)

n︸ ︷︷ ︸
statistical error

. (5.3)

holds with probability at least 1−O((n+ d)−1).

Proof Outline of Theorem 5.1. This result follows from the linear convergence result (Theorem
D.1) of Algorithm 1; we can bound the distance between G(T ) and the global minimizer of the
loss LL by three components, a linear converging term, the error from the injected noise, and the
error from subsampling. To show this result, we first derive the one-step linear convergence bound
for non-stochastic gradient descent without noise injection. To this end, we use the fact that LL is
locally strongly convex and directionally smooth around its global minimum. For noisy stochastic
gradient descent, we need to control the accumulation of errors coming from both privacy noise
and subsampling. For this purpose, we exploit the fact that ∂GLL(G

(t);B(t)), a mini-batch gradient
of LL evaluated at G(t), is an unbiased estimator of ∂GLL(G

(t)), and control the deviation of the

8
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accumulated errors through the martingale concentration inequality. The accumulated error from
subsampling is controlled by the Bernstein concentration bound from Bardenet & Maillard (2015),
which turns out to be negligible since the batch size is chosen to be proportional to the number of
samples. Given the linear convergence result, we set the value of η and σ as specified in Proposition
3.1 to conclude the proof. The proof and more detailed statement of Theorem 5.1 that specifies the
exact condition on T is available in Corollary D.2 in the appendix.

In equation 5.3, the right-hand side consists of three terms: optimization error, privacy cost, and
statistical error. The optimization error decreases exponentially in n, since the loss function LL
behaves well locally around the global minimum. This term grows with T because the algorithm
runs in two stages: in the first stage, the error decreases exponentially in T (see details in Theorem
D.1), and in the second stage, when G(T ) reaches a certain stable region, the optimization error
starts to increase (slowly) if we continue to run more gradient descent updates. We also note that
the optimization error is dominated by the term for the cost of privacy when nϵ/

√
log(1/δ) is large.

The second term corresponds to the additional cost to preserve privacy. Ignoring the logarithmic
term log(T (n+ d)), the cost increases proportionally to log1/4(1/δ)/ϵ1/2. This rate also appears
similarly in Chen et al. (2020a); Yang et al. (2022); Fang et al. (2023) for the analysis of DP-SGD.
Our technical analysis differs from theirs as they consider per-sample clipping for loss functions
that satisfy certain smoothness condition, which does not hold for our loss 5.1. We also note that
the loss 5.1 is not decomposable to apply per-sample clipping. Also, similar privacy cost bounds
appear in the convergence analysis of differentially private gradient descent and related algorithms
(Wang et al., 2017; 2019; Zhang et al., 2019; Wang et al., 2020; Cai et al., 2021; 2023). The
statistical error term is due to the irreducible error coming from finite samples. The term depends
on r + s−2

1 re(Σξ) + s−2
2 re(Σξ̃), which is trivially bounded by O(r + d) under Assumption 5.2.

When either the effective rank of noise covariance is small or the signal-to-noise ratio is large, the
statistical error term becomes small.
Remark 5.1. In the analysis, the intrinsic dimension r of the input data is assumed to be known.
In practical situation, we can either choose r based on certain metric such as cross validation in
downstream tasks, or estimate r based on the spectral decay of the cross-covariance matrix.
Remark 5.2. The initial value condition is satisfied if minO:O⊤O=I ∥OG(0) − Ĝ∥ ≪ 1/

√
r. Thus

the condition is considered to be weak when r is small. As in our experiments in Section 4, we can
employ initial representations trained with non-private optimizers with certain number of samples.

6 DISCUSSION

In this paper, we introduce DP-CLIP, a novel approach that integrates differential privacy into the
CLIP to address privacy concerns associated with vision-language tasks. To our knowledge, this
is the first attempt to apply differential privacy approaches to multimodal training, where we have
created a framework applicable to a variety of vision-image tasks that have not previously been ex-
plored in the DP literature. We conduct extensive experiments to demonstrate the effectiveness of
our DP-CLIP on three tasks: image classification, image captioning and visual question answering
tasks. In addition, we theoretically prove the convergence of our algorithm under linear representa-
tion settings, and present a privacy-utility trade-off for DP-CLIP in the situation where gradients are
clipped per batch and the loss function does not satisfy the smoothness conditions such as Lipschitz
smoothness.

Our work identifies several areas for further investigation. Future work includes conducting experi-
ments on privatizing other multimodal models and evaluating them across a broader range of vision-
language downstream tasks, such as visual entailment or image-text retrieval (Li et al., 2021a).
Although previous work has suggested that DP can protect against common privacy attacks such as
reconstruction attacks and membership inference attacks (Chen J, 2021), investigating the empirical
privacy auditing on DP-CLIP is also interesting. Additionally, while our theoretical analysis focuses
on linear representation functions, non-linear representations need further exploration. Moreover,
Vyas et al. (2023) introduced a copyright protection framework for generative models, which relates
to differential privacy as a mathematical measurement. Given that our method learns differentially
private image representations, it has the potential to generate copyright-protected images.

9
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Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for sampling without
replacement. Bernoulli, 2015.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic
convex optimization with optimal rates. Advances in Neural Information Processing Systems
(NIPS), 2019.

Priya Basu, Tiasa Singha Roy, Rakshit Naidu, Zumrut Muftuoglu, Sahib Singh, and Fatemehsadat
Mireshghallah. Benchmarking differential privacy and federated learning for bert models. ArXiv,
abs/2106.13973, 2021.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy.
Harvard data science review, 2020(23):10–1162, 2020.

Zhiqi Bu, Hua Wang, and Qi Long. On the convergence and calibration of deep learning with
differential privacy. arXiv preprint arXiv:2106.07830, 2021.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially
private deep learning made easier and stronger. arXiv preprint arXiv:2206.07136, 2022.

Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke. Composable and versatile
privacy via truncated cdp. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 74–86, 2018.

T Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence for
parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825–2850, 2021.

T Tony Cai, Yichen Wang, and Linjun Zhang. Score attack: A lower bound technique for optimal
differentially private learning. arXiv preprint arXiv:2303.07152, 2023.

T. Cao, A. Bie, A. Vahdat, S. Fidler, and K. Kreis. Don’t generate me: Training differentially pri-
vate generative models with sinkhorn divergence. In Advances in Neural Information Processing
Systems (NIPS), 2021.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
arXiv preprint arXiv:2301.13188, 2023.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568, 2021.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A
geometric perspective. Advances in Neural Information Processing Systems (NIPS), 2020a.

10



Under review as a conference paper at ICLR 2024

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In Computer Vision – ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX, pp.
104–120, Berlin, Heidelberg, 2020b. Springer-Verlag. ISBN 978-3-030-58576-1. doi: 10.1007/
978-3-030-58577-8 7. URL https://doi.org/10.1007/978-3-030-58577-8_7.

Shi X. Chen J, Wang WH. Differential privacy protection against membership inference attack on
machine learning for genomic data. In Pac Symp Biocomput, pp. 26–37, 2021.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factoriza-
tion: An overview. IEEE Transactions on Signal Processing, 2019.

Papers With Code. Image captioning on vizwiz 2020 test. URL https://paperswithcode.
com/sota/image-captioning-on-vizwiz-2020-test.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

Vishnu Sashank Dorbala, Gunnar A Sigurdsson, Robinson Piramuthu, Jesse Thomason, and Gau-
rav S Sukhatme. Clip-nav: Using clip for zero-shot vision-and-language navigation. In Proceed-
ings of Conference on Robot Learning, 2022.

Christophe Dupuy, Radhika Arava, Rahul Gupta, and Anna Rumshisky. An efficient dp-sgd mecha-
nism for large scale nlu models. In ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 4118–4122. IEEE, 2022.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of Theory of Cryptography Conference (TCC), 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Huang Fang, Xiaoyun Li, Chenglin Fan, and Ping Li. Improved convergence of differential pri-
vate sgd with gradient clipping. In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal
rates in linear time. In Proceedings of ACM SIGACT Symposium on Theory of Computing (STC),
2020.

Federico Galatolo., Mario Cimino., and Gigliola Vaglini. Generating images from caption and vice
versa via clip-guided generative latent space search. Proceedings of the International Conference
on Image Processing and Vision Engineering, 2021. doi: 10.5220/0010503701660174.

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, and Jianfeng Gao. Vision-language
pre-training: Basics, recent advances, and future trends. Found. Trends. Comput. Graph. Vis., 14
(3–4):163–352, dec 2022. ISSN 1572-2740. doi: 10.1561/0600000105. URL https://doi.
org/10.1561/0600000105.

Sheng Gao and Zongming Ma. Sparse gca and thresholded gradient descent. arXiv preprint
arXiv:2107.00371, 2021.

Danna Gurari, Yinan Zhao, Meng Zhang, and Nilavra Bhattacharya. Captioning images taken by
people who are blind, 2020.

Xinlei He and Yang Zhang. Quantifying and mitigating privacy risks of contrastive learning. CCS,
pp. 845–863, 2021.

11

https://doi.org/10.1007/978-3-030-58577-8_7
https://paperswithcode.com/sota/image-captioning-on-vizwiz-2020-test
https://paperswithcode.com/sota/image-captioning-on-vizwiz-2020-test
https://doi.org/10.1561/0600000105
https://doi.org/10.1561/0600000105


Under review as a conference paper at ICLR 2024

Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang Bai. Triplet-center loss for multi-
view 3d object retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Shlomo Hoory, Amir Feder, Avichai Tendler, Alon Cohen, Sofia Erell, Itay Laish, Hootan Nakhost,
Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim, and Y. Matias. Learning and evaluating a
differentially private pre-trained language model. In PRIVATENLP, 2021.

Hafiz Imtiaz and Anand D Sarwate. Differentially-private canonical correlation analysis. In Pro-
ceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP),
2017.

Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for
feature learning: A theoretical analysis. arXiv preprint arXiv:2110.02473, 2021.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
Annals of Statistics, 2001.

Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel. Multimodal neural language models. In Inter-
national conference on machine learning, pp. 595–603. PMLR, 2014.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting lan-
guage and vision using crowdsourced dense image annotations. International journal of computer
vision, 123:32–73, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. In Tech Report, 2009.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, 2000.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 1998.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, and
Steven Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021a. URL https://openreview.net/forum?
id=OJLaKwiXSbx.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In ICML, 2022a.

Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun Fu. Visual semantic reasoning for image-
text matching. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
4653–4661, 2019. doi: 10.1109/ICCV.2019.00475.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan Zhang, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-semantics aligned pre-
training for vision-language tasks. ECCV 2020, 2020.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can
be strong differentially private learners. In Proceedings of International Conference on Learning
Representations (ICLR), 2021b.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2022b. URL https://openreview.net/forum?id=bVuP3ltATMz.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-
training paradigm. arXiv preprint arXiv:2110.05208, 2021c.

12

https://openreview.net/forum?id=OJLaKwiXSbx
https://openreview.net/forum?id=OJLaKwiXSbx
https://openreview.net/forum?id=bVuP3ltATMz


Under review as a conference paper at ICLR 2024

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. Encodermi: Membership inference
against pre-trained encoders in contrastive learning. CCS, pp. 2081 – 2095, 2021.

H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya Mironov, Nicolas Paper-
not, and Peter Kairouz. A general approach to adding differential privacy to iterative training
procedures. arXiv preprint arXiv:1812.06210, 2018.

Ryumei Nakada, Halil Ibrahim Gulluk, Zhun Deng, Wenlong Ji, James Zou, and Linjun Zhang.
Understanding multimodal contrastive learning and incorporating unpaired data. arXiv preprint
arXiv:2302.06232, 2023.

Medhini Narasimhan, Anna Rohrbach, and Trevor Darrell. Clip-it! language-guided video summa-
rization. Advances in Neural Information Processing Systems, 34:13988–14000, 2021.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Vicente Ordonez, Kulkarni Girish, and Berg Tamara. Im2text: Describing images using 1 million
captioned photographs. NIPS, 2011.

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tem-
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A APPENDIX

B ADDITIONAL PRELIMINARIES ON CLIP

The goal of CLIP is to train an image encoder and a text encoder, by maximizing the cosine similarity
of correct image-text pairs (highlighted entries on the diagonal in Fig. 1a) and minimizing the cosine
similarity of incorrect image-text pairs (other non-diagonal entries in Fig. 1a.)

(a) CLIP Pretraining Process from
Radford et al. (2021)

(b) Structure of BLIP for VQA from Li et al.
(2022a)

C DETAILED EXPERIMENTAL RESULTS

In this section, we provide additional experimental setups and results.

C.1 IMAGE CLASSIFICATION

We present the hyperparameters used in image classification task in Table 4.

Table 4: Tuned Hyperparameters for Image Classification DP-CLIP

MNIST Fashion-MNIST CIFAR-10 SVHN

lr 1e-05 1e-05 1e-05 1e-05
betas (0.9, 0.98) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
eps 1e-06 1e-06 1e-06 1e-06
weight decay 0.01 1e-06 1e-06 1e-06
num epochs 30 30 30 15
batch size 32 32 32 32

C.2 VQA

The Bootstrapping Language Image Pre-training (BLIP) Li et al. (2022a) is a novel framework
for VLP (Vision-Language Pre-training Gan et al. (2022)) that offers broad applicability to various
downstream tasks. It introduces (a) Captioning and Filtering (CapFilt), a pioneering method for
dataset bootstrapping that enables learning from noisy image-text pairs, and (b) Multimodal mix-
ture of Encoder-Decoder (MED), which is a novel model architecture capable of functioning as a
unimodal encoder, an image-grounded text encoder, or an image-grounded text decoder. This ver-
satility facilitates effective multi-task pre-training and flexible transfer learning. The MED model is
jointly pretrained using three vision-language objectives: image-text contrastive learning (Radford
et al., 2021) to align the vision and language representations, image-text matching (Li et al., 2019) to
distinguish between positive and negative image-text pairs, and image-conditioned language mod-
eling(Kiros et al., 2014) to generate good textual descriptions given an image. We decided to use
BLIP as our backbone since it currently achieves state-of-the-art performance on the image caption-
ing task.

Visual Question Answering (VQA) has been increasingly used in many fields, such as healthcare,
education, and social media (Srivastava et al., 2021). In Visual Question Answering (VQA), an
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image (I) is provided along with a related question (Q) in natural language form, and the goal is to
generate accurate and meaningful answers (A). However, the images and text data used in training
may contain sensitive information, and it is of paramount importance to ensure privacy preservation
measures are in place (Bara et al., 2022). For similar reasons as the image-captioning section in 4.2,
because BLIP shows such strong performance on VQA tasks, we decided to use it as the backbone
for our VQA experiments.

For VQA tasks, instead of framing it as a multi-answer classification problem Chen et al. (2020b);
Li et al. (2020), BLIP takes a different approach by formulating it as an answer generation task (Li
et al., 2021a; 2022a). This formulation allows for open-ended VQA, where the model generates
answers rather than selecting from a predefined set of options, which is consistent with the task
used in Li et al. (2022a) and Li et al. (2021a). As depicted in Figure 1b, during the finetuning
process, an image-question pair is encoded into multimodal embeddings, which are then fed into
an answer decoder. We use contrastive loss on the question-answer and image pairs to train private
representation and then without further finetuning, we evaluate our results using the exact-match
accuracy metric.

The goal of the experiment in this section is to demonstrate that adding DP noise does not sig-
nificantly impact the accuracy of the results, compared to the non-private method, when all other
parameters are held constant. The objective is not to fine-tune the model to compete with non-
private state-of-the-art results, but rather to showcase that our approach achieves a comparable level
of accuracy without compromising privacy. We note that BLIP can achieve state-of-the-art results
on VQA with a much higher accuracy rate of 78.25% (Li et al., 2022a). However, in our study, we
deliberately refrain from extensive parameter optimization and instead focus on providing a baseline
analysis. As a result, we report lower accuracy results compared to the fine-tuned BLIP approach.
From Table 5, we can see that our model maintains utility even as privacy measures are increased,
suggesting its resilience to noise.

Table 5: Evaluation of VQA on the abstract scene VQA2.0 dataset of DP-BLIP.

ϵ =∞ (non-private) ϵ = 10 ϵ = 3 ϵ = 1 ϵ = 0.5

55.22% 52.95% 52.94% 52.94% 52.94%

We report the exact-match accuracy mentioned in C.2, here, we additionally evaluate it using another
metric that is robust to iter-human variability in phrasing the answers, introduced in https://
visualqa.org/evaluation.html. The evaluation code was taken from ALBEF’s github
repository, where we consider the top three answers given by humans to a question and our accuracy
is taken to be min{1, # humans saying that answer/3} and we output the average accuracy over the
training set. The following results, shown in Tab. 6, suggests our privacy-aware approach can
achieve comparable performance to the non-private method.

Table 6: Evaluation of VQA Accuracy vs. Privacy of DP-BLIP with Top Three Answers

ϵ = 0.0001 ϵ = 0.5 ϵ = 5 ϵ = 50

0.4686 0.4717 0.4784 0.4924

D PROOFS OF THEORETICAL RESULTS

Before going into the proofs, we introduce notations to be used in later sections.

D.1 NOTATION

In this section, we introduce notations to be used. We write ak = O(bk) if ak ≲ bk holds and
ak = Ω(bk) if ak ≳ bk holds. Od,r ≜ {O ∈ Rr×d : O⊤O = Ir} as a set of orthogonal matrices of
order d×r. We write a∨b and a∧b to denote max(a, b) and min(a, b), respectively. For any matrix
A, let λj(A) be the j-th largest singular value of A. Let λmin(A) and λmax(A) be the minimum
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and maximum singular values of A, respectively. Moreover, for any square matrix A, define its
effective rank as re(A) = Tr(A)/∥A∥. For any zero-mean random variables X and X̃ , we define
the covariance matrix of X as ΣX ≜ E[XX⊤], and the cross-covariance matrix of X and X̃ as
ΣX,X̃ ≜ E[XX̃⊤]. Define Σ̂x,x̃ as Σ̂x,x̃ ≜ 1/n

∑
i∈[n] xix̃

⊤
i − 1/n/(n− 1)

∑
i ̸=j xix̃

⊤
j .

Here we prove results in 5. We consider minimizing the following linear loss function:

LL(G) ≜ − tr
(
G1Σ̂x,x̃G

⊤
2

)
+Π(G),

where Π(G) = (α/4)∥GG⊤ − Ir∥2F with α > 0. We also define the loss for mini-batch B as

LL(G;B) ≜ − tr
(
G1Σ̂x,x̃,BG

⊤
2

)
+Π(G), where

Σ̂x,x̃,B ≜
1

|B|
∑
i∈B

xix̃
⊤
i −

1

|B|(|B| − 1)

∑
i ̸=j;i,j∈B

xix̃
⊤
j .

D.2 DIFFERENTIAL PRIVACY OF DP-CLIP

Here we present the Gaussian mechanism, the theoretical foundation of DP-SGD and DP-Adam
above.

Definition 2 (Gaussian Mechanism). (Dwork et al., 2014) Let f : X → Rd be an arbitrary d-
dimensional function, i.e. f(x) = [f1(x), f2(x), ..., fd(x)] for x ∈ X . Then, the Gaussian mecha-
nism with parameter σ outputs,

M(x) = [f1(x) + Z1, f2(x) + Z2, ..., fd(x) + Zd],

where Zi ∼ N (0, σ2) for i ∈ [d].

Definition 3 (ℓ2-sensitivity). The ℓ2-sensitivity of a function f : X → Y is defined as,

∆2(f) = max
adjacent x1,x2∈X

∥f(x1)− f(x2)∥2.

