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Abstract
In principle, quantum chemistry allows us to quan-
tify all electronic and geometric properties of
molecules and their interactions. Thus, incorpo-
rating pre-calculated quantum mechanical prop-
erties into deep learning models could improve
their ability to predict important pharmacologi-
cal properties of small molecules and potential
drugs. However, this opportunity has been under-
exploited in the recent wave of AI-driven drug
discovery. We show that pre-training Equivari-
ant Graph Neural Network (EGNN) models to
predict atom-centered partial charges, that have
been pre-calculated using quantum mechanical
methods, we can obtain more accurate models to
predict absorption, distribution, metabolism, ex-
cretion, and toxicological (ADMET) properties.
We compared the performance of quantum chem-
istry pre-training against non-quantum mechanics-
based pre-training and with no pre-training at all,
and found quantum chemistry pre-training to pro-
duce the most accurate models for lipophilicity,
blood-brain barrier penetration, metabolism by
CYP2D6, and toxicity; and very similar perfor-
mance to non-pre-training models for the much
more challenging task of hepatocyte clearance
prediction. By using our quantum chemistry-
based pre-training to predict both atom-level and
molecule-level properties, we obtain richer rep-
resentations of the molecules than without pre-
training, helping our models to learn from the
underlying physics and chemistry.
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1. Introduction
The study of quantititative-structure activity relationships
(QSAR) is fundamental to medicinal chemistry and drug
discovery. QSAR combines chemical intuition with compu-
tational and mathematical approaches to help in the search
for molecules with desirable physicochemical and phar-
macological properties. To find relevant structure-activity
relationships it is necessary to use appropriate molecular de-
scriptors. Recent advances in computational resources and
algorithms has helped to boost the efficiency of performing
quantum chemical calculations on molecules (Blunt et al.,
2022). Such quantum chemical 1 descriptors of molecules
are thus an additional source of featurization we could tap
into. In principle, quantum chemistry allows us to quantify
all electronic and geometric properties of molecules and
their interactions (Griffiths & Schroeter, 2004).

Electronic descriptors can be derived directly from the
molecular wavefunction. These molecule-level electronic
descriptors can also partitioned at the level of atoms, in
the form of atom-centered partial charges (q), or groups of
atoms, which allows us to describe quantum chemistry at
different scales. Previous research has demonstrated correla-
tion between physicochemical properties calculated by quan-
tum methods and experimentally-measured physiological
properties, including Absorption, Distribution, Metabolism,
Excretion, and Toxicity, or ‘ADMET’ (van Damme & Bult-
inck, 2008; del Amo, 2015; Silva-Junior et al., 2017). For
instance, Mulliken partial charge-based descriptors such
as the Mulliken charge separation on the hydrogens in a
molecule

(
qmax
H − qmin

H

)
and dipole moment

(
µ2

)
are cor-

related with the degree of blood-brain barrier penetration,
logBBB (van Damme & Bultinck, 2008).

Thus, quantum-chemical methods can characterize a large
amount of molecular and atomic properties including re-
activity, conformation, and binding activity of a complete
molecule and even molecular fragments. In turn, QSAR
models built using these descriptors will contain informa-
tion about the nature of intermolecular forces involved in

1In this work, the terms ‘quantum chemical’ and ‘quantum
mechanical’ are used interchangeably.
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determining the biological activity of the molecules (Cocchi
et al., 1992). Quantum-chemical descriptors calculated by
quantum chemical methods, unlike experimental measure-
ments, lack aleatoric error, but can suffer from systematic
errors that can be attributed to the inherent approximations
made by these methods (Wang et al., 2021), such as the
linear combination of atomic orbitals (LCAO) approxima-
tion. This systematic error, however, is considered to be
approximately constant throughout a chemical series and
can thus be neglected (Berkoff et al., 1976).

Considerable work has been carried out in the space of
molecular representation learning using both molecular
graphs and 3D geometries for ADMET property prediction—
for example, UniMol (Zhou et al., 2023), MolCLR (Wang
et al., 2022), GraphMVP (Liu et al., 2022) and GEM (Fang
et al., 2021). UniMol uses 3D atomic coordinate prediction
and atom masking as pre-training strategies. MolCLR uses
contrastive learning on molecular graphs for the pre-training
procedure. GraphMVP also employs contrastive learning
between graphs and 3D geometries. GEM uses bond angles
and bond lengths as additional 3D information. In this re-
cent wave of AI-driven drug discovery research, however,
the use of quantum chemical information or knowledge has
been under-exploited in ADMET property prediction.

