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Abstract

Model editing techniques, particularly task arithmetic with task vectors, offer an
efficient alternative to full fine-tuning by enabling direct parameter updates through
simple arithmetic operations. While this approach promises substantial computa-
tional savings, its impact on fairness has remained largely unexplored—despite
growing concern over biased outcomes in high-stakes applications such as hate
speech detection. In this work, we present the first systematic study of fairness
in task arithmetic, benchmarking it against full fine-tuning (FFT) and Low-Rank
Adaptation (LoRA). We evaluate across multiple language models and datasets
using standard group fairness metrics, including Demographic Parity and Equalized
Odds. Our analysis shows that task vectors can be tuned to achieve competitive ac-
curacy while reducing disparities, and that merging subgroup-specific task vectors
provides a practical mechanism for steering fairness outcomes. We further provide
a theoretical bound linking task-vector scaling to fairness metrics, offering insight
into the observed trade-offs. Together, these findings establish task arithmetic
not only as a cost-efficient editing method but also as a fairness-aware alternative
to existing adaptation techniques, laying the groundwork for responsible deploy-
ment of large language models. Our code is available at https://anonymous.
4open.science/status/fairness_task_vector—-4F2F

1 Introduction

As large language models (LLMs) see broader application, efficient techniques for adapting them to
specific tasks become increasingly crucial. While some models have been distilled [[Sanh et al.,|2019b|
Jiao et al.| [2020, Turc et al.,[2020] or are relatively small [Abdin et al.,2024], task-specific fine-tuning
often demands substantial computational resources, prompting the development of parameter-efficient
fine-tuning (PEFT) methods [Houlsby et al., 2019\ [Hu et al.| 2022| Ben Zaken et al.,[2022, [Dettmers
et al.,[2023]].

One notable example is Low-Rank Adaptation (LoRA) [Hu et al.| 2022]], which updates a compact
set of parameters while leaving most of the original weights untouched, thus reducing training costs.
Despite the popularity of PEFT methods, they do not resolve every challenge: in high-stakes tasks
with imbalanced data, LoRA and similar approaches can preserve or even amplify biases, raising
concerns about fairness [Ding et al., [2024b| [Sap et al.| 2019].

An alternative strategy that has recently drawn attention is model editing with task vectors [Ilharco
et al., 2023 Zhang et al., [2024, |Yoshida et al., [2025]]. A task vector is defined as the parameter
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difference between a base pre-trained model 6,5 and a fine-tuned model 6;,5. By adding or
subtracting this vector within the original weight space (so-called “task arithmetic”), a user can edit
or remove the corresponding task-specific behavior without further gradient-based training [[Ilharco
et al., |2023]. Moreover, scaling the task vector grants fine-grained control over the strength of the
transferred capability. This approach represents a promising direction, as it directly manipulates
parameters while avoiding a costly re-optimization of the entire model.

In addition to these computational benefits, prior work has suggested that separating and analyzing
task vectors may enhance interpretability [Cerrato et al.| [2025]]. By isolating the weight updates
associated with particular subgroups (e.g., racial or gender demographics), one can potentially trace
how the model adapts to each subgroup. This feature is appealing for investigating biases arising from
unequal representation in training data, as it highlights which groups require larger shifts in weight
space. Nevertheless, open questions persist regarding how well this model editing using task-vector
preserves or exacerbates fairness. For instance, improving performance for one demographic might
degrade outcomes for another, and it is not yet clear how to balance trade-offs with established
fairness metrics such as Demographic Parity (DPD) or Equalized Odds (EOD).

To address this gap, we systematically examine how task-vector editing compares to both traditional
full-parameter fine-tuning (FFT) and LoRA, and we further explore whether injecting task vectors
into an FFT model offers additional control over fairness. Our experiments focus on hate-speech
detection on Llama-7B [Touvron et al.,[2023]] and DistilBERT [Sanh et al., 2019al] , measured by
subgroup-specific accuracy and widely used fairness metrics. Our contributions and findings are
summarized as follows:

* A thorough comparison of four algorithms (FFT, LoRA, model editing using task-vector,
and a hybrid approach injecting task vectors into FFT) in terms of their effects on fairness
metrics and overall performance (Figure [I)].

* An analysis showing that task vectors can substantially improve fairness while preserving
accuracy, provided that their scalar coefficients are appropriately tuned (Figure2).

* Evidence that merging task vectors for underrepresented subgroups with existing models
can adjust fairness outcomes without incurring a significant accuracy drop (Figures [3(a)]
BB)and At@).

* We provide a theoretical upper bound (Appendix [B) linking task-vector scaling to fairness
metrics, offering an analytical explanation for the fairness—accuracy trade-offs observed
empirically.

Through this analysis, we illustrate how task vectors can reduce risks from a fairness perspective
while taking advantage of their flexibility and interpretability as a model editing approach. These
findings provide a foundation for extending task-vector-based methods to promote fair and responsible
operation of large language models.

2 Preliminaries

In this section, we first provide an overview of the fundamental concept of task vectors and the
procedure known as task arithmetic, which applies these vectors to edit model behavior. We then
introduce methods for merging multiple task vectors into a single model.

Task arithmetic. A task vector is defined as the difference in model parameters between a fine-
tuned model on a given task and the original base model. Formally, if Oy, are the pre-trained weights
and 6y, are the weights after fine-tuning on a task, then the task vector is: A8 = G5 — Opase [[Iharco
et al.,[2023].