We then present the privacy guarantee for DP-CLIP.

Proposition 4. Choose for b < n/10. There exists universal constants Cϵ, Cσ > 0 such that
for any ϵ ≤ Cϵb

2T/n2 and δ > 0, DP-CLIP is (ϵ, δ)-differentially private if we choose σ ≥
Cσ
√
T log(1/δ)/(nϵ).

Proof. Note that at each iteration, we can view Algorithm 1 as a repeated composition of subsam-
pling and Gaussian mechanism. LetM =MT ◦MT−1 ◦ · · · ◦ M1, whereMt ≜Mt,G ◦Mt,s

is the composition of subsampling and Gaussian mechanism at t-th iteration. We first bound the ℓ2
sensitivity for Gaussian mechanismMt,G. Note thatMt,G depends on the mini-batch B(t) ⊂ [n].
We write ḡ(t) = ḡ(t)((xi, x̃i)i∈B(t)) to make explicit the dependence of g(t) on the pairs of data
(xi, x̃i)i∈B(t) . Note that we can bound the ℓ2 sensitivity as

max
i∈B(t)

sup
(xi,x̃i),(x′

i,x̃
′
i)∈Rd1+d2

|ḡ(t)(. . . , (xi, x̃i), . . . )− ḡ(t)(. . . , (x′
i, x̃

′
i), . . . )| ≤ 2c

due to per-batch clipping. The rest of the proof follows from the result of privacy amplification by
subsampling (Theorem 11 from Bun et al. (2018)), and a similar argument in the proof of Lemma
3.1 from Yang et al. (2022).

D.3 OPTIMIZATION ERROR BOUND

In this subsection, we aim to derive the optimization error bound for dist(G(T ), Ĝ) given fixed pairs
of data {(xi, x̃i)}ni=1, where the distance dist is defined as follows: For any matrices A ∈ Rr×d and
A′ ∈ Rr×d, define the distance as

dist(A,A′) ≜ min
O∈Or,r

∥OA−A′∥F .
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Assumption D.1 (Local Directional Strong Convexity of LL). Assume that there exists some γ > 0

such that for any G satisfying ∥G− Ĝ∥F ≤ γ, the following inequalities hold for all Z ∈ Rr×d:

vec(Z)⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
vec(Z) ≤ βu∥Z∥2F . (D.1)

vec(HZZ − Ĝ)⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
vec(HZZ − Ĝ) ≥ βl∥HZ − Ĝ∥2F , (D.2)

where HZ ≜ argminO∈Or,r
∥OZ − Ĝ∥F .

Before presenting the theorem and its proof, we list lemmas to be used in the proof. The proofs of
lemmas are deferred to Section E.

Lemma D.1. Suppose that Assumption D.1 holds with triple (βu, βl, γ) and that

dist2(G, Ĝ) ≤ γ2. (D.3)

Let H ≜ argminH∈Or,r
∥HG − Ĝ∥F . Define Ḡ ≜ G − η∂GLL(G) and G̃ ≜ G − ηg, where

g ∈ Rr×d is any matrix. If η ≤ 1/βu, then,

∥HḠ− Ĝ∥2F ≤ (1− ηβl) dist
2(G, Ĝ),

∥HG̃− Ĝ∥2F ≤ (1− ηβl) dist
2(G, Ĝ) + 2η⟨HḠ− Ĝ, ∂GLL(G)− g⟩+ η2∥g − ∂GLL(G)∥2F .

Lemma D.2. Let B ⊂ [n] be a uniformly sampled random batch of size b in [n]. Then,

EB[∂GLL(G;B)] = ∂GLL(G)

holds for all G ∈ Rr×d, where the expectation is taken with respect to subsampling.

Define R ≜ (maxi∈[n] ∥xi∥)(maxi∈[n] ∥x̃i∥).

Lemma D.3. Fix T > 0. Suppose that maxt∈[T ] dist(G
(t), Ĝ)2 ≤ γ2 holds. Then,

max
t∈[T ]

∥∂GLL(G
(t);B(t))− ∂GLL(G

(t))∥F ≲ (∥Ĝ∥F + γ)R

(√
(1− b/n) log(T (n+ d))

b
+

1

b

)
holds with probability 1−O((n+ d)−1).

Lemma D.4. Suppose that xi, x̃i are generated according to the model in equation 5.2. Suppose
that maxt∈[T ] dist

2(G(t), Ĝ) ≤ γ2, where γ satisfies γ ≤ 1 ∧ 1/α. Then,

max
t∈[T ]

∥∂GLL(G
(t);B(t))∥F ≲ (

√
r∥Ĝ∥+ 1)R

√
log(T (n+ d))

b
+ γ∥Σ̂x,x̃∥+ α(∥Ĝ∥2 + 1)γ

holds with probability 1−O((n+ d)−1).

Using above lemmas, we obtain the following theorem.

Theorem D.1. Suppose that Assumption D.1 holds with triple (βu, βl, γ) and that

dist2(G(0), Ĝ) ≤ γ2

8
. (D.4)

We obtain a sequence of representations (G(t))t∈[T ] from noisy mini-batch SGD according to Algo-
rithm 1 with linear loss LL. Set the clipping threshold c and the mini-batch size b as

c≫ (
√
r∥Ĝ∥+ 1)R

√
log(T (n+ d))

b
+ γ∥Σ̂x,x̃∥+ α(∥Ĝ∥2 + 1)γ, (D.5)

b≫ 1

γ2
(
√
r∥Ĝ∥+ γ)2R2 log(T (n+ d)). (D.6)
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If η > 0 satisfies

η ≤ min

{
1

2βu
,

βlγ
2

4σ2c2(2rd+ 60 log(T (n+ d))

}
, (D.7)

then,

dist2(G(T ), Ĝ) ≲ (1− ηβl)
T dist2(G(0), Ĝ) +

ησ2c2

βl
(rd+ log(T (n+ d)))

+
η

βl
(
√
r∥Ĝ∥+ γ)2R2

(√
(1− b/n) log(T (n+ d))

b
+

1

b

)2

.

holds with probability 1−O((n+ d)−1).

Proof of Theorem D.1. For notational brevity, write g(t) = ∂GLL(G
(t);B(t)). Define H(t) ≜

argminH∈Or,r
∥HG(t) − Ĝ∥F . Also define G̃(t+1) := G(t) − ηg(t). From equation D.5 and

Lemma D.4,

max
t∈[T ]

∥∂GLL(G
(t);B(t))∥F ≤ c

holds with probability 1−O((n+ d)−1). Henceforth, we focus on this event, where h(t) = 1 holds
for all t ∈ [T ]. Observe that

dist2(G(t+1), Ĝ) ≤ ∥H(t)G(t+1) − Ĝ∥2F
= ∥H(t)G̃(t+1) − Ĝ− ησcH(t)Γ(t)∥2F
= ∥H(t)G̃(t+1) − Ĝ∥2F − 2ησc tr

(
(H(t)G̃(t+1) − Ĝ)⊤H(t)Γ(t)

)
+ η2σ2c2∥Γ(t)∥2F .

(D.8)

Define D(t+1) ≜ ∥H(t)G̃(t+1) − Ĝ∥F . Observe that

−2ησc tr
(
(H(t)G̃(t+1) − Ĝ)⊤H(t)Γ(t)

)
= −2ησc

∑
j∈[r],k∈[d1]

(H(t)⊤(H(t)G̃(t+1) − Ĝ))jk(Γ
(t))jk

≜ 2ησcD(t+1)u(t).

Also,

η2σ2c2∥Γ(t)∥2F = η2σ2c2 tr
(
Γ(t)⊤Γ(t)

)
= η2σ2c2

∑
j∈[r],k∈[d]

(Γ(t))2ij ≜ η2σ2c2v(t).

Since vec(Γ(t)) ∼ N(0, Ird), u(t) ∼ N(0, 1) and v(t) ∼ χ2
rd. For simplicity, write d(t) ≜

dist(G(t), Ĝ). Now we have the following inequality:

d(t+1)2 ≤ D(t+1)2 + 2ησcD(t+1)u(t) + η2σ2c2v(t).

Let V ≜ maxt∈[T ] ∥g(t) − ∂GLL(G
(t))∥F . Using Lemma D.1, we obtain

d(t+1)2 ≤ (1− ηβl)d
(t)2 + 2η⟨H(t)(G(t) − η∂GLL(G

(t)))− Ĝ, ∂GLL(G
(t))− g(t)⟩+ η2V 2

+ 2ησcD(t+1)u(t) + η2σ2c2v(t), (D.9)

which holds for all t ∈ [T ].

We show by induction that the following inequality holds with probability 1− O(sT−1(n+ d)−1)
for any fixed s ∈ [T ]:

d(s)2 ≤ min{γ2, 4(1− ηβl)
sd(0)2 + L}, (D.10)

where L > 0 is the solution of L− C2

√
L− C2

1 = 0 with

C1 ≜
√

η

βl
σ2c2(rd+ 14 log2(T (n+ d))) + 7

η

βl
V 2 log(T (n+ d)),

C2 ≜ 2σc

√
2 log(T (n+ d))

η

βl
+ 2V

√
log(T (n+ d))

η

βl
.
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Step 1. We start from s = 1. From a standard concentration inequality for Gaussian random
variables, (see, for example, Proposition 2.5 of Wainwright (2019).)

u(0) ≤
√

2 log(T (n+ d)) (D.11)

holds with probability at least 1 − T−1(n + d)−1. From a concentration bound for chi-squared
distribution, (see, for example, Lemma 1 of Laurent & Massart (2000).)

v(0) ≤ rd+ 2 log(T (n+ d)) (D.12)

holds with probability 1− cT−1(n+d)−1 for some universal constant c > 0. Note that Lemma D.1
and Cauchy-Schwarz inequality yield

D(1)2 ≤ (1− ηβl)d
(0)2 + 2ηd(0)V + η2V 2

≤ (1− ηβl)d
(0)2 + ηβld

(0)2 + 2
η

βl
V 2

≤ 2(1− ηβl)d
(0)2 + 2

η

βl
V 2,

where we used 2xy ≤ x2 + y2 in the second inequality and ηβl ≤ 1/2 ≤ 1 − ηβl in the third
inequality. Using

√
x+ y ≤

√
x+
√
y for x, y ≥ 0, we further obtain

D(1) ≤
√
2(1− ηβl)

1/2d(0) +

√
2
η

βl
V.