A key advantage of using 3D geometry—that is, the in-
terplay between the geometry and electronic structure of
molecules in determining their properties and intermolec-
ular interactions—is not realized when quantum chemical
information is ignored. In those cases where both 3D and
quantum chemical information have been used together in
pre-training, the resulting models have been used to predict
other quantum chemical properties such as dipole moments
(Wang et al., 2023). We hypothesized that quantum chem-
istry pre-training may also be effective for ADMET property
prediction. We performed a wide range of experiments ex-
ploring different types of pre-training and fine-tuning on
datasets spanning a variety of ADMET properties. Our aim
was to: (1) motivate the use of quantum chemical infor-
mation in drug property prediction; (2) identify potential
pitfalls; and (3) call for larger drug-related quantum chem-
istry datasets to be released. An overview of our quantum
chemistry transfer learning pipeline is given in Figure ??,
and elaborated below. We compare (i) the effect of pre-
training versus no pretraining; (ii) the use of 2D graphs
versus equivariant 3D graphs; and (iii) three ways of calcu-
lating atom-centred partial charges: non-quantum ‘topologi-
cal’ partial charges (Gasteiger); and two quantum chemical
charge calculation methods (Mulliken and Löwdin).

2. Methodology
We used the Equivariant Graph Neural Network or EGNN
(Satorras et al., 2022) to encode each molecule’s 3D ge-

ometry; and the GraphSAGE (Hamilton et al., 2018) graph
neural network to encode the molecule as a 2D graph. We
used the same model architectures for both pre-training and
downstream fine-tuning to investigate the effectiveness of
quantum chemistry pre-training. We used the EGNN and
GraphSAGE models for ADMET property prediction in
three training regimes:

• No pre-training, i.e., direct prediction of each ADMET
property;

• Non-quantum chemical pre-training to predict ‘topo-
logical’ Gasteiger partial charges (Gasteiger & Marsili,
1980) using GraphSAGE; and

• Quantum chemical pre-training to predict: (i) quantum
mechanical partial charges, namely Mulliken (Mul-
liken, 1955) or Löwdin (Löwdin, 1970) charges; and
(ii) the HOMO-LUMO gap of the molecule’s highest
occupied and lowest unoccupied molecular orbital (a
measure of its chemical reactivity).

In the last two cases, the resulting molecular embedding is
used as input to a fine-tuning phase to predict the desired
ADMET property.

The electron distribution in a molecule allows us to under-
stand the tendency for certain intermolecular interactions to
occur. One way to approximate the electronic distribution
in a molecule at an atomic level is via atom-centred partial
charges. Thus we chose to pre-train the models on partial
charges to attain node or atom-level embeddings. There
are two distinct classes of partial charges: non-quantum
mechanical (QM) and QM-based partial charges.

2.1. Control: Pre-training on Gasteiger Partial Charges

The Partial Equalization of Orbital Electronegativity (PEOE)
method by Gasteiger & Marsili (1980) assumes that the
electronegativity, χv, of an atom type, v, is a quadratic
function of the atomic partial charge:

χv = av + bv (qv) + cv (qv)
2 (1)

where qv is the partial charge, and av, bv, and cv are coeffi-
cients to be optimized. According to Mulliken (1934), the
electronegativity, χv, of an atom is related to its ionization
potential, Iv , and its electron affinity, Ev , as follows:

χv =
1

2
(Iv + Ev) (2)

Next, the partial charges are updated using an iterative pro-
cess of calculating charge transfers between bonded atoms,
until convergence. Initially, all atoms are assigned charges
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Figure 1. An overview of quantum chemistry transfer learning. Left: We pre-train an EGNN to predict both atomic and molecular quantum
chemical properties to create a rich output embedding, that can subsequently be used to predict ADMET properties (right).

based on their atom type. At each step, charge is transferred
from atoms of lower electronegativity χv to bonded atoms
of higher electronegativity χv′ thus:

∆Q
(n)
v→v′ =

χ
(n−1)
v′ − χ

(n−1)
v

av + bv + cv
fnvv′ (3)

where f is a damping factor and is set to 0.5 in Gasteiger
& Marsili (1980). Therefore, Gasteiger partial charges are
based on the molecule’s topology (not 3D conformation)
and its atoms’ electronegativity values, which are in turn
related to their ionization potential and electron affinity, i.e.,
experimentally measured physicochemical properties. Us-
ing a model pre-trained on Gasteiger partial charges which
are non-quantum mechanical in nature acts as a control
experiment to understand if QM pre-training helps.