This vector represents a direction in weight space such that moving the base model’s weights by A6
steers the model to perform well on that task. In other words, adding A# to 6y, yields a model
with improved performance on the target task, without any additional training. Once computed, task
vectors can be manipulated through simple arithmetic operations to edit model behavior directly in
weight space [[lharco et al.,[2023] |Ortiz-Jimenez et al.,[2024]]. Key operations include:

Addition: Given two task vectors Af4 and Afg (for tasks A and B), their sum
can be applied to the base model (fp,e + A0 + Abp) to produce a model that
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Figure 1: LoRA and FFT vs. Task addition with the optimal coefficient for the training accuracy
(A = 0.8 for gender setting and A = 0.5 for race setting) on group-wise accuracy, demographic
parity difference (DPD, lower is fairer), and equalized odds difference (EOD, lower is fairer). Error
bars denote the standard error across three seeds. Columns: group-wise accuracy, DPD, EOD. No
consistent pattern emerges that task addition necessarily degrades subgroup fairness relative to LoORA
or FFT subgroups show improvements or comparable results under task addition, while others show
small declines.

exhibits improved performance on both tasks A and B [[Iharco et al.} [2023]]. This
task addition effectively combines knowledge from multiple tasks into one model.
Negation: Using the negative of a task vector, —A#, one can subtract a task’s
influence. For example, applying Gpue — A4 (or equivalently Gpuse + (—A64))
yields a model with reduced performance on task A—effectively unlearning or
forgetting it—while preserving other behaviors [[Tharco et al.,[2023]]. This is useful
for removing undesirable skills or biases.

Scalar scaling: Multiplying a task vector by a scalar A adjusts the strength of the
edit. For example, using Oy, + AAO 4 allows partial (0 < A < 1) or amplified
(A > 1) application of a task’s effect. This scaling provides fine-grained control
over how strongly the task knowledge is injected into the model.

Merging task vectors. Since task vectors reside in a common weight space, they can be merged by
simple addition with tunable scaling. Formally, given a base model 6y and task vectors A#;, one can
construct a merged model as:

emerged = 90 + Z g Agz ; (D

where each coefficient \; controls the influence of task ¢. Varying \; thus directly modulates
how strongly the ¢-th task’s knowledge is injected, allowing fine-grained blending of capabilities.
Indeed, adding multiple task vectors with \; = 1 endows a model with all those capabilities
simultaneously [[Tharco et al.}[2023]]. Optimizing the \; values (i.e., learning an anisotropic scaling for
each vector) further improves the composition by balancing contributions and reducing interference

between tasks [Zhang et al.|[2024].

3 Related Work

Task arithmetic: efficiency and interpretability. Task vectors offer a computationally efficient
framework for editing and analyzing model behavior. Once a task vector is computed—namely,
the weight difference between a base model and its fine-tuned variant [[Tharco et al., [2023] [Zhang]|
et alll 2024} [Yoshida et al,[2025]—no additional training data or retraining is required to transfer
or remove task-specific capabilities. By treating each fine-tuning update as a direction in weight




space, practitioners can combine or negate these updates through simple addition or subtraction
[Ilharco et al.l2023]]. This modularity not only reduces computational overhead but also enhances
interpretability by isolating the contribution of each task.

Beyond modularity, task arithmetic can reveal valuable information about how and where a model
adapts to new tasks. [Li et al.| [2024] show a near-linear relationship between data size and the norm
of a task vector, suggesting that over-represented tasks can dominate weight space shifts in multi-task
settings. In addition, the orientation of task vectors can indicate synergies or conflicts among tasks
[Li et al., 2025]], and decomposing these vectors by layer can pinpoint which parts of the model are
most affected [Zhang et al., 2024, Gargiulo et al.| 2025[. Hence, task vectors offer a promising lens
for diagnosing training dynamics and identifying potential biases.

Fairness metrics for LLMs. Fairness in large language models is commonly evaluated using
criteria such as Demographic Parity, Equalized Odds, and accuracy parity. Demographic Parity
requires similar positive outcome rates across demographic groups, while Equalized Odds demands
that true and false positive rates be equivalent. Accuracy parity checks for consistent predictive
performance across groups [Fraenkel, 2020, |[Kennedy et al., |2020a, |Pitoura, 2019} |[Quan et al.,
2023]]. These metrics are broadly used to detect biases and measure whether a model’s behavior
disproportionately disadvantages certain populations.

FFT and LoRA under fairness constraints. Parameter-efficient methods such as LoRA [Hu et al.|
2022[] address computational bottlenecks by training only a small set of parameters, yet they do not
inherently solve fairness issues. In some cases, LoRA yields comparable subgroup performance to
full fine-tuning [Ding et al.| |2024b]], while in others, it fails to mitigate toxic behaviors or biases [Das
et al.}2024]. The variance in outcomes depends on factors like the rank of the LoRA matrices, the
base model’s quality, and the distribution of training data [Das et al.| 2024].

Merging tasks and fairness considerations. Despite the potential efficiency gains and inter-
pretability offered by task arithmetic, the merging of task vectors for multiple groups can trigger new
challenges. For instance, simply summing vectors may lead to “negative transfer,” where updates ben-
eficial to one subgroup degrade performance for another [Ding et al., 20244, |Yu et al., 2020]]. In highly
imbalanced settings, merging models through supervised fine-tuning can also disproportionately
favor majority groups while disadvantaging minorities [|Cross et al.,[2024]]. Because fairness does not
compose additively, interactions among subgroup-specific task vectors can produce unpredictable
shifts in metrics like Demographic Parity and Equalized Odds [Gohar et al., 2023]].

Consequently, identifying effective ways to adjust task vectors—such as through scalar scal-
ing—remains a key step toward fairness-aware model editing. This work aims to fill that gap
by systematically evaluating how these operations influence both fairness and overall model accuracy.