Combined with equation D.9, D.11 and D.12, we have

d(1)2 ≤ D(1)2 + 2ησcD(1)u(0) + η2σ2c2v(0)

≤ 2(1− ηβl)d
(0)2 + 2

η

βl
V 2 + 2ησc

√
2 log(T (n+ d))D(1) + η2σ2c2(rd+ 2 log(T (n+ d)))

≤ 2(1− ηβl)d
(0)2 + 2

η

βl
V 2 + 4ησc

√
2 log(T (n+ d))

(
(1− ηβl)

1/2d(0) +

√
η

βl
V

)
+ η2σ2c2(rd+ 2 log(T (n+ d)))

≤ 4(1− ηβl)d
(0)2 + 4

η

βl
V 2 + η2σ2c2(rd+ 10 log(T (n+ d))),

where we used 2xy ≤ x2 + y2 in the last inequality. Notice that

η2σ2c2(rd+ 10 log(T (n+ d))) + 4
η

βl
V 2 ≤ ησ2c2

βl
(rd+ 14 log2(T (n+ d))) + 7

η

βl
V 2 log(T (n+ d))

= C2
1 = L− C2

√
L ≤ L.

From equation D.4, equation D.7 and L ≤ γ2/2, which will be proved later,

4(1− ηβl)d
(0)2 + η2σ2c2(rd+ 10 log(T (n+ d))) ≤ 4

γ2

8
+

γ2

2
≤ γ2.

Therefore, we verify equation D.10 for s = 1.

Step 2. Fix s ∈ [T ]. Suppose that equation D.10 holds for all t satisfying 1 ≤ t ≤ s − 1 on the
event E. Examining the induction steps, we can show that the event E occurs with probability at
least 1− (1 + c)(s− 1)T−1(n+ d)−1. A similar concentration argument for v(t) gives,

d(s)2 ≤ (1− ηβl)d
(s−1)2 + 2η⟨H(s−1)(G(s−1) − η∂GLL(G

(s−1)))− Ĝ, ∂GLL(G
(s−1))− g(s−1)⟩+ η2V 2

+ 2ησcD(s)u(s−1) + η2σ2c2(rd+ 2 log(T (n+ d))) (D.13)
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holds with probability at least 1 − (1 + c)(s − 1)T−1(n + d)−1 − cT−1(n + d)−1. Applying
equation D.13 repeatedly,

d(s)2 ≤ (1− ηβl)
sd(0)2 +

1

ηβl

{
η2σ2c2(rd+ 2 log(T (n+ d))) + η2V 2

}
+ 2ησc

s−1∑
t′=0

(1− ηβl)
s−t′−1D(t′+1)u(t′)

︸ ︷︷ ︸
T

(s−1)
1

+ 2η

s−1∑
t′=0

(1− ηβl)
s−t′−1⟨H(t′)(G(t′) − η∂GLL(G

(t′)))− Ĝ, ∂GLL(G
(t′))− g(t

′)⟩︸ ︷︷ ︸
T

(s−1)
2

.

(D.14)

holds with probability at least 1− (1 + c)(s− 1)T−1(n+ d)−1 − cT−1(n+ d)−1.

Before bounding T
(s−1)
1 and T

(s−1)
2 , we derive a concentration inequality for the following sum:

S(t−1)
a ≜

t−1∑
t′=0

at−t
′−1⟨H(t′)(G(t′) − ∂GLL(G

(t′)))− Ĝ, ∂GLL(G
(t′))− g(t

′)⟩,

where a ∈ (0, 1). Fix t > 0. Let F (t′) be a filtration generated from g(0), g(1), . . . , g(t
′). Using

Cauchy-Schwarz inequality and Lemma D.1, we obtain

|⟨H(t′)(G(t′) − η∂GLL(G
(t′)))− Ĝ, ∂GLL(G

(t′))− g(t
′)⟩| ≤ (1− ηβl)d

(t′)V.

From Lemma D.2, E[g(t)|F (t−1)] = ∂GLL(G
(t)). Since G(t′) and ∂GLL(G

(t′)) are F (t′−1)-
measurable,

E[⟨H(t′)(G(t′) − η∂GLL(G
(t′)))− Ĝ, ∂GLL(G

(t′))− g(t
′)⟩|F (t′−1)] = 0.

Thus S(t−1)
a is a sum of martingale difference sequence. Using Azuma-Hoeffding bound (See, for

example, Corollary 2.20 of Wainwright (2019)), we obtain

|S(t−1)
a | ≤

√√√√log(T (n+ d))

t−1∑
t′=0

a2t−2t′−2(1− ηβl)d(t
′)2V 2.

with probability 1−O(T−1(n+ d)−1). By a union bound argument,

max
t∈[T ]

|S(t−1)
a | ≤

√√√√log(T (n+ d))

t−1∑
t′=0

a2t−2t′−2(1− ηβl)d(t
′)2V 2 (D.15)

holds with probability 1−O((n+ d)−1).

Here we bound the term T
(s−1)
1 , since u

(0)
1 , u

(0)
2 , u

(1)
1 , u

(1)
2 , . . . , u

(s−1)
1 , u

(s−1)
2 are i.i.d. standard

normal random variables,

T
(s−1)
1 ≤ 2ησc

√
2Var(w(s−1)) log(T (n+ d))

≤ 2ησc

√√√√log(T (n+ d))

s−1∑
t′=0

(1− ηβl)2s−2t′−2D(t′+1)2.
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We bound
∑s−1
t′=0(1− ηβl)

2s−2t′−2D(t′+1)2. From Lemma D.1 and equation D.10,

s−1∑
t′=0

(1− ηβl)
2s−2t′−2D(t′+1)2

≤
s−1∑
t′=0

(1− ηβl)
2s−2t′−2

(
(1− ηβl)d

(t′)2 + 2η⟨H(t′)(G(t′) − η∂GLL(G
(t′)))− Ĝ, ∂GLL(G

(t′))− ηg(t
′)⟩+ η2V 2

)
≤

s−1∑
t′=0

4(1− ηβl)
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Combined with Lemma D.1, equation D.10, equation D.15 and equation D.16,
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holds with probability at least 1−T−1(n+d)−1, where we used
√
x+ y ≤

√
x+
√
y and 2

√
xy ≤

x+ y for x, y ≥ 0. Therefore,
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where we used
√
x+ y ≤

√
x+
√
y for x, y ≥ 0 and 2xy ≤ x2 + y2.

We bound the term T
(s−1)
2 . Using equation D.15 and equation D.10,
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where we used
√
x+ y ≤

√
x+
√
y for x, y ≥ 0, 2xy ≤ x2+y2. From equation D.14, equation D.17

and equation D.18,
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holds with probability at least 1−(1+c)(s−1)T−1(n+d)−1−cT−1(n+d)−1−T−1(n+d)−1 =
1− (1 + c)sT−1(n+ d)−1, where we used 2xy ≤ x2 + y2 in the third inequality. Note that

d(s)2 ≤ 4(1− ηβl)
sd(0)2 + L,
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since C2

√
L+ C2

1 = L. Combined with equation D.4 and L ≤ γ2/2, this further gives d(s)2 ≤ γ2.

Finally, we bound L. Solving L = C2
1 + C2

√
L gives

L =
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where we used ηβl ≤ 1/2. Note that from equation D.6 and Lemma D.3,

V = max
t∈[T ]

∥g(t) − ∂GLL(G
(t))∥F ≲ (

√
r∥Ĝ∥+ γ)L

√
log(T (n+ d))

b
≪ γ√

log(T (n+ d))
.

Thus
η

βl
V 2 log(T (n+ d)) ≤ V 2 log(T (n+ d)) ≤ γ2

4 · 30
.

From equation D.7, we can see that L ≤ γ2/2. Finally, since 4(1− ηβl)
sd(0)2 ≤ 4γ2/8 = γ2/2,

d(s)2 ≤ min

{
γ2, 4(1− ηβl)

sd(0)2 +
ησ2c2

βl

(
2rd+ 60 log2(T (n+ d))

)
+ 30

η

βl
V 2

}
holds with probability 1−O(sT−1(n+ d)−1) for all s ∈ [T ]. This concludes the induction. Again,
Lemma D.3 concludes the proof.

D.4 STATISTICAL ERROR BOUND

Assumption D.2. Assume that n ∧ d > r and

n≫
(
α2 +

1

α2

)
r(r + s−2

1 re(Σξ) + s−2
2 re(Σξ̃))

2 log3(T (n+ d)).

Assumption D.3 (Signal-to-noise Ratio). Assume that s21 ∧ s22 = Ω(1).
Assumption D.4 (Signal Condition Number). Assume that κ ≜ λmax(Σz)/λmin(Σz) = O(1).

In this section, we let G∗ = [G∗
1, G

∗
2] be the minimizer of the loss E[LL(G)]. Also let Ĝ = [Ĝ1, Ĝ2]

be the minimizer of the loss LL(G). Before going into the proof of Theorem D.1, we introduce
lemmas to be used in the proof, which are based on Lemma B.7 in Gao & Ma (2021). Write
Σx,x̃ ≜ E[Σ̂x,x̃].
Lemma D.5. Suppose that Assumption D.2 holds. Choose γ > 0 such that

γ ≤ min

{
1,

λr(Σ̂x,x̃)− λr+1(Σ̂x,x̃)

18α(1 + λ1(Σ̂x,x̃)/α)1/2

}
. (D.19)

Then, Assumption D.1 holds with

βu ≥ 8∥Σ̂x,x̃∥+ 12α, βl ≤
λr(Σ̂x,x̃)− λr+1(Σ̂x,x̃)

2
.

