AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local
Neural Fields

Anonymous Authors'

Abstract

We present AROMA (Attentive Reduced Order
Model with Attention), a framework designed
to enhance the modeling of partial differential
equations (PDEs) using local neural fields. Our
flexible encoder-decoder architecture can obtain
smooth latent representations of spatial physi-
cal fields from a variety of data types, including
irregular-grid inputs and point clouds. This versa-
tility eliminates the need for patching and allows
efficient processing of diverse geometries. The se-
quential nature of our latent representation can be
interpreted spatially and permits the use of a con-
ditional transformer for modeling the temporal
dynamics of PDEs. By employing a diffusion-
based formulation, we achieve greater stability
and enable longer rollouts compared to conven-
tional MSE training. AROMA’s superior perfor-
mance in simulating 1D and 2D equations under-
scores the efficacy of our approach in capturing
complex dynamical behaviors.

1. Introduction

In recent years, many deep learning (DL) surrogate models
have been introduced to approximate solutions to partial dif-
ferential equations (PDEs) (Lu et al., 2021; Li et al., 2021;
Brandstetter et al., 2022; Stachenfeld et al., 2022). Among
these, the family of neural operators has been extensively
adopted and tested across various scientific domains, demon-
strating the potential of data-centric DL models in science
(Pathak et al., 2022; Vinuesa & Brunton, 2022).

Neural Operators were initially constrained by discretization
and domain geometry limitations. Recent advancements,
such as neural fields (Yin et al., 2022; Serrano et al., 2023)
and transformer architectures (Li et al., 2023; Hao et al.,
2023), have partially addressed these issues, improving both

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review at ICML 2024 Al for Science
workshop. Do not distribute.

dynamic modeling and steady-state settings. However, Neu-
ral Fields struggle to model spatial information and local
dynamics effectively, and existing transformer architectures,
while being flexible, are computationally expensive due to
their operation in the original physical space and require
large training datasets.

Our hypothesis is that considering spatiality is essential in
modeling spatio-temporal phenomena, yet applying atten-
tion mechanisms directly is computationally expensive. We
propose a new framework that models the dynamics in a re-
duced latent space, encoding spatial information compactly,
by one or two orders of magnitude relative to the original
space. This approach addresses both the complexity issues
of transformer architectures and the spatiality challenges of
Neural Fields.

Our novel framework leverages attention blocks and neural
fields, resulting in a model that is easy to train and achieves
state-of-the-art results on most datasets, particularly for com-
plex geometries, without requiring prior feature engineering.
To the best of our knowledge, we are the first to propose
a fully attention-based architecture for processing domain
geometries and unrolling dynamics. Compared to existing
transformer architectures for PDEs, our framework first en-
capsulates the domain geometry and observation values in
a compact latent representation, efficiently forecasting the
dynamics at a lower computational cost. Transformer-based
methods such as (Li et al., 2023; Hao et al., 2023) unroll the
dynamics in the original space, leading to high complexity.

Our contributions are summarized as follows:

* A principled and versatile encode-process-decode
framework for solving PDEs that operate on general
input geometries, including point sets, grids, or meshes,
and can be queried at any location within the spatial
domain.

* A new spatial encode / process / decode approach:
Variable-size inputs are mapped onto a fixed-size com-
pact latent token space that encodes local spatial infor-
mation. This latent representation is further processed
by a transformer architecture that models the dynam-
ics while exploiting spatial relations both at the local
token level and globally across tokens. The decoding

Under review at ICML 2024 Al for Science workshop

exploits a conditional neural field, allowing us to query
forecast values at any point in the spatial domain of the
equation.

* We include stochastic components at the encoding and
processing levels to enhance stability and forecasting
accuracy.

* Experiments performed on representative spatio-
temporal forecasting problems demonstrate that
AROMA is on par with or outperforms state-of-the-
art baselines in terms of both accuracy and complexity.

2. Problem setting

In this paper, we focus on time-dependent PDEs defined
over a spatial domain 2 (with boundary 0€2) and temporal
domain [0, 7. In the general form, their solutions u(z, t)
satisfy the following constraints :

%—1; = (V,t,x,u,gl;,g?;,...> Vo e Q,vt € (0,7

()
B(u)(t,z) =0 Vz e dQ,Vte (0,T])
u(0,z) =u’ VreQ 3)

where v represents a set of PDE coefficients, Equations
(2) and (3) represent the constraints with respect to the
boundary and initial conditions. We aim to learn, using
solutions data obtained with classical solvers, the evolution
operator G that predicts the state of the system at the next
time step: u't2! = G(u!). We have access to training
trajectories obtained with different initial conditions, and we
want to generate accurate trajectory rollouts for new initial
conditions at test time. A rollout is obtained by the iterative
application of the evolution operator u™4* = G™(u?).

3. Model Description
3.1. Model overview

We provide below an overview of the global framework
and each component is described in a subsequent section.
The model comprises three key components, as detailed in
Figure 1.

* Encoder &, : u%, — Z'. The encoder takes in-
put values u%, sampled over the domain € at time ¢,
where X denotes the discrete sample space and could
be a grid, an irregular mesh or a point set. uf, is
observed at locations = (x1, ...z y), with values
ut = (ul(x1), -+ ,ul(xy)). N is the number of
observations and can vary across samples. u, is pro-
jected through a cross attention mechanism onto a set

of M tokens Z' = (2},--- , 2%,) with M a fixed pa-
rameter. This allows mapping any discretized input
u!, onto a fixed dimensional latent representation Z*
encoding implicit local spatial information from the
input domain. The encoder is trained as a VAE and
Z' is sampled from a multivariate normal statistics as
detailed in Section 3.2.

« Latent time-marching refiner R, : Z! — Z!+4t,
We model the dynamics in the latent space through
a transformer. The dynamics can be unrolled auto-
regressively in the latent space for any time horizon
without requiring to project back in the original domain
Q. Self-attention operates on the latent tokens, which
allows modeling global spatial relations between the lo-
cal token representations. The transformer is enriched
with a conditional diffusion mechanism operating be-
tween two successive time steps of the transformer. We
experimentally observed that this probabilistic model
was more robust than a baseline deterministic trans-
former for temporal extrapolation.

Decoder D, : Z!+At — 4+t The decoder uses the
latent tokens Z‘+A% to approximate the function value
WA (x) = Dy (z, Z1AY) for any query coordinate
x € Q. We therefore denote 4! T4 = Dy, (Z!HAY) the
predicted function.

L]

Inference We encode the initial condition and unroll the
dynamics in the latent space by successive denoisings:
Al = Dy o Ry 0 E,(u’). We then decode along the
trajectory to get the reconstructions. We outline the full
inference pipeline in Figure 1 and detail its complexity anal-
ysis in Appendix B.1.

Training We perform a two-stage training: we first train
the encoder and decoder, secondly train the refiner. This is
more stable than end-to-end training.

3.2. Encoder-decoder description

The encoder-decoder components are jointly trained using
a VAE setting. The encoder is specifically designed to
capture local input observation from any sampled point set
in the spatial domain and encodes this information into a
fixed number of tokens. The decoder can be queried at
any position in the spatial domain, irrespective of the input
sample.