4 Experimental Setup

4.1 Configuration.

Building on the experimental framework established by Ding et al.| [2024b|], we adopted their
evaluation and experimental procedure to assess the fairness implications of LoRA in comparison
to FFT. In our work, we extend this analysis by focusing on how task arithmetic compares to both
LoRA and FFT in terms of fairness and performance. The detailed experimental setup is provided in

Appendix [C]

Datasets. We use a modified version of the Berkeley D-Lab Hate Speech dataset originally intro-
duced by Kennedy et al.|[2020al] and adapted by |Ding et al.| [2024b]], the research we are building
upon. Our dataset contains a total of 6,898 tweet-sized text snippets annotated for hate speech and
categorized by sensitive attributes: Race and Gender, each further divided into fine-grained subgroups
(e.g., Women, Non-binary, Men within Gender) as shown in Table[I] We frame hate speech detection
as a binary classification task: given a text snippet, the model predicts whether it constitutes hate
speech (e.g., hatespeech in the Gender subset may target Non-binary or Trans Women). Each example
includes both the hate speech label and one or more protected attribute annotations (e.g., gender =
woman, race = Asian). These are used to assess subgroup-level performance and fairness metrics.



Gender Subgroups Race Subgroups

Men 817 Asian 311
Non-binary 114 Black 1,007
Trans men 178 Latinx 368
Trans unspecified 173 Native American 153
Trans women 148 Middle Eastern 493
Women 2,057 Pacific Islander 138
Other 59 White 580

Other 302
Total 3,546 Total 3,352

Table 1: Data statistics in the gender and race subgroups.

This setting supports rigorous fairness analysis due to its rich attribute annotations and real-world
relevance [Kennedy et al.,2020a]. To test generalization beyond hate speech, we apply our methods to
the Civil Comments dataset [Borkan et al.,2019], a large-scale toxicity corpus with sensitive-attribute
labels. We treat toxicity as binary with a 0.5 threshold; comments above this are positive “flagged”.
Fairness is evaluated across Gender and Race subgroups.

Evaluation metrics and fairness scope. Since we cast hate-speech and toxicity detection as binary
classification, for each protected attribute (e.g., Gender, Race/Ethnicity), we compute subgroup-
resolved metrics: DPD measures selection-rate disparity as the maximum absolute gap in flag rates
across subgroups. EOD measures error-rate disparity by requiring both true-positive and false-
positive rates to be comparable. Accuracy-parity gap is the maximum absolute difference in accuracy
across subgroup pairs and serves as a stability indicator. We report per-subgroup values along with
macro-averages and worst-group results. These choices mirror established practice and enable direct
comparison to prior PEFT—fairness evaluations discussed in §??. Formal definitions and computation
details appear in Appendix [A]

4.2 Protocol.

We evaluate our methods using a main base model: LLaMA2-7 Our fairness evaluations focus on
two sensitive attributes: gender and race, using subgroup-wise metrics mentioned earlier —accuracy,
DPD, and EOD.

For FFT, the pretrained model was fine-tuned on the combined training data from all subgroups
of the target attribute (gender or race). Evaluation was then performed on the test data from each
corresponding subgroup, enabling fine-grained assessment of both performance and fairness.

For LoRA, we followed the same training and evaluation procedure as FFT. The rank of LoRA’s
adaptation modules was set to 8, following [Ding et al.|[2024b].

For task arithmetic, we applied a compositional fine-tuning approach. The training data was par-
titioned by subgroup (gender or race), and FFT was applied separately to each subgroup’s data to
produce fine-tuned models ;. From these, we computed task vectors A@; relative to the base model.
These vectors were then merged using the approach described in Eq. (), with a single, uniform
scaling coefficient A applied to all vectors. A served as the sole hyperparameter in the merging process
and was tuned on the training data. The evaluation metrics were computed in the same manner as for
FFT and LoRA.

Task vector coefficient adjustment. Building on the task vector merging framework introduced in
Eq. (1), we further explore the impact of the scaling coefficient A on fairness outcomes. Specifically,
we vary the uniform task vector coefficient \ across a broad range (from 0.0 to 1.0 with 0.1 intervals)
and evaluate how this adjustment influences subgroup-level fairness metrics, including accuracy,
DPD, and EOD.

3LLaMA 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All
Rights Reserved. See: https://ai.meta.com/llama/license
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Figure 2: Varying the task arithmetic coefficient A and comparing against FFT (purple dashed) and
LoRA (orange dashed) for macro-averaged accuracy (left), demographic parity difference (DPD,
center), and equalized odds difference (EOD, right) on the gender subset. Higher accuracy is better;
lower DPD/EOD indicate improved group fairness. For A 2 0.3, task addition maintains competitive
accuracy while typically lowering DPD/EOD relative to both baselines.

Impact of worst-performing subgroup task vectors on fairness and performance. To investigate
whether incorporating task vectors from underperforming subgroups can improve fairness without
sacrificing overall performance, we first identified the lowest-performing subgroups within each
attribute based on the average of DPD and EOD under the FFT setting. We excluded the "others"
group from this analysis as it does not reflect the characteristics of any specific subgroup. This
selection was informed by both our experimental results and those reported in Ding et al.|[2024b],
which showed consistent patterns. For gender, the worst-performing subgroups were men and
women; for race, they were Asian and Native American. We constructed a new model variant by
injecting a worst-performing subgroup task vector worst-performing subgroup task vector into the
base fine-tuned model:

enew = HSFT + )\(eworsl—performing subgroup — 90)

where )\ controls the strength of the task vector injection. We varied A from from 0.0 to 1.0 at 0.2
intervals to analyze the effect of this targeted addition on subgroup fairness metrics and overall
accuracy.