Lemma D.6. Let L′
L(G; Σ) := − tr

(
G⊤

1 ΣG2

)
+ (α/4)∥GG⊤ − I∥2F . Suppose that λr(Σ) >

λr+1(Σ). Then, the minimizer Ĝ = [Ĝ1, Ĝ2] of L′
L satisfies

Ĝ1 =
1√
2
V

(
Ir +

1

α
Λ[r]

)1/2

P⊤
[r], Ĝ2 =

1√
2
V

(
Ir +

1

α
Λ[r]

)1/2

Q⊤
[r],

where V ∈ Or,r is any orthogonal matrix, Λ[r] is the top-r singular values of Σ, and P[r] and Q[r]

are the corresponding left and right singular vectors, respectively.
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Theorem D.2. Suppose that Assumptions D.2, D.3 and D.4 hold. Let G(T )
1 and G

(T )
2 be the repre-

sentation obtained from algorithm 1 under the loss LL(G). Suppose that initial representation G(0)

satisfy

dist(G(0), Ĝ)≪ α ∧ 1

α2
. (D.20)

Choose c≫ 1 + α and b = ⌈νn⌉, where ν ∈ (0, 1) is some constant. If η > 0 satisfies

η ≪ min

{
1 +

1

α
,

1

σ2(α3 ∨ α−1/2)(rd+ log(T (n+ d))

}
, (D.21)

then,
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2 log3(n+ d)

n
. (D.22)

holds with probability 1−O((n+ d)−1).
Corollary D.1. Assume the same conditions as in Theorem D.2. Choose η as

η =
1

σ
√
T (rd+ log(T (n+ d)))

.

If T satisfies

T ≫ 1

σ2(1 + 1/α)2(rd+ log(T (n+ d)))
(D.23)

∨ σ2(α3 ∨ α−1/2)2(rd+ log(T (n+ d))), (D.24)

then
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n
(D.25)

holds with probability 1−O((n+ d)−1).

Proof of Corollary D.1. We directly use Theorem D.2. First, we see that condition D.21 is satisfied
from the condition D.24. Note that

σ(1 + α)
√

η(rd+ log(T (n+ d))) ≲ (1 + α)

√
σ
√

rd+ log(T (n+ d))√
T

. (D.26)

The result follows from equation D.26 and equation D.22.

Corollary D.2 (Restatement of Theorem 5.1). Assume the same conditions as in Theorem D.2 and
Corollary D.1. Choose σ = Cσ

√
T log(1/δ)/(nϵ) for some universal constant Cσ . If T satisfies

T ≫

(
(nϵ)

(1 + 1/α)
√
(rd+ log(T (n+ d))) log(1/δ)

)2

∨
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,
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then

min
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∥AG
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∥AG
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(D.27)

holds with probability 1−O((n+ d)−1).

Corollary D.2 directly follows from Corollary D.1 with the choice σ ≫
√
T log(1/δ)/(nϵ).

Proof of Theorem D.2. From Lemma D.6, we obtain

Ĝ1 =
1√
2
V̂

(
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1

α
Λ̂[r]

)1/2

P̂⊤
[r], Ĝ2 =

1√
2
V̂

(
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1

α
Λ̂[r]

)1/2

Q̂⊤
[r],

where V̂ ∈ Or,r is any orthogonal matrix, Λ̂[r] = diag(λ̂1, . . . , λ̂r) is the top-r singular values
of Σ̂x,x̃, P̂[r] and Q̂[r] are the left and singular vectors of Σ̂x,x̃, respectively. Since E[LL(G)] =
L′

L(G; Σx,x̃), we also obtain
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[r],

where V ∈ Or,r is any orthogonal matrix, Λ[r] = diag(λ1, . . . , λr) is the top-r singular values of
Σx,x̃, P[r] and Q[r] are the left and singular vectors of Σx,x̃, respectively.

We first bound minA∈Rr×r ∥AĜ1 − G∗
1∥F . Let HP ≜ argminO∈Or,r

∥OP̂⊤
[r] − P⊤

[r]∥F . Using
Theorem 3 from Yu et al. (2015), we have
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, (D.28)

where we used Assumption D.4, λr+1 = 0 and λ1 = 1. Let AP := V (Ir + (1/α)Λ[r])
1/2(Ir +

(1/α)Λ̂[r])
−1/2V̂ −1. Then, from Assumption D.4,

∥AP ∥2 ≤
1 + λ1/α

1 + λ̂r/α
≲ 1 ∨ κ ≲ 1. (D.29)

Moreover,

∥AP Ĝ1 −G∗
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, (D.30)

where the last inequality follows from equation D.28.

Denote the j-th largest singular value of Σx,x̃ and Σ̂x,x̃ by λj and λ̂j , respectively. Note that Lemma
F.1 and Assumption D.2 gives ∥Σ̂x,x̃ − Σx,x̃∥ ≪ ∥Σx,x̃∥ = 1 with probability 1 − O((n + d)−1).
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In particular, ∥Σ̂x,x̃∥ ≤ 2∥Σx,x̃∥ = 2. Furthermore, from Weyl’s inequality, we also have
maxj∈[d] |λ̂j − λj | ≪ (λ1/λj)λj ≤ κλj . Thus, Assumption D.4 gives

λ̂r − λ̂r+1 ≥ λr − λr+1 − |λ̂r − λr| − |λ̂r+1 − λr+1| ≥
λr − λr+1

2
=

1

2κ
.

Choose γ > 0 such that

γ =
1

36κ(α ∨ 1)(1 + 1/(2α))1/2
.

Then, γ satisfies the condition of Lemma D.5 with probability 1 − O((n + d)−1). Thus, on this
event, Assumption D.1 holds for LL(G) with

βu ≥ 8λ̂1 + 12α, βl ≤
λ̂r − λ̂r+1

2
. (D.31)

Choose βu = 16+ 12α and βl = (λr − λr+1)/4 = 1/(4κ), which satisfies equation D.31 from the
above arguments.

From Lemma F.3,
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holds with probability 1−O((n+d)−1). Choose b = ⌈νn⌉. Since ∥Ĝ∥2 ≤ 1+∥Σ̂x,x̃∥/α ≤ 1+2/α,
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where the last inequality follows from Assumption D.2. Also note that

1
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where the last inequality follows again from Assumption D.2. Choose c ≫ 1 + α. From equa-
tion D.32, equation D.33 and b = ⌈νn⌉, we verify that equation D.5 and equation D.6 are satisfied.

From Theorem D.1, if

η ≤ min
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,

then the following bound holds with probability 1−O((n+ d)−1):
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Substituting the values of c and b with a similar argument as in equation D.32 combined with√
x+ y ≤

√
x+
√
y gives
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Finally, note that
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1∥F

≲ dist(G(T ), Ĝ) + ∥AP Ĝ1 −G∗
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where the last inequality follows from equation D.29. Using equation D.30 and equation D.35, we
obtain

min
A∈Rr×r

∥AG
(T )
1 −G∗

1∥F ≤ min
A∈Rr×r

∥AG
(T )
1 −AP Ĝ1∥F + ∥AP Ĝ1 −G∗

1∥F

≲ (1− ηβl)
T/2 dist(G(0), Ĝ) + σ(1 + α)

√
η

βl
(rd+ log(T (n+ d)))

+

√
η

βl
r

(
1 +

1

α

)
(r + re(Σξ) + re(Σξ̃)) log

3/2(T (n+ d))
√
n

+

(
1 +

1

α

)√
r(r + s−2

1 re(Σξ) + s−2
2 re(Σξ̃)) log(n+ d)

n

≲ (1− ηβl)
T/2 dist(G(0), Ĝ) + σ(1 + α)

√
η

βl
(rd+ log(T (n+ d)))

+

(
1 +

1

α

)√
r(r + s−2

1 re(Σξ) + s−2
2 re(Σξ̃))

2 log3(n+ d)

n
.

A symmetric argument for Ĝ2 and G∗
2 gives the desired result.

E PROOF OF LEMMAS

Proof of Lemma D.1. We first show the following inequality, as in the proof of Lemma 4 in Chi
et al. (2019).

2
〈
H∂GLL(G), HG− Ĝ

〉
≥ 1

βu
∥∂GLL(G)∥2F + βl∥HG− Ĝ∥2F . (E.1)

Note that H∂GLL(G) = ∂GLL(HG). Applying Taylor series expansion to LL(Ĝ), we obtain

LL(Ĝ) = LL(HG)−
〈
H∂GLL(G), HG− Ĝ

〉
+

1

2
vec(HG− Ĝ)⊤

∂2LL(Ǧ)

∂ vec(G)∂ vec(G)⊤
vec(HG− Ĝ),
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where Ǧ ≜ HG+ τ(Ĝ−HG) with some τ ∈ [0, 1]. We can see that

∥Ǧ− Ĝ∥2F = (1− τ)∥HG− Ĝ∥2F ≤ γ2.

From equation D.2,

LL(Ĝ) ≥ LL(HG)−
〈
H∂GLL(G), HG− Ĝ

〉
+

βl
2
∥HG− Ĝ∥2F . (E.2)

Furthermore, from equation D.1 and equation D.3,

LL(Ĝ)− LL(HG) ≤ LL

(
HG− 1

βu
∂GLL(HG)

)
− LL(HG)

≤ − 1

βu
⟨∂GLL(HG), ∂GLL(HG)⟩+ βu

2

∥∥∥∥ 1

βu
∂GLL(HG)

∥∥∥∥2
F

= − 1

2βu
∥∂GLL(HG)∥2F = − 1

2βu
∥∂GLL(G)∥2F , (E.3)

where the second inequality follows from the characterization of smoothness (Theorem 5.8 of Beck
(2017).) From equation E.2 and equation E.3, we obtain

−
〈
H∂GLL(G), HG− Ĝ

〉
+

βl
2
∥HG− Ĝ∥2F ≤ LL(Ĝ)− LL(HG)

≤ − 1

2βu
∥∂GLL(G)∥2F .