Encoder The encoder maps an arbitrary number N of
observations (x, u(x)) := ((z1, u(x1)),..., (N, u(zN))
onto a latent representation Z of fixed size M through the
following series of transformations,

where (v(z), v(z)) =
(v(z1),v(21))s - - -, (V(@N), v(2zN))), and h < d.

Under review at ICML 2024 Al for Science workshop

function values yte RV*¢

coordinates ¢ € RV*?

u
Q Encode |:| Q Aggregate
_) geometry |:|—> f:z:ﬁ:e()sn
O

Encoder _
T e RMXd

T9e0 ¢ RMXd

learnable tokens geometry-aware tokens

latent tokens with a
compressed dimension

predicted value

predicted tokens

Diffusion

7| Transformer [I:'

Z"t+At c RMxh

coordinate query

Figure 1. AROMA inference: The discretization-free encoder compresses the information of a set of N input values to a sequence of
M latent tokens, where M < N. The conditional diffusion transformer is used to model the dynamics, acting as a latent refiner. The
continuous decoder leverages self-attentions (SA), cross-attention (CA) and a local INR to map back to the physical space. Learnable
tokens are shared and encode spatial relations. Latent token Z* represents u; and Z*T4? is the prediction corresponding to w1 a;.

(positional, value) embeddings

0 (2, u(x))

geometry encoding

(v(@), v(x)) € R"

i) (T,v(@)) T e R

i) (T, v(z) observation spatial encoding T ¢ RMxd

iv) T dimension reduction Z c RM*h
(i) Embed positions and observations: Given WLT# K = Wiy, V = W{v)). Here, the values
an input sequence of coordinate-value pairs contain information on the observation values, and the keys

(x1,u(z1)), ..., (zn,u(zy)), we construct sequences
of positional embeddings v = (v(x1),...,7(zN))
and value embeddings v = (v(z1),...,v(zN)),
where ~(z) = FourierFeatures(z;w) and
v(z) = Linear(u(z)). These embeddings are ag-
gregated onto a smaller set of learnable query tokens
T = (T4,...,Ty) and then TV = (17, ...,T},) with M
fixed, to compress the information and encode the geometry
and spatial latent representations.

(ii) Encode geometry: Geometry-aware tokens T are
obtained with a multihead cross-attention layer and
a feedforward network (FFN), expressed as T&° =
T + FFN(CrossAttention(Q = WT,K =
Wk, V = Wy+)). This step does not include infor-
mation on the observations, ensuring that similar geometries
yield similar query tokens T irrespective of the w values.

(iii) Encode observations: The T tokens are then used
to aggregate the observation values via a cross-attention
mechanism: T/ = T8 + FFN(CrossAttention(Q =

contain information on the observation locations.

(iv) Reduce channel dimension and sample Z: The infor-
mation in the channel dimension of T is compressed using
a bottleneck linear layer. To avoid exploding variance in this
compressed latent space, we regularize it with a penalty on
the Lo norm of the latent code || Z||%. Introducing stochas-
ticity through a variational formulation further helps to reg-
ularize the auto-encoding and obtain smoother representa-
tions for the forecasting step. For this, we learn the com-
ponents of a multivariate distribution g = Linear(T’)
and log(o) = Linear(T’) from which the final token
embedding Z is sampled.

Decoder The decoder’s role is to reconstruct @!T4* from
Z'+At gee Figure 1. Since training is performed in two
steps (“encode-decode” first and then “process”), the de-
coder is trained to reconstruct @! for input u!. One pro-
ceeds as follows. (i) Increase channel dimensions and
apply self-attention: The decoder first lifts the latent to-

Under review at ICML 2024 Al for Science workshop

kens Z to a higher channel dimension (this is the reverse
operation of the one performed by the encoder) and then
apply several layers of self-attention to get tokens Z ", (ii)
Cross-attend: The decoder applies cross-attention to ob-
tain feature vectors that depend on the query coordinate =,
(f)(x)) = CrossAttention(Q = Wg(vy(z)),K =
W Z,, V =Wy Z/), where 7, is a Fourier features em-
bedding of bandwidth wy,. (iii) Decode with MLP: Finally,
we use a small MLP to decode this feature vector and obtain
the reconstruction %(x) = MLP(f)(z)). In contrast with
existing neural field methods for dynamics modeling, the
feature vector here is local. In practice, one uses multiple
cross attentions to get feature vectors with different frequen-
cies (see Appendix Figures 8 and 9 for further details).

|

Figure 2. Spatial interpretation of the tokens through cross atten-
tion between 79°° and ~y(x) for each x in the domain. Here we
visualize the cross-attention of three different tokens for a given
head. The cross attentions can have varying receptive fields de-
pending on the geometries.

Training The encoder and decoder are jointly optimized
as a variational autoencoder (VAE) (Kingma & Welling,
2013) to minimize the following objective : £ = Lyecon +
B - Lxr; where Licon = MSE(uly, %) is the recon-
struction loss between the input and Dy (Z*, X), with
Z' ~ N(pt, (6%)?) and pt, ot = &,(uy). The KL di-
vergence loss L1, = D (N (pt, (%)?) || N(0,1)) helps
regularize the network and prevents overfitting. We found
that using a variational formulation was essential to obtain
smooth latent representations while training the encoder-
decoder.

3.3. Transformer-based diffusion

Modeling the dynamics is performed in the latent Z space.
This space encodes spatial information present in the origi-
nal space while being a condensed, smaller-sized represen-
tation, allowing for reduced complexity dynamics modeling.
As indicated, the dynamics can be unrolled auto-regressively
in this space for any time horizon without the need to map
back to the original space. We use absolute positional em-

beddings Ej.s and a linear layer to project onto a higher
dimensional space: Zjq) = Linear(Z) + Epo. The back-
bone then applies several self-attention blocks, which pro-
cess tokens as follows:

Zj 1) < Zp + Attention(LayerNorm(Zyy)) (4)
Zj41) < Zj4q) + FFN(LayerNorm(Zp,) %)

We found out that adding a diffusion component to the
transformer helped enhance the stability and allowed longer
forecasts. Diffusion steps are inserted between two time
steps ¢ and ¢t + At of the time-marching process transformer.
The diffusion steps are denoted by & and are different from
the ones of the time-marching process (several diffusion
steps k are performed between two time-marching steps ¢
and t + At).

We then use a conditional diffusion transformer architecture
close to (Peebles & Xie, 2023) for Ry, where we detail the
main block in Appendix A. At diffusion step k, the input
to the network is a sequence stacking the tokens at time
¢ and the current noisy targets estimate (Z*, Z:2). See
Appendix A, Figure 5 and Figure 6 for more details. To
train the diffusion transformer Rgy, we freeze the encoder
and decoder, and use the encoder to sample pairs of succes-
sive latent tokens (Z*, Z!TA%). We employ the “v-predict”
formulation of DDPM (Salimans & Ho, 2022) for training
and sampling.