2.2. Pre-Training on Quantum Chemical Partial
Charges and Molecular Properties

QM-based partial charges are calculated by partitioning the
molecular wavefunction into atom-level contributions. Mul-
liken and Löwdin partial charges are derived by distributing
the electrons amongst the atoms according to the degree
to which different atomic orbital basis functions contribute
to the molecular wavefunction. This partitioning scheme
is known as ‘population analysis’ (Mulliken, 1955). The
electronic population is defined as follows:

N =

electrons∑
j

∫
ψj (rj)ψj (rj) drj

=

electrons∑
j

∑
r,s

∫
cjrφr (rj) cjsφs (rj) drj

=

electrons∑
j

∑
r

c2jr +
∑
r ̸=s

cjrcjsSrs


(4)

where r and s index the atomic orbital basis functions, φr

and φs; cjr is the coefficient of basis function, φr, in the
molecular orbital, ψj ; and Srs is the overlap matrix ele-
ment2.

In Eqn. 4, the total number of electrons is represented by
two sums: one including only squares of single atomic or-
bital basis functions (

∑
r c

2
jr), and the other including prod-

ucts of two different atomic orbital basis functions, r and
s (

∑
r ̸=s cjrcjsSrs). The first summation covers electrons

‘residing’ on a single atom, whereas the second summation
includes all electrons shared between basis functions. Mul-
liken (1955) suggested that overlapping orbital electron be
divided evenly between the two parent atoms’ basis func-
tions r and s. On the other hand, Löwdin (1970) performed
orthogonalization on the atomic orbital basis sets before
doing population analysis. For this reason, Löwdin partial
charges are said to be more ‘stable’ than Mulliken charges.

In addition to predicting QM-based partial charges derived
by partitioning the molecular wavefunction, we hypoth-
esized that it could also be beneficial to simultaneously
pre-train on a molecular QM property such as the HOMO-
LUMO gap. Prior work in GNN-based pre-training shows
that even richer molecular representations can be realized
by jointly learning node-level and graph-level embeddings
(Hu et al., 2020). We next discuss the experimental details
of our pre-training and fine-tuning phases.

3. Experimental Design
To pre-train on quantum chemical data, we separately used
the QM9 (Ramakrishnan et al., 2014), then the QMugs (Is-
ert et al., 2021) datasets. QM9 contains 3D structures and
QM properties calculated at the B3LYP/6-31G(2df,p) level
of theory, and consists of 133,885 small organic molecules
containing up to nine C, N, O, and/or F heavy atoms (as

2For further details please refer to Cramer (2002)
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well as H)—a subset of the GDB-17 set of 166 billion or-
ganic molecules. We used the HOMO-LUMO gap and
the per-atom Mulliken partial charges as labels for pre-
training. QMugs, on the other hand, contains ˜665, 000 drug-
like molecules. Ten elements are represented in QMugs
molecules: C, H, N, O, S, P, F, Cl, Br, and/or I. QMugs pro-
vides both Mulliken and Löwdin partial charges and molec-
ular properties at two levels of theory: ωB97X-D/def2-SVP
and the semiempirical GFN2-xTB. We the charges and prop-
erties calculated at the ωB97X-D/def2-SVP level only 3. In
QMugs, a maximum of three conformations are provided
for each molecule. The lowest energy conformation of each
molecule was used. For the non-QM pre-training control
case, we generated Gasteiger partial charges for molecules
in QM9 using RDKit (Landrum) and set the number of
iterations to 12.

To pre-train on Gasteiger partial charges, the GraphSAGE
model with 2D molecular graphs was used as Gasteiger
charges are topological and do not depend on a molecule’s
conformation. The EGNN was used for predicting the
quantum mechanically calculated properties: Mulliken and
Löwdin partial charges and the HOMO-LUMO gap, as these
properties depend on the 3D structure of the molecule. The
EGNN used is E(3)-invariant as these properties are invari-
ant to translations, rotations, and reflections of the atom
positions. The results for the pre-training phase are reported
in the Appendix (Table 4).