This proves equation E.1.

Next, we bound ∥HḠ− Ĝ∥F . Observe that

∥HḠ− Ĝ∥2F = ∥HG− Ĝ− ηH∂GLL(G)∥2F
= dist2(G, Ĝ) + η2∥∂GLL(G)∥2F − 2η

〈
∂GLL(G), HG− Ĝ

〉
≤ (1− ηβl) dist

2(G, Ĝ) + η

(
η − 1

βu

)
∥∂GLL(G)∥2F

≤ (1− ηβl) dist
2(G, Ĝ), (E.4)

where the last inequality follows from η ≤ 1/βu.

Using equation E.4, we further obtain

∥HG̃− Ĝ∥2F = ∥HḠ− Ĝ+ ηH(∂GLL(G)− g)∥2F
= ∥HḠ− Ĝ∥2F + 2η⟨HḠ− Ĝ, ∂GLL(G)− g⟩+ η2∥g − ∂GLL(G)∥2F
≤ (1− ηβl) dist

2(G, Ĝ) + 2η⟨HḠ− Ĝ, ∂GLL(G)− g⟩+ η2∥g − ∂GLL(G)∥2F .
This concludes the proof.

Proof of Lemma D.2. Observe that

EB

[
1

b

∑
i∈B

xix̃
⊤
i

]
=

1

b

1(
n
b

) ∑
B′⊂[n]
|B′|=b

∑
i∈B′

xix̃
⊤
i

=
1

b

1(
n
b

) ∑
i∈[n]

xix̃
⊤
i

∑
B′⊂[n]
|B′|=b

1{i ∈ B′}

=
1

b

(
n−1
b−1

)(
n
b

) ∑
i∈[n]

xix̃
⊤
i

=
1

n

∑
i∈[n]

xix̃
⊤
i .
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Similarly,

EB

 1

b(b− 1)

∑
i,j∈B
i ̸=j

xix̃
⊤
j

 =
1

b(b− 1)

1(
n
b

) ∑
B′⊂[n]
|B′|=b

∑
i,j∈B′

i ̸=j

xix̃
⊤
j

=
1

b(b− 1)

(
n−2
b−2

)(
n
b

) ∑
i,j∈[n]
i ̸=j

xix̃
⊤
j

=
1

n(n− 1)

∑
i,j∈[n]
i ̸=j

xix̃
⊤
j .

Thus EB[Σ̂x,x̃,B] = EB[Σ̂x,x̃] and hence

EB[LL(G;B)] = LL(G). (E.5)

Taking derivative with G in equation E.5 concludes the proof.

Proof of Lemma D.3. Note that ∂GLL(G
(t);B(t))− ∂GLL(G

(t);B(t)) = ∂G(−tr(G(t)
1 Σ̂x,x̃G

(t)
2 ) +

tr(G
(t)
1 Σ̂x,x̃,B(t)G

(t)
2 )). Thus

∥∂GLL(G
(t);B(t))− ∂GLL(G

(t);B(t))∥F
= ∥G(t)

1 (Σ̂x,x̃ − Σ̂x,x̃,B(t))∥F + ∥G(t)
2 (Σ̂x,x̃ − Σ̂x,x̃,B(t))⊤∥F

≤ (∥G(t)
1 ∥F + ∥G(t)

2 ∥F )∥Σ̂x,x̃ − Σ̂x,x̃,B(t)∥

≤ (∥Ĝ∥F + dist(G(t), Ĝ))∥Σ̂x,x̃ − Σ̂x,x̃,B(t)∥

≤ (∥Ĝ∥F + γ)∥Σ̂x,x̃ − Σ̂x,x̃,B(t)∥.

We first bound ∥(1/b)
∑
i∈B(t) xix̃

⊤
i − (1/n)

∑
i∈[n] xix̃

⊤
i ∥. Write xi = (xi1, . . . , xid1) and x̃i =

(x̃i1, . . . , x̃id2). For any fixed k ∈ [d1] and ℓ ∈ [d2], using Lemma F.2, we have∣∣∣∣∣∣1b
∑
i∈B(t)

xikx̃il −
1

n

∑
i∈[n]

xikx̃il

∣∣∣∣∣∣ ≤ Cmax
i∈[n]
|xikx̃il|

√
(1− b/n) log(Trd(n+ d))

b

≤ CR

√
(1− b/n) log(T (n+ d))

b

with probability 1 − O(T−1(rd)−1(n + d)−1), where C > 0 is a universal constant. Note that
operator norm of a matrix is bounded by the maximum element of the matrix. By a union bound
argument,∥∥∥∥∥∥1b

∑
i∈B(t)

xix̃
⊤
i −

1

n

∑
i∈[n]

xix̃
⊤
i

∥∥∥∥∥∥ ≤ max
k∈[d1],l∈[d2]

∣∣∣∣∣∣1b
∑
i∈B(t)

xikx̃il −
1

n

∑
i∈[n]

xikx̃il

∣∣∣∣∣∣
≤ CR

√
(1− b/n) log(Trd(n+ d))

b

holds with probability 1−O(T−1(n+ d)−1).

Let µB(t) ≜ (1/b)
∑
i∈B(t) xi and µ̃B(t) ≜ (1/b)

∑
i∈B(t) x̃i. Also let µ ≜ (1/n)

∑
i∈[n] xi and

µ̃ ≜ (1/n)
∑
i∈[n] x̃i. Next we bound ∥µB(t) µ̃⊤

B(t) − µµ̃⊤∥.

Again from Lemma F.2, for any fixed j ∈ [d1],

|e⊤j (µB(t) − µ)| ≤ C ′ max
i∈[n]
|e⊤j xi|

√
(1− b/n) log(Td1(n+ d))

b
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holds with probability 1 − O(T−1d−1
1 (n + d)−1), where C ′ > 0 is some universal constant. By a

union bound argument, we obtain

∥µB(t) − µ∥ ≤ C ′ max
i∈[n]
∥xi∥

√
(1− b/n) log(T (n+ d))

b

holds with probability 1−O(T−1(n+ d)−1). Similarly,

∥µ̃B(t) − µ̃∥ ≤ C ′ max
i∈[n]
∥x̃i∥

√
(1− b/n) log(n+ d)

b

holds with probability 1−O((n+ d)−1). Thus,

∥µB(t) µ̃⊤
B(t) − µµ̃⊤∥ ≤ ∥µ− µB(t)∥∥µ̃B(t)∥+ ∥µ∥∥µ̃− µ̃B(t)∥

≤ 2C ′(max
i∈[n]
∥xi∥)(max

i∈[n]
∥x̃i∥)

√
(1− b/n) log(T (n+ d))

b
,

where we used ∥µ̃B(t)∥ ≤ maxi∈[n] ∥x̃i∥ and ∥µ∥ ≤ maxi∈[n] ∥xi∥. Therefore,

∥Σ̂x,x̃,B(t) − Σ̂x,x̃∥ =

∥∥∥∥∥∥ 1

b− 1

∑
i∈B(t)

xix̃
⊤
i −

1

n− 1

∑
i∈[n]

xix̃
⊤
i −

b

b− 1
µB(t) µ̃⊤

B(t) +
n

n− 1
µµ̃⊤

∥∥∥∥∥∥
≤

∥∥∥∥∥∥1b
∑
i∈B(t)

xix̃
⊤
i −

1

n

∑
i∈[n]

xix̃
⊤
i

∥∥∥∥∥∥+ ∥µB(t) µ̃⊤
B(t) − µµ̃⊤∥

+

∥∥∥∥∥∥1b
∑
i∈B(t)

xix̃
⊤
i −

1

b− 1

∑
i∈B(t)

xix̃
⊤
i

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1n

∑
i∈[n]

xix̃
⊤
i +

1

n− 1

∑
i∈[n]

xix̃
⊤
i

∥∥∥∥∥∥
≤ (C + 2C ′)R

√
(1− b/n) log(T (n+ d))

b

+
1

b− 1
max
i∈B(t)

∥xi∥∥x̃i∥+
1

n− 1
max
i∈[n]
∥xi∥∥x̃i∥

≤ (C + 2C ′ + 4)R

(√
(1− b/n) log(T (n+ d))

b
+

1

b

)
holds with probability 1 − O(T−1(n + d)−1). A union bound argument for t ∈ [T ] concludes the
proof.

Proof of Lemma D.4. Note that

max
t∈[T ]

∥∂GLL(G
(t);B)∥F = max

t∈[T ]
∥∂GLL(G

(t);B)− ∂GLL(Ĝ)∥F

≤ max
t∈[T ]

∥∂GLL(G
(t);B)− ∂GLL(G

(t))∥F︸ ︷︷ ︸
=:T

(t)
1

+max
t∈[T ]

∥∂GLL(G
(t))− ∂GLL(Ĝ)∥F︸ ︷︷ ︸
=:T

(t)
2

.

We can bound the term T
(t)
1 by Lemma D.3 as

max
t∈[T ]

T
(t)
1 ≲ (

√
r∥Ĝ∥+ γ)R

√
log(T (n+ d))

b
, (E.6)

which holds with probability 1 − O((n + d)−1). For the term T2, by triangle inequality and the
inequality ∥AB∥F ≤ ∥A∥∥B∥F for any matrices A and B, we obtain

T
(t)
2 ≤ ∥(G(t)

2 − Ĝ2)Σ̂
⊤
x,x̃∥F + ∥(G(t)

1 − Ĝ1)Σ̂x,x̃∥F + α∥G(t)G(t)⊤G(t) − ĜĜT Ĝ∥F + α∥G(t) − Ĝ∥F
≤ ∥G(t) − Ĝ∥F ∥Σ̂x,x̃∥+ 3α(∥G(t)∥ ∨ ∥Ĝ∥)2∥G(t) − Ĝ∥F
≲ γ∥Σ̂x,x̃∥+ α(∥Ĝ∥2 + γ2)γ, (E.7)

where we used ∥G(t)∥ ≤ ∥Ĝ∥+ γ. The claim follows from equation E.6 and equation E.7.
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Proof of Lemma D.5. The following proof uses the technique from the proof of Lemma B.7 in Gao
& Ma (2021). We first derive the bound for the smoothness of LL. To this aim, compute the
derivatives of LL. For notational brevity, we write Σ for Σ̂x,x̃. Observe that

∂

∂G
∥GG⊤ − Ir∥2F = 4GG⊤G− 4G.