4. Experiments

In this section, we systematically evaluate the performance
of our proposed model across various experimental settings,
focusing on its ability to handle dynamics on both regular
and irregular grids. First, we investigate the dynamics on
regular grids, where we benchmark our model against state-
of-the-art neural operators, including Fourier Neural Opera-
tors (FNO), ResNet, Neural Fields, and Transformers. This
comparison highlights the efficacy of our approach in captur-
ing complex spatio-temporal patterns on structured domains.
Second, we extend our analysis to dynamics on irregular
grids and shared geometries, emphasizing the model’s ex-
trapolation capabilities in data-constrained regimes. Here,
we compare our results with Neural Fields and Transformers,
demonstrating the robustness of our model in handling less
structured and more complex spatial configurations. Lastly,
we assess the model’s capacity to process diverse geome-
tries and underlying spatial representations by comparing
its performance on irregular grids and different geometries.
This evaluation highlights the flexibility and generalization
ability of our model in encoding and learning from varied
spatial domains, showcasing its potential in accurately rep-
resenting and predicting dynamics across a wide range of
geometric settings.

Under review at ICML 2024 Al for Science workshop

Table 1. Model Performance Comparison - Test results. Metrics
in Relative Lo.

Model Burgers Navier-Stokes Navier-Stokes

1x1074 1x107°
FNO 5.00x 1072 153 x 107! 1.24x107!
ResNet 850 x 1072 3.77 x 10~* 2.56 x 107+
DINO 457x107" 7.25x 107! 3.72x 107!
CORAL 6.20x 1072 3.77x 107! 3.11x107!
GNOT 1.28x 107" 1.85x107' 1.65x 107!
AROMA 3.65x1072 1.05x107' 1.24x10!

4.1. Dynamics on regular grids

We begin our analysis with dynamics modeling on regular
grid settings. Though our model is targeted for complex
geometries, we believe this scenario remains an important
benchmark to assess the efficiency of surrogate models.

Datasets e 1D Burgers’ Equation (Burgers): Models
shock waves, using a dataset with periodic initial conditions
and forcing term as in (Brandstetter et al., 2022). It includes
2048 training and 128 test trajectories, at resolutions of
(250, 100). We create sub-trajectories of 50 timestamps and
treat them independently. e 2D Navier Stokes Equation:
for a viscous and incompressible fluid. We use the data from
(Lietal., 2021). The equation is expressed with the vorticity
form on the unit torus: %—f +u-Vw=vAw+ f,Vu=0
for z € Q,¢t > 0, where v is the viscosity coefficient. We
consider two different versions v = 10™* (Navier-Stokesle-
4) and v = 10~° (Navier-Stokesle-5), and use train and
test sets of 1000 and 200 trajectories with a base spatial
resolution of size 64 x 64. We consider a horizon of T' =
30 for v = 107 and T = 20 for v = 107> since the
phenomenon is more turbulent. At test time, we use the
vorticity at tg = 10 as the initial condition.

Setting We train all the models with supervision on the
next state prediction to learn to approximate the time-
stepping operator u'*2t = G(ut). At test time, we un-
roll the dynamics auto-regressively with each model and
evaluate the prediction with a relative Lo error defined as

- trajectory trajectory
Llest — 1 Z [Y IE
2 Nyt £~ jEtest

trajectory
el

Baselines We use a diverse panel of baselines including
state of the art regular-grid methods such as FNO (Li et al.,
2021) and ResNet (He et al., 2016; Lippe et al., 2023),
flexible transformer architectures such as OFormer (Li et al.,
2023), and GNOT (Hao et al., 2023), and finally neural-field
based methods with DINO (Yin et al., 2022) and CORAL
(Serrano et al., 2023).

Results Table 1 presents a comparison of model per-
formance on the Burgers, Navier-Stokesle-4, and Navier-

Stokesle-5 datasets, with metrics reported in Relative L.
Our method, AROMA, demonstrates excellent performance
across the board, highlighting its ability to capture the dy-
namics of turbulent phenomena, as reflected in the Navier-
Stokes datasets.

In contrast, DINO and CORAL, both global neural field
models, perform poorly in capturing turbulent phenomena,
exhibiting significantly higher errors compared to other mod-
els. This indicates their limitations in handling complex
fluid dynamics. On the other hand, AROMA outperforms
GNOT on all datasets, though it performs reasonably well
compared to the neural field based method.

Regarding the regular-grid methods, ResNet shows subopti-
mal performance in the pure teacher forcing setting, rapidly
accumulating errors over time during inference. FNO stands
out as the best baseline, demonstrating competitive per-
formance on all datasets. We hypothesize that FNO’s ro-
bustness to error accumulation during the rollout can be
attributed to its Fourier block, which effectively cuts off
high-frequency components. Overall, the results underscore
AROMA’s effectiveness and highlight the challenges Neural
Field-based models face in accurately modeling complex
phenomena.

4.2. Dynamics on irregular grids with shared geometries

We continue our experimental analysis with dynamics on un-
structured grids, where we observe trajectories only through
sparse spatial observations over time. We adopt a data-
constrained regime and show that our model can still be
competitive with existing Neural Fields in this scenario.

Datasets To evaluate our framework, we utilize two fluid
dynamics datasets commonly used as a benchmark for this
task (Yin et al., 2022; Serrano et al., 2023) with unique
initial conditions for each trajectory: e 2D Navier-Stokes
Equation (Navier-Stokes1 x 1073): We use the same equa-
tion as in Section 4.1 but with a higher viscosity coefficient
v = le — 3. We have 256 trajectories of size 40 for training
and 32 for testing. We used a standard resolution of 64x64.
3D Shallow-Water Equation (Navier-Stokes1 x 1073):
This equation approximates fluid flow on the Earth’s surface.
The data includes the vorticity w and height A of the fluid.
The training set comprises 64 trajectories of size 40, and the
test set comprises 8 trajectories with 40 timestamps. We use
a standard spatial resolution of 64 x 128.

Setting e Temporal Extrapolation: For both datasets,
we split trajectories into two equal parts of 20 timestamps
each. The first half is denoted as In-f and the second half as
Out-t. The training set consists of In-¢. During training, we
supervise with the next state only. During testing, the model
unrolls the dynamics from a new initial condition (IC) up

Under review at ICML 2024 Al for Science workshop

to the end of Out-¢, i.e. for 39 steps. Evaluation within the
In-t horizon assesses the model’s ability to forecast within
the training regime. The Out-t evaluation tests the model’s
extrapolation capabilities beyond the training horizon. e
Sparse observations: For the train and test set we randomly
select 7 percent of the available regular mesh to create a
unique grid for each trajectory, both in the train and in
the test. The grid is kept fixed along a given trajectory.
While each grid is different, they maintain the same level of
sparsity across trajectories. In our case, 7 = 100% amounts
to the fully observable case, while in 7 = 25% each grid
contains around 1020 points for Navier-StokesIe-3 and 2040
points for Shallow-Water.

Baselines We compare our model to OFormer (Li et al.,
2023), GNOT (Hao et al., 2023), and choose DINO (Yin
et al., 2022) and CORAL (Serrano et al., 2023) as the neural
field baselines.