Statistical Significance. All results are averaged over three random seeds; we also compute 95%
confidence intervals for key metrics to assess robustness (See Table ).

5 Results

5.1 Theoretical intuition.

We complement our empirical findings with an analytical upper bound that links task-vector scaling
to fairness metrics.

Theorem (informal). Consider the merged model 0(\) = 6o + >_, A Ay, where Af, denotes the
task vector for subgroup g. Then the demographic parity difference (DPD) satisfies

DPD(0(N)) < 2L Z [N — 1] |Abyll2, for a Lipschitz constant L.

g9

Intuitively, deviations of the scaling coefficient A from the balanced setting (A = 1) enlarge disparities
in proportion to the norms of subgroup task vectors. This explains why fairness disparities shrink
as A — 1, consistent with the empirical trends observed in Figure[2] A full derivation and tighter
constants are provided in Appendix [B]

5.2 Empirical results overview.

Figures [[(a)] and [I(b)| compare FFT, LoRA, and task addition across gender and race subgroups for
hate speech detection on LL.aMA-2. For task addition, we selected A = 0.8 for gender, A = 0.5
for race, as it achieved the highest average training accuracy across three random seeds within the
tested range A\ € [0.0,1.0]. These visualizations provide a direct comparison of subgroup-wise



model behavior. From the subgroup-level bar plots in Figure[I] we observe that accuracy remains
consistently high and comparable across all three adaptation methods, regardless of subgroup. On
Civil Comments, on both DistilBERT and Qwen-2.5, Task Addition reduces group disparities while
keeping accuracy competitive. (see Appendix.[E]and Table [ for full Cls/results).

We also observe that, relative to FFT, task addition improves fairness in five of seven gender subgroups
and in three of eight race subgroups, with no single method dominating across all groups. The effect
in fairness being subgroup-dependent, motivates treating \ as a deliberate tuning knob and inspecting
subgroup behavior explicitly. As shown in Appendix [B.2] theoretically, task addition realizes a
group-weighted ERM in the linearized model. Concretely, 6(\) = 0y + >_, Ag Afly coincides with
the one-step minimizer of a first-order surrogate where subgroup g is re-weighted by A\,. This explains
the smooth fairness—utility frontier traced by sweeping A, and Theorem predicts larger parity
swings for groups with larger || Ad,||2. The observed curves in Fig. [2|align with those predictions
without further assumptions.

Taken together, the empirical trends and their first-order mechanism align with prior literature: our
macro-averaged accuracy, DPD, and EOD findings for FFT and LoRA are consistent with [Ding
et al.|[2024b]]. Moreover, the reductions perspective of Agarwal et al.|[2018]] and the equalized-odds
criterion of ? anticipate precisely the trade-off behavior we document, reinforcing the robustness of
our evaluation and interpretation.

5.3 Controlling accuracy and fairness metrics through lambda.

Figure [2| illustrates the overall performance of FFT, LoRA, and task arithmetic as the scaling
coefficients for task addition vary from 0.0 to 1.0. We observe how varying the task-arithmetic
coefficient A impacts macro-averaged accuracy (left), demographic parity difference (DPD, center),
and equalized odds difference (EOD, right) on a gender subset of the data. As ) increases from
0.0 to 0.2, we observe a peak in accuracy, but this configuration yields higher DPD and EOD,
indicating reduced fairness. Beyond A = 0.3, accuracy remains competitive compared to FFT and
LoRA, while both DPD and EOD progressively decline, suggesting that fairness improves without
severely compromising performance. Notably, these task addition curves stay consistently lower
than FFT and LoRA in terms of DPD and EOD at higher A values. Overall, this ablation could
indicate that tuning A provides a practical mechanism for balancing accuracy and fairness objectives,
offering guidelines for practitioners who wish to fine-tune fairness outcomes while maintaining strong
predictive performance.

5.4 Subgroup-targeted vectors: gains with trade-offs

To further analyze the effects of subgroup-specific task composition, Figure [3(a)H3(b)] illustrate
heatmaps where the y-axis lists each method or configuration under evaluation: FFT as baseline,
followed by task arithmetic with varying scaling coefficients (0.0 to 1.0 with 0.2 intervals). The x-axis
represents the subgroups— (e.g., Women, Trans, etc. for Gender). Each cell shows the corresponding
performance metric (e.g., macro-averaged accuracy, DPD, or EOD for a given method on a specific
subgroup. For these experiments, we added the task vector of the worst-performing subgroups
(Women and Men for the gender dataset subset, and Asian, and Native American for the race dataset
subset) to the FFT model, as explained earlier.

We generally observe that increasing the scaling coefficient A tends to improve overall accuracy,
consistent with the trends observed in Figure 2] However, effects are not uniform across all subgroups.
In the gender-based plots, for example, the Asian subgroup consistently achieves the highest accuracy
and lowest DPD/EOD—highlighting a recurring tradeoff where performance gains for one group
may exacerbate disparities for others. When the Women task vector is added (Figure [3(b)), accuracy
improves for the Trans Women subgroups. However, fairness metrics for subgroups such as Men
tend to worsen as the scaling coefficient A increases.