This implies

∂

∂ vec(G)
∥GG⊤ − Ir∥2F = vec(4GG⊤G− 4G) = 4(Id ⊗GG⊤) vec(G)− 4 vec(G). (E.8)

Write column vectors of G as G = [a1, . . . , ad] ∈ Rr×d. Define

A ≜


a1a

⊤
1 a2a

⊤
1 . . . ada

⊤
1

a1a
⊤
2 a2a

⊤
2 . . . ada

⊤
2

...
...

. . .
...

a1a
⊤
d a2a

⊤
d . . . ada

⊤
d

 .

Thus,

∂LL(G)

∂G
= −G

(
O Σ
Σ⊤ O

)
+ αGG⊤G− αG. (E.9)

Also, equation E.8 further gives

∂2

∂ vec(G)∂ vec(G)⊤
∥GG⊤ − Ir∥2F = 4(Id ⊗GG⊤) + 4G⊤G⊗ Ir + 4A− 4Ird.

Therefore,

∂2LL(G)

∂ vec(G)∂ vec(G)⊤
= −

(
O Σ
Σ⊤ O

)
⊗ Ir + αId ⊗GG⊤ + αG⊤G⊗ Ir + αA− αIrd.

From Lemma D.6, Ĝ = [Ĝ1, Ĝ2] is given by

Ĝ1 =
1√
2
V

(
Ir +

1

α
Λ[r]

)1/2

P⊤
[r], Ĝ2 =

1√
2
V

(
Ir +

1

α
Λ[r]

)1/2

Q⊤
[r],

where V ∈ Or,r is any orthogonal matrix, P[r] and Q[r] are the top-r right and left singular vectors,
respectively, and Λ[r] is a diagonal matrix of top-r singular values. We note that ∥Ĝ∥2 ≤ ∥Ĝ1∥2 +
∥Ĝ2∥2 = (1 + ∥Σ∥/α).

Fix any Z1 ∈ Rr×d1 and Z2 ∈ Rr×d2 . Let Z = [Z1, Z2] ∈ Rr×d. Write z1 ≜ vec(Z1), z2 ≜
vec(Z2) and z = vec(Z). Since

z⊤
((

O Σ
Σ⊤ O

)
⊗ Ir

)
z = 2z⊤1 (Σ⊗ Ir)z2 = 2 tr

(
Z⊤
1 Z2Σ

⊤),
z⊤(Id ⊗GG⊤)z = tr

(
Z⊤GG⊤Z

)
,

z⊤(G⊤G⊗ Ir)z = tr
(
Z⊤ZG⊤G

)
,

z⊤Az =
∑
i,j

a⊤j zia
⊤
i zj = tr

(
ZG⊤ZG⊤),

we obtain

z⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
z = −2 tr

(
Z⊤
1 Z2Σ

⊤)− α tr
(
Z⊤Z

)
+ α tr

(
ZG⊤ZG⊤)+ α tr

(
Z⊤GG⊤Z

)
+ α tr

(
Z⊤ZG⊤G

)
. (E.10)
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Now suppose that ∥G− Ĝ∥F ≤ γ. By Cauchy-Schwarz inequality,

z⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
z ≤ 2∥Z1∥F ∥Z2∥F ∥Σ∥+ 3α∥Z∥2F ∥G∥2

≤ (2∥Σ∥+ 3α∥G∥2)∥Z∥2F .
From ∥G∥2 ≤ (∥Ĝ∥+ γ)2 ≤ 2∥Ĝ∥2 + 2γ2, γ2 ≤ 1 and ∥Ĝ∥2 ≤ (1 + ∥Σ∥/α),

z⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
z ≤ (8∥Σ∥+ 12α)∥Z∥2F . (E.11)

Setting βu ≜ 8∥Σ∥+ 12α gives the first result for the smoothness of LL.

Next we derive the strong directional convexity of LL. Let ∆1 ≜ HZ1 − Ĝ1, ∆2 ≜ HZ2 − Ĝ2 and
∆ ≜ [∆1,∆2] = HZ − Ĝ. We bound vec(∆)⊤∂2LL(G) vec(∆) from below. We first deal with
the case where G = Ĝ. Since ĜĜ⊤ = (1/α)V Λ[r]V

⊤ + Ir, equation E.10 gives,

vec(∆)⊤
∂2LL(Ĝ)

∂ vec(G)∂ vec(G)⊤
vec(∆)

= −2 tr
(
∆⊤

1 ∆2Σ
⊤)− α tr

(
∆⊤∆

)
+ α tr

(
∆Ĝ⊤∆Ĝ⊤

)
+ α tr

(
∆⊤ĜĜ⊤∆

)
+ α tr

(
∆⊤∆Ĝ⊤Ĝ

)
= tr

(
∆⊤V Λ[r]V

⊤∆
)
+ α tr

(
∆⊤∆Ĝ⊤Ĝ

)
− 2 tr

(
∆⊤

1 ∆2Σ
⊤)︸ ︷︷ ︸

=:T1

+α tr
(
∆Ĝ⊤∆Ĝ⊤

)
︸ ︷︷ ︸

=:T2

.

We first bound the term T1. Note

Ĝ⊤Ĝ =
1

2

(
P[r]

Q[r]

)(
P[r]

Q[r]

)⊤

+
1

2α

(
P[r]Λ[r]P

⊤
[r] P[r]Λ[r]Q

⊤
[r]

Q[r]Λ[r]P
⊤
[r] Q[r]Λ[r]Q

⊤
[r]

)
. (E.12)

Notice that the first term is positive semi-definite. Hence,

α tr
(
∆⊤∆Ĝ⊤Ĝ

)
≥ 1

2
tr
(
∆⊤

1 ∆1P[r]Λ[r]P
⊤
[r]

)
+ tr

(
∆⊤

1 ∆2Q[r]Λ[r]P
⊤
[r]

)
+

1

2
tr
(
∆⊤

2 ∆2Q[r]Λ[r]Q
⊤
[r]

)
≥ 2 tr

(
∆⊤

1 ∆2Q[r]Λ[r]P
⊤
[r]

)
,

where we used tr(AB) ≤ ∥A∥F ∥B∥F ≤ (1/2) tr
(
A⊤A

)
+ (1/2) tr

(
B⊤B

)
, which follows from

Cauchy-Schwarz inequality and 2xy ≤ x2+y2. Let the SVD of Σ be Σ = P[r]Λ[r]Q
⊤
[r]+P⊥Λ⊥Q

⊤
⊥,

where P⊥, Q⊥ are the right and left singular vectors except top-r singlar vectors, respectively, and
Λ⊥ is a diagonal matrix of remaining singular values. Observe that

α tr
(
∆⊤∆Ĝ⊤Ĝ

)
− 2 tr

(
∆⊤

1 ∆2Σ
⊤)

≥ 2 tr
(
∆⊤

1 ∆2Q[r]Λ[r]P
⊤
[r]

)
− 2 tr

(
∆⊤

1 ∆2Q[r]Λ[r]P
⊤
[r]

)
− 2 tr

(
∆⊤

1 ∆2Q⊥Λ⊥P
⊤
⊥
)

= −2 tr
(
∆⊤

1 ∆2Q⊥Λ⊥P
⊤
⊥
)
.

Thus,
T1 ≥ tr

(
∆⊤V Λ[r]V

⊤∆
)
− 2 tr

(
∆⊤

1 ∆2Q⊥Λ⊥P
⊤
⊥
)

≥ λr∥∆∥2F − tr
(
∆2Q⊥Λ⊥Q

⊤
⊥∆

⊤
2

)
− tr

(
∆1P⊥Λ⊥P

⊤
⊥∆⊤

1

)
≥ (λr − λr+1)∥∆∥2F ,

where we used tr(AB) ≤ (1/2) tr
(
A⊤A

)
+ (1/2) tr

(
B⊤B

)
again.

Next, we show T2 ≥ 0. Suppose that HZĜ⊤ is symmetric. Then,

tr
(
∆Ĝ⊤∆Ĝ⊤

)
= tr

(
(HZ − Ĝ)Ĝ⊤(HZ − Ĝ)Ĝ⊤

)
= tr

(
HZĜ⊤HZĜ⊤

)
− 2 tr

(
ĜĜ⊤HZĜ⊤

)
+ tr

(
ĜĜ⊤ĜĜ⊤

)
= tr

(
(HZĜ⊤ − ĜĜ⊤)⊤(HZĜ⊤ − ĜĜ⊤)

)
≥ 0.
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Thus, we only need to show that HZĜ⊤ is symmetric. Recall that H ≜ argminO∈Or,r
∥OZ−Ĝ∥2F .

This gives

∥HZ − Ĝ∥2F ≤ ∥H ′Z − Ĝ∥2F (E.13)

for all H ′ ∈ Or,r. Let the SVD of ZĜ⊤ be ZĜ⊤ = UCV ⊤, where U, V ∈ Or,r′ are positive
definite matrices and C ∈ Rr′ is a diagonal matrix. Write the orthogonal matrices of U and V as
U⊥ ∈ Or,r−r′ and V⊥ ∈ Or,r−r′ , respectively. From equation E.13,

tr
(
V ⊤H ′UC

)
=
∑
j∈[r′]

(V ⊤H ′U)j,j(C)j,j ≤ tr
(
V ⊤HUC

)
∀H ′ ∈ Or,r. (E.14)

The inequality in equation E.14 holds if and only if V ⊤HU = Ir. Now we decompose HU as
HU = V V ⊤HU + V⊥V

⊤
⊥ HU = V + V⊥V

⊤
⊥ HU . The fact that V,HU ∈ Or,r′ yields HU = V .