Training and evaluation During training, we use only
the data from the training horizon (In-f). At test time, we
evaluate the models to unroll the dynamics for new initial
conditions in the training horizon (I/n-f) and for temporal
extrapolation (Out-t).

Results Table 2 demonstrates that AROMA consistently
achieves low MSE across all levels of observation sparsity
and evaluation horizons for both datasets. Overall, our
method performs best with some exceptions. On Shallow-
Water our model is slightly outperformed by CORAL in the
fully observed regime, potentially because of a lack of data.
Similarly, on Navier-Stokes1 x 1072 CORAL has slightly
better scores in the very sparse regime m = 5%. Overall,
this is not surprising as meta-learning models excel in data-
constrained regimes. We believe our geometry encoding
block is crucial for obtaining good representations of the
observed values in the sparse regimes, potentially explaining
the performance gap with GNOT and OFormer.

4.3. Dynamics on different geometries

Finally, we extend our analysis to learning dynamics over
varying geometries.

Datasets We evaluate our model on two problems involv-
ing non-convex domains, as described by (Pfaff et al., 2021).
Both scenarios involve fluid dynamics in a domain with
an obstacle, where the area near the boundary conditions
(BC) is more finely discretized. The boundary conditions
are specified by the mesh, and the models are trained with
various obstacles and tested on different, yet similar, obsta-
cles. o Cylinder: This dataset simulates water flow around
a cylinder using a fixed 2D Eulerian mesh, representing
incompressible fluids. For each node j in the mesh X', we

1.0-

0.9-

o
Q 0.8-
=
—
©
9
©
& 0.7-
<
o
@)
06" o ENO
—#— ResNet
0.5. —%— AROMA
—— AROMA No Diffusion
0 25 50 75 100 125 150 175 200

Rollout Steps

Figure 3. Correlation over time for long rollouts with different
methods on Burgers

have data on the node position /), momentum w(z()),
and pressure p(xz/)). Our task is to learn the mapping
from (w;(z), pr(2))zex 0 (Wirar(®), Prrat(r))zex for
a fixed At. e Airfoil: This dataset simulates the aerody-
namics around an airfoil, relevant for compressible fluids.
In addition to the data available in the Cylinder dataset, we
also have the fluid density p(z(/)) for each node j. Our goal
is to learn the mapping from (w(z), pt(x), pt(z))zer to
(wirat (@), preat(x), preat(x))zcx. Each example in the
dataset corresponds to a unique mesh. On average, there are
5233 nodes per mesh for Airfoil and 1885 for Cylinder. We
temporally subsample the original trajectories by taking one
timestamp out of 10, forming trajectories of 60 timestamps.
We use the first 40 timestamps for training (/n-f) and keep
the last 20 timestamps for evaluation (Out-f).

Setting We train all the models with supervision on the
next state prediction. At test time, we unroll the dynamics
auto-regressively with each model and evaluate the predic-
tion with a mean squared error (MSE) both in the training
horizon (In-t) and beyond the training horizon (Out-t).

Results The results in Table 3 show that AROMA outper-
forms other models in predicting flow dynamics on both
CylinderFlow and AirfoilFlow geometries, achieving the
lowest MSE values across all tests. This indicates AROMA’s
superior ability to encode geometric features accurately. Ad-
ditionally, AROMA maintains stability over extended pre-
diction horizons, as evidenced by its consistently low Out-t
MSE values.

Under review at ICML 2024 Al for Science workshop

Table 2. Temporal Extrapolation - Test results. Metrics in MSE.

2% Xy | Xie dataset — Navier-Stokes 1 x 1072 Shallow-Water
In-t Out-t In-t Out-t

DINO 251x1072 9.91x1072 415x107* 3.55x107°

7 =100% CORAL 576x10"* 3.00x107% 212x10"° 6.00x 10~*
OFormer 7.76 x 107® 6.39x 1072 1.00x 1072 2.23 x 1072

GNOT 321x107% 233x107% 248x107%* 217x1073

AROMA 1.32x107% 223x102 3.10x107° 875x10*

DINO 3.27x 1072 140x 107! 4.12x107* 3.26x 1073

= 25% CORAL 1.54x107% 1.07x107? 377x10"* 1.44x1073
irregular grid OFormer 3.73 x 1072 1.60 x 107' 6.19 x 107® 1.40 x 1072
GNOT 207x1072 6.24x1072 891x107* 4.66x 103

AROMA 7.02x107% 6.31x107% 1.49x10"* 1.02x10°%

DINO 3.63x1072 1.35x107! 447x107% 9.88x107®

T =5% CORAL 287x10°% 148x1072 272x107® 6.58x107°
irregular grid OFormer 3.23 x 1072 1.12x 107! 867 x107° 1.72x 1072
GNOT 7.43x1072 1.89x107' 5.05x107® 1.49x 1072

AROMA 4.73x10™% 201x1072 1.93x10"% 3.14x10°3

Table 3. Dynamics on different geometries - Test results. MSE on normalized data.

Model CylinderFlow AirfoilFlow
In-t Out-t In-t Out-t

CORAL 4.458 x 1072 8.695 x 1072 1.690 x 10~* 3.420 x 10~*

DINO 1.349 x 107 1576 x 1071 3.770 x 107! 4.740 x 107!
OFormer 5.020 x 107! 1.080 x 10° 5.620 x 107! 7.620 x 107}
AROMA 1.480 x 1072 2780 x10"2 5.720x 1072 1.940 x 10~ ?

4.4. Long rollouts and uncertainty quantification Neural Fields for PDE Neural Fields have recently
emerged as powerful tools to model dynamical systems.
DINO (Yin et al., 2022) is a space-time continuous archi-
tecture based on a modulated multiplicative filter network
(Fathony et al., 2021) and a NeuralODE (Chen & Zhang,
2019) for modeling the dynamics. DINO is capable of
encoding and decoding physical states on irregular grids
thanks to th tial continuity of the INR and through auto-
cluding our model without the diffusion process, in Figure 3. anks 1o the spatia: CoRMUILy o1 T1e W and trough auto
. e . . decoding (Park et al., 2019). CORAL is another neural-field
We can clearly see the gain in stability in using the diffu- . .
. . .o . based architecture, which tackles the broader scope of oper-
sion for long rollouts. Still, the predictions will eventually
. ator learning, also builds on meta-learning (Zintgraf et al.,
become uncorrelated over time as the solver accumulates . . .
J with th cal solution. A) 2019; Dupont et al., 2022) to freely process irregular grids.
CITOrS compare with the numerical solution. As we employ CORAL and DINO are the most similar works to ours, as
a generative model, we can generate several rollouts and es-) .
. . . - they are both auto-regressive and capable of processing ir-
timate the uncertainty of the solver with standard deviations. .
.. . . . regular grids. On the other hand (Chen et al., 2022) and
We can see in Figure 4 how this uncertainty increases over .
. . L . (Hagnberger et al., 2024) make use of spatio-temporal Neu-
time. This uncertainty is not a guarantee that the solution . .
. . . o . ral Fields, for obtaining smooth and compact latent represen-
lies within the bounds, but is an indication that the model is
¢ confident in it dicti tations in the first or to directly predict trajectory solutions
hot conticent m 1ts precictions. within a temporal horizon in the latter. Moreover, they either
use a CNN or rely on patches for encoding the observations
5. Related Work and are therefore not equipped for the type of tasks AROMA
is designed for.