In Figure [3(a)] injecting the Men task vector improves performance for some subgroups, yet Women
consistently show lower accuracy and do not see consistent fairness improvements at higher A. Some
groups (e.g., Other, Trans Men, Trans Women) begin with relatively poor fairness under FFT and
show partial improvements with task vector addition. Still, these improvements are not universal—for
example, the Other subgroup often retains high EOD values regardless of A. Likewise, Native
American accuracy remains mostly unchanged across A, while fairness metrics can deteriorate when
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Figure 3: Heatmaps of Accuracy (left), DPD (center), and EOD (right) for gender (top) and race
(bottom) subgroups under the baseline FFT model (A = 0.0) and with increasing A values from 0.2
to 1.0 in 0.2 increments. The task vector for Men was added on the gender subset (top), and the task
vector for Women was added on the gender subset (bottom). Darker cells indicate higher values on
each metric’s scale; for DPD/EOD, lower values are better.

injecting task vectors for other groups. To visualize these results in more detail, Figure (a)] shows
macro-averaged accuracy, DPD, and EOD for the Men task vector added to the FFT model. The plots
illustrate how varying the scaling coefficient A impacts overall performance and fairness, highlighting
the effects of subgroup-specific task injection. We can observe in Figure fi(a)] that injecting the Men
task vector into the FFT model results in a slight accuracy gain and a clear monotonic decrease in
both DPD and EOD as )\ increases—indicating a favorable and consistent improvement in fairness
on the gender subset.

However, Figure A(b) and the additional plots in Figures [I0] and [TT]in Appendix show more
varied patterns as seen on Figures [3(a)]and[3(b)] When injecting the Native American task vector
(Figure ﬂ;f[), accuracy remains stable while fairness seems to decrease (increased DPD and EOD).
Asian (Figure[T0) shows the same behavior as injecting the Men task vector (Figure d(a)), positive
increase of fairness metrics as ) increases. These results show that injecting task vectors shifts
fairness and performance in a group-specific manner, tracing a clear fairness—utility frontier. This
heterogeneity is expected: per and Theorem sensitivity scales with |Ag,|o. Practically,
task-vector merging thus offers a subgroup-conditioned control knob: identifying which Ag, help or
hurt which groups provides a new actionable design consideration that SFT/LoRA do not expose,
and that hasn’t been explored in previous task arithmetic literature.

6 Conclusion and Limitations

Conclusion. In this study, we investigated the impact of a task arithmetic approach using task
vectors on fairness, in comparison to conventional FFT and LoRA methods. We conducted detailed
experiments to assess how the task addition affects prediction accuracy and fairness metrics, including
the DPD and EOD across various subgroups. The results indicate that, with appropriate settings of
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Figure 4: Impact of injecting both the Men and Women subgroup task vectors into the FFT model
on the gender data subset. The plot illustrates how scaling coefficient A reduces DPD and EOD,
outperforming the baseline FFT (blue dashed) and LoRA (orange dashed), with negligible impact on
macro-averaged accuracy.

the scalar coefficient ), the task arithmetic method can improve DPD and EOD without significantly
compromising overall model accuracy. Notably, using low to moderate values of the task vector
coefficient effectively reduced prediction bias in minority groups compared to FFT and LoRA.

Furthermore, the task arithmetic framework allows for subgroup-specific evaluation and adjustment of
model updates, enhancing interpretability—a key advantage of this method in the context of fairness.
This interpretability facilitates the mitigation of excessive bias or adverse effects on particular groups,
ultimately enabling more balanced model training

Our theoretical bound on DPD [B]provides an interpretive lens: it explains why simple task addition
can both reduce or worsen fairness depending on J, since deviations from equal weighting directly
increase disparities. This suggests future methods could optimize coefficients with fairness constraints
in mind.

Limitations. Despite these promising results, several challenges remain. The effectiveness of
task arithmetic depends on dataset characteristics and subgroup distributions, necessitating further
investigation into its generalizability across different tasks and domains. Moreover, future work
should explore algorithms for automatically optimizing the scalar coefficient A and for balancing
trade-offs among multiple subgroups.

In summary, our study demonstrates that task arithmetic using task vectors offers a promising
approach for controlling model fairness. Further experimental validation, application to diverse tasks,
and developing trade-off optimization methods are essential for improving fairness in broader and
more realistic deployment scenarios.
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Appendix

A Fairness metrics

A.1 Demographic Parity Difference (DPD) [Agarwal et al.,|[2018,2019]

DPD measures how varied the model’s rate of positive predictions is across attributes. This metric is
calculated as follows:

Mppp = Pr[f(X) =1[A=1] - Pr[f(X)=1]A=0]},

where A is the sensitive attributes, f(X) is the prediction from the models, and X is the feature vector.
The larger the DPD, the greater the difference in prediction outcomes across attributes, indicating
greater unfairness in the model predictions.

A.2 Equalized Odds Difference (EOD) [Ding et al., 2024b]

EOD is a metric that measures whether the model exhibits similar predictive performance in terms of
true and false positives, regardless of the attribute.

Meoq = max {Mrp, Mpp} . )

Here, letting Y denote the true label, M p and Mpp are defined as follows:

Mrp =

Prlf(X)=1|Y =1,A=1-Pr[f(X)=1|Y =1,4 = 0]

)

Mrpp =

Pr[f(X):l|Y=O,A:1]—Pr[f(X):1|Y:O,A:O]’.

A.3 Accuracy Parity

Accuracy parity refers to the expectation that a classifier achieves comparable accuracy across
different sensitive attribute groups. Formally, accuracy parity is satisfied when the probability of
correct classification is equal across groups, i.e.,
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EY =Y |S=0=E(Y =Y |S=1), 3)

This notion of fairness ensures that all subgroups receive equally reliable predictions, and is particu-
larly relevant in applications where consistent model performance across demographics is critical.
Unlike statistical parity or equal opportunity, accuracy parity focuses on equal overall correctness
rather than specific error types or outcome rates [|Quan et al., 2023]].

We observed high degree of accuracy parity in both gender and race settings, as the accuracy
differences between subgroups are negligible, indicating that the model performs consistently across
all groups.