Thus HZĜ⊤ = HUCV ⊤ = V CV ⊤ and hence HZĜ⊤ is symmetric.

In summary, we showed that

vec(∆)⊤
∂2LL(Ĝ)

∂ vec(G)∂ vec(G)⊤
vec(∆) ≥ (λr(Σ)− λr+1(Σ))∥∆∥2F . (E.15)

Next, we prove that vec(∆)⊤∂2LL(G) vec(∆) is close to vec(∆)⊤∂2LL(Ĝ) vec(∆) under assump-
tion ∥G− Ĝ∥F ≤ γ. Observe that

vec(∆)⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
vec(∆)− vec(∆)⊤

∂2LL(Ĝ)

∂ vec(G)∂ vec(G)⊤
vec(∆)

= α tr
(
∆G⊤∆G⊤)+ α tr

(
∆⊤GG⊤∆

)
+ α tr

(
∆⊤∆G⊤G

)
− α tr

(
∆Ĝ⊤∆Ĝ⊤

)
− α tr

(
∆⊤ĜĜ⊤∆

)
− α tr

(
∆⊤∆Ĝ⊤Ĝ

)
.

Using triangle inequality multiple times, we obtain∣∣∣∣∣vec(∆)⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
vec(∆)− vec(∆)⊤

∂2LL(Ĝ)

∂ vec(G)∂ vec(G)⊤
vec(∆)

∣∣∣∣∣
≤ 3α∥∆∥2F ∥G− Ĝ∥F (∥G∥+ ∥Ĝ∥)
≤ 3α∥∆∥2F ∥G− Ĝ∥F (∥G− Ĝ∥+ 2∥Ĝ∥)

≤ 3α∥∆∥2F γ

(
1 + 2

(
1 +
∥Σ∥
α

)1/2
)

≤ 9α∥∆∥2F γ
(
1 +
∥Σ∥
α

)1/2

≤ λr(Σ)− λr+1(Σ)

2
∥∆∥2F , (E.16)

where the second last inequality follows from the assumption and ∥G− Ĝ∥ ≤ ∥G− Ĝ∥F ≤ γ ≤ 1,
and the last inequality follows from equation D.19. Combining equation E.15 and equation E.16
gives

vec(∆)⊤
∂2LL(G)

∂ vec(G)∂ vec(G)⊤
vec(∆) ≥ λr(Σ)− λr+1(Σ)

2
∥∆∥2F .

Setting βl ≜ (λr(Σ)− λr+1(Σ))/2 concludes the proof.

Proof of Lemma D.6. Here we derive the minimizer of L′
L. Let the singular value decomposition of

Σ be Σ = PΛQ⊤, where Λ ∈ Rd1×d2 is a diagonal matrix and P = (p1, . . . , pd1) ∈ Od1,d1 and
Q = (q1, . . . , qd2) ∈ Od2,d2 are orthogonal matrices. By setting equation E.9 to be 0, we obtain

G

(
O Σ
Σ⊤ O

)
= α(GG⊤ − Ir)G.

35



Under review as a conference paper at ICLR 2024

Equivalently,

G1Σ = α(GG⊤ − Ir)G2, (E.17)

G2Σ
⊤ = α(GG⊤ − Ir)G1. (E.18)

Multiplying Σ from the right in equation E.18, and substituting with equation E.17 gives

G2Σ
⊤Σ = α(GG⊤ − Ir)G1Σ = α(GG⊤ − Ir)

2G2.

Thus the right singular vectors of G2 is aligned with some r column vectors of Q. Given an indices
set J = {j1, . . . , jr}, we write ΛJ ≜ diag((Λ)j1,j1 , . . . , (Λ)jr,jr ), PJ ≜ (pj1 , . . . , pjr ) and QJ ≜
(qj1 , . . . , qjr ). We decompose G2 by SVD as G2 = V2C2U

⊤
2 , where U2 = QI for some I =

(i1, . . . , ir) ⊂ [d1] and C2 ∈ Rr×r is a diagonal matrix, and V2 ∈ Or,r. Similarly, we decompose
G1 as G1 = V1C1U

⊤
1 , where U1 = PI′ for some I ′ = (i′1, . . . , i

′
r) ⊂ [d2], C1 ∈ Rr×r is a diagonal

matrix, and V1 ∈ Or,r.

From equation E.17, we obtain

V1C1ΛI′Q
⊤
I′ = α(GG⊤ − Ir)V2C2Q

⊤
I .

Thus QI′ = QIHQ for some HQ ∈ Or,r. Without loss of generality, we set I = I ′.

Since the term − tr
(
G1Σ̂G

⊤
2

)
= − tr

(
V1C1ΛIC2V

⊤
2

)
in the loss function is minimized when

V1 = V2, whereas the penalty term Π(G1, G2) is invariant under the change of V1 and V2, we obtain
V1 = V2. In summary, from equation E.17 and equation E.18, we have

V1C1ΛIQ
⊤
I = αV1(C

2
1 + C2

2 − Ir)C2Q
⊤
I ,

V1C2ΛIP
⊤
I = αV1(C

2
1 + C2

2 − Ir)C1P
⊤
I .

Thus

C1ΛI = α(C2
1 + C2

2 − Ir)C2, C2ΛI = α(C2
1 + C2

2 − Ir)C1. (E.19)

Fix any j ∈ [r]. Suppose that j-th entry of C1 is 0. Then, from equation E.19, j-th entry of C2 must
be 0. Now the loss function can be written as

LL = − tr(C1ΛIC2) +
α

4
∥C2

1 + C2
2 − Ir∥2F .

Note that we can make the loss smaller by slightly increasing j-th diagonal entry of C1 and C2. This
implies that j-th diagonal entry of C1 and C2 cannot be 0 when G1 and G2 are the solution to the
minimization of the loss LL(G). Since j is arbitrary, we can show that C1 = C2 = (1/

√
2)(Ir +

(1/α)ΛI)
1/2.

Next we show I = [r]. To see this, note that

LL = −1

2
tr

((
Ir +

1

α
ΛI

)1/2

ΛI

(
Ir +

1

α
ΛI

)1/2
)

+
α

4
tr
(
(C2

1 + C2
2 − Ir)

2
)

= −1

2

∑
i∈I

(
λi +

λ2
i

α

)
+

1

4α

∑
i∈I

λ2
i

= −1

2

∑
i∈I

(
λi +

λ2
i

2α

)
,

which is minimized if and only if I = [r] due to the assumption λr(Σ) > λr+1(Σ). Finally, Ĝ is
given by

Ĝ1 =
1√
2
V

(
Ir +

1

α
Λ[r]

)1/2

P⊤
[r], Ĝ2 =

1√
2
V

(
Ir +

1

α
Λ[r]

)1/2

Q⊤
[r], (E.20)

where V ∈ Or,r is any orthogonal matrix.
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F AUXILIARY RESULTS

Here we define Orlicz norm of a random variable X as ∥X∥ψ2 ≜ inf{c > 0 : E[eX2/c2 ] ≤ 2}.
Assumption F.1. Let X and X̃ be mean zero random vectors taking values in Rd1 and Rd2 , re-
spectively. Assume that there exists some constants C1, C2 > 0 satisfying that E[(u⊤X)2] ≥
C1∥u⊤X∥2ψ2

holds for any u ∈ Rd1 , and that E[(v⊤X̃)2] ≥ C2∥v⊤X̃∥2ψ2
holds for any v ∈ Rd2 .

We borrow the proposition from Nakada et al. (2023) for bounding the distance between sample
cross-covariance matrix and population cross-covariance matrix.
Lemma F.1 (Proposition 9.1 from Nakada et al. (2023)). Suppose that Assumption F.1 holds. Let
(X1, X̃1), . . . , (Xn, X̃n) be independent copies of (X, X̃). Let Σ̂X,X̃ ≜ (1/n)

∑n
i=1 XiX̃

⊤
i . Then,

there exists some constant C = C(C1, C2) > 0 such that with probability at least 1− e−t,

∥Σ̂X,X̃ − E[Σ̂X,X̃ ]∥

≤ C

[
(tr(ΣX̃)∥ΣX∥ ∨ tr(ΣX)∥ΣX̃∥)

1/2

√
t+ log(d1 + d2)

n
∨ (tr(ΣX) tr(ΣX̃))1/2

t+ log(d1 + d2)

n

]
holds for all t > 0.

Lemma F.2 (Corollary 2.5 from Bardenet & Maillard (2015)). Let X1, . . . , Xn ∈ R be fixed num-
bers. Let B ⊂ [n] be a random batch of size b from [n] without replacement. Then,∣∣∣∣∣∣1b

∑
i∈B

Xi −
1

n

∑
i∈[n]

Xi

∣∣∣∣∣∣ ≲ max
i∈[n]
|Xi|

√
(1− b/n) log(1/γ)

b

holds with probability 1− γ.

Lemma F.3 (Modification of Lemma C.1 from Nakada et al. (2023)). Suppose Assumptions D.4
and D.3 hold. Then, the following inequalities hold with probability 1−O((n+ d)−1):

max
i∈[n]
∥xi∥ ≤ C1∥Σz∥1/2

√
(r + s−2

1 re(Σξ)) log(n+ d),

max
i∈[n]
∥x̃i∥ ≤ C2∥Σz̃∥1/2

√
(r + s−2

2 re(Σξ̃)) log(n+ d),

where C ′
1 = C ′

1(σ, s1), C
′
2 = C ′

2(σ, s2) are some constants.
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