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Abstract

Recurrent neural networks are commonly applied to electronic health records to
capture complex relationships and model clinically relevant outcomes. However, it
is commonplace for the covariates in electronic health records to change distribu-
tions. This work extends restricted feature interactions in recurrent neural networks
to address foreseeable and unexpected covariate shifts. We extend on the previous
work by 1) Introducing a deterministic feature rotation so that hyperparameter
tuning can search through all combinations of features, 2) Introduce a sub-network
specific dropout to ablate the influence of entire features at output of the hidden
network, and 3) Extend the feature restrictions to the GRU-D network, which has
been shown to be a stronger baseline for covariate shift recovery. We show that
feature restricted GRU-D’s may be more robust to certain perturbations. Manual
intervention was not needed to confer robustness. Despite this, the LSTM was still
the best model in nearly 50% of the cases.

1 Introduction

In healthcare, it is inevitable that the generation of the data reflected in electronic health records
(EHRs) will evolve; new equipment is added with different margins of error, suppliers of laboratory
tests will switch, and clinicians administering the tests change. Under these anticipated model
changes, how can we be confident that the deep learning model we have deployed can continued to be
used until it is remediated or replaced? We define this problem as one of a sudden covariate change,
p(xi) → q(xi). sudden covariate change is distinct from continual learning setting as the covariate
changes rapidly. Sudden covariate shift is more mild than complete domain shift p(X) → q(X).
This makes it challenging, because it raises doubts as to whether or not a model should be taken
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offline. If a model has been demonstrated to improve care, and the covariate shift is marginal, it may
be unnecessary or even harmful to withhold the predictions. We also permit p(y|xi) ̸= q(y|xi), such
that even if the old covariate distribution is able to be mapped to the new distribution, the patterns in
which they are used may shift to reflect healthcare usage. Such patterns might be present if a new
covariate differs in cost, complexity, or speed.

Current methods to mitigate covariate shift often focus on gradual shift. Work has been done to
causally predict which feature will be robust during test time [1]. However this setting assumes that
features are already experiencing distributional anomalies. Once a small subset of the new distribution
are available, it is possible continually fine-tune the model, however this could lead to catastrophic
forgetting [2]. It is also possible to initiating the model from scratch and upweight the samples in the
new distribution [3], however this comes at a training cost and still requires that the model be taken
offline while the new distribution is being collected. Others have sought to apply batch normalisation
during inference [4], or Bayesian neural networks

Previous work has shown that restricting the feature interactions in the latent space improves model
performance when generalising to an unseen test set [5]. We extend this method by adding a seeded
rotation to permit all features to interact with each other. Crucially, we train the model with a
sub-network specific dropout such that each sub-network containing feature xi can be simultaneously
omitted. Finally, we introduce the masking method from Zhang et al. [5] into the GRU-D model [6],
which has shown to be more robust to dramatic distributional changes than LSTM networks [7].

2 Methods

Data is Sourced from GEMINI, a data warehouse containing 214837 General Internal Medicine
inpatient encounters from 6 different sites [8]. The data is extracted and prepared by replicating
protocols from previous EHR extractions [9]. Site characteristics are shown in Table 1. The target
selected to demonstrate this task is a delirium label with 30% positively rate. The data are split
by time such that 80% of the training data falls before the training end date, 10% of the data falls
between the training end date, and the validation end date, and the remaining 10% occurs after the
validation end date and is relegated to the test set. A GRU-D architecture [6] embeds the site-specific
model, while a LSTM network decodes to the target. The parameters for each site, including the
traditional dropout probability, the number of feature interaction groups, the network widths, and the
number of decoder layers are selected by taking the network with the best AUROC on a prospective
validation set. Both the unperturbed, feature-restricted GRU-D and the standard GRU-D models are
allowed to choose their optimal architectures independently. These models are compared to an LSTM
architecture which has no method to deal with faulty covariates.

To evaluate the robustness of the model, data are randomly perturbed by randomly resampling the
feature, flipping the sign of the feature, or by linearly scaling the feature. We show the performance
of the LSTM and GRU-D under these conditions. As a remedy, we intervene by consciously decaying
the input unit of this feature in the GRU-D to the training mean. The feature-restricted GRU-D is also
evaluated on the perturbed input. Finally, the sub-networks involving that feature are "turned off" by
intervening with a sub-network specific dropout.