B DPD Upper Bound and Optimal Task—Vector Scaling

B.1 Notation and Assumptions
A1 Smooth predictions. Soft scores py satisfy |pg(z) — po: (z)| < L |0 — &'||2 Va.

A2 Task vectors. For each group g € {1,...,G}, Af, := 0(()9 ) — 6, is obtained with the same
learning rate and schedule.

A3 Scaling coefficients. Coefficients obey S5 | Ay = G.
A4 Symmetric data-generating process. The joint distribution satisfies D = | J 9 D, where all

D, share the same conditional distribution except for the sensitive attribute label.

The merged model is
G

OA) = 0+ > Ag Ab,.

g=1
Demographic Parity Difference (DPD) reads

DPD(9) = ‘Epl[pe}—lEDO[po]’-

B.2 Task Addition and Weighted ERM

Lemma 1 (First-order link). Let £(6; x) be the training loss. For any non-negative {4},

G
O(\) =~ arg mein Z Ag o, [£(00; )
g=1
+ Vol(fo; )" (6 — 6o)].

That is, task addition gives the first-order solution of a group-weighted ERM.

Proof. Insert the linear Taylor expansion of ¢ at §y and minimise the resulting quadratic form; the
solution is exactly O(\). O

Implication. Deviation |\, — 1] alters the group weights and therefore directly pushes DPD upward,
as made explicit in Proposition [T] below.

B.3 DPD Upper Bound
Proposition 1 (DPD bound). Under Assumptions ATHA4)

G
DPD(6(A)) < 2L 3 [Ag = 1[[|A0]2.

g=1
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Proof. Define 0 := 60 + & Z Ab,. Assumption [Ad| gives DPD () = 0. Put f(z) := py(x)(z) —

g
pg(z). Then DPD(O(N)) = |Ep, [f] —Ep,[f]| Triangle and Jensen yield < 2L ||#(\) —0]|2. Finally,
0(A) — 6 =3, (Ag — 1)Af, and the triangle inequality give the stated bound. O

C Experimental details

C.1 Computational Resources and Software Environment

Hardware and Software: All experiments presented in this study were performed using compu-
tational resources equipped with two NVIDIA H100 GPUs. The experiments leveraged a GPU
environment consisting of CUDA 12.1.0, cuDNN 9.0.0, and NCCL 2.20.5.

The experiments were conducted using Python 3.9.18, incorporating several essential Python libraries
specifically optimized for deep learning tasks. The primary libraries included PyTorch (version
2.6.0), transformers (version 4.49.0), tokenizers (version 0.21.1), DeepSpeed (version 0.16.4), and
Accelerate (version 1.5.2).

The training experiments utilized the DeepSpeed framework with the following key configurations: a
gradient accumulation step of 4, optimizer offloaded to the CPU, zero redundancy optimizer at stage
2 (ZeRO-2), and mixed precision training employing FP16 and BF16 for enhanced performance and
memory efficiency. All experiments were conducted with a total computational cost of approximately
30 GPU-hours.

Protocol: We fine-tuned models based on the Llama-7B [Touvron et al.,|2023| architecture obtained
via HuggingFace repositories. Each model was trained for 4 epochs, employing a cosine learning rate
scheduler with a learning rate of 1 x 10~°, a warm-up ratio of 0.01, and a weight decay of 0.001.
Training utilized a per-device batch size of 2, with an effective batch size of 16 achieved through
gradient accumulation. Reproducibility was ensured by setting a random seed of 13, 14, 15 across all
experiments.

For Qwen2.5 experiments, models were trained for 2 epochs using a learning rate of 2 x 10~°, a batch
size of 16, and a sample fraction of 25% of the Civil Comments dataset. DistiIBERT experiments
utilized 2 epochs with a learning rate of 1 x 107>, a batch size of 16, and the full dataset (100%
sample fraction). Both architectures employed a weight decay of 0.01 and evaluation/save strategies
set to“epoch" with early stopping enabled.

For Low-Rank Adaptation (LoRA) experiments were conducted with a rank (lora_r) of 8, scaling
factor (lora_alpha) of 16, and no dropout.

C.2 Dataset

We use the Berkeley D-Lab hatespeech detection dataset [Kennedy et al.,[2020b] E]for our experiments.

The dataset is divided into subgroups based on the following attributes: Race or Ethnicity, Religion,
National Origin or Citizenship Status, Gender Identity, Sexual Orientation, Age, and Disability Status.
In our study, we use some of these subgroups to evaluate fairness.

Following |Das et al.[[2024], we binarize the hate speech score associated with each review using a
threshold of 0.5 to determine whether the review constitutes hate speech. When multiple annotations
exist for the same instance, we obtain one human annotation to avoid duplication.

D Additional Results

Here, we present results focusing on diverse subgroups, which we could not include in the main paper
due to space constraints.

D.1 Comparison of FFT, LoRA, and Task Arithmetic

Figure E] illustrates the overall performance of FFT, LoRA, and task arithmetic as the scaling for
task arithmetic vary from 0.0 to 1.0. Trends observed reinforced results on the gender subset on

*nttps://huggingface.co/datasets/ucberkeley-dlab/measuring—hate-speech
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Figure 5: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized odds
difference (EOD) for —FFT, LoRA, and task addition with coefficient (A = 0.8) —evaluated on the
gender subset of the data. Higher accuracy is desirable, whereas lower DPD and EOD values indicate
improved fairness. Boxplots show medians, interquartile ranges, and variability (with standard error
across three seeds). While accuracy is similar across methods, Task Addition generally yields lower
DPD and EOD medians than FFT and LoRA, suggesting a better balance between performance and
fairness, though overlapping distributions imply these differences are not uniformly significant.