After training different models on Burgers, we compare
them on long trajectory rollouts. We start from ¢y = 50
(i.e. use a numerical solver for 50 steps), and unroll our
dynamics auto-regressively for 200 steps. Note that all the
models were only trained to predict the next state. We plot
the correlation over rollout steps of different methods, in-

Our model differs from existing models in the field of op-
erator learning and more broadly from existing neural field

architectures. The works most related to ours are the follow- Transformers for PDE Several PDE solvers leverage
1ng. transformers and cross-attention as a backbone for modeling

Under review at ICML 2024 Al for Science workshop

—— Mean
100 rollouts

200 rollouts

Std Dev
400 rollouts

Value
°

Index

100

Index Index

Figure 4. Uncertainty of AROMA over rollout steps

PDEs. Transformers, which operate on token sequences,
provide a natural solution for handling irregular meshes
and point sets. (Li et al., 2023) and (Hao et al., 2023)
introduced transformer architectures tailored for operator
learning. (Hao et al., 2023) incorporated an attention mecha-
nism and employed a mixture of experts strategy to address
multi-scale challenges. However, their architecture relies on
linear attention without reducing spatial dimensions, result-
ing in linear complexity in sequence size, but quadratic in
the hidden dimensions, which can be prohibitive for deep
networks and large networks. Similarly, (Li et al., 2023)
utilized cross-attention to embed both regular and irregular
meshes into a latent space and applied a recurrent network
for time-marching in this latent space. Nonetheless, like
GNOT, their method operates point-wise on the latent space.
Transolver (Wu et al., 2024) decomposes a discrete input
function into a mixture of “slices,” each corresponding to
a prototype in a mixture model, with attention operating in
this latent space. This approach, akin to our model, reduces
complexity. However, it has not been designed for temporal
problems. (Alkin et al., 2024) recently proposed a versatile
model capable of operating on Eulerian and Lagrangian
(particles) representations. They reduce input dimension-
ality by aggregating information from input values onto
”supernodes” selected from the input mesh via message
passing while decoding is performed with a Perceiver-like
architecture. In contrast, AROMA performs implicit spatial
encoding with cross-attention to encode the geometry and
aggregate obsevation values. Finally, their training involves
complex end-to-end optimization, whereas we favor two
simple training steps that are easier to implement.

Diffusion models for PDE Recently, diffusion models
have experienced significant growth and success in gen-
erative tasks, such as image generation (Ho et al., 2020).
This success has motivated their application to physics pre-
diction. Riihling Cachay et al. (2023) propose DY ffusion,
a framework that adapts the diffusion process to spatio-

temporal data for forecasting on long-time rollouts, by per-
forming diffusion-like timesteps in the physical time dimen-
sion. PDE-Refiner (Lippe et al., 2023) is a CNN-based
method that uses diffusion to stabilize prediction rollouts
over long trajectories. Compared to these methods, we per-
form diffusion in a latent space, reducing the computational
cost; and leverage the advanced modeling capabilities of
transformers.

Local Neural Fields We are not the first work that pro-
poses to leverage locality to improve the design of neural
fields. In a different approach, (Bauer et al., 2023) proposed
a grid-based latent space where the modulation function ¢ is
dependent on the query coordinate . This concept enables
the application of architectures with spatial inductive biases
for generation on the latent representations, such as a U-
Net Denoiser for diffusion processes. Similarly, (Lee et al.,
2023) developed a locality-aware, generalizable Implicit
Neural Representation (INR) with demonstrated capabilities
in generative modeling. Both of these architectures assume
regular input structures, be it through patching methods or
grid-based layouts.

6. Conclusion and Limitations

AROMA offers a novel principled and flexible neural opera-
tor approach for modeling the spatio-temporal evolution of
physical processes. It is able to deal with general geometries
and to forecast at any position of the spatial domain. It in-
corporates in a principled framework attention mechanisms,
a latent diffusion transformer for spatio-temporal dynamics
and neural fields for decoding. Thanks to a very compact
spatial encoding, its complexity is lower than most SOTA
models. Experiments with small-size datasets demonstrate
its effectiveness. Its reduced complexity holds potential for
effective scaling to larger datasets. As for AROMA’s limita-
tions, even though it has potential for uncertainty modeling,
this aspect has still to be further explored and analyzed.

Under review at ICML 2024 Al for Science workshop

References

Alkin, B., Fiirst, A., Schmid, S., Gruber, L., Holzleitner,
M., and Brandstetter, J. Universal Physics Transform-

ers. 2024. URL http://arxiv.org/abs/2402.

12365.

Bauer, M., Dupont, E., Brock, A., Rosenbaum, D., Schwarz,
J., and Kim, H. Spatial functa: Scaling functa to imagenet
classification and generation. CoRR, abs/2302.03130,
2023.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural pde solvers. International Conference on
Learning Representations, 2022.

Chen, P. Y., Xiang, J., Cho, D. H., Chang, Y., Pershing,
G. A., Maia, H. T., Chiaramonte, M., Carlberg, K., and
Grinspun, E. Crom: Continuous reduced-order modeling
of pdes using implicit neural representations. Interna-
tional Conference on Learning Representation, 6 2022.
URL http://arxiv.org/abs/2206.02607.

Chen, Z. and Zhang, H. Learning implicit fields for gen-
erative shape modeling. Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition, 2019-June, 2019. ISSN 10636919. doi:
10.1109/CVPR.2019.00609.

Dupont, E., Kim, H., Eslami, S. M. A., Rezende, D., and
Rosenbaum, D. From data to functa: Your data point is
a function and you can treat it like one. Proceedings of
the 39 th International Conference on Machine Learn-
ing, 12022. URL http://arxiv.org/abs/2201.
12204.

Fathony, R., Sahu, A. K., Willmott, D., and Kolter, J. Z.
Multiplicative filter networks. International Conference
on Learning Representations., 2021.

Hagnberger, J., Kalimuthu, M., Musekamp, D., and Niepert,
M. Vectorized Conditional Neural Fields: A Framework
for Solving Time-dependent Parametric Partial Differen-
tial Equations. In Proceedings of the 41st International
Conference on Machine Learning (ICML 2024), 2024.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S.,
Cheng, Z., Song, J., and Zhu, J. Gnot: A general neu-
ral operator transformer for operator learning. In Inter-

national Conference on Machine Learning, pp. 12556—
12569. PMLR, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840-6851, 2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Lee, D., Kim, C., Cho, M., and Han, W.-S. Locality-aware
generalizable implicit neural representation. Advances in
Neural Information Processing Systems, 2023.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. International Conference on Learning Represen-
tations., 10 2021. URL http://arxiv.org/abs/
2010.08895.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. Transac-
tions on Machine Learning Research (April/2023), 2023.

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E.,
and Brandstetter, J. Pde-refiner: Achieving accurate
long rollouts with neural pde solvers. arXiv preprint
arXiv:2308.05732, 2023.