3.1. Fine-Tuning Datasets for Property Prediction

We used the following datasets for ADMET property predic-
tion and their corresponding scaffold splits in Therapeutic
Data Commons (TDC) (Huang et al., 2021). A dataset for
each of the ADMET properties was selected as exemplars,
to understand the effectiveness of quantum chemistry pre-
training on a wide range of tasks:

• Lipophilicity (regression): the ability of a drug to dis-
solve in a lipid environment, as measured by the oc-
tanol/water distribution coefficient (logD at pH 7.4)
(Wu et al., 2018);

• Blood-Brain Barrier Penetration, BBBP (binary clas-
sification): whether a drug penetrates the blood-brain
barrier (Wu et al., 2018);

• Substrate of Cytochrome P4502D6, CYP2D6 (binary
classification): cytochrome P4502D6 is primarily ex-
pressed in the liver; this dataset indicates if a molecule
is a substrate of CYP2D6 (Carbon-Mangels & Hutter,
2011);

3At the GFN2-xTB level, Löwdin partial charges are known
not to be rotationally invariant (Bruhn et al., 2006), so we have
avoided using these.

• Clearance-Hepatocyte (regression): the rate of plasma
cleared of a drug (Liu et al., 2007); and

• Acute Toxicity, LD50 (regression): the most conserva-
tive dose that kills half the population tested, measured
in log(1/(mol/kg)) (Zhu et al., 2009).

TDC provides the molecules as SMILES strings for each
dataset. These were converted to molecular graphs for pre-
dicting their labels using GraphSAGE. For 3D geometries,
the single lowest energy conformer was generated using
ETKDG (Riniker & Landrum, 2015) with Merck Molecu-
lar Force Field 94 (Halgren, 1996) optimization in RDKit.
All models were trained, validated and tested on the down-
stream datasetswith 10 different random number generator
seeds, for which the means and standard deviations of the
performance metrics are reported.

3.2. Transfer Learning

Our goal was to build a transfer learning approach for phar-
macological property (ADMET) prediction using quantum
chemistry pre-training. Pharmacological properties are un-
like quantum chemical properties for the following reasons:

• The ‘downstream’ properties in Section 3.1 are ex-
perimentally measured quantities, unlike calculated
quantum chemical quantities which are obtained by
using computational methods that are based on varying
levels of theory (such as ωB97X-D/def2-SVP).

• The different sources of these pharmacological prop-
erties mean different kinds of errors can be associated
with them. Random error may be caused by differ-
ent humans performing the assays for the downstream
datasets; whereas for quantum properties, the sources
of error are systematic and caused by assumptions
made in the algorithms (which can be neglected as it
would be present in all molecules in that dataset). User
error is also possible when running calculations.

• It is not possible to calculate these downstream prop-
erties using the quantum chemical descriptors as there
is no direct mathematical relationship between them
(Karelson et al., 2010).

We thus treat pharmacological property prediction as an
out-of-distribution (OOD) problem and chose the linear
probing approach which is known to be better than fine-
tuning the entire model for OOD scenarios (Kumar et al.,
2022). Linear probing involves freezing lower layers to act
as a ‘feature extractor’, then fine-tuning a head specific to
the downstream task (see Figure 1, right). In this work, for
both the EGNN and GraphSAGE, we froze the lower layers
(before the multi-layer perceptron head for partial charge
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and/or HOMO-LUMO gap prediction) and used them as
a frozen feature extractor. We used a randomly initialized
multi-layer perceptron head where only the head is trained
for the downstream task.

Kumar et al. (2022) also showed that fine-tuning the entire
model after linear probing has better OOD performance
compared than just using linear probing, and we have
demonstrated this successfully for lipophilicity prediction
(Table 3). However, we would like to emphasize that the
focus of our work is to investigate the effectiveness of quan-
tum chemistry pre-training and not the effectiveness of the
different types of transfer learning approaches.

4. Results and Discussion
The performance metrics and units for the target datasets
are listed in Tables 1 and 2. The QM9 pre-training consists
of both non-QM-based pre-training to predict Gasteiger par-
tial charges, and QM-based pre-training to predict Mulliken
partial charges and HOMO-LUMO gap 4. GraphSAGE pre-
trained on Gasteiger charges results in worse performance
on Lipohilicity (‘Absorption’), BBB (‘Distribution’), and
CYP2D6 (‘Metabolism’) compared to its non-pre-trained
counterparts. This suggests that electronegativity, the prop-
erty from which Gasteiger partial charges are derived, is
less relevant to the downstream task. Particularly, in the
case of CYP2D6, the pre-trained GraphSAGE has an AU-
ROC of 0.489 ± 0.116—very close to a random classi-
fier considering the large standard deviation. This high-
lights that Gasteiger charge-pre-training is not relevant to
studying metabolism. In the case of metabolism, a non-pre-
trained EGNN also does not outperform a random classi-
fier. However, there is a significant improvement when the
QM-pre-trained EGNN models are used to predict substrate
metabolism. Pre-training on both node and graph levels pur-
portedly results in richer representations (Hu et al., 2020)
as evidenced by them performing best for metabolism.