0.90 5 0.07
- 0.06 0.12
>
O B 0.05
(© 086 o)
o 0.04
o
S5
g - o —
éEJ 0.82 0.02 L
0.80 0.01 —L
12 o™ 12 o™ 12 o™
¢ o o™ ¢ o o™ ¢ o pad™e

<02 <o R

Figure 6: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized
odds difference (EOD) for —FFT, LoRA, and Task Addition with optimal coefficient (A = 0.5)
—evaluated on the race subset of the data. Higher accuracy is desirable, whereas lower DPD and
EOD values indicate improved fairness. Boxplots show medians, interquartile ranges, and variability
(with standard error across three seeds).

Figure[2] Overall, \ provides a practical mechanism for balancing accuracy and fairness objectives,
and similarly there is a peak at A = 0.2 for highest accuracy, and higher DPD and EOD (less fairness).
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Figure 7: On a race-focused subset, we vary task arithmetic’s coefficient A and compare it against FFT
(purple dashed) and LoRA (orange dashed). The plots show group-wise accuracy (left), demographic
parity difference (DPD, center), and equalized odds difference (EOD, right). Higher accuracy is
better, while lower DPD and EOD indicate improved fairness. As A changes, task arithmetic remains
competitive in accuracy and can reduce fairness gaps relative to the baselines.
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Figure 8: The task vector corresponding to Asian was added to the FFT model on the race data subset.
Heatmap of Accuracy (left), DPD (center), and EOD (right) under the baseline (FFT) and increasing
A values (0.2 to 1.0). Darker cells indicate higher values in each metric’s scale; for DPD/EOD, lower
is better.

D.2 Subgroup-Specific Task Addition to FFT

We include additional heatmaps that visualize subgroup-wise performance across FFT and varying
scaling coefficients for the FFT model injected with a worst-performing subgroup. These supplemen-
tary plots, which follow the same setup described earlier, are consistent with the trends observed in

Figures B(a){3(b)]

In both gender and race subgroup experiments, increasing the scaling coefficient A generally leads to
improved macro-averaged accuracy. However, its impact on fairness metrics—DPD and EOD—is
less predictable and varies across subgroups. For instance, some subgroups benefit from improved
fairness as their corresponding task vectors are added, while others experience increased disparity,
even if accuracy remains stable or improves.

This nuanced behavior reflects a broader pattern: gains in performance for certain subgroups can
sometimes come at the expense of fairness for others. Injecting task vectors from worst-performing
subgroups does not consistently reduce disparities and, in some cases, can amplify them.
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Figure 9: The task vector corresponding to Native American was added to the FFT model on the
race data subset. Heatmap of Accuracy (left), DPD (center), and EOD (right) under the baseline
(FFT) and increasing A values (0.2 to 1.0). Darker cells indicate higher values in each metric’s scale;
for DPD/EOD, lower is better.

Figures [TTHA(b)| present additional results for the Full+Worst configuration, in which task vectors
from the worst-performing subgroups (Native American, Asian, Men, and Women) are added to the
FFT model. These plots show macro-averaged accuracy, DPD, and EOD as a function of the scaling
coefficient \.

Across these figures, we observe mixed effects: while accuracy generally remains stable or improves
slightly, fairness outcomes vary by subgroup. In Figure [IT, DPD and EOD worsen despite min-
imal accuracy changes. Meanwhile, Figure fi(Db)| reveals stable performance with minor fairness
improvements, though gains are not consistent across metrics. These results further emphasize that
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Figure 10: Effect of adding the Asian task vector to the FFT model on the race subset. Accuracy
keeps competitive with increasing A, and both DPD and EOD decrease consistently.

task vector injection alone does not ensure universal fairness improvements and often introduces
subgroup-specific trade-offs.
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Figure 11: Results of injecting the Native American task vector into the FFT model. Accuracy
shows minimal change across )\, while DPD and EOD increase (worsen fairness).

E Additional Experiments on Civil Comments

Protocol & uncertainty. Unless noted, we follow the LLaMA-2 setup (Section @.2): SFT and
LoRA (r=8) to obtain subgroup-specific models, compute task vectors w.r.t. the pretrained base, and
merge with a uniform scalar A\. We sweep A on the validation split (maximize overall accuracy) and
evaluate on the test split. Uncertainty is 95% stratified bootstrap over the test set (2,000 resamples,
preserving group X label frequencies). When multiple seeds are used, we pool predictions before
resampling. For accuracy, we additionally report Wilson CIs when relevant.

At a glance. On Civil Comments with DistilBERT (67M), task addition maintains accuracy within
~0.6—1.1pp of SFT/LoRA while reducing fairness gaps: for gender, DPD drops by ~41-54%
and EOD by ~34-47%; for race, DPD drops by ~41-58% and EOD by ~58-73% (midpoint
comparisons). These patterns align with LLaMA-2 on the Berkeley D-Lab dataset (Table[d). As a
complementary cross-architecture check, Qwen-2.5-0.5B on gender exhibits the same qualitative
A-controlled trade-off, improving substantially over LoORA with competitive accuracy.

E.1 Civil Comments — Gender

Notes. Relative to LoRA, Qwen-2.5-0.5B task addition halves DPD/EOD (~54-56%) while re-
gaining ~3.3pp accuracy; relative to SFT, accuracy is lower and fairness is mixed (DPD comparable;
EOD higher). DistilBERT shows consistent reductions in DPD/EOD with <1pp accuracy cost.

E.2 Civil Comments — Race

Discussion. Together with LLaMA-2 on Berkeley D-Lab (Tabled), these experiments indicate that
the A-controlled fairness—utility trade-off extends across architectures and datasets: task addition
typically preserves accuracy within ~1pp while materially reducing worst-case DPD/EOD.