Lu, L., Jin, P,, and Karniadakis, G. E. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of
operators. Nat Mach Intell, 3:218-229, 10 2021.
doi: 10.1038/s42256-021-00302-5. URL http:
//arxiv.org/abs/1910.03193http://dx.
doi.org/10.1038/s42256-021-00302-5.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. Deepsdf: Learning continuous signed
distance functions for shape representation. Proceedings
of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2019-June, 2019. ISSN
10636919. doi: 10.1109/CVPR.2019.00025.

Pathak, J., Subramanian, S., Harrington, P, Raja, S.,
Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D.,
Li, Z., Azizzadenesheli, K., et al. Fourcastnet: A
global data-driven high-resolution weather model us-
ing adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195-4205,
2023.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. International Conference on Learn-
ing Representations., 10 2021. URL http://arxiv.
org/abs/2010.034009.

http://arxiv.org/abs/2402.12365
http://arxiv.org/abs/2402.12365
http://arxiv.org/abs/2206.02607
http://arxiv.org/abs/2201.12204
http://arxiv.org/abs/2201.12204
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/1910.03193 http://dx.doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/1910.03193 http://dx.doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/1910.03193 http://dx.doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2010.03409

Under review at ICML 2024 Al for Science workshop

Rolinek, M., Zietlow, D., and Martius, G. Variational autoen-
coders pursue pca directions (by accident). In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1240612415, 2019.

Riihling Cachay, S., Zhao, B., Joren, H., and Yu, R. DYffu-
sion: a dynamics-informed diffusion model for spatiotem-
poral forecasting. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Salimans, T. and Ho, J. Progressive distillation for
fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Serrano, L., Boudec, L. L., Koupai, A. K., Wang, T. X., Yin,
Y., Vittaut, J.-N., and Gallinari, P. Operator learning with
neural fields: Tackling pdes on general geometries. Ad-
vances in Neural Information Processing Systems, 2023.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,
M., Pfaft, T., Godwin, J., Cui, C., Ho, S., Battaglia, P.,
and Sanchez-Gonzalez, A. Learned coarse models for
efficient turbulence simulation. International Conference
on Learning Representation, 2022.

Vinuesa, R. and Brunton, S. L. Enhancing computational
fluid dynamics with machine learning. Nature Computa-
tional Science, 2(6):358-366, 2022.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A Fast Transformer Solver for PDEs on General
Geometries. 2024. URL http://arxiv.org/abs/
2402.02366.

Yin, Y., Kirchmeyer, M., Franceschi, J.-Y., Rakotomamonjy,
A., and Gallinari, P. Continuous pde dynamics forecast-
ing with implicit neural representations. International
Conference on Learning Representations, 9 2022. URL
http://arxiv.org/abs/2209.14855.

Zintgraf, L., Shiarlis, K., Kurin, V., Hofmann, K., and
Whiteson, S. Fast context adaptation via meta-learning.
36th International Conference on Machine Learning,
ICML 2019, 2019-June, 2019.

10

http://arxiv.org/abs/2402.02366
http://arxiv.org/abs/2402.02366
http://arxiv.org/abs/2209.14855

Under review at ICML 2024 Al for Science workshop

Local Neural Fields We are not the first work that proposes to leverage locality to improve the design of neural fields. In
a different approach, (Bauer et al., 2023) proposed a grid-based latent space where the modulation function ¢ is dependent
on the query coordinate z. This concept enables the application of architectures with spatial inductive biases for generation
on the latent representations, such as a U-Net Denoiser for diffusion processes. Similarly, (Lee et al., 2023) developed a
locality-aware, generalizable Implicit Neural Representation (INR) with demonstrated capabilities in generative modeling.
Both of these architectures assume regular input structures, be it through patching methods or grid-based layouts.

A. Implementation details

Diffusion transformer We illustrate how our diffusion transformer is trained and used at inference in Figure 5 and
Figure 6. We provide the diffusion step k which acts as a conditioning input for the diffusion model. We use an exponential
decrease for the noise level as in Lippe et al. (2023) i.e. o =1 — crrlfli/nK. We use the same diffusion transformer block as in

Peebles & Xie (2023), which relies on amplitude and shift modulations from the diffusion timestamp k:

oD, 50, 4« MLP (k) ©6)
a?, 33 42 MLP, () @)
Zy) < Zpy + aM ~Attention(’y(1) -LayerNorm(Zp) + ,8(1)) 8)
Zya) & Zjga) + a® -FFN(a(Q) -LayerNorm(Zj4q) + B(z)) Q)

Ve — /1 — apZ!
. . . . <«— larget tokens

MSE
HIEIEEEE | | B e
(Linear]
DiT Block .
(Linear]
. - . . < conditioning embedding
ZtAt Z! k
previous latent token noisy estimate diffusion step

Figure 5. During training, we noise the next-step latent tokens Z*+4?

DIT block is implemented as in (Peebles & Xie, 2023).

and train the transformer to predict the “velocity” of the noise. Each

11

Under review at ICML 2024 Al for Science workshop

Zi
DENOISE

), output tokens —»
f

Latent Refiner

D D
TITERIITHE
thAt Zli k

previous latent token noisy estimate diffusion step

Figure 6. At inference, we start from Z~§<+At ~ N(0, I') and reverse the diffusion process to denoise our prediction. We set our prediction
Zt+At _ Zt+At
= ZiToh

Encoder-Decoder We provide a more detailed description of the encoder-decoder pipeline in Figure 7.

coordinates function values

m output value

f(z)
modulation vector BB feature vector

geometry
1 t f ¥
T T9° T latent tokens Z A frequency embedding
learnable tokens geometry-aware tokens to spatial representation with a compressed coordinate query
encoding prior spatial query depending of the signal channel dimensions

information on the geometry

Figure 7. Architecture of our encoder and decoder. We regularize the architecture as a variational auto-encoder. Cross-attention layers
are used to aggregate the [NV observations into M latent tokens, and to expand the M processed tokens to the queried values. We use a
bottleneck layer to reduce the channel dimension of the latent space.

12

Under review at ICML 2024 Al for Science workshop

Local INR We show the implementation of our local INR, both with single-band frequency and multi-band frequency, in
Figure 8 and Figure 9.

ii(z) output value

feature vector

KV
A —> Cross-Attention

a4t

v4(x) frequency embedding

Figure 8. Single-band local INR decoder

13

Under review at ICML 2024 Al for Science workshop

() output value

feature vectors

3() multi band
o

KV
A —> Cross-Attention

H tetet

71(z) |7v2(z) v3() frequency embeddings

Figure 9. Multi-band local INR decoder

A.1. Hyperparameters

We detail the values of the hyperparameters used on each dataset: Table 4 presents the hyperparameters of the Encoder-
Decoder, while Table 5 presents the hyperparameters of the Diffusion Transformer. We use a cosine scheduler for the tuning
learning rate for both trainings, with an initial maximum learning rate of 10~ annealing to 10~° . All experiments were
performed with an NVIDIA TITAN RTX.