On the other hand, pre-training on both Mulliken charges
and HOMO-LUMO gap falls short of the Mulliken charge-
only pre-trained variant for BBB penetration classification.
Here, the non-pre-trained EGNN performs better than the
QM9 pre-trained variants. However, the QMugs variants
perform best, suggesting that the QM9 pre-trained variants
may be limited by their smaller pre-training dataset size
(135k)—about five times smaller than QMugs (650k). Fur-
thermore, for BBB, we note that the combined node and
graph-level pre-trained variants perform slightly worse than
just node-level pre-trained models. This may be due to a
non-optimal pre-training target for the molecule level prop-
erty, i.e., the HOMO-LUMO gap. Other molecular quantum

4HOMO-LUMO gap has been abbreviated as ’Gap’ in the
tables

properties like dipole moments may have proven to be more
relevant to BBB penetration prediction. The continued ex-
ploration of a wider range of molecular quantum property
prediction in the future (Section 5) will increase our under-
standing of which quantum properties are most relevant for
a given ADMET property.

4.1. Pre-Training on QM9 versus QMugs

For lipophilicity and toxicity prediction, models pre-trained
on partial charges and the HOMO-LUMO gap perform the
best, supporting our hypothesis. However, for lipophilicity,
the QMugs pre-trained model performs the best, whereas
for toxicity the QM9 pre-trained model edges out the others.
The best performance of QMugs pre-trained models might
be attributed to their larger pre-training dataset size. On the
other hand, QM9 is smaller and also contains fewer element
types (half that of QMugs). This restricts models pre-trained
on QM9 can only be used for molecules in the downstream
datasets that have the same subset of elements, which in
turn reduces the test data size significantly, making it easier
to perform well 5. In addition, the quantum properties in
these datasets have been calculated using different levels of
theory: B3LYP/6-31G(2df,p) in QM9 and ωB97X-D/def2-
SVP in QMugs which means different quantum observables
are being considered in each method. For instance, B3LYP
does not consider London dispersion effects (Bursch et al.,
2022).

4.2. Pre-Training on Löwdin versus Mulliken Charges

Models pre-trained on Löwdin charges almost always out-
perform those pre-trained on Mulliken charges, except for
BBB, although the performance is extremely similar (Tables
2). Pre-training on Löwdin charges may be advantageous
given their orthogonalization step on the atomic orbital ba-
sis sets as explained in Section 2.2. However, both types
of quantum charges belong to the same class, Class II, of
partial charges as described by Cramer (2002) in that they
partition the wavefunction arbitrarily. In the future, other
types of partial charges, especially semi-empirical ones like
CM1 (Storer et al., 1995) which fall within Class IV of
Cramer (2002) can be explored.

5. Conclusion and Future Work
We have shown that quantum chemistry pre-training is effec-
tive for ADMET property prediction. Pre-training on both
molecular and atomic labels such as HOMO-LUMO gap
and partial charges, respectively, leads to better performance
on most downstream tasks. We encourage the computational
drug discovery community to start using quantum chemical

5The corresponding downstream dataset sizes for atom-types
found in QM9 and QMugs are given in Table 5.
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Type of pre-training
Downstream datasets

Absorption Distribution Metabolism Excretion Toxicity
Lipophilicity, AstraZeneca

RMSE (logD units) ↓
BBB

AUROC ↑
CYP2D6-Substrate

AUROC ↑
Clearance-Hepatocyte

Spearman correlation coefficient ↑
Acute Toxicity LD50

RMSE (log[1/(mol/kg)] units)↓
None - GraphSAGE 0.867 ± 0.052 0.534 ± 0.112 0.573 ± 0.066 0.283 ± 0.095 0.798 ± 0.053

None -EGNN 0.767 ± 0.069 0.806 ± 0.042 0.502 ± 0.006 0.432 ± 0.094 0.802 ± 0.055
Gasteiger - GraphSAGE 0.881 ± 0.042 0.524 ± 0.108 0.489 ± 0.116 0.353 ± 0.144 0.771 ± 0.077
Mulliken only - EGNN 0.715 ± 0.041 0.743 ± 0.176 0.778 ± 0.079 0.417 ± 0.130 0.705 ± 0.067
Mulliken + Gap - EGNN 0.707 ± 0.040 0.647 ± 0.133 0.878 ± 0.069 0.410 ± 0.176 0.700 ± 0.070