1. Claims
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Table 2: Civil Comments (Gender). Headline metrics (Accuracy T, worst-case DPD |, worst-case
EOD |). Entries are 95% Cls from stratified bootstrap; point estimates marked with T will be replaced
by CIs computed using the same protocol.

Model/Method Accuracy Worst-DPD Worst-EOD
DistilBERT SFT 0.9457-0.9476  0.0887-0.1101  0.6157-0.6433
DistilBERT LoRA 0.9447-0.9453  0.0735-0.0812  0.5024-0.5084
DistilBERT Task Addition 0.9395° 0.0454" 0.3358"
Qwen-2.5-0.5B SFT' 0.884-0.886 0.093-0.119 0.060-0.084
Qwen-2.5-0.5B LoRA! 0.774-0.790 0.210-0.251 0.232-0.362

Qwen-2.5-0.5B Task Addition' 0.810-0.820 0.100-0.103 0.130-0.143

T Point estimates; CIs to be computed with the same bootstrap.

Table 3: Civil Comments (Race). Headline metrics (Accuracy 1, worst-case DPD |, worst-case
EOD |). Models evaluated for this attribute are shown. CIs are 95% stratified bootstrap; ™ indicates
point estimates to be replaced by ClIs.

Model/Method Accuracy Worst-DPD Worst-EOD
DistilBERT SFT 0.9467-0.9473  0.0987-0.0995  0.2568-0.3544
DistilBERT LoRA 0.9446-0.9453  0.1360-0.1425  0.4649-0.4895
DistilBERT Task Addition 0.93621 0.0580" 0.1289"

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions: systematic
evaluation of fairness in task arithmetic, comparison to FFT and LoRA, and analysis of
subgroup-specific task vectors. The results sections directly support these claims.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A dedicated “Limitations” section is included. It discusses dependence on
dataset characteristics, subgroup distributions, and the need for future methods to optimize
coefficients automatically.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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Model

Race (95% CI)

Accuracy

Worst DPD

Worst EOD

LLaMA2-7B SFT 0.7901-0.9039  0.0000-0.0345  0.0000-0.0730
LoRA 0.7599-0.9143  0.0000-0.0459  0.0000-0.1087
Task addition 0.7972-0.8724  0.0000-0.0265  0.0000-0.1308
DistilBERT SFT 0.9467-0.9473  0.0987-0.0995 0.2568-0.3544
LoRA 0.9446-0.9453  0.1360-0.1425 0.4649-0.4895
Task addition 0.9362 0.0580 0.1289
Model Gender (95% CI) Accuracy Worst DPD Worst EOD
LLaMA2-7B SFT 0.7914-0.8491  0.0621-0.1125  0.0000-0.1794
LoRA 0.8031-0.8823  0.0535-0.0596 0.0105-0.0906
Task addition 0.8031-0.8823  0.0259-0.0943  0.0000-0.0858
DistilBERT SFT 0.9457-0.9476  0.0887-0.1101 0.6157-0.6433
LoRA 0.9447-0.9453  0.0735-0.0812  0.5024-0.5084
Task addition 0.9395 0.0454 0.3358
Qwen-2.5-0.5B'  SFT 0.884-0.886 0.093-0.119 0.060-0.084
Qwen-2.5-0.5B LoRA 0.774-0.790 0.210-0.251 0.232-0.362
Qwen-2.5-0.5B  Task addition 0.810-0.820 0.100-0.103 0.130-0.143

Table 4: 95% confidence intervals. Models evaluated for each attribute are shown: LLaMA2-7B on
Berkeley D-Lab; DistilBERT and Qwen-2.5-0.5B on Civil Comments (Qwen-2.5 for gender). Task
addition maintains accuracy while showing competitive or improved fairness compared to SFT and

LoRA.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and

a complete (and

Answer: [Yes]

Justification: The paper includes theoretical results in Appendix A (DPD upper bound,
Lemma, Proposition) with explicit assumptions and complete proofs.

Guidelines:

correct) proof?

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setup is described in detail (Section 4, Appendix F): dataset,
preprocessing, model architecture, hyperparameters, training protocol, evaluation metrics,
and seeds are all disclosed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used (Berkeley D-Lab Hate Speech and Civil Comments) are
publicly available on HuggingFace. We plan to release the Github link in the camera-ready
version.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and Appendix F specify training/test splits, optimizer, learning rate,
batch sizes, epochs, LORA rank, and seeds, sufficient for understanding and reproducing
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars (standard error across three seeds) are reported in figures, and the
text explains variability across runs. This supports statistical robustness of results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix F describes compute environment: 2 x NVIDIA H100 GPUs,
CUDA/cuDNN versions, 30 GPU-hours total, and resource details for training runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study conforms to the NeurIPS Code of Ethics: it uses open, licensed
datasets, no private or personally identifiable information, and explicitly investigates fairness
and bias mitigation.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both positive impacts (fairness-aware model editing,
interpretability) and negative risks (potential misuse or subgroup tradeoffs) in the Conclusion
and Limitations sections.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release new pretrained models or datasets at high risk of
misuse; it evaluates fairness on an existing public dataset.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Berkeley D-Lab dataset is cited and linked (HuggingFace), with licensing
acknowledged. LLaMA2 is used under its community license, which is explicitly referenced.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has

curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets, codebases, or pretrained models as
assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: he work does not involve crowdsourcing or direct human-subject studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved; the study used an existing public dataset.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper uses large language models (LLaMA2-7B) as the core experimental
subject, and their role is fully described in Section 4 and Appendix F.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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