B. Additional results

B.1. Time complexity analysis

We denote IV as the number of observations of w, M as the number of tokens used to compress the information, 7" as the
number of autoregressive calls in the rollout, K as the number of refinement steps, and d as the number of channels used in
the attention mechanism. The most computationally expensive operations in our architecture are the cross-attention and
self-attention blocks. For simplification, we omit the geometry encoding block in this study.

The cost of the cross-attention in the encoder is O(N Md), and similarly, the cost of the cross-attention in the decoder is
O(NMd). Let L and Lo represent the number of layers in the decoder and diffusion transformer, respectively. The cost of
the self-attention layers in the decoder is O(L1 M?2d), while in the diffusion transformer, it is O(4LoM?d).

To unroll the dynamics, we encode the initial condition, obtain the predictions in the latent space, and then decode in parallel,
yielding a total cost of O((2N + 4KTLoM + L1 M)Md). As expected, our architecture has linear complexity in the
number of observations through the cross-attention layers. In contrast, GNOT relies on linear attention, resulting in a time
complexity of O((LN)d?) for each prediction, where L is the depth of the network. At inference, the cost per step along a
trajectory is LN d? for GNOT, compared to 4K Ly M?d for AROMA.

For instance, using K = 3, M = 64, N = 4096, and d = 128, GNOT’s cost is approximately 10 times that of AROMA for

14

Under review at ICML 2024 Al for Science workshop

Table 4. Hyperparameters of the Encoder-Decoder for Different Datasets
Hyperparameters Burgers NSle-3 NSle-4 NSle-5 Shallow-water Cylinder-Flow Airfoil-Flow

hidden_dim 128 128 128 128 128 128 128
num_self_attentions 2 2 2 3 2 2 3
num_latents 32 32 256 256 32 64 64
latent_dim 8 16 16 16 16 16 16
latent_heads 4 4 4 4 4 4 4
latent_dim_head 32 32 32 32 32 32 32
cross_heads 4 4 4 4 4 4 4
cross_dim_head 32 32 32 32 32 32 32
dim 128 128 128 128 64 128 128
depth_inr 3 3 3 3 3 3 3
frequencies [3,4,5] [2, 3] [3,4,5] [3,4,5] [2, 3] [3,4,5] [3,4,5]
dropout_sequence 0.1 0.1 0.1 0.1 0.1 0.1 0.1
feature_dim 16 16 16 16 16 16 16
encode_geo False True False False True True True
max_encoding_freq 4 4 4 4 5 4 5
kl_weight le-4 le-4 le-4 le-5 le-5 le-5 le-5
opochs 5000 5000 5000 5000 5000 5000 5000

Table 5. Diffusion Transformer Hyperparameters for Different Datasets

Hyperparameters Burgers NSle-3 NSle-4 NSle-5 Shallow-water Cylinder-Flow Airfoil-Flow

hidden_size 128 128 128 128 128 128 128
depth 4 4 4 4 4 4 4
num_heads 4 4 4 4 4 4 4
mlp_ratio 4.0 4.0 4.0 4.0 4.0 4.0 4.0
min_noise le-2 le-2 le-3 le-3 le-3 le-3 le-3
opochs 2000 2000 2000 2000 2000 2000 2000

each prediction throughout the rollout. Therefore AROMA is more efficient when M < N.

B.2. Long rollouts

We show long rollout predictions using AROMA on Burgers dataset in Figure 10, and on Navier-Stokes 1 x 10~3 dataset in
Figure 13. AROMA returns predictions that remain stable and accurate, even outside the training time horizon.

For Navier-Stokes, we show an example of test trajectory in the training horizon (Figure 11) and in extrapolation (Figure 12).

15

Under review at ICML 2024 Al for Science workshop

Long rollout prediction gt 0

=
5
8
dweysawL
-
5
8
dwesawl

Figure 10. Test example long rollout trajectory with AROMA on Burgers. Left is the predicted trajectory and right is the ground truth.

pmd t1 3 2) t3 4 t5 t6 t7 8 9 t10 tll ‘ ' t12 ‘ ' t13 ‘ r t14 ‘ t15 t16 t17 t18 t19 20
el Ll LLLLL LA oo
‘H ASEEEEEEE
Al Ll L L L L L LA

Figure 11. In-t

120 t21 22 123 t24 125 126 t27 128 29 130 t31 t32 t33 t34 t35 136 t37 138 t39
g m
pm’nnnn.nHE____-!!I
- n

Figure 12. Out-t

Figure 13. Test example rollout trajectories with AROMA on Navier-Stokes. Top: predicted trajectory on In-t. Bottom: trajectory on
Out-t. First row in each subfigure shows the prediction, the second row shows the ground truth.

B.3. Scaling experiments

In Figure 16, we compare the reconstruction and prediction capabilities of CORAL and AROMA on Navier-Stokes 1 x 10~*
given the number of training trajectories. As evidenced, our architecture outperforms CORAL significantly when the number
of trajectories is greater than 103, highlighting its efficacy in handling large amounts of data..

16

Under review at ICML 2024 Al for Science workshop

Test reconstruction error

—e— CORAL
0301 —e— AROMA
0.25
—_
e
5 020
()
=
“{E' 0.15
ko)
m >
0.10
0.05
0.00 T T T T
10! 10? 103 104
Number of Training Samples
Figure 14. Step 1: Autoencoding
Test prediction error
061 —e— CORAL
—e— AROMA
0.51
—_
o
044
Ll R
()
2
=
M 0.34
K9]
o
0.2
0.14
101 102 103 104

Number of Training Samples
Figure 15. Step 2: Rollout prediction

Figure 16. Scaling comparison of AROMA & CORAL.: relative Lo error with respect to the number of training trajectories

Under review at ICML 2024 Al for Science workshop

B.4. Spatial tokens perturbation analysis

To validate the spatial interpretation of our latent tokens, we establish a baseline code Z°, and introduce perturbations by
sequentially replacing the j-th token, z?, with subsequent tokens along the trajectory, denoted as zjl-, zjg-, cee z;?. Thus, the
perturbed tokens mirror Z° in all aspects except for the j-th token, which evolves according to the true token dynamics. We
show reconstruction visualizations of the perturbed tokens in Figures 17 to 24. On the right side, we show the groundtruth
of the trajectory. On the left side, is the change in AROMA’s prediction in response to the token perturbation. These figures
show that the perturbation of a token only impacts the reconstructed field locally, which validates the spatial structure of our
tokens. Additionally, we can notice some interesting effects of the token perturbations near the boundaries in Figures 19
and 24: our encoder-decoder has discovered from data and without explicit supervision that the solutions had periodic
boundary conditions by leveraging the encoded geometry and the function values. This validates the architecture of our
cross-attention module between the function values, the spatial coordinates and the geometry-aware tokens.

pred gt 200

S
8
dweysawiy
S
5
duiersawnl

Figure 17. Perturbation analysis on Burgers. Token 0.

pred 200 9t 200

5
8
dweisawiL
5
3
dwersawil

Figure 18. Perturbation analysis on Burgers. Token 1.