Table 1. A comparison of non-pre-trained models against QM9 pre-trained models (↑ higher the better, ↓ lower the better )

Type of pre-training
Downstream datasets

Absorption Distribution Metabolism Excretion Toxicity
Lipophilicity, AstraZeneca

RMSE (logD units) ↓
BBB

AUROC ↑
CYP2D6-Substrate

AUROC ↑
Clearance-Hepatocyte

Spearman correlation coefficient ↑
Acute Toxicity LD50

RMSE (log[1/(mol/kg)] units) ↓
None - EGNN 0.767 ± 0.069 0.806 ± 0.042 0.502 ± 0.006 0.432 ± 0.094 0.802 ± 0.055

Mulliken only - EGNN 0.760 ± 0.053 0.864 ± 0.032 0.771 ± 0.067 0.413 ± 0.071 0.779 ± 0.040
Löwdin only - EGNN 0.724 ± 0.047 0.863 ± 0.030 0.766 ± 0.059 0.418 ± 0.061 0.779 ± 0.039

Mulliken + Gap - EGNN 0.731 ± 0.037 0.860 ± 0.031 0.769 ± 0.068 0.400 ± 0.091 0.781 ± 0.042
Löwdin + Gap - EGNN 0.688 ± 0.039 0.861 ± 0.029 0.767 ± 0.062 0.424 ± 0.110 0.771 ± 0.050

Table 2. A comparison of non-pre-trained models against QMugs pre-trained models (↑ higher the better, ↓ lower the better )

TYPE OF PRE-TRAINING LINEAR PROBING LPFT

MULLIKEN ONLY 0.760 ± 0.053 0.691 ± 0.046
LÖWDIN ONLY 0.724 ± 0.047 0.643 ± 0.057
MULLIKEN + GAP 0.731 ± 0.037 0.701 ± 0.062
LÖWDIN + GAP 0.688 ± 0.039 0.599 ± 0.051

Table 3. RMSE performance of linear probing then fine-tuning
(LPFT) against just linear probing on the Lipophilicity dataset
with pre-training on the QMugs dataset

descriptors and representations for pharmacological prop-
erty prediction. Moreover, more quantum chemical data
has to be generated for drug-like molecules. QMugs has
certainly proved to be useful but much larger datasets with
more types of elements and molecules will be beneficial
for various drug discovery tasks. There are viable future
directions one could take to further assess the effectiveness
of quantum chemistry pre-training and make it more use-
ful as discussed in Section 4—a wider range of molecular
quantum properties like dipole moments and total energy
could be used to understand which specific or combination
of properties results in better downstream performance for a
particular pharmacological property. A deeper investigation
into why pre-training on Löwdin charges results in better
downstream performance is necessary to choose the right
class of partial charges for pre-training. With the recent
advancements in quantum chemistry algorithms, computa-
tional hardware, and the evidence presented here showing
the effectiveness of learning quantum chemistry, we hope
that more work will be carried out to build on the progress
in combining quantum chemistry with AI to accelerate drug
discovery.
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A. Appendix
A.1. Pre-training results

Dataset Partial charge type Model Partial charge loss (q) Molecular charge loss (Q) Total loss (Q+q) Gap loss

QM9 Gasteiger GraphSAGE 6.981e-5 8.074e-3 8.144e-3 N.A.
Mulliken EGNN 7.872e-5 3.997e-4 4.784e-4 3.063e-5

QMugs Mulliken EGNN 1.488e-4 1.788e-3 1.936e-3 3.909e-5
Löwdin EGNN 3.790e-5 1.667e-3 1.705e-3 5.297e-5

Table 4. Pre-training results for QM9 and QMugs. The metric used was mean squared loss and the units are eV. HOMO-LUMO gap has
been abbreviated as ’Gap’ in the table

A.2. Downstream dataset sizes

Downstream dataset Original #Samples #Samples with atom-types found in QM9 #Samples with atom-types found in QMugs
Lipophilicity 4200 2080 4192

BBB 2030 1184 2010
CYP2D6-Substrate 667 415 666

Clearance-Hepatocyte 1213 537 1209
Acute Toxicity 7385 4063 7282

Table 5. Downstream ADMET dataset sizes. QMugs contains 10 atom-types: C, H, N, O, S, P, F, Cl, Br, and/or I whereas QM9 contains 5
atom-types: C, H, N, O, and/or F
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