Patients Encounters Sex Age Mortality LOS Palliative Delirium
count count mean med. mean days mean - +

Site

THPM 46074 71166 0.49 75 0.06 9.9 0.07 360 181
SBK 34237 53091 0.52 77 0.04 9.5 0.06 656 296
UHNTG 30779 48690 0.47 66 0.05 8.5 0.13 412 93
SMH 23071 39894 0.42 66 0.04 9.3 0.03 762 231
UHNTW 25072 42343 0.49 74 0.05 9.6 0.09 369 123
THPC 31101 49080 0.54 74 0.05 11.0 0.06 309 70
MSH 24503 36749 0.53 69 0.05 9.3 0.11 0 0

Table 1: Summary of the sites available in the GEMINI dataset.
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3 Results

The performance of the LSTM, GRU-D, and feature restricted GRU-D are demonstrated in Table 2.
The validation performance under the GRU-D restricted feature interaction tends to outperform
GRU-D and LSTM. However the generalisation to the prospective test set tends to be weaker with
several notable drops in performance from validation time to test time. This could be attributed to the
sites having few limited numbers of samples to do model selection, or to form robust measurements
of the AUROC at both validation time and test time. Alternatively, some of the performance drop can
be attributed to real world data-set shift, such as with the introduction of COVID-19 into the hospital
system during test time (but not during training or validation time).

Size Validation Test
Validation Test LSTM GRU-D GRU-D R LSTM GRU-D GRU-D R

THPM 63 49 0.735 0.744 0.849 0.761 0.623 0.691
SBK 68 80 0.740 0.726 0.749 0.742 0.686 0.622
UHNTG 35 50 0.672 0.672 0.836 0.542 0.366 0.807
SMH 88 94 0.773 0.774 0.769 0.735 0.641 0.587
UHNTW 44 48 0.753 0.810 0.773 0.445 0.634 0.485
THPC 57 60 0.751 0.721 0.745 0.525 0.523 0.551

Table 2: AUROC scores for the LSTM, GRU-D, and GRU-D with feature restriction across 6 sites
for delirium prediction.

To evaluate the robustness of the model to sudden incremental covariate shifts, one feature is perturbed
at a time. The test set performance of the GRU-D, intervened-upon GRU-D, uncontrolled feature
restricted GRU-D, and intervened-upon feature-restricted GRU-D are demonstrated in Tables 3
& 4& 5 for flipped, resampled, and linearly scaled perturbations. Here we see that both the GRU-D
and GRU-D Restricted are capable of handling feature corruption as well as manual intervention.
The corruption itself, however is occasionally devastating, such as the case with UHNTG GRU-D
Restricted model dropping to near random performance with any type of corruption.

model LSTM GRU-D GRU-D * GRU-D R GRU-D R *
corruption None flipping None flipping flipping None flipping flipping
metric AUC AUC AUC AUC AUC AUC AUC AUC
site

THPM 0.76 0.58± 0.00 0.62 0.64± 0.02 0.64± 0.02 0.69 0.59± 0.08 0.57± 0.07
SBK 0.74 0.60± 0.01 0.69 0.61± 0.11 0.60± 0.10 0.62 0.46± 0.05 0.48± 0.06
UHNTG 0.54 0.62± 0.01 0.37 0.39± 0.09 0.43± 0.07 0.81 0.53± 0.01 0.53± 0.01
SMH 0.74 0.57± 0.01 0.64 0.62± 0.02 0.62± 0.02 0.59 0.62± 0.05 0.62± 0.05
UHNTW 0.45 0.44± 0.05 0.63 0.51± 0.11 0.51± 0.11 0.49 0.50± 0.11 0.50± 0.10
THPC 0.53 0.43± 0.01 0.52 0.45± 0.06 0.45± 0.06 0.55 0.54± 0.03 0.52± 0.07

Table 3: AUROC scores for the GRU-D and GRU-D with feature restriction across 6 sites for
delirium prediction. Corruption is applied to features through flipping the sign. * indicates manual
intervention.