18

Under review at ICML 2024 Al for Science workshop

pred 200
15
175
1.0
150
0.5
125
0.0 =l
3
100 &
3
-0.5 °
75
-1.0
50
-15
25
-2.0 °
0 20 40 60 80 100 20 40 60 80 100
Figure 19. Perturbation analysis on Burgers. Token 2.
pred 200 gt
15
175
1.0
150
0.5
125
0.0 =l
3
100 &
S
-0.5 °
75
-1.0
50
-15
25
-2.0 0
0 20 40 60 80 100 20 40 60 80 100
Figure 20. Perturbation analysis on Burgers. Token 3.
pred 200 gt
15
175
1.0
150
0.5
125
0.0 =l
3
100 &
S
-0.5 °
75
-1.0
50
-15
25
-2.0 o
0 20 40 60 80 100 20 40 60 80 100

Figure 21. Perturbation analysis on Burgers. Token 5.

19

200

175

150

IS
&

5
8
dwessawil

200

175

150

I
&

5
8
dwessawil.

200

175

150

I
&

5
8
dwessawil

Under review at ICML 2024 Al for Science workshop

pred 200
15
175
1.0
150
0.5
125
0.0 =l
3
100 &
3
-0.5 °
75
-1.0
50
-15
25
-2.0 °
0 20 40 60 80 100 20 40 60 80 100
Figure 22. Perturbation analysis on Burgers. Token 6.
pred 200 gt
15
175
1.0
150
0.5
125
0.0 g
100 &
S
-0.5 °
75
-1.0
50
-15
25
-2.0 0
0 20 40 60 80 100 20 40 60 80 100
Figure 23. Perturbation analysis on Burgers. Token 7.
pred 200 gt
15
175
1.0
150
0.5
125
0.0 =l
3
100 &
S
-0.5 °
75
-1.0
50
-15
25
-2.0 o
0 20 40 60 80 100 20 40 60 80 100

Figure 24. Perturbation analysis on Burgers. Token 8.

20

200

175

150

IS
&

5
8
dwessawil

200

175

150

I
&

5
8
dwessawil.

200

175

150

I
&

5
8
dwessawil

Under review at ICML 2024 Al for Science workshop

B.5. Ablation study

We show the impact of the number of latent tokens on the Navier-Stokesle-4 dataset in Table 6. We train our auto-encoder
with 10000 trajectories. We can see that the performance increases with the number of tokens.

#Latent Tokens Test Reconstruction error

64 0.02664
128 0.0123
256 0.01049

Table 6. Influence of the number of latent tokens on the test reconstruction capabilities on NavierStokesle-4. Performance in Relative Lo
Error.

B.6. Latent space dynamics

For Navier-Stokes, we show how the mean (Figure 25) and standard deviation tokens (Figure 26) evolve over time for a
given test trajectory. We show the predicted trajectory of the latent tokens Z in the latent space in Figure 27.

In practice, the tokens where the logvar is 0 on Figure 26 do not impact the prediction (Rolinek et al., 2019).

21

Under review at ICML 2024 Al for Science workshop

1155

1156

1157

1158

1159

1160

1161 Token 1 Token 2 Token 3 Token 4

1162 — — —

1163

1164 0-0-@ °-0'% o.o-%
1165
1166 —0.5 1 —0.5 1 0.5 —0.5 1

1167

1168
~1.01 -1.0 -1.0
ey Ol e R €

1170 0 20 40 0 20 40 0 20 40 0 20 40
1171 Token 5 Token 6 Token 7 Token 8
1172 H—__
1173 2 RAIA

i A ATA
174 o] % ? Q;'/\; 7 ,‘,QAQAAV"V
1175 I =R 4 g"‘!ﬁ'—,’;
1176 oK %' o=
1177 v - Y /
1178

1179 =21
1180 0 20 40 0 20 40 0 20 40 0 20 40

1181 Token 9 Token 10 Token 11 Token 12

1182
0.

1183
—0.5 - —0.5 1

AY.
R
NNE)

‘7‘5'1‘!-" \v’yl XA
Sy

0

1184
1185 0 -
1186
1187
1188
1189

1190 0 20 40 0 20 40 0 20 40
1191 Token 13 Token 14 Token 15
1192
1193
1194
1195
1196
1197
1198
1199
1200 0 20 40 0 20 40 0 20 40 0 20 40
1201
1202
1203
1204
1205
1206
1207
1208
1209

\ ,//;\

-1.01 -1.01

Figure 25. Latent space dynamics on Navier-Stokes 1e-3 - Mean tokens over time. Each color line is a different token channel.

22

Under review at ICML 2024 Al for Science workshop

Token 1 Token 2 Token 3 Token 4
0.0 1 0.0 —————— 0.0 { o 0.0 A
— ———— =—
/—-\\/___\ /‘\/
—1.0H{=—— =
~1.0 1 —-1.01 —1.0 A
_15 -
1.5+ —131 -1.5 -
_20 .
—~— —20- ~— —2.0 1 /\/\ ~204
0 20 40 0 20 40 0 20 40 0 20 40
Token 5 Token 6 Token 7 Token 8
0 0 - 0.0 0

6
/—_\/— 759 -
- e

—_—~
ARACH| 1|
_10-

Token 9 Token 10 Token 11 Token 12

° E————— 1R — — — °]

B
R

o
N
o
IS
o
o
N
o
IS
o
o
N
o
IS
o
o
N
o
N
o

—_—
—4 —_—— 5] \/\
-1.01 -1.0 2
_6- m
_3-
—1.51 -1.5-
-8 —_— 4 ~—~ —
. . A =20+ . . . : : : : :
0 20 40 0 20 40 0 20 40 0 20 40
Token 13 Token 14 Token 15 Token 16
-0.5 -0.5 P o =27
— T~ T~
—-1.0 A —-1.0 4 TT~—— —4 -
o . W
—~—~————
e] N m -] \//\
20— | oo | 104 .
0 20 40 0 20 40 0 20 40 0 20 40

Figure 26. Latent space dynamics on Navier-Stokes - Logvar tokens over time. Each color line is a different token channel.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

)
o)

— — =~
=)

LW LY L) W W L L W W L W W W W W W W ¢

Under review at ICML 2024 Al for Science workshop

Token 1

0.0 A

_05 4

_1.0 .

—_—

Token 5

o #A
N

o SIaA

Token 13

0.0 1

_05 4

_1.0 .

40

Token 2

0.0 1

_05 4

—

X, Sesl/

N AVZN
\‘A‘\"OI"\‘\:"

Token 10

0.0 1

—0.5 1

—1.0 1

Token 14

0.0 1

_05 4

—1.0 1

Token 3 Token 4
—_—— —_—
—05 4 -0.5 1
_10 4
0 20 40 0 20 40
Token 7

LY X
'.'.A_\\\ .8 <A
NN
— A~/

T
0 20 20
Token 11 Token 12
14 _/—\-/_/—
—_—— ——
JE==— Bl —a———
0 .
_05 .
_1 .
_10 .
(I) 2I0 4'0
Token 15
2{>e "‘,
s
D AN
R SERIAA T e
04 V SO 74)
_2 .

Figure 27. Latent space dynamics on Navier-Stokes - Predicted tokens over time. Each color line is a different token channel.

24