In general, When the LSTM was the top performer, it lost 0.22(0.18 · 0.24, 95%CI)%,0.23(0.21 ·
0.24, 95%CI)% and 0.14(−0.02 · 0.24, 95%CI)% of its performance for flipping, resam-
pling, and scaling perturbations, respectively. In contrast, GRU-D lost it lost 0.14(−0.02 ·
0.43, 95%CI)%,0.12(−0.04 ·0.42, 95%CI)% and 0.32(−0.02 ·0.56, 95%CI)% of its performance
for flipping, resampling, and scaling perturbations, respectively, when it was the top performer.
Compare this to the GRU-D with restriction which lost 0.13(−0.10 · 0.36, 95%CI)%,0.15(−0.05 ·
0.35, 95%CI)% and 0.15(−0.18 · 0.34, 95%CI)% of its performance for flipping, resampling, and
scaling perturbations, respectively. GRU-D was the most susceptible model to scaling noise, while
the LSTM was the most susceptible model to flipping and resampling. Neither intervention taken on
the GRU-D or GRU-D Restricted models improved the performance. After corruption, the LSTM
would have still been the best choice 48% of the time, the GRU-D 34% of the time, and the GRU-D
with restriction 19% of the time.
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model LSTM GRU-D GRU-D * GRU-D R GRU-D R *
corruption None resample None resample resample None resample resample
metric AUC AUC AUC AUC AUC AUC AUC AUC
site

THPM 0.76 0.58± 0.00 0.62 0.61± 0.03 0.61± 0.03 0.69 0.58± 0.07 0.55± 0.04
SBK 0.74 0.57± 0.01 0.69 0.57± 0.09 0.57± 0.09 0.62 0.41± 0.03 0.47± 0.04
UHNTG 0.54 0.62± 0.01 0.37 0.35± 0.08 0.39± 0.07 0.81 0.53± 0.01 0.53± 0.01
SMH 0.74 0.57± 0.01 0.64 0.62± 0.03 0.62± 0.03 0.59 0.59± 0.02 0.60± 0.03
UHNTW 0.45 0.49± 0.03 0.63 0.56± 0.09 0.56± 0.09 0.49 0.50± 0.10 0.48± 0.10
THPC 0.53 0.52 0.55

Table 4: AUROC scores for the GRU-D and GRU-D with feature restriction across 6 sites for delirium
prediction. Corruption is applied to features through resampling the corrupted column. * indicates
manual intervention.

model LSTM GRU-D GRU-D * GRU-D R GRU-D R *
corruption None scaling None scaling scaling None scaling scaling
metric AUC AUC AUC AUC AUC AUC AUC AUC
site

THPM 0.76 0.58± 0.00 0.62 0.61± 0.14 0.59± 0.12 0.69 0.54± 0.10 0.56± 0.12
SBK 0.74 0.70± 0.05 0.69 0.57± 0.09 0.57± 0.09 0.62 0.50± 0.07 0.51± 0.07
UHNTG 0.54 0.45± 0.10 0.37 0.39± 0.18 0.39± 0.18 0.81 0.53± 0.00 0.53± 0.00
SMH 0.74 0.65± 0.05 0.64 0.59± 0.08 0.59± 0.08 0.59 0.55± 0.06 0.55± 0.06
UHNTW 0.45 0.39± 0.07 0.63 0.42± 0.08 0.42± 0.08 0.49 0.56± 0.09 0.57± 0.09
THPC 0.53 0.47± 0.05 0.52 0.51± 0.08 0.51± 0.08 0.55 0.53± 0.08 0.51± 0.08

Table 5: AUROC scores for the GRU-D and GRU-D with feature restriction across 6 sites for delirium
prediction. Corruption is applied to features through linearly scaling the feature. * indicates manual
intervention.

4 Conclusion

The modification of the GRU-D with the feature restriction mask allows for sub-unit specific off
switches. Across 3 different types of perturbations, the GRU-D with feature restriction experiences
less (though not significantly less) harm in performance. The sub-unit specific off switches confer
innate robustness to distribution changes which do not require conscious intervention to utilise. The
robustness of the intervention exceeds that of a GRU-D and LSTM baseline models. Despite this, the
LSTM architecture was still the preferred architecture in almost half of the cases. Future work may
investigate if sub-unit specific isolation leads to faster fine-tuning or fewer required samples to refit
the new sub-unit.
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